1
|
Ding H, Hou X, Gao Z, Guo Y, Liao B, Wan J. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts. Adv Healthc Mater 2024; 13:e2304432. [PMID: 38462702 DOI: 10.1002/adhm.202304432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.
Collapse
Affiliation(s)
- Heng Ding
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
2
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Simionescu D, Tharayil N, Leonard E, Carlyle W, Schwarz A, Ning K, Carsten C, Garcia JCC, Carter A, Owens C, Simionescu A. Binding of Pentagalloyl Glucose to Aortic Wall Proteins: Insights from Peptide Mapping and Simulated Docking Studies. Bioengineering (Basel) 2023; 10:936. [PMID: 37627822 PMCID: PMC10451288 DOI: 10.3390/bioengineering10080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pentagalloyl glucose (PGG) is currently being investigated as a non-surgical treatment for abdominal aortic aneurysms (AAAs); however, the molecular mechanisms of action of PGG on the AAA matrix components and the intra-luminal thrombus (ILT) still need to be better understood. To assess these interactions, we utilized peptide fingerprinting and molecular docking simulations to predict the binding of PGG to vascular proteins in normal and aneurysmal aorta, including matrix metalloproteinases (MMPs), cytokines, and fibrin. We performed PGG diffusion studies in pure fibrin gels and human ILT samples. PGG was predicted to bind with high affinity to most vascular proteins, the active sites of MMPs, and several cytokines known to be present in AAAs. Finally, despite potential binding to fibrin, PGG was shown to diffuse readily through thrombus at physiologic pressures. In conclusion, PGG can bind to all the normal and aneurysmal aorta protein components with high affinity, potentially protecting the tissue from degradation and exerting anti-inflammatory activities. Diffusion studies showed that thrombus presence in AAAs is not a barrier to endovascular treatment. Together, these results provide a deeper understanding of the clinical potential of PGG as a non-surgical treatment of AAAs.
Collapse
Affiliation(s)
- Dan Simionescu
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.C.C.G.); (A.C.)
| | - Nishanth Tharayil
- Multi-User Analytical Lab (MUAL) & Metabolomic Core, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - Elizabeth Leonard
- Multi-User Analytical Lab (MUAL) & Metabolomic Core, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - Wenda Carlyle
- Nectero Medical Inc., Mesa, AZ 85281, USA; (W.C.); (A.S.); (K.N.)
| | - Alex Schwarz
- Nectero Medical Inc., Mesa, AZ 85281, USA; (W.C.); (A.S.); (K.N.)
| | - Kelvin Ning
- Nectero Medical Inc., Mesa, AZ 85281, USA; (W.C.); (A.S.); (K.N.)
| | | | - Juan Carlos Carrillo Garcia
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.C.C.G.); (A.C.)
| | - Alexander Carter
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.C.C.G.); (A.C.)
| | - Collin Owens
- Tissue Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (C.O.); (A.S.)
| | - Agneta Simionescu
- Tissue Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (C.O.); (A.S.)
| |
Collapse
|
4
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
5
|
Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials 2022; 288:121675. [DOI: 10.1016/j.biomaterials.2022.121675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
|
6
|
Wang F, Qin K, Wang K, Wang H, Liu Q, Qian M, Chen S, Sun Y, Hou J, Wei Y, Hu Y, Li Z, Xu Q, Zhao Q. Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Rep 2022; 39:110981. [PMID: 35732119 DOI: 10.1016/j.celrep.2022.110981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/29/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular bypass surgery continues to use autologous grafts and often suffers from a shortage of donor grafts. Decellularized xenografts derived from porcine veins provide a promising candidate because of their abundant availability and low immunogenicity. Unfortunately, transplantation outcomes are far from satisfactory because of insufficient regeneration and adverse pathologic remodeling. Herein, a nitrate-functionalized prosthesis has been incorporated into a decellularized porcine vein graft to fabricate a bio-hybrid vascular graft with local delivery of nitric oxide (NO). Exogenous NO efficiently promotes vascular regeneration and attenuates intimal hyperplasia and vascular calcification in both rabbit and mouse models. The underlying mechanism was investigated using a Sca1 2A-CreER; Rosa-RFP genetic-lineage-tracing mouse model that reveals that Sca1+ stem/progenitor cells (SPCs) are major contributors to vascular regeneration and remodeling, and NO plays a critical role in regulating SPC fate. These results support the translational potential of this off-the-shelf vascular graft.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Kang Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yijin Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingli Hou
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Cheng S, Liu X, Qian Y, Maitusong M, Yu K, Cao N, Fang J, Liu F, Chen J, Xu D, Zhu G, Ren T, Wang J. Double-Network Hydrogel Armored Decellularized Porcine Pericardium as Durable Bioprosthetic Heart Valves. Adv Healthc Mater 2022; 11:e2102059. [PMID: 34969157 DOI: 10.1002/adhm.202102059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Heart valves have extraordinary fatigue resistance which beat ≈3 billion times in a lifetime. Bioprosthetic heart valves (BHVs) made from fixed heteroplasm that are incrementally used in heart valve replacement fail to sustain the expected durability due to thrombosis, poor endothelialization, inflammation, calcification, and especially mechanical damage induced biocompatibility change. No effective strategy has been reported to conserve the biological properties of BHV after long-term fatigue test. Here, a double-network tough hydrogel is introduced, which interpenetrate and anchor into the matrix of decellularized porcine pericardium (dCell-PP) to form robust and stable conformal coatings and reduce immunogenicity. The ionic crosslinked hyaluronic acid (HA) network mimics the glycocalyx on endothelium which improves antithrombosis and accelerates endothelialization; the chemical crosslinked hydrophilic polyacrylamide (PAAm) network further enhances antifouling properties and strengthens the shielding hydrogels and their interaction with dCell-PP. In vitro and rabbit ex vivo shunt assay demonstrate great hemocompatibility of polyacrylamide/HA hydrogel hybrid PP (P/H-PP). Cell experiments and rat subcutaneous implantation confirm satisfactory endothelialization, biocompatibility, and anticalcification properties. For hydrodynamic experiment, P/H-PP gains full mark at different flow conditions and sustains excellent biomechanical and biological properties after 200 000 000 cycles. P/H double-network hydrogel armoring dCell-PP is a promising progress to extend BHV durability for clinical implantation therapy.
Collapse
Affiliation(s)
- Si Cheng
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Kaixiang Yu
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Naifang Cao
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Juan Fang
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Feng Liu
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Gangjie Zhu
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 P. R. China
- Cardiovascular Key Laboratory of Zhejiang Province Hangzhou 310009 P. R. China
| |
Collapse
|
8
|
Liu Y, Chen C, Xie X, Yuan H, Tang Z, Qian T, Liu Y, Song M, Liu S, Lu T, Wu Z. Photooxidation and Pentagalloyl Glucose Cross-Linking Improves the Performance of Decellularized Small-Diameter Vascular Xenograft In Vivo. Front Bioeng Biotechnol 2022; 10:816513. [PMID: 35402413 PMCID: PMC8987116 DOI: 10.3389/fbioe.2022.816513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Small-diameter vascular grafts have a significant need in peripheral vascular surgery and procedures of coronary artery bypass graft (CABG); however, autografts are not always available, synthetic grafts perform poorly, and allografts and xenografts dilate, calcify, and induce inflammation after implantation. We hypothesized that cross-linking of decellularized xenogeneic vascular grafts would improve the mechanical properties and biocompatibility and reduce inflammation, degradation, and calcification in vivo. To test this hypothesis, the bovine internal mammary artery (BIMA) was decellularized by detergents and ribozymes with sonication and perfusion. Photooxidation and pentagalloyl glucose (PGG) were used to cross-link the collagen and elastin fibers of decellularized xenografts. Modified grafts’ characteristics and biocompatibility were studied in vitro and in vivo; the grafts were implanted as transposition grafts in the subcutaneous of rats and the abdominal aorta of rabbits. The decellularized grafts were cross-linked by photooxidation and PGG, which improved the grafts’ biomechanical properties and biocompatibility, prevented elastic fibers from early degradation, and reduced inflammation and calcification in vivo. Short-term aortic implants in the rabbits showed collagen regeneration and differentiation of host smooth muscle cells. No occlusion and stenosis occurred due to remodeling and stabilization of the neointima. A good patency rate (100%) was maintained. Notably, implantation of non-treated grafts exhibited marked thrombosis, an inflammatory response, calcification, and elastin degeneration. Thus, photooxidation and PGG cross-linking are potential tools for improving grafts’ biological performance within decellularized small-diameter vascular xenografts.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haoyong Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Qian
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yalin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ting Lu, ; Zhongshi Wu,
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Ting Lu, ; Zhongshi Wu,
| |
Collapse
|
9
|
Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int J Mol Sci 2022; 23:ijms23063310. [PMID: 35328732 PMCID: PMC8954945 DOI: 10.3390/ijms23063310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.
Collapse
|
10
|
Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14010464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural fibers are an important source for producing polymers, which are highly applicable in their nanoform and could be used in very broad fields such as filtration for water/wastewater treatment, biomedicine, food packaging, harvesting, and storage of energy due to their high specific surface area. These natural nanofibers could be mainly produced through plants, animals, and minerals, as well as produced from agricultural wastes. For strengthening these natural fibers, they may reinforce with some substances such as nanomaterials. Natural or biofiber-reinforced bio-composites and nano–bio-composites are considered better than conventional composites. The sustainable application of nanofibers in agricultural sectors is a promising approach and may involve plant protection and its growth through encapsulating many bio-active molecules or agrochemicals (i.e., pesticides, phytohormones, and fertilizers) for smart delivery at the targeted sites. The food industry and processing also are very important applicable fields of nanofibers, particularly food packaging, which may include using nanofibers for active–intelligent food packaging, and food freshness indicators. The removal of pollutants from soil, water, and air is an urgent field for nanofibers due to their high efficiency. Many new approaches or applicable agro-fields for nanofibers are expected in the future, such as using nanofibers as the indicators for CO and NH3. The role of nanofibers in the global fighting against COVID-19 may represent a crucial solution, particularly in producing face masks.
Collapse
|
11
|
Cai Z, Tan Z, Tian R, Chen X, Miao P, Yao C, Wang C, Yu Z, Gu Y. Acellular Vascular Scaffolds Preloaded With Heparin and Hepatocyte Growth Factor for Small-Diameter Vascular Grafts Might Inhibit Intimal Hyperplasia. Cell Transplant 2022; 31:9636897221134541. [DOI: 10.1177/09636897221134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To develop small-diameter (<6 mm) scaffolds capable of accelerating rapid endothelialization and improving long-term patency rate, we created acellular vascular scaffolds preloaded with heparin and hepatocyte growth factor (HGF). Heparin was conjugated to suppress thrombogenic responses, and HGF was immobilized to induce endothelial cells (ECs) proliferation and migration. The scaffolds immobilized with heparin exhibited highly effective localization and sustained release of HGF for 30 days in vitro. We implanted this modified scaffold into the carotid artery of a rabbit model to investigate the efficacy in vivo. The acellular vascular scaffold with heparin only was used as control. After transplantation, the patency of this modified scaffold was 91.67% at 1, 3, 6, and 12 months, while the patency rate in the group with grafted heparin only was 83.33% at 1, 3, 6, and 12 months. This modified scaffold significantly stimulated ECs proliferation and the endothelium aligned in the direction of flow after 12 months. In addition, intimal hyperplasia was significantly reduced in the grafts coated with HGF compared with the control grafts. The small-diameter vascular grafts with an inner diameter of 2.5 mm preloaded with heparin and HGF may be a substitute for autologous blood vessels in clinic.
Collapse
Affiliation(s)
- Zhiwen Cai
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhengli Tan
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ran Tian
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peng Miao
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chenliang Yao
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Zhengya Yu
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Sameti M, Clarke K, Dewan P, Washington KS, Talebzadeh S, Liao Y, Bashur CA. Reduced Platelet Adhesion for Blended Electrospun Meshes with Low Amounts of Collagen Type I. Macromol Biosci 2022; 22:e2100267. [PMID: 34713970 DOI: 10.1002/mabi.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/25/2021] [Indexed: 11/09/2022]
Abstract
A clinically approved, tissue engineered graft is needed as an alternative for small-diameter artery replacement. Collagen type I is commonly investigated for naturally derived grafts. However, collagen promotes thrombosis, currently requiring a graft pre-seeding step. This study investigates unique impacts of blending low collagen amounts with synthetic polymers on scaffold platelet response, which would allow for viable acellular grafts that can endothelialize in vivo. While platelet adhesion and activation are confirmed to be high with 50% collagen samples, low collagen ratios surprisingly exhibit the opposite, anti-thrombogenic effect. Different platelet interactions in these blended materials can be related to collagen structure. Low collagen ratios show homogenous distribution of the components within individual fibers. Importantly, blended collagen scaffolds exhibit significant differences from gelatin scaffolds, including retaining percentage of collagen after incubation. These findings correlate with functional benefits including better endothelial cell spreading on collagen versus gelatin blended materials. This appears to differ from the current paradigm that processing with harsh solvents will irreversibly denature collagen into less desirable gelatin, but an important distinction is the interaction between collagen and synthetic materials during processing. Overall, excellent anti-thrombogenic properties of low collagen blends and benefits after grafting show promise for this vascular graft strategy.
Collapse
Affiliation(s)
- Mahyar Sameti
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Kai Clarke
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Prerona Dewan
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Kenyatta S Washington
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Somayeh Talebzadeh
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Yi Liao
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Chris A Bashur
- Department of Biomedical, Chemical Engineering, and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| |
Collapse
|
13
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Zhen L, Creason SA, Simonovsky FI, Snyder JM, Lindhartsen SL, Mecwan MM, Johnson BW, Himmelfarb J, Ratner BD. Precision-porous polyurethane elastomers engineered for application in pro-healing vascular grafts: Synthesis, fabrication and detailed biocompatibility assessment. Biomaterials 2021; 279:121174. [PMID: 34715636 DOI: 10.1016/j.biomaterials.2021.121174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Unmet needs for small diameter, non-biologic vascular grafts and the less-than-ideal performance of medium diameter grafts suggest opportunities for major improvements. Biomaterials that are mechanically matched to native blood vessels, reduce the foreign body capsule (FBC) and demonstrate improved integration and healing are expected to improve graft performance. In this study, we developed biostable, crosslinked polyurethane formulations and used them to fabricate scaffolds with precision-engineered 40 μm pores. We matched the scaffold mechanical properties with those of native blood vessels by optimizing the polyurethane compositions. We hypothesized that such scaffolds promote healing and mitigate the FBC. To test our hypothesis, polyurethanes with 40 μm pores, 100 μm pores, and non-porous slabs were implanted subcutaneously in mice for 3 weeks, and then were examined histologically. Our results show that 40 μm porous scaffolds elicit the highest level of angiogenesis, cellularization, and the least severe foreign body capsule (based on a refined assessment method). This study presents the first biomaterial with tuned mechanical properties and a precision engineered porous structure optimized for healing, thus can be ideal for pro-healing vascular grafts and in situ vascular engineering. In addition, these scaffolds may have wide applications in tissue engineering, drug delivery, and implantable device.
Collapse
Affiliation(s)
- Le Zhen
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Sharon A Creason
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Felix I Simonovsky
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sarah L Lindhartsen
- Histology and Imaging Core, University of Washington, Seattle, WA, 98195, USA
| | - Marvin M Mecwan
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Brian W Johnson
- Histology and Imaging Core, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Himmelfarb
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA; Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA, 98195, USA; Kidney Research Institute, Seattle, WA, 98104, USA; Center for Dialysis Innovation, University of Washington, WA, 98195, USA
| | - Buddy D Ratner
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA; Center for Dialysis Innovation, University of Washington, WA, 98195, USA.
| |
Collapse
|
15
|
Zhou L, Wang Z, Wang Z, Zhu J, Feng Y, Zhang D, Shen C, Ye X, Zhu J, Wei P, Mei J, Zhang J. Effect of heparinization on promoting angiogenesis of decellularized kidney scaffolds. J Biomed Mater Res A 2021; 109:1979-1989. [PMID: 33822474 DOI: 10.1002/jbm.a.37190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/26/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
Native decellularized extracellular matrix provides an adequate platform for tissues and organs and promotes the development of organogenesis and tissue remodeling. However, thrombosis poses a great challenge that hinders the transplantation for a substantial organ in vivo. Therefore, anticoagulation and re-reendothelialization of organ biological scaffolds are the primary concerns to be addressed before orthotopic transplantation. Herein, a heparinized decellularized kidney scaffold (HEP-DKSs) was prepared using end-point attachment technology, followed by binding the vascular endothelial growth factor (VEGF) to greatly improve the hemocompatibility and angiogenesis of DKSs. Based on the anticoagulant, co-culture of human umbilical vein endothelial cells, and subcapsular transplantation of kidney experiments, HEP-VEGF-DKSs are shown to reduce platelet adhesion, which is crucial for subsequent vascularization and slow release of heparin and VEGF, suggesting its ability of improve neovascularization. Taken together, these data indicated an optimal anticoagulation function of HEP-VEGF-DKSs and the potential of vascularization for regeneration of whole decellularized kidney.
Collapse
Affiliation(s)
- Lebin Zhou
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Department of Emergency, People's Hospital of Yueqing, Wenzhou, China
| | - Zhiyi Wang
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulu Feng
- Department of Emergency, People's Hospital of Yueqing, Wenzhou, China
| | - Deming Zhang
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Chenfang Shen
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Ye
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieyang Zhu
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wei
- Department of Hand and Repair Reconstruction Surgical, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jin Mei
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jianse Zhang
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Du P, Li X, Sun L, Pan Y, Zhu H, Li Y, Yang Y, Wei X, Jing C, Chen H, Shi Q, Li W, Zhao L. Improved hemocompatibility by modifying acellular blood vessels with bivalirudin and its biocompatibility evaluation. J Biomed Mater Res A 2021; 110:635-651. [PMID: 34599549 DOI: 10.1002/jbm.a.37316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
The incidence rate of cardiovascular diseases is increasing year by year. The demand for coronary artery bypass grafting has been very large. Acellular blood vessels have potential clinical application because of their natural vascular basis, but their biocompatibility and anticoagulant energy need to be improved. We decellularized the abdominal aorta of SD rats, and then modified with bivalirudin via polydopamine. The mechanical properties, blood compatibility, cytocompatibility, immune response, and anticoagulant properties were evaluated, and then the bivalirudin-modified acellular blood vessels were implanted into rats for remodeling evaluation in vivo. The results we got show that the bivalirudin-modified acellular blood vessels showed good cytocompatibility and blood compatibility, and its anti-inflammatory trend was dominant in the immune response. After 3 months of transplantation, the bivalirudin-modified acellular blood vessels did not easily form thrombus. It was not easy to form calcification and could make the host cells grow better. Through vascular stimulation and immunofluorescence test, we found that vascular smooth muscle cells and endothelial cells proliferated well in the bivalirudin group. Bivalirudin-modified acellular blood vessels provided new idea for small diameter tissue engineering blood vessels, and may become a potential clinical substitute for small-diameter vascular grafts.
Collapse
Affiliation(s)
- Pengchong Du
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Lulu Sun
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yuxue Pan
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hengchao Zhu
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yangyang Li
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingjie Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xieze Wei
- Department of Anesthesiology, Xinxiang Central Hospital of Xinxiang Medical University, Xinxiang, China
| | - Changqin Jing
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Qizhong Shi
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenbin Li
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Liang Zhao
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Ye L, Takagi T, Tu C, Hagiwara A, Geng X, Feng Z. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. J Biomed Mater Res A 2021; 109:2493-2505. [PMID: 34096176 DOI: 10.1002/jbm.a.37243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 01/22/2023]
Abstract
Long-term in vivo observation in large animal model is critical for evaluating the potential of small diameter tissue engineering vascular graft (SDTEVG) in clinical application, but is rarely reported. In this study, a SDTEVG is fabricated by the electrospinning of poly(ε-caprolactone) and subsequent heparin modification. SDTEVG is implanted into canine's abdominal aorta for 511 days in order to investigate its clinical feasibility. An active and robust remodeling process was characterized by a confluent endothelium, macrophage infiltrate, extracellular matrix deposition and remodeling on the explanted graft. The immunohistochemical and immunofluorescence analysis further exhibit the regeneration of endothelium and smooth muscle layer on tunica intima and tunica media, respectively. Thus, long-term follow-up reveals viable neovessel formation beyond graft degradation. Furthermore, the von Kossa staining exhibits no occurrence of calcification. However, although no TEVG failure or rupture happens during the follow-up, the aneurysm is found by both Doppler ultrasonic and gross observation. Consequently, as-prepared TEVG shows promising potential in vascular tissue engineering if it can be appropriately strengthened to prevent the occurrence of aneurysm.
Collapse
Affiliation(s)
- Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Toshitaka Takagi
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Akeo Hagiwara
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| |
Collapse
|
18
|
Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers (Basel) 2021; 13:916. [PMID: 33809662 PMCID: PMC8002202 DOI: 10.3390/polym13060916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.
Collapse
Affiliation(s)
- Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Mohammed Alquraish
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Khaled Abuhasel
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Ahmad Abdullah
- Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
- Department of Civil Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
| | - Ashraf A. Ali
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| |
Collapse
|
19
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
20
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Anderson JL, Niedert EE, Patnaik SS, Tang R, Holloway RL, Osteguin V, Finol EA, Goergen CJ. Animal Model Dependent Response to Pentagalloyl Glucose in Murine Abdominal Aortic Injury. J Clin Med 2021; 10:E219. [PMID: 33435461 PMCID: PMC7827576 DOI: 10.3390/jcm10020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a local dilation of the aorta and are associated with significant mortality due to rupture and treatment complications. There is a need for less invasive treatments to prevent aneurysm growth and rupture. In this study, we used two experimental murine models to evaluate the potential of pentagalloyl glucose (PGG), which is a polyphenolic tannin that binds to and crosslinks elastin and collagen, to preserve aortic compliance. Animals underwent surgical aortic injury and received 0.3% PGG or saline treatment on the adventitial surface of the infrarenal aorta. Seventeen mice underwent topical elastase injury, and 14 mice underwent topical calcium chloride injury. We collected high-frequency ultrasound images before surgery and at 3-4 timepoints after. There was no difference in the in vivo effective maximum diameter due to PGG treatment for either model. However, the CaCl2 model had significantly higher Green-Lagrange circumferential cyclic strain in PGG-treated animals (p < 0.05). While ex vivo pressure-inflation testing showed no difference between groups in either model, histology revealed reduced calcium deposits in the PGG treatment group with the CaCl2 model. These findings highlight the continued need for improved understanding of PGG's effects on the extracellular matrix and suggest that PGG may reduce arterial calcium accumulation.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Sourav S. Patnaik
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Renxiang Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Riley L. Holloway
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Vangelina Osteguin
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Ender A. Finol
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| |
Collapse
|
22
|
Gao X, Xu Z, Liu G, Wu J. Polyphenols as a versatile component in tissue engineering. Acta Biomater 2021; 119:57-74. [PMID: 33166714 DOI: 10.1016/j.actbio.2020.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The fabrication of functional tissue or organs substitutes has always been the pursuit of goals in the field of tissue engineering. But even biocompatible tissue-engineered scaffolds still suffer from immune rejection, subsequent long-term oxidative stress and inflammation, which can delay normal tissue repair and regeneration. As a well-known natural antioxidant, polyphenols have been widely used in tissue engineering in recent years. The introduced polyphenols not only reduce the damage of oxidative stress to normal tissues, but show specific affinity to functional molecules, such as receptors, enzyme, transcription and transduction factors, etc. Therefore, polyphenols can promote the recovery process of damaged tissues by both regulating tissue microenvironment and participating in cell events, which embody specifically in antioxidant, anti-inflammatory, antibacterial and growth-promoting properties. In addition, based on its hydrophilic and hydrophobic moieties, polyphenols have been widely used to improve the mechanical properties and anti-degradation properties of tissue engineering scaffolds. In this review, the research advances of tissue engineering scaffolds containing polyphenols is discussed systematically from the aspects of action mechanism, introduction method and regulation effect of polyphenols, in order to provide references for the rational design of polyphenol-related functional scaffolds.
Collapse
|
23
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering (Basel) 2020; 7:E160. [PMID: 33321830 PMCID: PMC7763104 DOI: 10.3390/bioengineering7040160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients' life.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
25
|
Cellular remodeling of fibrotic conduit as vascular graft. Biomaterials 2020; 268:120565. [PMID: 33310678 DOI: 10.1016/j.biomaterials.2020.120565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
The replacement of small-diameter arteries remains an unmet clinical need. Here we investigated the cellular remodeling of fibrotic conduits as vascular grafts. The formation of fibrotic conduit around subcutaneously implanted mandrels involved not only fibroblasts but also the trans-differentiation of inflammatory cells such as macrophages into fibroblastic cells, as shown by genetic lineage tracing. When fibrotic conduits were implanted as vascular grafts, the patency was low, and many fibrotic cells were found in neointima. Decellularization and anti-thrombogenic coating of fibrotic conduits produced highly patent autografts that remodeled into neoarteries, offering an effective approach to obtain autografts for clinical therapy. While autografts recruited mostly anti-inflammatory macrophages for constructive remodeling, allogenic DFCs had more T cells and pro-inflammatory macrophages and lower patency. Endothelial progenitors and endothelial migration were observed during endothelialization. Cell infiltration into DFCs was more efficient than decellularized arteries, and infiltrated cells remodeled the matrix and differentiated into smooth muscle cells (SMCs). This work provides insight into the remodeling of fibrotic conduits, autologous DFCs and allogenic DFCs, and will have broad impact on using fibrotic matrix for regenerative engineering.
Collapse
|
26
|
Simionescu D, Casco M, Turner J, Rierson N, Yue J, Ning K. Chemical stabilization of the extracellular matrix attenuates growth of experimentally induced abdominal aorta aneurysms in a large animal model. JVS Vasc Sci 2020; 1:69-80. [PMID: 34617039 PMCID: PMC8489238 DOI: 10.1016/j.jvssci.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022] Open
Abstract
Objective The goal of the present study was to test the safety and efficacy of chemical stabilization of the arterial extracellular matrix as a novel nonoperative treatment of abdominal aortic aneurysms (AAAs) in a clinically relevant large animal model. Methods To achieve matrix stabilization, we used 1,2,3,4,6-pentagalloylglucose (PGG), a noncytotoxic polyphenolic agent capable of binding to and stabilizing elastin and collagen against the action of degrading enzymes. We first optimized the therapeutic PGG formulation and time of exposure by in vitro testing on porcine aortas using phenol histologic staining with iron chloride, elastic recoil assays, and PGG quantification as a function of tissue thickness. We then induced AAAs in 16 swine using sequential balloon angioplasty and elastase/collagenase and calcium chloride treatment of the infrarenal segment. We monitored AAA induction and development using digital subtraction angiography. At 2 weeks after induction, after the AAAs had reached ∼66% arterial expansion, the swine were randomly assigned to 2 groups. In the treatment group, we delivered PGG to the aneurysmal aorta endoluminally using a weeping balloon and evaluated the AAA diameters using digital subtraction angiography for another 10 weeks. The control swine did not receive any treatment. For the safety evaluation, we collected blood and performed comprehensive metabolic panels and complete blood counts every 2 to 3 weeks for all the animals. The swine were routinely monitored for neurologic and physical attributes such as behavior, inactivity, alertness, appetite, discomfort, and weight gain. After euthanasia and full necropsy, we analyzed the AAA tissue samples for PGG content, elastic recoil, and histologic features. Results In vitro, a single 2.5-minute intraluminal delivery of 0.3% PGG to the swine aorta was sufficient for PGG to diffuse through the entire thickness of the porcine arterial tissues and to bind with high affinity to the elastic lamellae, as seen by positive iron chloride staining, a reduction of elastic recoil, and an increase in PGG content. In vivo, the control swine AAA tissues were thickened and showed the typical aspects of AAA, including chronic inflammation, adventitial reactivity, smooth muscle cell proliferation, elastic lamellae degradation, and medial and adventitial calcification. Similar aspects were noted in the PGG-treated arteries, except for the lack of calcification and an apparent diminished hyperplasia. PGG treatment was effective in reducing AAA expansion and reversing the process of AAA dilation by reducing the aortic diameters to ≤30% by week 12 (P < .05). PGG was specifically localized to the aneurysmal segments as seen by histologic examination, the reduction of elastic recoil, and an increase in PGG content. PGG treatment did not affect the swine's neurologic or physical attributes, weight, blood chemistry, blood cells, or functionality of remote organs. The control, untreated swine exhibited progressive increases in AAA diameters up to a mean value of 104%. Conclusions Localized delivery of PGG to the aneurysmal aorta attenuated AAA growth and reversed the course of the disease in the swine AAA model. Such specificity for diseased tissue is unprecedented in nonoperative AAA treatment. This novel paradigm-shifting approach has the potential to revolutionize AAA management and save thousands of lives. Abdominal aorta aneurysm (AAA) is an asymptomatic chronic degenerative disease characterized by localized dilatation of the arterial wall caused by elastin and collagen degradation by proteases. We found that local delivery of 1,2,3,4,6-pentagalloylglucose (PGG) to a developing AAA in a swine animal model safely and effectively stabilized the vascular matrix, reduced AAA expansion, and promoted healing and AAA diameter reduction by limiting tissue degeneration. PGG is a noncytotoxic agent capable of rapid diffusion through arterial tissue and irreversible binding to elastin and collagen. PGG-mediated chemical stabilization of the aortic matrix could be used for safe nonoperative AAA management.
Collapse
Affiliation(s)
- Dan Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC
| | - Megan Casco
- Department of Bioengineering, Clemson University, Clemson, SC
| | | | | | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
27
|
Mahara A, Kojima K, Hirano Y, Yamaoka T. Arg-Glu-Asp-Val Peptide Immobilized on an Acellular Graft Surface Inhibits Platelet Adhesion and Fibrin Clot Deposition in a Peptide Density-Dependent Manner. ACS Biomater Sci Eng 2020; 6:2050-2061. [DOI: 10.1021/acsbiomaterials.0c00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Kentaro Kojima
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Yoshiaki Hirano
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
28
|
Lopera Higuita M, Griffiths LG. Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:26-45. [PMID: 31663438 DOI: 10.1089/ten.teb.2019.0229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, despite the success of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) remains among the most commonly performed cardiac surgical procedures in the United States. Unfortunately, the use of autologous grafts in CABG presents a major clinical challenge as complications due to autologous vessel harvest and limited vessel availability pose a significant setback in the success rate of CABG surgeries. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissues have the potential to overcome these challenges, as they offer unlimited availability and sufficient length to serve as "off-the-shelf" CABGs. Unfortunately, regardless of numerous efforts to produce a fully functional small diameter xenogeneic ECM scaffold, the combination of factors required to overcome all failure mechanisms in a single graft remains elusive. This article covers the major failure mechanisms of current xenogeneic small diameter vessel ECM scaffolds, and reviews the recent advances in the field to overcome these failure mechanisms and ultimately develop a small diameter ECM xenogeneic scaffold for CABG. Impact Statement Currently, the use of autologous vessel in coronary artery bypass graft (CABG) is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use in CABG can potentially increase the success rate of CABG surgery by eliminating complications related to the use of autologous vessel. However, this development has been hindered by an array of failure mechanisms that currently have not been overcome. This article describes the currently identified failure mechanisms of small diameter vascular xenogeneic extracellular matrix scaffolds and reviews current research targeted to overcoming these failure mechanisms toward ensuring long-term graft patency.
Collapse
Affiliation(s)
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
29
|
Ilanlou S, Khakbiz M, Amoabediny G, Mohammadi J. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue Cell 2019; 60:25-32. [DOI: 10.1016/j.tice.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
|
30
|
Accelerated endothelialization and suppressed thrombus formation of acellular vascular grafts by modifying with neointima-inducing peptide: A time-dependent analysis of graft patency in rat-abdominal transplantation model. Colloids Surf B Biointerfaces 2019; 181:806-813. [DOI: 10.1016/j.colsurfb.2019.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 01/07/2023]
|
31
|
Zhang J, He L, Wei G, Jiang X, Fu L, Zhao Y, Zhang L, Yang L, Li Y, Wang Y, Mo H, Shen J. Zwitterionic Polymer-Grafted Polylactic Acid Vascular Patches Based on a Decellularized Scaffold for Tissue Engineering. ACS Biomater Sci Eng 2019; 5:4366-4375. [PMID: 33438402 DOI: 10.1021/acsbiomaterials.9b00684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
More than 10 million people suffer from cardiovascular diseases, and diseased blood vessels need to be treated with vascular patches. For a vascular patch, good affinity for endothelial progenitor cells is a key factor in promoting the formation of endothelial tissue-endothelialization. To construct such a vascular patch with good cell affnity, in this work, we first synthesized a reactive zwitterionic organophosphate containing a phosphorylcholine headgroup: 6-(acryloyloxy)hexyl-2-(N-isopropyl-N,N-dimethylammonio)ethyl phosphate (AHEP). We then grafted AHEP onto a polylactic acid (PLA)-coated decellularized scaffold to obtain a vascular patch. Its hydrophilicity and biocompatibility were investigated. Its in vivo performance was also examined in a pig model with B-ultrasonography, Doppler spectra, and computed tomography angiography. The vascular patch demonstrated a nonhemolytic property, noncytotoxicity, long in vitro coagulation times, the strong ability to resist platelet adhesion, and a good affinity for endothelial progenitor cells. The vascular patch was able to maintain the long-term patency (5 months) of surgical arteries. Hence, the zwitterionic polymer-grafted PLA vascular patch may be a promising candidate for vascular tissue engineering.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Lei He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Guo Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Xuefeng Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Lei Fu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Yue Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Luxia Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Lutao Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Yajuan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Yutong Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road #159, Xuanwu District, Nanjing 210037, Jiangsu Province, China
| | - Hong Mo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
32
|
Smith RJ, Yi T, Nasiri B, Breuer CK, Andreadis ST. Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response. FASEB J 2019; 33:5089-5100. [PMID: 30629890 DOI: 10.1096/fj.201801856r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, our group demonstrated that immobilized VEGF can capture flowing endothelial cells (ECs) from the blood in vitro and promote endothelialization and patency of acellular tissue-engineered vessels (A-TEVs) into the arterial system of an ovine animal model. Here, we demonstrate implantability of submillimeter diameter heparin and VEGF-decorated A-TEVs in a mouse model and discuss the cellular and immunologic response. At 1 mo postimplantation, the graft lumen was fully endothelialized, as shown by expression of EC markers such as CD144, eNOS, CD31, and VEGFR2. Interestingly, the same cells coexpressed leukocyte/macrophage (Mϕ) markers CD14, CD16, VEGFR1, CD38, and EGR2. Notably, there was a stark difference in the cellular makeup between grafts containing VEGF and those containing heparin alone. In VEGF-containing grafts, infiltrating monocytes (MCs) converted into anti-inflammatory M2-Mϕs, and the grafts developed well-demarcated luminal and medial layers resembling those of native arteries. In contrast, in grafts containing only heparin, MCs converted primarily into M1-Mϕs, and the endothelial and smooth muscle layers were not well defined. Our results indicate that VEGF may play an important role in regulating A-TEV patency and regeneration, possibly by regulating the inflammatory response to the implants.-Smith, R. J., Jr., Yi, T., Nasiri, B., Breuer, C. K., Andreadis, S. T. Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response.
Collapse
Affiliation(s)
- Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, New York, USA
| | - Tai Yi
- Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, USA; and
| | | | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, New York, USA.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, USA; and.,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, New York, USA
| |
Collapse
|
33
|
Patnaik SS, Simionescu DT, Goergen CJ, Hoyt K, Sirsi S, Finol EA. Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Ann Biomed Eng 2019; 47:39-59. [PMID: 30298373 PMCID: PMC6318003 DOI: 10.1007/s10439-018-02145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Pentagalloyl glucose (PGG) is an elastin-stabilizing polyphenolic compound that has significant biomedical benefits, such as being a free radical sink, an anti-inflammatory agent, anti-diabetic agent, enzymatic resistant properties, etc. This review article focuses on the important benefits of PGG on vascular health, including its role in tissue mechanics, the different modes of pharmacological administration (e.g., oral, intravenous and endovascular route, intraperitoneal route, subcutaneous route, and nanoparticle based delivery and microbubble-based delivery), and its potential therapeutic role in vascular diseases such as abdominal aortic aneurysms (AAA). In particular, the use of PGG for AAA suppression and prevention has been demonstrated to be effective only in the calcium chloride rat AAA model. Therefore, in this critical review we address the challenges that lie ahead for the clinical translation of PGG as an AAA growth suppressor.
Collapse
Affiliation(s)
- Sourav S Patnaik
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA
| | - Dan T Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shashank Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ender A Finol
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA.
| |
Collapse
|
34
|
Lu X, Han L, Kassab GS. In vivo self-assembly of small diameter pulmonary visceral pleura artery graft. Acta Biomater 2019; 83:265-276. [PMID: 30395962 DOI: 10.1016/j.actbio.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is a significant clinical need for small vascular grafts <1 mm in diameter. MATERIALS AND METHODS The structure and composition of swine pulmonary visceral pleura (PVP) were investigated. Two processes, glutaraldehyde (GA) crosslink and decellularization (dc) plus GA crosslink, were used to inhibit the immune response. The thrombosis-resistance of the GA-crosslinked PVP (GA-PVP) was determined with in vitro and in vivo studies. Small vessel grafts with 0.7 diameter mm were constructed using the GA-PVP and surgically interposed in the femoral artery of rats for up to 24 weeks. Blood flow in the GA-PVP grafts were measured and ex vivo vascular reactivity of the prostheses were evaluated along with immuno-histological analysis. RESULTS The GA-PVP mesothelium contains abundant glycocalyx-like substance and a smooth surface. The mechanical properties of the GA-PVP were similar to the femoral artery of rat in the range of physiological pressures. The in vitro and in vivo studies confirmed poor platelet adhesion on the GA-PVP mesothelial surface in comparison with dc processed PVP (dc-PVP). Patency of the GA-PVP prostheses in femoral arteries of rats was 86% in the 24 weeks postoperative period while patency of dc-PVP in femoral arteries of rats was 33% at 1 week postoperative period. Blood flow in the GA-PVP prostheses were not statistically different than the contralateral femoral artery. Biomarkers of neo-endothelial cells, neo-media smooth muscle cells, and extracellular matrices were observed in the GA-PVP prostheses. The significant agonists-induced vasoconstriction and endothelium-dependent vasodilation were apparent at 12 weeks and further amplified in the 24 weeks postoperative, which suggests self-assembly of functional neo-endothelium and neo-media. CONCLUSIONS The high patency and functionality of the small grafts suggest that the GA-PVP is a promising prosthetic biomaterial for vascular reconstructions. STATEMENT OF SIGNIFICANCE Small artery graft (diameter <1 mm) in the peripheral circulation that functionally arterializes has not been possible primarily due to thrombosis. Our findings indicate that lung visceral pleura may address thrombogenicity as the major pitfall in small diameter grafts. Here, grafts of 0.7 mm diameter were constructed from swine pulmonary visceral pleura (PVP) and implanted into femoral artery position of rats up to 24 weeks. The total patency of grafts in femoral arteries of rats was 86% in the 24-week period. The neo-endothelial and -medial layers were assembled in the grafts as evidenced by robust biomarkers of endothelial cells, smooth muscle cells, and extracellular matrices observed in the grafts. Agonists-induced vasoconstriction and endothelium-dependent vasodilation were apparent at 12 weeks and were amplified at 24 weeks. The high patency of the small grafts suggests that the PVP is a promising prosthetic biomaterial for vascular reconstructions.
Collapse
Affiliation(s)
- Xiao Lu
- California Medical Innovations Institute, San Diego, CA 92121, USA
| | - Ling Han
- California Medical Innovations Institute, San Diego, CA 92121, USA
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA 92121, USA.
| |
Collapse
|
35
|
Zhu M, Wu Y, Li W, Dong X, Chang H, Wang K, Wu P, Zhang J, Fan G, Wang L, Liu J, Wang H, Kong D. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 2018; 183:306-318. [DOI: 10.1016/j.biomaterials.2018.08.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
|
36
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
37
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
38
|
Shavandi A, Bekhit AEDA, Saeedi P, Izadifar Z, Bekhit AA, Khademhosseini A. Polyphenol uses in biomaterials engineering. Biomaterials 2018; 167:91-106. [PMID: 29567389 PMCID: PMC5973878 DOI: 10.1016/j.biomaterials.2018.03.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Polyphenols are micronutrients obtained from diet that have been suggested to play an important role in health. The health benefits of polyphenols and their protective effects in food systems as antioxidant compounds are well known and have been extensively investigated. However, their functional roles as a "processing cofactor" in tissue engineering applications are less widely known. This review focuses on the functionality of polyphenols and their application in biomaterials. Polyphenols have been used to stabilize collagen and to improve its resistance to degradation in biological systems. Therefore, they have been proposed to improve the performance of biomedical devices used in cardiovascular systems by improving the mechanical properties of grafted heart valves, enhancing microcirculation through the relaxation of the arterial walls and improving the capillary blood flow and pressure resistance. Polyphenols have been found to stimulate bone formation, mineralization, as well as the proliferation, differentiation, and the survival of osteoblasts. These effects are brought about by the stimulatory effect of polyphenols on osteoblast cells and their protective effect against oxidative stress and inflammatory cytokines. In addition, polyphenols inhibit the differentiation of the osteoclast cells. Collectively, these actions lead to promote bone formation and to reduce bone resorption, respectively. Moreover, polyphenols can increase the cross-linking of dentine and hence its mechanical stability. Overall, polyphenols provide interesting properties that will stimulate further research in the bioengineering field.
Collapse
Affiliation(s)
- Amin Shavandi
- Department of Food Science, University of Otago, Dunedin, New Zealand.
| | | | - Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Zohreh Izadifar
- The Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Schneider KH, Enayati M, Grasl C, Walter I, Budinsky L, Zebic G, Kaun C, Wagner A, Kratochwill K, Redl H, Teuschl AH, Podesser BK, Bergmeister H. Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance. Biomaterials 2018; 177:14-26. [PMID: 29885585 DOI: 10.1016/j.biomaterials.2018.05.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
Small diameter vascular grafts from human placenta, decellularized with either Triton X-100 (Triton) or SDS and crosslinked with heparin were constructed and characterized. Graft biochemical properties, residual DNA, and protein composition were evaluated to compare the effect of the two detergents on graft matrix composition and structural alterations. Biocompatibility was tested in vitro by culturing the grafts with primary human macrophages and in vivo by subcutaneous implantation of graft conduits (n = 7 per group) into the flanks of nude rats. Subsequently, graft performance was evaluated using an aortic implantation model in Sprague Dawley rats (one month, n = 14). In situ graft imaging was performed using MRI angiography. Retrieved specimens were analyzed by electromyography, scanning electron microscopy, histology and immunohistochemistry to evaluate cell migration and the degree of functional tissue remodeling. Both decellularization methods resulted in grafts of excellent biocompatibility in vitro and in vivo, with low immunogenic potential. Proteomic data revealed removal of cytoplasmic proteins with relative enrichment of ECM proteins in decelluarized specimens of both groups. Noteworthy, LC-Mass Spectrometry analysis revealed that 16 proteins were exclusively preserved in Triton decellularized specimens in comparison to SDS-treated specimens. Aortic grafts showed high patency rates, no signs of thrombus formation, aneurysms or rupture. Conduits of both groups revealed tissue-specific cell migration indicative of functional remodeling. This study strongly suggests that decellularized allogenic grafts from the human placenta have the potential to be used as vascular replacement materials. Both detergents produced grafts with low residual immunogenicity and appropriate mechanical properties. Observed differences in graft characteristics due to preservation method had no impact on successful in vivo performance in the rodent model.
Collapse
Affiliation(s)
- Karl H Schneider
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marjan Enayati
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria
| | - Christian Grasl
- Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ingrid Walter
- Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lubos Budinsky
- Preclinical Imaging Laboratory, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gabriel Zebic
- Center for Biomedical Research Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Division of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Vienna, Austria
| | - Klaus Kratochwill
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas H Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; City of Vienna Competence Team Siganltransduction, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
40
|
Historical Perspective and Future Direction of Blood Vessel Developments. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a025742. [PMID: 28348177 DOI: 10.1101/cshperspect.a025742] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past 40 years, remarkable advances have been made in our understanding of successful blood vessel regeneration, starting with the failures of early tissue-engineered vascular grafts designed using isolated components or molecules, such as collagen gels. The vascular tissue engineers are today better educated and have steered ongoing research developments toward clinical developments of more complete vascular grafts that replicate the multitude of specialized arterial aspects required for function.
Collapse
|
41
|
Transmural capillary ingrowth is essential for confluent vascular graft healing. Acta Biomater 2018; 65:237-247. [PMID: 29111372 DOI: 10.1016/j.actbio.2017.10.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 01/10/2023]
Abstract
Spontaneous endothelialization of synthetic vascular grafts may occur via three independent or concurrent modalities: transanastomotic (TA) outgrowth, transmural (TM) ingrowth or fallout (FO) from the blood. The limited TA and FO endothelialization, which occurs in humans, results in poor long-term patency in the small diameter position, where TM ingrowth may offer a clinically relevant alternative. To achieve sequential analysis of each mode of healing, loop grafts comprising anastomotically isolated angiopermissive polyurethane control grafts were abluminally sealed using either ePTFE wraps or solid polyurethane skins and implanted in the rat infrarenal aortic loop model for twelve weeks. Positive control grafts showed improved endothelialization and patency compared to the abluminally isolated mid-grafts. Furthermore, the mid-graft healing was accelerated with surface heparin and heparin-growth factor (VEGF, PDGF) modification in a three-week sub-study. We are thus able to distinguish between the three vascular graft endothelialization modes, and conclude that fallout plays a secondary role to TM healing. The increased endothelialisation for growth factor presenting grafts indicates the promise of this simple approach but further optimization is required. STATEMENT OF SIGNIFICANCE In addition to the full elucidation of, and differentiation between, the three healing/endothelialisation modes of vascular grafts, the significance of the work relates to the near-complete lack of endothelialisation of small diameter vascular grafts in humans (1-2 cm transanastomotic outgrowth on a graft that may be 60 cm long) even after decades of implantation. The concomitant retained midgraft thrombogenicity leads, together with anastomotic hyperplastic responses, to poor long-term outcomes. The large impact of successful translation of the current research to the achievement of full endothelialisation of long peripheral grafts in humans via transmural ingrowth (half a millimetre distance; thickness of the graft wall), is evident, and supported by the large improvements in clinical patencies achievable in by pre-seeding of ePTFE grafts with confluent endothelia.
Collapse
|
42
|
Washington KS, Bashur CA. Delivery of Antioxidant and Anti-inflammatory Agents for Tissue Engineered Vascular Grafts. Front Pharmacol 2017; 8:659. [PMID: 29033836 PMCID: PMC5627016 DOI: 10.3389/fphar.2017.00659] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023] Open
Abstract
The treatment of patients with severe coronary and peripheral artery disease represents a significant clinical need, especially for those patients that require a bypass graft and do not have viable veins for autologous grafting. Tissue engineering is being investigated to generate an alternative graft. While tissue engineering requires surgical intervention, the release of pharmacological agents is also an important part of many tissue engineering strategies. Delivery of these agents offers the potential to overcome the major concerns for graft patency and viability. These concerns are related to an extended inflammatory response and its impact on vascular cells such as endothelial cells. This review discusses the drugs that have been released from vascular tissue engineering scaffolds and some of the non-traditional ways that the drugs are presented to the cells. The impact of antioxidant compounds and gasotransmitters, such as nitric oxide and carbon monoxide, are discussed in detail. The application of tissue engineering and drug delivery principles to biodegradable stents is also briefly discussed. Overall, there are scaffold-based drug delivery techniques that have shown promise for vascular tissue engineering, but much of this work is in the early stages and there are still opportunities to incorporate additional drugs to modulate the inflammatory process.
Collapse
Affiliation(s)
| | - Chris A. Bashur
- Department of Biomedical Engineering, Florida Institute of Technology, MelbourneFL, United States
| |
Collapse
|
43
|
Jiang B, Suen R, Wang JJ, Zhang ZJ, Wertheim JA, Ameer GA. Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials 2017; 144:166-175. [PMID: 28841463 DOI: 10.1016/j.biomaterials.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
Abstract
There is a need for off-the-shelf, small-diameter vascular grafts that are safe and exhibit high long-term patency. Decellularized tissues can potentially be used as vascular grafts; however, thrombogenic and unpredictable remodeling properties such as intimal hyperplasia and calcification are concerns that hinder their clinical use. The objective of this study was to investigate the long-term function and remodeling of extracellular matrix (ECM)-based vascular grafts composited with antioxidant poly(1, 8-octamethylene-citrate-co-cysteine) (POCC) with or without immobilized heparin. Rat aortas were decellularized to create the following vascular grafts: 1) ECM hybridized with POCC (Poly-ECM), 2) Poly-ECM subsequently functionalized with heparin (Poly-ECM-Hep), and 3) non-modified vascular ECM. Grafts were evaluated as interposition grafts in the abdominal aorta of adult rats at three months. All grafts displayed antioxidant activity, were patent, and exhibited minimal intramural cell infiltration with varying degrees of calcification. Areas of calcification co-localized with osteochondrogenic differentiation of vascular smooth muscle cells, lipid peroxidation, oxidized DNA damage, and cell apoptosis, suggesting an important role for oxidative stress in the calcification of grafts. The extent of calcification within grafts was inversely proportional to their antioxidant activity: Poly-ECM-Hep > ECM > Poly-ECM. The incorporation of antioxidants into vascular grafts may be a viable strategy to inhibit degenerative changes.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rachel Suen
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason A Wertheim
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
44
|
Hoogenkamp HR, Pot MW, Hafmans TG, Tiemessen DM, Sun Y, Oosterwijk E, Feitz WF, Daamen WF, van Kuppevelt TH. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices. Acta Biomater 2016; 43:112-121. [PMID: 27424084 DOI: 10.1016/j.actbio.2016.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. STATEMENT OF SIGNIFICANCE In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders.
Collapse
|
45
|
Kennamer A, Sierad L, Pascal R, Rierson N, Albers C, Harpa M, Cotoi O, Harceaga L, Olah P, Terezia P, Simionescu A, Simionescu D. Bioreactor Conditioning of Valve Scaffolds Seeded Internally with Adult Stem Cells. Tissue Eng Regen Med 2016; 13:507-515. [PMID: 30337944 DOI: 10.1007/s13770-016-9114-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The goal of this study was to test the hypothesis that stem cells, as a response to valve-specific extracellular matrix "niches" and mechanical stimuli, would differentiate into valvular interstitial cells (VICs). Porcine aortic root scaffolds were prepared by decellularization. After verifying that roots exhibited adequate hemodynamics in vitro, we seeded human adipose-derived stem cells (hADSCs) within the interstitium of the cusps and subjected the valves to in vitro pulsatile bioreactor testing in pulmonary pressures and flow conditions. As controls we incubated cell-seeded valves in a rotator device which allowed fluid to flow through the valves ensuring gas and nutrient exchange without subjecting the cusps to significant stress. After 24 days of conditioning, valves were analyzed for cell phenotype using immunohistochemistry for vimentin, alpha-smooth muscle cell actin (SMA) and prolyl-hydroxylase (PHA). Fresh native valves were used as immunohistochemistry controls. Analysis of bioreactor-conditioned valves showed that almost all seeded cells had died and large islands of cell debris were found within each cusp. Remnants of cells were positive for vimentin. Cell seeded controls, which were only rotated slowly to ensure gas and nutrient exchange, maintained about 50% of cells alive; these cells were positive for vimentin and negative for alpha-SMA and PHA, similar to native VICs. These results highlight for the first time the extreme vulnerability of hADSCs to valve-specific mechanical forces and also suggest that careful, progressive mechanical adaptation to valve-specific forces might encourage stem cell differentiation towards the VIC phenotype.
Collapse
Affiliation(s)
- Allison Kennamer
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Leslie Sierad
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Richard Pascal
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Nicholas Rierson
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Christopher Albers
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Marius Harpa
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Ovidiu Cotoi
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Lucian Harceaga
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Peter Olah
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Preda Terezia
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Agneta Simionescu
- Cardiovascular Tissue Engineering and Regenerative Medicine Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Dan Simionescu
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA.,Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| |
Collapse
|
46
|
Sierad LN, Shaw EL, Bina A, Brazile B, Rierson N, Patnaik SS, Kennamer A, Odum R, Cotoi O, Terezia P, Branzaniuc K, Smallwood H, Deac R, Egyed I, Pavai Z, Szanto A, Harceaga L, Suciu H, Raicea V, Olah P, Simionescu A, Liao J, Movileanu I, Harpa M, Simionescu DT. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System. Tissue Eng Part C Methods 2016; 21:1284-96. [PMID: 26467108 DOI: 10.1089/ten.tec.2015.0170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open-close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality.
Collapse
Affiliation(s)
- Leslie Neil Sierad
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Eliza Laine Shaw
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Alexander Bina
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Bryn Brazile
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Nicholas Rierson
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Sourav S Patnaik
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Allison Kennamer
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Rebekah Odum
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Ovidiu Cotoi
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Preda Terezia
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Klara Branzaniuc
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Harrison Smallwood
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Radu Deac
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Imre Egyed
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Zoltan Pavai
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Annamaria Szanto
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Lucian Harceaga
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Horatiu Suciu
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Victor Raicea
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Peter Olah
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Agneta Simionescu
- 4 Cardiovascular Tissue Engineering and Regenerative Medicine Laboratory, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Jun Liao
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Ionela Movileanu
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Marius Harpa
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Dan Teodor Simionescu
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| |
Collapse
|
47
|
Poornejad N, Schaumann LB, Buckmiller EM, Momtahan N, Gassman JR, Ma HH, Roeder BL, Reynolds PR, Cook AD. The impact of decellularization agents on renal tissue extracellular matrix. J Biomater Appl 2016; 31:521-533. [PMID: 27312837 DOI: 10.1177/0885328216656099] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The combination of patient-specific cells with scaffolds obtained from natural sources may result in improved regeneration of human tissues. Decellularization of the native tissue is the first step in this technology. Effective decellularization uses agents that lyse cells and remove all cellular materials, leaving intact collagenous extracellular matrices (ECMs). Removing cellular remnants prevents an immune response while preserving the underlying structure. In this study, the impact of five decellularization agents (0.1 N NaOH, 1% peracetic acid, 3% Triton X-100, 1% sodium dodecyl sulfate (SDS), and 0.05% trypsin/EDTA) on renal tissue was examined using slices of porcine kidneys. The NaOH solution induced the most efficient cell removal, and resulted in the highest amount of cell viability and proliferation after recellularization, although it also produced the most significant damage to collagenous fiber networks, glycosaminoglycans (GAGs) and fibroblast growth factor (FGF). The SDS solution led to less severe damage to the ECM structure but it resulted in lower metabolic activity and less proliferation. Peracetic acid and Triton X-100 resulted in minimum disruption of ECMs and the most preserved GAGs and FGF. However, these last two agents were not as efficient in removing cellular materials as NaOH and SDS, especially peracetic acid, which left more than 80% of cellular material within the ECM. As a proof of principle, after completing the comparison studies using slices of renal ECM, the NaOH process was used to decellularize a whole kidney, with good results. The overall results demonstrate the significant effect of cell lysing agents and the importance of developing an optimized protocol to avoid extensive damage to the ECM while retaining the ability to support cell growth.
Collapse
Affiliation(s)
- Nafiseh Poornejad
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Lara B Schaumann
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Evan M Buckmiller
- Department of Genetics and Biotechnology, Brigham Young University, Provo, UT, USA
| | - Nima Momtahan
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jason R Gassman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Ho Hin Ma
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | | | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Alonzo D Cook
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
48
|
Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomater 2016; 29:125-134. [PMID: 26432442 DOI: 10.1016/j.actbio.2015.09.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
Biomaterials based on decellularized tissues are increasingly attracting attention as functional alternatives to other natural or synthetic materials. However, a source of non-cadaver human allograft material would be favorable. Here we establish a decellularization method of vascular tissue from cryopreserved human placenta chorionic plate starting with an initial freeze-thaw step followed by a series of chemical treatments applied with a custom-made perfusion system. This novel pulsatile perfusion set-up enabled us to successfully decellularize the vascular tissue with lower concentrations of chemicals and shorter exposure times compared to a non-perfusion process. The decellularization procedure described here lead to the preservation of the native extracellular matrix architecture and the removal of cells. Quantitative analysis revealed no significant changes in collagen content and a retained glycosaminoglycan content of approximately 29%. In strain-to-failure tests, the decellularized grafts showed similar mechanical behavior compared to native controls. In addition, the mechanical values for ultimate tensile strength and stiffness were in an acceptable range for in vivo applications. Furthermore, biocompatibility of the decellularized tissue and its recellularizationability to serve as an adequate substratum for upcoming recellularization strategies using primary human umbilical vein endothelial cells (HUVECs) was demonstrated. HUVECs cultured on the decellularized placenta vessel matrix performed endothelialization and maintained phenotypical characteristics and cell specific expression patterns. Overall, the decellularized human placenta vessels can be a versatile tool for experimental studies on vascularization and as potent graft material for future in vivo applications. STATEMENT OF SIGNIFICANCE In the US alone more than 1million vascular grafts are needed in clinical practice every year. Despite severe disadvantages, such as donor site morbidity, autologous grafting from the patient's own arteries or veins is regarded as the gold standard for vascular tissue repair. Besides, strategies based on synthetic or natural materials have shown limited success. Tissue engineering approaches based on decellularized tissues are regarded as a promising alternative to clinically used treatments to overcome the observed limitations. However, a source for supply of non-cadaver human allograft material would be favorable. Here, we established a decellularization method of vascular tissue from the human placenta chorionic plate, a suitable human tissue source of consistent quality. The decellularized human placenta vessels can be a potent graft material for future in vivo applications and furthermore might be a versatile tool for experimental studies on vascularization.
Collapse
|
49
|
Elliott MB, Gerecht S. Three-dimensional culture of small-diameter vascular grafts. J Mater Chem B 2016; 4:3443-3453. [DOI: 10.1039/c6tb00024j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analysis of efforts to engineer 3D small-diameter (<6 mm) vascular grafts, indicating the importance of stem cells, co-culture, and pulsatile flow.
Collapse
Affiliation(s)
- Morgan B. Elliott
- Department of Chemical and Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Department of Biomedical Engineering
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
50
|
Jing H, Wang Z, Chang Q. De-Endothelialized Aortic Homografts: A Promising Scaffold Material for Tissue-Engineered Heart Valves. Cells Tissues Organs 2015; 200:195-203. [PMID: 26138278 DOI: 10.1159/000381947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
This study was designed to investigate the feasibility of de-endothelialized aortic homografts as a scaffold for tissue-engineered heart valves. Aortic homografts obtained from donor rabbits were treated either with collagenase to eliminate endotheliocytes or with the enzyme-detergent-nuclease method to remove all cell components. Then biomechanical properties of fresh, de-endothelialized and acellular homografts were investigated comparatively. The inflammation potential and immunogenicity were also assessed after allogenic transplantation. Expression of immune indices and inflammatory infiltration in de-endothelialized and acellular homografts were much weaker than in the controls, and no significant difference was observed between treated groups. However, heat shrinkage temperature, tensile strength and broken extension rate of acellular homografts decreased significantly compared to de-endothelialized ones. It is concluded that both de-endothelialization and thorough decellularization could reduce the immunogenicity and inflammation potential significantly, but the de-endothelialized scaffold retained better structural strength. The de-endothelialized aortic homograft might be a promising scaffold for tissue-engineered heart valves.
Collapse
|