1
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Liu J, Huang X, Su H, Yu J, Nie X, Liu K, Qin W, Zhao Y, Su Y, Kuang X, Chen D, Lu WW, Chen Y, Hua Q. Tibial Cortex Transverse Transport Facilitates Severe Diabetic Foot Wound Healing via HIF-1α-Induced Angiogenesis. J Inflamm Res 2024; 17:2681-2696. [PMID: 38707956 PMCID: PMC11070162 DOI: 10.2147/jir.s456590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Management of severe diabetic foot ulcers (DFUs) remains challenging. Tibial cortex transverse transport (TTT) facilitates healing and limb salvage in patients with recalcitrant DFUs. However, the underlying mechanism is largely unknown, necessitating the establishment of an animal model and mechanism exploration. Methods Severe DFUs were induced in rats, then assigned to TTT, sham, or control groups (n=16/group). The TTT group underwent a tibial corticotomy, with 6 days each of medial and lateral transport; the sham group had a corticotomy without transport. Ulcer healing was assessed through Laser Doppler, CT angiography, histology, and immunohistochemistry. Serum HIF-1α, PDGF-BB, SDF-1, and VEGF levels were measured by ELISA. Results The TTT group showed lower percentages of wound area, higher dermis thickness (all p < 0.001 expect for p = 0.001 for TTT vs Sham at day 6) and percentage of collagen content (all p < 0.001) than the other two groups. The TTT group had higher perfusion and vessel volume in the hindlimb (all p < 0.001). The number of CD31+ cells (all p < 0.001) and VEGFR2+ cells (at day 6, TTT vs Control, p = 0.001, TTT vs Sham, p = 0.006; at day 12, TTT vs Control, p = 0.003, TTT vs Sham, p = 0.01) were higher in the TTT group. The activity of HIF-1α, PDGF-BB, and SDF-1 was increased in the TTT group (all p < 0.001 except for SDF-1 at day 12, TTT vs Sham, p = 0.005). The TTT group had higher levels of HIF-1α, PDGF-BB, SDF-1, and VEGF in serum than the other groups (all p < 0.001). Conclusion TTT enhanced neovascularization and perfusion at the hindlimb and accelerated healing of the severe DFUs. The underlying mechanism is related to HIF-1α-induced angiogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiajie Huang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hongjie Su
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jie Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xinyu Nie
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Kaibing Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Wencong Qin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yongxin Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yongfeng Su
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaocong Kuang
- Yulin Campus of Guangxi Medical University, Yulin, Guangxi, People’s Republic of China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - William W Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Qikai Hua
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
4
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Sligar AD, Howe G, Goldman J, Felli P, Gómez-Hernández A, Takematsu E, Veith A, Desai S, Riley WJ, Singeetham R, Mei L, Callahan G, Ashirov D, Smalling R, Baker AB. Syndecan-4 Proteoliposomes Enhance Revascularization in a Rabbit Hind Limb Ischemia Model of Peripheral Ischemia. Acta Biomater 2023:S1742-7061(23)00331-8. [PMID: 37321528 DOI: 10.1016/j.actbio.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Andrew D Sligar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Julia Goldman
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Austin Veith
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Shubh Desai
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - William J Riley
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Rohan Singeetham
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Lei Mei
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gregory Callahan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - David Ashirov
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX; Memorial Hermann Heart and Vascular Institute, Houston, TX
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX.
| |
Collapse
|
6
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
7
|
Massidda MW, Im B, Lee J, Baker AB. Mechanical conditioning of human mesenchymal stem cells for enhancing vascular regeneration. STAR Protoc 2023; 4:102103. [PMID: 36853695 PMCID: PMC9929623 DOI: 10.1016/j.xpro.2023.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are an appealing cell type for therapeutic applications but remain limited by poor efficacy in clinical trials. Here, we describe a conditioning technique that enhances the vascular regenerative properties of hMSCs and increases their expression of endothelial cell and pericyte markers. We also describe an alginate gel encapsulation protocol for delivering the conditioned cells. For complete details on the use and execution of this protocol, please refer to Lee et al. (2021).1.
Collapse
Affiliation(s)
- Miles W Massidda
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - ByungGee Im
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Jason Lee
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Takematsu E, Massidda M, Auster J, Chen PC, Im B, Srinath S, Canga S, Singh A, Majid M, Sherman M, Dunn A, Graham A, Martin P, Baker AB. Transmembrane stem cell factor protein therapeutics enhance revascularization in ischemia without mast cell activation. Nat Commun 2022; 13:2497. [PMID: 35523773 PMCID: PMC9076913 DOI: 10.1038/s41467-022-30103-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Miles Massidda
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jeff Auster
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Po-Chih Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - ByungGee Im
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sanjana Srinath
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sophia Canga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Aditya Singh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Michael Sherman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, G4 0BA, Scotland, UK
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, G4 0BA, Scotland, UK
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
10
|
Colin-Pierre C, Berthélémy N, Belloy N, Danoux L, Bardey V, Rivet R, Mine S, Jeanmaire C, Maquart FX, Ramont L, Brézillon S. The Glypican-1/HGF/C-Met and Glypican-1/VEGF/VEGFR2 Ternary Complexes Regulate Hair Follicle Angiogenesis. Front Cell Dev Biol 2021; 9:781172. [PMID: 34957110 PMCID: PMC8692797 DOI: 10.3389/fcell.2021.781172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,P3M, Multiscale Molecular Modeling Platform, Université de Reims Champagne-Ardenne, Reims, France
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Romain Rivet
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
11
|
Kaur G, Rogers J, Rashdan NA, Cruz-Topete D, Pattillo CB, Hartson SD, Harris NR. Hyperglycemia-induced effects on glycocalyx components in the retina. Exp Eye Res 2021; 213:108846. [PMID: 34801534 PMCID: PMC8665121 DOI: 10.1016/j.exer.2021.108846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Diabetic retinopathy is a vision-threatening complication of diabetes characterized by endothelial injury and vascular dysfunction. The loss of the endothelial glycocalyx, a dynamic layer lining all endothelial cells, contributes to several microvascular pathologies, including an increase in vascular permeability, leukocyte plugging, and capillary occlusion, and may drive the progression of retinopathy. Previously, a significant decrease in glycocalyx thickness has been observed in diabetic retinas. However, the effects of diabetes on specific components of the retinal glycocalyx have not yet been studied. Therefore, the aim of our study was to investigate changes in synthesis, expression, and shedding of retinal glycocalyx components induced by hyperglycemia, which could provide a novel therapeutic target for diabetic retinopathy. METHODS Primary rat retinal microvascular endothelial cells (RRMECs) were grown under normal glucose (5 mM) or high-glucose (25 mM) conditions for 6 days. The mRNA and protein levels of the glycocalyx components were examined using qRT-PCR and Western blot analysis, respectively. Further, mass spectrometry was used to analyze protein intensities of core proteins. In addition, the streptozotocin-induced Type 1 diabetic rat model was used to study changes in the expression of the retinal glycocalyx in vivo. The shedding of the glycocalyx was studied in both culture medium and in plasma using Western blot analysis. RESULTS A significant increase in the shedding of syndecan-1 and CD44 was observed both in vitro and in vivo under high-glucose conditions. The mRNA levels of syndecan-3 were significantly lower in the RRMECs grown under high glucose conditions, whereas those of syndecan-1, syndecan-2, syndecan-4, glypican-1, glypican-3, and CD44 were significantly higher. The protein expression of syndecan-3 and glypican-1 in RRMECs was reduced considerably following exposure to high glucose, whereas that of syndecan-1 and CD44 increased significantly. In addition, mass spectrometry data also suggests a significant increase in syndecan-4 and a significant decrease in glypican-3 protein levels with high glucose stimulation. In vivo, our data also suggest a significant decrease in the mRNA transcripts of syndecan-3 and an increase in mRNA levels of glypican-1 and CD44 in the retinas of diabetic rats. The diabetic rats exhibited a significant reduction in the retinal expression of syndecan-3 and CD44. However, the expression of syndecan-1 and glypican-1 increased significantly in the diabetic retina. CONCLUSIONS One of the main findings of our study was the considerable diversity of glucose-induced changes in expression and shedding of various components of endothelial glycocalyx, for example, increased endothelial and retinal syndecan-1, but decreased endothelial and retinal syndecan-3. This indicates that the reported decrease in the retinal glycocalyx in diabetes in not a result of a non-specific shedding mechanism. Moreover, mRNA measurements indicated a similar diversity, with increases in endothelial and/or retinal levels of syndecan-1, glypican-1, and CD44, but a decrease for syndecan-3, with these increases in mRNA potentially a compensatory reaction to the overall loss of glycocalyx.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Janet Rogers
- Oklahoma State University, OK, Department of Biochemistry and Molecular Biology, USA
| | - Nabil A Rashdan
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Diana Cruz-Topete
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Christopher B Pattillo
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Steven D Hartson
- Oklahoma State University, OK, Department of Biochemistry and Molecular Biology, USA
| | - Norman R Harris
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA.
| |
Collapse
|
12
|
Fan F, Saha S, Hanjaya-Putra D. Biomimetic Hydrogels to Promote Wound Healing. Front Bioeng Biotechnol 2021; 9:718377. [PMID: 34616718 PMCID: PMC8488380 DOI: 10.3389/fbioe.2021.718377] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a common physiological process which consists of a sequence of molecular and cellular events that occur following the onset of a tissue lesion in order to reconstitute barrier between body and external environment. The inherent properties of hydrogels allow the damaged tissue to heal by supporting a hydrated environment which has long been explored in wound management to aid in autolytic debridement. However, chronic non-healing wounds require added therapeutic features that can be achieved by incorporation of biomolecules and supporting cells to promote faster and better healing outcomes. In recent decades, numerous hydrogels have been developed and modified to match the time scale for distinct stages of wound healing. This review will discuss the effects of various types of hydrogels on wound pathophysiology, as well as the ideal characteristics of hydrogels for wound healing, crosslinking mechanism, fabrication techniques and design considerations of hydrogel engineering. Finally, several challenges related to adopting hydrogels to promote wound healing and future perspectives are discussed.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sanjoy Saha
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
14
|
Spencer A, Sligar AD, Chavarria D, Lee J, Choksi D, Patil NP, Lee H, Veith AP, Riley WJ, Desai S, Abbaspour A, Singeetham R, Baker AB. Biomechanical regulation of breast cancer metastasis and progression. Sci Rep 2021; 11:9838. [PMID: 33972619 PMCID: PMC8110548 DOI: 10.1038/s41598-021-89288-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.
Collapse
Affiliation(s)
- Adrianne Spencer
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Jason Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Darshil Choksi
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Nikita P Patil
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - HooWon Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Austin P Veith
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - William J Riley
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Shubh Desai
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Ali Abbaspour
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Rohan Singeetham
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Salikhova D, Bukharova T, Cherkashova E, Namestnikova D, Leonov G, Nikitina M, Gubskiy I, Akopyan G, Elchaninov A, Midiber K, Bulatenco N, Mokrousova V, Makarov A, Yarygin K, Chekhonin V, Mikhaleva L, Fatkhudinov T, Goldshtein D. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int J Mol Sci 2021; 22:ijms22094694. [PMID: 33946667 PMCID: PMC8125106 DOI: 10.3390/ijms22094694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.
Collapse
Affiliation(s)
- Diana Salikhova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Correspondence:
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Elvira Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Daria Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Georgy Leonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Maria Nikitina
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Ilya Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Gevorg Akopyan
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Andrey Elchaninov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Konstantin Midiber
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Natalia Bulatenco
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Victoria Mokrousova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Andrey Makarov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Konstantin Yarygin
- Institute of Biomedical Chemistry, 119121 Moscow, Russia;
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Liudmila Mikhaleva
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
16
|
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B 2021; 8:2418-2430. [PMID: 32115589 DOI: 10.1039/c9tb02641j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioreducible cationic polymers have gained considerable attention in gene delivery due to their low cytotoxicity and high efficiency. In the present work, we reported a cationic polymer, poly(disulfide-l-lysine)-g-agmatine (denoted as SSL-AG), and evaluated its ability to transfer pEGFP-ZNF580 plasmid (pZNF580) into human umbilical vein endothelial cells (HUVECs). This SSL-AG polymeric carrier efficiently condensed pZNF580 into positively charged particles (<200 nm) through electrostatic interaction. This carrier also exhibited excellent buffering capacity in the physiological environment, good pDNA protection against enzymatic degradation and rapid pDNA release in a highly reducing environment mainly because of the responsive cleavage of disulfide bonds in the polymer backbone. The hemolysis assay and in vitro cytotoxicity assay suggested that the SSL-AG carrier and corresponding gene complexes possessed both good hemocompatibility and great cell viability in HUVECs. The cellular uptake of the SSL-AG/Cy5-oligonucleotide group was 3.6 times that of the poly(l-lysine)/Cy5-oligonucleotide group, and its mean fluorescence intensity value was even higher than that of the PEI 25 kDa/Cy5-oligonucleotide group. Further, the intracellular trafficking results demonstrated that the SSL-AG/Cy5-oligonucleotide complexes exhibited a high nucleus co-localization rate (CLR) value (36.0 ± 2.8%, 3.4 times that of the poly (l-lysine)/Cy5-oligonucleotide group, 1.6 times that of the poly(disulfide-l-lysine)-g-butylenediamine/Cy5-oligonucleotide group) at 24 h, while the endo/lysosomal CLR value was relatively low. This suggested that SSL-AG successfully delivered plasmid into HUVECs with high cellular uptake, rapid endosomal escape and efficient nuclear accumulation owing to the structural advantages of the bioreducible and agmatine groups. In vitro transfection assay also verified the enhanced transfection efficiency in the SSL-AG/pZNF580 group. Furthermore, the results of CCK-8, cell migration and in vitro/vivo angiogenesis assays revealed that pZNF580 delivered by SSL-AG could effectively enhance the proliferation, migration and vascularization of HUVECs. In a word, the SSL-AG polymer has great potential as a safe and efficient gene carrier for gene therapy.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Ducret V, Richards AJ, Videlier M, Scalvenzi T, Moore KA, Paszkiewicz K, Bonneaud C, Pollet N, Herrel A. Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri. BMC Genomics 2021; 22:204. [PMID: 33757428 PMCID: PMC7986297 DOI: 10.1186/s12864-021-07517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
Collapse
Affiliation(s)
- Valérie Ducret
- UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 Rue Buffon, 75005, Paris, France.
| | - Adam J Richards
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
| | - Mathieu Videlier
- Functional Ecology Lab, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Thibault Scalvenzi
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Karen A Moore
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Konrad Paszkiewicz
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Nicolas Pollet
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Anthony Herrel
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
18
|
Li C, Kitzerow O, Nie F, Dai J, Liu X, Carlson MA, Casale GP, Pipinos II, Li X. Bioengineering strategies for the treatment of peripheral arterial disease. Bioact Mater 2021; 6:684-696. [PMID: 33005831 PMCID: PMC7511653 DOI: 10.1016/j.bioactmat.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by narrowing and occlusion of arteries supplying the lower extremities. Approximately 200 million people worldwide are affected by PAD. The current standard of operative care is open or endovascular revascularization in which blood flow restoration is the goal. However, many patients are not appropriate candidates for these treatments and are subject to continuous ischemia of their lower limbs. Current research in the therapy of PAD involves developing modalities that induce angiogenesis, but the results of simple cell transplantation or growth factor delivery have been found to be relatively poor mainly due to difficulties in stem cell retention and survival and rapid diffusion and enzymolysis of growth factors following injection of these agents in the affected tissues. Biomaterials, including hydrogels, have the capability to protect stem cells during injection and to support cell survival. Hydrogels can also provide a sustained release of growth factors at the injection site. This review will focus on biomaterial systems currently being investigated as carriers for cell and growth factor delivery, and will also discuss biomaterials as a potential stand-alone method for the treatment of PAD. Finally, the challenges of development and use of biomaterials systems for PAD treatment will be reviewed.
Collapse
Affiliation(s)
- Cui Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Oliver Kitzerow
- Department of Genetics Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jingxuan Dai
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Mark A. Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Omaha VA Medical Center, Omaha, NE, 68105, United States
| | - George P. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
19
|
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9:1530-1546. [DOI: 10.1039/d0bm01747g] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hydrogel dressings with various functions for diabetic wound treatment.
Collapse
Affiliation(s)
- Heni Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
20
|
Abstract
The quantitative analysis of blood vessel networks is an important component in many animal models of disease. We describe a nondestructive technique for blood vessel imaging that visualizes in situ vasculature in harvested tissues. The method allows for further analysis of the same tissues with histology and other methods that can be performed on fixed tissue. Consequently, it can easily be incorporated upstream to analysis methods to augment these with a three-dimensional reconstruction of the vascular network in the tissues to be analyzed. The method combines iodine-enhanced micro-computed tomography with a deep learning algorithm to segment vasculature within tissues. The procedure is relatively simple and can provide insight into complex changes in the vascular structure in the tissues.
Collapse
|
21
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
22
|
Walimbe T, Panitch A. Proteoglycans in Biomedicine: Resurgence of an Underexploited Class of ECM Molecules. Front Pharmacol 2020; 10:1661. [PMID: 32082161 PMCID: PMC7000921 DOI: 10.3389/fphar.2019.01661] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Proteoglycans have emerged as biomacromolecules with important roles in matrix remodeling, homeostasis, and signaling in the past two decades. Due to their negatively charged glycosaminoglycan chains as well as distinct core protein structures, they interact with a variety of molecules, including matrix proteins, growth factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of glycan therapies in the 20th century, but this research was quickly overshadowed by readily available DNA and protein-based therapies. The recent development of recombinant technology and advances in our understanding of proteoglycan function have led to a resurgence of these molecules as potential therapeutics. This review focuses on the recent preclinical efforts that are bringing proteoglycan research and therapies back to the forefront. Examples of studies using proteoglycan cores and mimetics have also been included to give the readers a perspective on the wide-ranging and extensive applications of these versatile molecules. Collectively, these advances are opening new avenues for targeting diseases at a molecular level, and providing avenues for the development of new and exciting treatments in regenerative medicine.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Alyssa Panitch
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
23
|
Delivery of RALA/siFKBPL nanoparticles via electrospun bilayer nanofibres: An innovative angiogenic therapy for wound repair. J Control Release 2019; 316:53-65. [PMID: 31676385 DOI: 10.1016/j.jconrel.2019.10.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 01/05/2023]
Abstract
FK506-binding protein-like (FKBPL) has previously been shown to inhibit angiogenesis viain vitro and in vivo experimentation. Thus, it was proposed that the delivery of a siRNA targeting FKBPL could hold great potential in promoting angiogenesis for advanced wound healing applications. An effective delivery system has been utilised to encapsulate the siFKBPL to form nanoparticles, thereby improving cellular entry and eliciting a potent angiogenic response. In this study, nanoparticles were formed via condensation of siFKBPL with RALA; a novel, cationic 30 mer amphipathic peptide. Nanoparticles prepared at a N:P ratio of 6 demonstrated an average particle size of 76.6nm with a zeta potential of +16.5mV. Treatment of HMEC-1 cells at N:P 6 resulted in a transfection efficiency of 33.7%, negligible cytotoxicity, and significant knockdown of endogenous FKBPL expression. Functionally, treatment with RALA/siFKBPL resulted in significant improvements in cell migration and endothelial tubule formation in vitro. The process of electrospinning was employed to fabricate a nanofibrous wound patch to facilitate the controlled delivery of the RALA/siFKBPL nanoparticles. Alginate/poly-(vinyl alcohol) was electrospun following electrospinning of Chitosan/poly-(vinyl alcohol) to form a bilayered wound patch. Subsequently, the nanofibres were crosslinked to improve stability, before nanoparticle incorporation via soak loading. In vivo wound healing studies using C57BL/6J mice demonstrated a significant increase in angiogenesis when the RALA/siFKBPL nanoparticles were delivered from the bilayered wound patch; a 326% increase in blood vessel density was observed compared to untreated wounds. Taken together, this data demonstrates that delivery of RALA/siFKBPL nanoparticles from the bilayered wound patch represents an innovative wound healing therapy.
Collapse
|
24
|
Decreased expression of GPC1 in human skin keratinocytes and epidermis during ageing. Exp Gerontol 2019; 126:110693. [PMID: 31430521 DOI: 10.1016/j.exger.2019.110693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Glypicans (GPCs) are heparan sulfate cell membrane proteoglycans containing glycosylphosphatidylinositol (GPI) anchor. They play important role in cell behavior by activating/presenting numerous growth factors and cytokines. OBJECTIVES The expression of GPCs was investigated in primary culture of skin keratinocytes sampled from healthy donors of different age. MATERIALS AND METHODS Primary keratinocytes from healthy female donors aged from 20 to 89 years old (n = 30) were either isolated from breast or abdominal skin samples (n = 27) or purchased (n = 3). GPCs expression was examined by qPCR, immunohistochemistry and western blot. Its role in proliferation induced by fibroblast growth factor 2 (FGF2) was also studied. RESULTS Glypican 1 (GPC1) was the major expressed GPC in human keratinocytes. Its expression was up to two orders of magnitude higher than other GPCs and was significantly decreased with the age of the donors. It was localized at the cell surface and associated with intracellular granules. In skin sections, GPC1 was mainly localized in basal layer of epidermis. Shedding of GPCs decreased the proliferative effect of FGF2, confirming their role of modulator of growth factor effects on keratinocytes. These results established GPC1 as an important player in epidermis biology and skin ageing.
Collapse
|
25
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
26
|
Monteforte A, Lam B, Sherman MB, Henderson K, Sligar AD, Spencer A, Tang B, Dunn AK, Baker AB. * Glioblastoma Exosomes for Therapeutic Angiogenesis in Peripheral Ischemia. Tissue Eng Part A 2018; 23:1251-1261. [PMID: 28699397 DOI: 10.1089/ten.tea.2016.0508] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral ischemia as a result of occlusive vascular disease is a widespread problem in patients older than the age of 65. Angiogenic therapies that can induce microvascular growth have great potential for providing a long-lasting solution for patients with ischemia and would provide an appealing alternative to surgical and percutaneous interventions. However, many angiogenic therapies have seen poor efficacy in clinical trials, suggesting that patients with long-term peripheral ischemia have considerable therapeutic resistance to angiogenic stimuli. Glioblastoma is one of the most angiogenic tumor types, inducing robust vessel growth in the area surrounding the tumor. One major angiogenic mechanism used by the tumor cells to induce blood vessel growth is the production of exosomes and other extracellular vesicles that can carry pro-angiogenic and immunomodulatory signals. Here, we explored whether the pro-angiogenic aspects of glioblastoma-derived exosomes could be harnessed to promote angiogenesis and healing in the context of peripheral ischemic disease. We demonstrate that the exosomes derived from glioblastoma markedly enhance endothelial cell proliferation and increase endothelial tubule formation in vitro. An analysis of the microRNA expression using next generation sequencing identified that exosomes contained a high concentration of miR-221. In addition, we found that glioblastoma exosomes contained significant amounts of the proteoglycans glypican-1 and syndecan-4, which can serve as co-receptors for angiogenic factors, including fibroblast growth factor-2 (FGF-2). In a hindlimb ischemia model in mice, we found that the exosomes promoted enhanced revascularization in comparison to control alginate gels and FGF-2 treatment alone. Taken together, our results support the fact that glioblastoma-derived exosomes have powerful effects in increasing revascularization in the context of peripheral ischemia.
Collapse
Affiliation(s)
- Anthony Monteforte
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Brian Lam
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Michael B Sherman
- 2 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, Texas
| | - Kayla Henderson
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Andrew D Sligar
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Adrianne Spencer
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Brian Tang
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Andrew K Dunn
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Aaron B Baker
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas.,3 Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin, Texas.,4 Institute for Computational Engineering and Sciences, University of Texas at Austin , Austin, Texas.,5 Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin , Austin, Texas
| |
Collapse
|
27
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
28
|
Soares DCF, de Paula Oliveira DC, Barcelos LS, Barbosa AS, Vieira LC, Townsend DM, Rubello D, de Barros ALB, Duarte LP, Silva-Cunha A. Antiangiogenic activity of PLGA-Lupeol implants for potential intravitreal applications. Biomed Pharmacother 2017; 92:394-402. [PMID: 28558353 DOI: 10.1016/j.biopha.2017.05.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled angiogenesis is directly associated with ocular diseases such as macular degeneration and diabetic retinopathy. Implantable polymeric drug delivery systems have been proposed for intravitreal applications and in the present work, we evaluated the antiangiogenic potential of PLGA ocular implants loaded with the triterpene lupeol using in vitro and in vivo models. The drug/polymer physiochemical properties of the lupeol-loaded PLGA were validated as functionally similar using differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Interestingly, in an in vitro culture system, lupeol (100μg/mL and 250μg/mL) was capable to inhibited the proliferation as well as the migration of Human Umbilical Vein Endothelial Cells (HUVEC), without interfering in cell viability, promoting a significant reduction in the percentage of vessels (39.41% and 44.12%, respectively), compared with the control group. In vivo test, by using the chorioallantoic membrane (CAM) model, lupeol-loaded PLGA ocular implants showed antiangiogenic activity comparable to the FDA-approved anti-VEGF antibody Bevacizumab. Overall, our results suggest lupeol-loaded PLGA ocular implants were able to inhibit the angiogenic process by impairing both proliferation and migration of endothelial cells.
Collapse
Affiliation(s)
| | - Diogo Coelho de Paula Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Carla Vieira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, United States
| | - Domenico Rubello
- Department of Nuclear Medicine, Imaging and Clinical Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - André Luis Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Armando Silva-Cunha
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
29
|
Yang J, Hao X, Li Q, Akpanyung M, Nejjari A, Neve AL, Ren X, Guo J, Feng Y, Shi C, Zhang W. CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4485-4497. [PMID: 28117580 DOI: 10.1021/acsami.6b14769] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is a promising strategy for angiogenesis, but developing gene carriers with low cytotoxicity and high gene delivery efficiency in vivo is a key issue. In the present study, we synthesized the CAGW peptide- and poly(ethylene glycol) (PEG)-modified amphiphilic copolymers. CAGW peptide serves as a targeting ligand for endothelial cells (ECs). Different amounts of CAGW peptide were effectively conjugated to the amphiphilic copolymer via heterofunctional poly(ethylene glycol). These CAG- and PEG-modified copolymers could form nanoparticles (NPs) by self-assembly method and were used as gene carriers for the pEGFP-ZNF580 (pZNF580) plasmid. CAGW and PEG modification coordinately improved the hemocompatibility and cytocompatibility of NPs. The results of cellular uptake showed significantly enhanced internalization efficiency of pZNF580 after CAGW modification. Gene expression at mRNA and protein levels demonstrated that EC-targeted NPs possessed high gene delivery efficiency, especially the NPs with higher content of CAGW peptide (1.16 wt %). Furthermore, in vitro and in vivo vascularization assays also showed outstanding vascularization ability of human umbilical vein endothelial cells treated by the NP/pZNF580 complexes. This study demonstrates that the CAGW peptide-modified NP is a promising candidate for gene therapy in angiogenesis.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Mary Akpanyung
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Abdelilah Nejjari
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Agnaldo Luis Neve
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Weijin Road 92, Tianjin 300072, China
| | - Changcan Shi
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325011, China
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS , Wenzhou, Zhejiang 325011, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| |
Collapse
|
30
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
31
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|