1
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
2
|
Nolta NF, Christensen MB, Tresco PA. Advanced age is not a barrier to chronic intracortical single-unit recording in rat cortex. Front Neurosci 2024; 18:1389556. [PMID: 38817909 PMCID: PMC11138162 DOI: 10.3389/fnins.2024.1389556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Available evidence suggests that as we age, our brain and immune system undergo changes that increase our susceptibility to injury, inflammation, and neurodegeneration. Since a significant portion of the potential patients treated with a microelectrode-based implant may be older, it is important to understand the recording performance of such devices in an aged population. Methods We studied the chronic recording performance and the foreign body response (FBR) to a clinically used microelectrode array implanted in the cortex of 18-month-old Sprague Dawley rats. Results and discussion To the best of our knowledge, this is the first preclinical study of its type in the older mammalian brain. Here, we show that single-unit recording performance was initially robust then gradually declined over a 12-week period, similar to what has been previously reported using younger adult rats and in clinical trials. In addition, we show that FBR biomarker distribution was similar to what has been previously described for younger adult rats implanted with multi-shank recording arrays in the motor cortex. Using a quantitative immunohistochemcal approach, we observed that the extent of astrogliosis and tissue loss near the recording zone was inversely related to recording performance. A comparison of recording performance with a younger cohort supports the notion that aging, in and of itself, is not a limiting factor for the clinical use of penetrating microelectrode recording arrays for the treatment of certain CNS disorders.
Collapse
Affiliation(s)
- Nicholas F. Nolta
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Michael B. Christensen
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
- Department of Otolaryngology – Head & Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Patrick A. Tresco
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
4
|
Saha R, Wu K, Bloom RP, Liang S, Tonini D, Wang JP. A review on magnetic and spintronic neurostimulation: challenges and prospects. NANOTECHNOLOGY 2022; 33:182004. [PMID: 35013010 DOI: 10.1088/1361-6528/ac49be] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In the treatment of neurodegenerative, sensory and cardiovascular diseases, electrical probes and arrays have shown quite a promising success rate. However, despite the outstanding clinical outcomes, their operation is significantly hindered by non-selective control of electric fields. A promising alternative is micromagnetic stimulation (μMS) due to the high permeability of magnetic field through biological tissues. The induced electric field from the time-varying magnetic field generated by magnetic neurostimulators is used to remotely stimulate neighboring neurons. Due to the spatial asymmetry of the induced electric field, high spatial selectivity of neurostimulation has been realized. Herein, some popular choices of magnetic neurostimulators such as microcoils (μcoils) and spintronic nanodevices are reviewed. The neurostimulator features such as power consumption and resolution (aiming at cellular level) are discussed. In addition, the chronic stability and biocompatibility of these implantable neurostimulator are commented in favor of further translation to clinical settings. Furthermore, magnetic nanoparticles (MNPs), as another invaluable neurostimulation material, has emerged in recent years. Thus, in this review we have also included MNPs as a remote neurostimulation solution that overcomes physical limitations of invasive implants. Overall, this review provides peers with the recent development of ultra-low power, cellular-level, spatially selective magnetic neurostimulators of dimensions within micro- to nano-range for treating chronic neurological disorders. At the end of this review, some potential applications of next generation neuro-devices have also been discussed.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Robert P Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
5
|
Zaranek M, Arshad R, Zheng K, Harris CA. Response of Astrocytes to Blood Exposure due to Shunt Insertion in vitro. AIChE J 2021; 67. [PMID: 35497642 DOI: 10.1002/aic.17485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The breakdown of the ventricular zone (VZ) with the presence of blood in cerebrospinal fluid (CSF) has been shown to increase shunt catheter obstruction in the treatment of hydrocephalus, but the mechanisms by which this occurs are generally unknown. Using a custom-built incubation chamber, we immunofluorescently assayed cell attachment and morphology on shunt catheters with and without blood after 14 days. Samples exposed to blood showed significantly increased cell attachment (average total cell count 392.0±317.1 versus control of 94.7±44.5, P<0.0001). Analysis of the glial fibrillary acidic protein (GFAP) expression showed similar trends (854.4±450.7 versus control of 174.3±116.5, P<0.0001). An in vitro model was developed to represent the exposure of astrocytes to blood following an increase in BBB permeability. Exposure of astrocytes to blood increases the number of cells and their spread on the shunt.
Collapse
Affiliation(s)
- Mira Zaranek
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Rooshan Arshad
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Kevin Zheng
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Carolyn A Harris
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| |
Collapse
|
6
|
Tao C, Wang D. Tissue Engineering for Mimics and Modulations of Immune Functions. Adv Healthc Mater 2021; 10:e2100146. [PMID: 33871178 DOI: 10.1002/adhm.202100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Indexed: 11/12/2022]
Abstract
In the field of regenerative medicine, advances in tissue engineering have surpassed the reconstruction of individual tissues or organs and begun to work towards engineering systemic factors such as immune objects and functions. The immune system plays a crucial role in protecting and regulating systemic functions in the human body. Engineered immune tissues and organs have shown potential in recovering dysfunctions and aplasia of the immune system and the evasion from immune-mediated inflammatory responses and rejection elicited by engineered implants from allogeneic or xenogeneic sources are also being pursued to facilitate clinical transplantation of tissue engineered grafts. Here, current progress in tissue engineering to mimic or modulate immune functions is reviewed and elaborated from two perspectives: 1) engineering of immune tissues and organs per se and 2) immune evasion of host immunoinflammatory rejection by tissue-engineered implants.
Collapse
Affiliation(s)
- Chao Tao
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Dong‐An Wang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
- Karolinska Institute Ming Wai Lau Centre for Reparative Medicine HKSTP Sha Tin Hong Kong SAR China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
| |
Collapse
|
7
|
Mahajan S, Hermann JK, Bedell HW, Sharkins JA, Chen L, Chen K, Meade SM, Smith CS, Rayyan J, Feng H, Kim Y, Schiefer MA, Taylor DM, Capadona JR, Ereifej ES. Toward Standardization of Electrophysiology and Computational Tissue Strain in Rodent Intracortical Microelectrode Models. Front Bioeng Biotechnol 2020; 8:416. [PMID: 32457888 PMCID: PMC7225268 DOI: 10.3389/fbioe.2020.00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Progress has been made in the field of neural interfacing using both mouse and rat models, yet standardization of these models' interchangeability has yet to be established. The mouse model allows for transgenic, optogenetic, and advanced imaging modalities which can be used to examine the biological impact and failure mechanisms associated with the neural implant itself. The ability to directly compare electrophysiological data between mouse and rat models is crucial for the development and assessment of neural interfaces. The most obvious difference in the two rodent models is size, which raises concern for the role of device-induced tissue strain. Strain exerted on brain tissue by implanted microelectrode arrays is hypothesized to affect long-term recording performance. Therefore, understanding any potential differences in tissue strain caused by differences in the implant to tissue size ratio is crucial for validating the interchangeability of rat and mouse models. Hence, this study is aimed at investigating the electrophysiological variances and predictive device-induced tissue strain. Rat and mouse electrophysiological recordings were collected from implanted animals for eight weeks. A finite element model was utilized to assess the tissue strain from implanted intracortical microelectrodes, taking into account the differences in the depth within the cortex, implantation depth, and electrode geometry between the two models. The rat model demonstrated a larger percentage of channels recording single unit activity and number of units recorded per channel at acute but not chronic time points, relative to the mouse model Additionally, the finite element models also revealed no predictive differences in tissue strain between the two rodent models. Collectively our results show that these two models are comparable after taking into consideration some recommendations to maintain uniform conditions for future studies where direct comparisons of electrophysiological and tissue strain data between the two animal models will be required.
Collapse
Affiliation(s)
- Shreya Mahajan
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - John K. Hermann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Hillary W. Bedell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jonah A. Sharkins
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Lei Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Keying Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Seth M. Meade
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Cara S. Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jacob Rayyan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - He Feng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Matthew A. Schiefer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Dawn M. Taylor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Neuroscience, The Cleveland Clinic, Cleveland, OH, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Evon S. Ereifej
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Ferguson M, Sharma D, Ross D, Zhao F. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Adv Healthc Mater 2019; 8:e1900558. [PMID: 31464094 PMCID: PMC6786932 DOI: 10.1002/adhm.201900558] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Though neural interface systems (NISs) can provide a potential solution for mitigating the effects of limb loss and central nervous system damage, the microelectrode array (MEA) component of NISs remains a significant limiting factor to their widespread clinical applications. Several strategies can be applied to MEA designs to increase their biocompatibility. Herein, an overview of NISs and their applications is provided, along with a detailed discussion of strategies for alleviating the foreign body response (FBR) and abnormalities seen at the interface of MEAs and the brain tissue following MEA implantation. Various surface modifications, including natural/synthetic surface coatings, hydrogels, and topography alterations, have shown to be highly successful in improving neural cell adhesion, reducing gliosis, and increasing MEA longevity. Different MEA surface geometries, such as those seen in the Utah and Michigan arrays, can help alleviate the resultant FBR by reducing insertion damage, while providing new avenues for improving MEA recording performance and resolution. Increasing overall flexibility of MEAs as well as reducing their stiffness is also shown to reduce MEA induced micromotion along with FBR severity. By combining multiple different properties into a single MEA, the severity and duration of an FBR postimplantation can be reduced substantially.
Collapse
Affiliation(s)
- Morgan Ferguson
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931
| | - David Ross
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931
| |
Collapse
|
9
|
Martins NRB, Angelica A, Chakravarthy K, Svidinenko Y, Boehm FJ, Opris I, Lebedev MA, Swan M, Garan SA, Rosenfeld JV, Hogg T, Freitas RA. Human Brain/Cloud Interface. Front Neurosci 2019; 13:112. [PMID: 30983948 PMCID: PMC6450227 DOI: 10.3389/fnins.2019.00112] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
The Internet comprises a decentralized global system that serves humanity's collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a "human brain/cloud interface" ("B/CI"), would be based on technologies referred to here as "neuralnanorobotics." Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain's ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood-brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human-brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as "transparent shadowing" (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.
Collapse
Affiliation(s)
- Nuno R. B. Martins
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | | | - Krishnan Chakravarthy
- UC San Diego Health Science, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | | | - Ioan Opris
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Mikhail A. Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie Swan
- Department of Philosophy, Purdue University, West Lafayette, IN, United States
| | - Steven A. Garan
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | - Jeffrey V. Rosenfeld
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Clayton, VIC, Australia
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tad Hogg
- Institute for Molecular Manufacturing, Palo Alto, CA, United States
| | | |
Collapse
|
10
|
Adewole DO, Serruya MD, Wolf JA, Cullen DK. Bioactive Neuroelectronic Interfaces. Front Neurosci 2019; 13:269. [PMID: 30983957 PMCID: PMC6449725 DOI: 10.3389/fnins.2019.00269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Within the neural engineering field, next-generation implantable neuroelectronic interfaces are being developed using biologically-inspired and/or biologically-derived materials to improve upon the stability and functional lifetime of current interfaces. These technologies use biomaterials, bioactive molecules, living cells, or some combination of these, to promote host neuronal survival, reduce the foreign body response, and improve chronic device-tissue integration. This article provides a general overview of the different strategies, milestones, and evolution of bioactive neural interfaces including electrode material properties, biological coatings, and "decoration" with living cells. Another such biohybrid approach developed in our lab uses preformed implantable micro-tissue featuring long-projecting axonal tracts encased within carrier biomaterial micro-columns. These so-called "living electrodes" have been engineered with carefully tailored material, mechanical, and biological properties to enable natural, synaptic based modulation of specific host circuitry while ultimately being under computer control. This article provides an overview of these living electrodes, including design and fabrication, performance attributes, as well as findings to date characterizing in vitro and in vivo functionality.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
11
|
de la Oliva N, Del Valle J, Delgado-Martinez I, Mueller M, Stieglitz T, Navarro X. Long-Term Functionality of Transversal Intraneural Electrodes Is Improved By Dexamethasone Treatment. IEEE Trans Neural Syst Rehabil Eng 2019; 27:457-464. [PMID: 30716042 DOI: 10.1109/tnsre.2019.2897256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuroprostheses aimed to restore lost functions after a limb amputation are based on the interaction with the nervous system by means of neural interfaces. Among the different designs, intraneural electrodes implanted in peripheral nerves represent a good strategy to stimulate nerve fibers to send sensory feedback and to record nerve signals to control the prosthetic limb. However, intraneural electrodes, as any device implanted in the body, induce a foreign body reaction (FBR) that results in the tissue encapsulation of the device. The FBR causes a progressive decline of the electrode functionality over time due to the physical separation between the electrode active sites and the axons to interface. Modulation of the inflammatory response has arisen as a good strategy to reduce the FBR and maintain electrode functionality. In this study transversal intraneural multi-channel electrodes (TIMEs) were implanted in the rat sciatic nerve and tested for 3 months to evaluate stimulation and recording capabilities under chronic administration of dexamethasone. Dexamethasone treatment significantly reduced the threshold for evoking muscle responses during the follow-up compared to saline-treated animals, without affecting the selectivity of stimulation. However, dexamethasone treatment did not improve the signal-to-noise ratio of the recorded neural signals. Dexamethasone treatment allowed to maintain more working active sites along time than saline treatment. Thus, systemic administration of dexamethasone appears as a useful treatment in chronically implanted animals with neural electrodes as it increases the number of functioning contacts of the implanted TIME and reduces the intensity needed to stimulate the nerve.
Collapse
|
12
|
Goding J, Vallejo-Giraldo C, Syed O, Green R. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B 2019; 7:1625-1636. [DOI: 10.1039/c8tb02763c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels have garnered interest as materials in bioelectronics due to the capacity to tailor their properties. Appropriate selection and design of hydrogel systems for this application requires an understanding of the physical, chemical and biological properties as well as their structure–property relationships.
Collapse
Affiliation(s)
- Josef Goding
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | | | - Omaer Syed
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | - Rylie Green
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| |
Collapse
|
13
|
Bedell HW, Song S, Li X, Molinich E, Lin S, Stiller A, Danda V, Ecker M, Shoffstall AJ, Voit WE, Pancrazio JJ, Capadona JR. Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes. Front Neurosci 2018; 12:772. [PMID: 30429766 PMCID: PMC6220032 DOI: 10.3389/fnins.2018.00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023] Open
Abstract
Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood-brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation.
Collapse
Affiliation(s)
- Hillary W. Bedell
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| | - Sydney Song
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| | - Xujia Li
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Emily Molinich
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Shushen Lin
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Allison Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Vindhya Danda
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, United States
| | - Melanie Ecker
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| | - Walter E. Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| |
Collapse
|
14
|
De la Oliva N, Navarro X, Del Valle J. Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrode Implants in the Peripheral Nerve of the Rat. Anat Rec (Hoboken) 2018; 301:1722-1733. [PMID: 30353712 DOI: 10.1002/ar.23920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/23/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
Abstract
Intraneural electrodes must be in intimate contact with nerve fibers to have a proper function, but this interface is compromised due to the foreign body reaction (FBR). The FBR is characterized by a first inflammatory phase followed by a second anti-inflammatory and fibrotic phase, which results in the formation of a tissue capsule around the implant, causing physical separation between the active sites of the electrode and the nerve fibers. We have tested systemically several anti-inflammatory drugs such as dexamethasone (subcutaneous), ibuprofen and maraviroc (oral) to reduce macrophage activation, as well as clodronate liposomes (intraperitoneal) to reduce monocyte/macrophage infiltration, and sildenafil (oral) as an antifibrotic drug to reduce collagen deposition in an FBR model with longitudinal Parylene C intraneural implants in the rat sciatic nerve. Treatment with dexamethasone, ibuprofen, or clodronate significantly reduced the inflammatory reaction in the nerve in comparison to the saline group after 2 weeks of the implant, whereas sildenafil and maraviroc had no effect on infiltration of macrophages in the nerve. However, only dexamethasone was able to significantly reduce the matrix deposition around the implant. Similar positive results were obtained with dexamethasone in the case of polyimide-based intraneural implants, another polymer substrate for the electrode. These results indicate that inflammation triggers the FBR in peripheral nerves, and that anti-inflammatory treatment with dexamethasone may have beneficial effects on lengthening intraneural interface functionality. Anat Rec, 301:1722-1733, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natàlia De la Oliva
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
15
|
Gaire J, Lee HC, Hilborn N, Ward R, Regan M, Otto KJ. The role of inflammation on the functionality of intracortical microelectrodes. J Neural Eng 2018; 15:066027. [PMID: 30260321 DOI: 10.1088/1741-2552/aae4b6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Neuroinflammation has long been associated with the performance decline of intracortical microelectrodes (IMEs). Consequently, several strategies, including the use of anti-inflammatories, have been employed to mitigate the inflammation surrounding IMEs. However, these strategies have had limited success towards achieving a chronically viable cortical neural interface, questioning the efficacy of anti-inflammatory approach. APPROACH Herein, we conducted a systematic study in rats implanted with functional devices by modulating inflammation via systemic injection of lipopolysaccharide (LPS), dexamethasone (DEX), a combination of both, or none to assess the degree of inflammation on device functionality. We hypothesized that implanted rats treated with LPS will have a negative impact, and rats treated with DEX will have a positive impact on functionality IMEs and histological outcome. MAIN RESULTS Contrary to our hypothesis, we did not observe adverse effects in recording metrics among different groups with LPS and/or DEX treatment despite alterations in initial pro-inflammatory markers. We also did not observe any functional benefit of anti-inflammatory treatment. Regardless of the treatment conditions, the recording quality degraded at chronic time points. In end-point histology, implanted rats that received LPS had significantly lower NeuN density and higher levels of CD68 surrounding the implant site, indicative of the pro-inflammatory effect of LPS, which, however, contradicted with the recorded results. SIGNIFICANCE Collectively, our results suggest that acute inflammatory events may not be the key driver for functional degradation of IMEs. Future intervention strategies geared towards improving the functional longevity of intracortical devices may benefit using multi-modal approaches rather than a single approach, such as controlling the initial inflammatory response.
Collapse
Affiliation(s)
- Janak Gaire
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | | | | | | | | | | |
Collapse
|
16
|
Shoffstall AJ, Ecker M, Danda V, Joshi-Imre A, Stiller A, Yu M, Paiz JE, Mancuso E, Bedell HW, Voit WE, Pancrazio JJ, Capadona JR. Characterization of the Neuroinflammatory Response to Thiol-ene Shape Memory Polymer Coated Intracortical Microelectrodes. MICROMACHINES 2018; 9:E486. [PMID: 30424419 PMCID: PMC6215215 DOI: 10.3390/mi9100486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 01/10/2023]
Abstract
Thiol-ene based shape memory polymers (SMPs) have been developed for use as intracortical microelectrode substrates. The unique chemistry provides precise control over the mechanical and thermal glass-transition properties. As a result, SMP substrates are stiff at room temperature, allowing for insertion into the brain without buckling and subsequently soften in response to body temperatures, reducing the mechanical mismatch between device and tissue. Since the surface chemistry of the materials can contribute significantly to the ultimate biocompatibility, as a first step in the characterization of our SMPs, we sought to isolate the biological response to the implanted material surface without regards to the softening mechanics. To accomplish this, we tightly controlled for bulk stiffness by comparing bare silicon 'dummy' devices to thickness-matched silicon devices dip-coated with SMP. The neuroinflammatory response was evaluated after devices were implanted in the rat cortex for 2 or 16 weeks. We observed no differences in the markers tested at either time point, except that astrocytic scarring was significantly reduced for the dip-coated implants at 16 weeks. The surface properties of non-softening thiol-ene SMP substrates appeared to be equally-tolerated and just as suitable as silicon for neural implant substrates for applications such as intracortical microelectrodes, laying the groundwork for future softer devices to improve upon the prototype device performance presented here.
Collapse
Affiliation(s)
- Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Melanie Ecker
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Vindhya Danda
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Alexandra Joshi-Imre
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, USA.
| | - Allison Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Jennifer E Paiz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Elizabeth Mancuso
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Hillary W Bedell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Walter E Voit
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
17
|
Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors forin vivoAnalysis of Brain Interstitial Fluid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charles Chatard
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- Université Claude Bernard Lyon 1; Lyon France
| | - Anne Meiller
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
- Lyon Neuroscience Research Center, Team TIGER; Faculty of Medicine; 8 Avenue Rockefeller 69373 Lyon Cedex 08 France
| |
Collapse
|
18
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
19
|
Spearman BS, Desai VH, Mobini S, McDermott MD, Graham JB, Otto KJ, Judy JW, Schmidt CE. Tissue-Engineered Peripheral Nerve Interfaces. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701713. [PMID: 37829558 PMCID: PMC10569514 DOI: 10.1002/adfm.201701713] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Research on neural interfaces has historically concentrated on development of systems for the brain; however, there is increasing interest in peripheral nerve interfaces (PNIs) that could provide benefit when peripheral nerve function is compromised, such as for amputees. Efforts focus on designing scalable and high-performance sensory and motor peripheral nervous system interfaces. Current PNIs face several design challenges such as undersampling of signals from the thousands of axons, nerve-fiber selectivity, and device-tissue integration. To improve PNIs, several researchers have turned to tissue engineering. Peripheral nerve tissue engineering has focused on designing regeneration scaffolds that mimic normal nerve extracellular matrix composition, provide advanced microarchitecture to stimulate cell migration, and have mechanical properties like the native nerve. By combining PNIs with tissue engineering, the goal is to promote natural axon regeneration into the devices to facilitate close contact with electrodes; in contrast, traditional PNIs rely on insertion or placement of electrodes into or around existing nerves, or do not utilize materials to actively facilitate axon regeneration. This review presents the state-of-the-art of PNIs and nerve tissue engineering, highlights recent approaches to combine neural-interface technology and tissue engineering, and addresses the remaining challenges with foreign-body response.
Collapse
Affiliation(s)
- Benjamin S Spearman
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
| | - Vidhi H Desai
- Department of Electrical and Computer Engineering, The University of Florida, 216 Larsen Hall, 116200, Gainesville, FL 32611-6200
- Nanoscience Institute for Medical and Engineering Technology, The University of Florida, 1041 Center Drive, 116621, Gainesville, FL 32611-6621
| | - Sahba Mobini
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
| | - Matthew D McDermott
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907-2032
| | - James B Graham
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
| | - Kevin J Otto
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
- Nanoscience Institute for Medical and Engineering Technology, The University of Florida, 1041 Center Drive, 116621, Gainesville, FL 32611-6621
- Department of Neuroscience, The University of Florida, 1149 Newell Dr., Room L1-100, 100244, Gainesville, FL 32610-0244
- Department of Neurology, The University of Florida, 2000 SW Archer Rd., Third Floor, 100383, Gainesville, FL 32610
| | - Jack W Judy
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
- Department of Electrical and Computer Engineering, The University of Florida, 216 Larsen Hall, 116200, Gainesville, FL 32611-6200
- Nanoscience Institute for Medical and Engineering Technology, The University of Florida, 1041 Center Drive, 116621, Gainesville, FL 32611-6621
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, 1275 Center Dr., BMS Building JG-56, 116131, Gainesville, FL 32611-6131
- Nanoscience Institute for Medical and Engineering Technology, The University of Florida, 1041 Center Drive, 116621, Gainesville, FL 32611-6621
| |
Collapse
|
20
|
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng 2018; 15:031001. [DOI: 10.1088/1741-2552/aa8b4f] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Prospects for a Robust Cortical Recording Interface. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Szostak KM, Grand L, Constandinou TG. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics. Front Neurosci 2017; 11:665. [PMID: 29270103 PMCID: PMC5725438 DOI: 10.3389/fnins.2017.00665] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/15/2017] [Indexed: 01/30/2023] Open
Abstract
Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes-microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.
Collapse
Affiliation(s)
- Katarzyna M. Szostak
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| | - Laszlo Grand
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Timothy G. Constandinou
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Woeppel K, Yang Q, Cui XT. Recent Advances in Neural Electrode-Tissue Interfaces. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:21-31. [PMID: 29423457 PMCID: PMC5798641 DOI: 10.1016/j.cobme.2017.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue interface research has been well recognized as an instrumental component of neurotechnology development. While satisfactory long-term performance was demonstrated in some applications, such as cochlear implants and deep brain stimulators, more advanced neural electrode devices requiring higher resolution for single unit recording or microstimulation still face significant challenges in reliability and longevity. In this article, we review the most recent findings that contribute to our current understanding of the sources of poor reliability and longevity in neural recording or stimulation, including the material failure, biological tissue response and the interplay between the two. The newly developed characterization tools are introduced from electrophysiology models, molecular and biochemical analysis, material characterization to live imaging. The effective strategies that have been applied to improve the interface are also highlighted. Finally, we discuss the challenges and opportunities in improving the interface and achieving seamless integration between the implanted electrodes and neural tissue both anatomically and functionally.
Collapse
Affiliation(s)
- Kevin Woeppel
- Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
| | - Qianru Yang
- Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| |
Collapse
|
24
|
Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng 2017; 1:862-877. [PMID: 30505625 PMCID: PMC6261524 DOI: 10.1038/s41551-017-0154-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
The use of implants that can electrically stimulate or record electrophysiological or neurochemical activity in nervous tissue is rapidly expanding. Despite remarkable results in clinical studies and increasing market approvals, the mechanisms underlying the therapeutic effects of neuroprosthetic and neuromodulation devices, as well as their side effects and reasons for their failure, remain poorly understood. A major assumption has been that the signal-generating neurons are the only important target cells of neural-interface technologies. However, recent evidence indicates that the supporting glial cells remodel the structure and function of neuronal networks and are an effector of stimulation-based therapy. Here, we reframe the traditional view of glia as a passive barrier, and discuss their role as an active determinant of the outcomes of device implantation. We also discuss the implications that this has on the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Joseph W. Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kip A. Ludwig
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Neurotech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Erin K. Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
Leijten J, Seo J, Yue K, Santiago GTD, Tamayol A, Ruiz-Esparza GU, Shin SR, Sharifi R, Noshadi I, Álvarez MM, Zhang YS, Khademhosseini A. Spatially and Temporally Controlled Hydrogels for Tissue Engineering. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2017; 119:1-35. [PMID: 29200661 PMCID: PMC5708586 DOI: 10.1016/j.mser.2017.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent years have seen tremendous advances in the field of hydrogel-based biomaterials. One of the most prominent revolutions in this field has been the integration of elements or techniques that enable spatial and temporal control over hydrogels' properties and functions. Here, we critically review the emerging progress of spatiotemporal control over biomaterial properties towards the development of functional engineered tissue constructs. Specifically, we will highlight the main advances in the spatial control of biomaterials, such as surface modification, microfabrication, photo-patterning, and three-dimensional (3D) bioprinting, as well as advances in the temporal control of biomaterials, such as controlled release of molecules, photocleaving of proteins, and controlled hydrogel degradation. We believe that the development and integration of these techniques will drive the engineering of next-generation engineered tissues.
Collapse
Affiliation(s)
- Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guillermo U. Ruiz-Esparza
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Roholah Sharifi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Iman Noshadi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mario Moisés Álvarez
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
26
|
Lee HC, Gaire J, Roysam B, Otto KJ. Placing Sites on the Edge of Planar Silicon Microelectrodes Enhances Chronic Recording Functionality. IEEE Trans Biomed Eng 2017. [PMID: 28641240 DOI: 10.1109/tbme.2017.2715811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study aims to identify the impact of using edge sites over center sites on a planar silicon microelectrode array. METHODS We used custom-designed, silicon-substrate multisite microelectrode arrays with sites on the center, edge, and tip. We compared their single unit recording capability, noise level, impedance, and histology to identify the differences between each site location. Wide and narrow devices were used to evaluate if the differences are consistent and meet theoretical expectations. RESULTS On the wide device, significantly more number of edge sites were functional than center sites over the course of 8 weeks with generally higher signal-to-noise amplitude ratio. On the narrow device, edge sites also performed generally better than center sites, but the differences were not significant and smaller than wide devices. The data from the tip sites were inconclusive. CONCLUSION Edge sites outperformed center sites in terms of single unit recording capability. This benefit decreased as the device gets narrower and the distance to center sites decreases. SIGNIFICANCE We showed that a simple alteration to the site placement can greatly enhance the functionality of silicon microelectrodes. This study promotes the idea that not only the substrate but also the site architecture needs attention to lengthen the lifetime of neural implants.
Collapse
|
27
|
Characterization of Mechanically Matched Hydrogel Coatings to Improve the Biocompatibility of Neural Implants. Sci Rep 2017; 7:1952. [PMID: 28512291 PMCID: PMC5434064 DOI: 10.1038/s41598-017-02107-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 01/01/2023] Open
Abstract
Glial scar is a significant barrier to neural implant function. Micromotion between the implant and tissue is suspected to be a key driver of glial scar formation around neural implants. This study explores the ability of soft hydrogel coatings to modulate glial scar formation by reducing local strain. PEG hydrogels with controllable thickness and elastic moduli were formed on the surface of neural probes. These coatings significantly reduced the local strain resulting from micromotion around the implants. Coated implants were found to significantly reduce scarring in vivo, compared to hard implants of identical diameter. Increasing implant diameter was found to significantly increase scarring for glass implants, as well as increase local BBB permeability, increase macrophage activation, and decrease the local neural density. These results highlight the tradeoff in mechanical benefit with the size effects from increasing the overall diameter following the addition of a hydrogel coating. This study emphasizes the importance of both mechanical and geometric factors of neural implants on chronic timescales.
Collapse
|
28
|
McDermott MD, Otto KJ. The effect of multiple thin-film coatings of protein loaded sol-gel on total multi-electrode array thickness. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:129-132. [PMID: 28268296 DOI: 10.1109/embc.2016.7590657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tetramethyl orthosilicate shows promise as a thin-film delivery vehicle for multi-electrode arrays for drug release and electrical performance; however, its effect upon device footprint has yet to be assessed. Using a previously established silicon wafer chip model, the thickness of one, two, and four protein doped coatings of sol-gel were analyzed via profilometry. Coating thickness was found to be 0.4μm, 1.1μm and 2.2μm on each side of the device. This addition to a native MEA is minimal when compared to other drug delivery paradigms currently associated with neural implants.
Collapse
|
29
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Neurobiochemical changes in the vicinity of a nanostructured neural implant. Sci Rep 2016; 6:35944. [PMID: 27775024 PMCID: PMC5075914 DOI: 10.1038/srep35944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/07/2016] [Indexed: 01/22/2023] Open
Abstract
Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520–800 nm long nanopillars with a diameter of 150–200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings.
Collapse
|
31
|
Capeletti LB, Cardoso MB, Dos Santos JHZ, He W. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27553-27563. [PMID: 27715001 DOI: 10.1021/acsami.6b09393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.
Collapse
Affiliation(s)
- Larissa Brentano Capeletti
- LNLS - Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13083-970 Campinas, SP, Brazil
- Chemistry Institute, Universidade Federal do Rio Grande do Sul , CEP 91501-970, Porto Alegre, RS, Brazil
| | - Mateus Borba Cardoso
- LNLS - Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13083-970 Campinas, SP, Brazil
| | | | | |
Collapse
|
32
|
Prodanov D, Delbeke J. A model of space-fractional-order diffusion in the glial scar. J Theor Biol 2016; 403:97-109. [PMID: 27179458 DOI: 10.1016/j.jtbi.2016.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023]
Abstract
Implantation of neuroprosthetic electrodes induces a stereotypical state of neuroinflammation, which is thought to be detrimental for the neurons surrounding the electrode. Mechanisms of this type of neuroinflammation are still poorly understood. Recent experimental and theoretical results point to a possible role of the diffusing species in this process. The paper considers a model of anomalous diffusion occurring in the glial scar around a chronic implant in two simple geometries - a separable rectilinear electrode and a cylindrical electrode, which are solvable exactly. We describe a hypothetical extended source of diffusing species and study its concentration profile in steady-state conditions. Diffusion transport is assumed to obey a fractional-order Fick law, derivable from physically realistic assumptions using a fractional calculus approach. Presented fractional-order distribution morphs into integer-order diffusion in the case of integral fractional exponents. The model demonstrates that accumulation of diffusing species can occur and the scar properties (i.e. tortuosity, fractional order, scar thickness) and boundary conditions can influence such accumulation. The observed shape of the concentration profile corresponds qualitatively with GFAP profiles reported in the literature. The main difference with respect to the previous studies is the explicit incorporation of the apparatus of fractional calculus without assumption of an ad hoc tortuosity parameter. The approach can be adapted to other studies of diffusion in biological tissues, for example of biomolecules or small drug molecules.
Collapse
Affiliation(s)
- Dimiter Prodanov
- Environment, Health and Safety, Neuroscience Research Flanders, IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
| | - Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium.
| |
Collapse
|
33
|
Thompson CH, Zoratti MJ, Langhals NB, Purcell EK. Regenerative Electrode Interfaces for Neural Prostheses. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:125-35. [DOI: 10.1089/ten.teb.2015.0279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cort H. Thompson
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Marissa J. Zoratti
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Nicholas B. Langhals
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Erin K. Purcell
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
34
|
Prodanov D, Delbeke J. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design. Front Neurosci 2016; 10:11. [PMID: 26903786 PMCID: PMC4746296 DOI: 10.3389/fnins.2016.00011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022] Open
Abstract
Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it.
Collapse
Affiliation(s)
- Dimiter Prodanov
- Department of Environment, Health and Safety, ImecLeuven, Belgium
- Neuroscience Research FlandersLeuven, Belgium
| | - Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent UniversityGhent, Belgium
| |
Collapse
|
35
|
Arreaga-Salas DE, Avendaño-Bolívar A, Simon D, Reit R, Garcia-Sandoval A, Rennaker RL, Voit W. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26614-23. [PMID: 26575084 DOI: 10.1021/acsami.5b08139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Softening neural interfaces are implanted stiff to enable precise insertion, and they soften in physiological conditions to minimize modulus mismatch with tissue. In this work, a high-charge-injection-capacity iridium electrode fabrication process is detailed. For the first time, this process enables integration of iridium electrodes onto softening substrates using photolithography to define all features in the device. Importantly, no electroplated layers are utilized, leading to a highly scalable method for consistent device fabrication. The iridium electrode is metallically bonded to the gold conductor layer, which is covalently bonded to the softening substrate via sulfur-based click chemistry. The resulting shape-memory polymer neural interfaces can deliver more than 2 billion symmetric biphasic pulses (100 μs/phase), with a charge of 200 μC/cm(2) and geometric surface area (GSA) of 300 μm(2). A transfer-by-polymerization method is used in combination with standard semiconductor processing techniques to fabricate functional neural probes onto a thiol-ene-based, thin film substrate. Electrical stability is tested under simulated physiological conditions in an accelerated electrical aging paradigm with periodic measurement of electrochemical impedance spectra (EIS) and charge storage capacity (CSC) at various intervals. Electrochemical characterization and both optical and scanning electron microscopy suggest significant breakdown of the 600 nm-thick parylene-C insulation, although no delamination of the conductors or of the final electrode interface was observed. Minor cracking at the edges of the thin film iridium electrodes was occasionally observed. The resulting devices will provide electrical recording and stimulation of the nervous system to better understand neural wiring and timing, to target treatments for debilitating diseases, and to give neuroscientists spatially selective and specific tools to interact with the body. This approach has uses for cochlear implants, nerve cuff electrodes, penetrating cortical probes, spinal stimulators, blanket electrodes for the gut, stomach, and visceral organs and a host of other custom nerve-interfacing devices.
Collapse
Affiliation(s)
- David E Arreaga-Salas
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Adrian Avendaño-Bolívar
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Dustin Simon
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Radu Reit
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Aldo Garcia-Sandoval
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Robert L Rennaker
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Walter Voit
- Department of Materials Science and Engineering, ‡Department of Bioengineering, and §Department of Mechanical Engineering, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
36
|
Saxena T, Bellamkonda RV. Implantable electronics: A sensor web for neurons. NATURE MATERIALS 2015; 14:1190-1191. [PMID: 26585085 DOI: 10.1038/nmat4454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Tarun Saxena
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia 30332, USA
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia 30332, USA
| |
Collapse
|
37
|
Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials 2015; 53:753-62. [DOI: 10.1016/j.biomaterials.2015.02.081] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
38
|
Potter-Baker KA, Capadona JR. Reducing the "Stress": Antioxidative Therapeutic and Material Approaches May Prevent Intracortical Microelectrode Failure. ACS Macro Lett 2015; 4:275-279. [PMID: 35596335 DOI: 10.1021/mz500743a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the promising potential of intracortical microelectrodes, current designs suffer from short functional lifetimes, due in large part to the neuroinflammatory response to the implanted devices. An increasing body of literature is beginning to link neuroinflammatory-mediated oxidative damage to both the loss of neuronal structures around the implanted microelectrodes, and the degradation/corrosion of electrode materials. The goal of this viewpoint paper was to summarize the current progress toward understanding the role of oxidative damage to neurons and microelectrodes. Further, we seek to highlight the initial antioxidative approaches to mitigate oxidative damage, as well as suggest how current advances in macromolecular science for various applications may play a distinct role in enabling intracortical microelectrodes as reliable choices for long-term neuroprosthetic applications.
Collapse
Affiliation(s)
- Kelsey A. Potter-Baker
- Department of Biomedical
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jeffrey R. Capadona
- Department of Biomedical
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
39
|
Gunasekera B, Saxena T, Bellamkonda R, Karumbaiah L. Intracortical recording interfaces: current challenges to chronic recording function. ACS Chem Neurosci 2015; 6:68-83. [PMID: 25587704 DOI: 10.1021/cn5002864] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain Computer Interfaces (BCIs) offer significant hope to tetraplegic and paraplegic individuals. This technology relies on extracting and translating motor intent to facilitate control of a computer cursor or to enable fine control of an external assistive device such as a prosthetic limb. Intracortical recording interfaces (IRIs) are critical components of BCIs and consist of arrays of penetrating electrodes that are implanted into the motor cortex of the brain. These multielectrode arrays (MEAs) are responsible for recording and conducting neural signals from local ensembles of neurons in the motor cortex with the high speed and spatiotemporal resolution that is required for exercising control of external assistive prostheses. Recent design and technological innovations in the field have led to significant improvements in BCI function. However, long-term (chronic) BCI function is severely compromised by short-term (acute) IRI recording failure. In this review, we will discuss the design and function of current IRIs. We will also review a host of recent advances that contribute significantly to our overall understanding of the cellular and molecular events that lead to acute recording failure of these invasive implants. We will also present recent improvements to IRI design and provide insights into the futuristic design of more chronically functional IRIs.
Collapse
Affiliation(s)
- Bhagya Gunasekera
- Regenerative
Bioscience Center, ADS Complex, The University of Georgia, Athens, Georgia 30602-2771, United States
| | - Tarun Saxena
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0535, United States
| | - Ravi Bellamkonda
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0535, United States
| | - Lohitash Karumbaiah
- Regenerative
Bioscience Center, ADS Complex, The University of Georgia, Athens, Georgia 30602-2771, United States
| |
Collapse
|
40
|
Jorfi M, Skousen JL, Weder C, Capadona JR. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 2014; 12:011001. [PMID: 25460808 DOI: 10.1088/1741-2560/12/1/011001] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Adolphe Merkle Institute, University of Fribourg, Rte de l'Ancienne Papeterie, CH-1723 Marly, Switzerland
| | | | | | | |
Collapse
|