1
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67028-67044. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Chen J, He Z, Zheng S, Gao W, Wang Y. Ultrasonic-Assisted Electrodeposition of Cu-TiO 2 Nanocomposite Coatings with Long-Term Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39562028 DOI: 10.1021/acsami.4c14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Bacterial adhesion, colonization, and spread on aluminum alloy surfaces pose significant risks to human health and public safety. To address these issues, this investigation employed an ultrasonic-assisted electrodeposition method to synthesize long-lasting antibacterial Cu-TiO2 nanocomposite coatings on porous anodized aluminum oxide (AAO) substrates. Leveraging the cavitation effect of ultrasound, this approach fostered the dispersive incorporation of TiO2 nanoparticles into the resulting composite coating, thereby expediting the crystallization process of electrodeposition and refining the granular structure. With an optimal concentration of 4 g/L of TiO2 nanoparticles, the resultant C-4T composite coating displayed a dense and homogeneous microstructure, with TiO2 nanoparticles predominantly localized at the grain boundaries of Cu grains. Rigorous testing revealed that the surface of the C-4T sample maintained an enduring antibacterial efficacy of 96.8%, even after the outer Cu-TiO2 layer was worn away. This high level of durability stems from the continuous release of Cu ions and reactive oxygen species (ROS) from the coating's composite region (CR) composed of a porous AAO film and Cu-TiO2. The porous AAO film, serving as "nanocontainers," offers an ideal deposition carrier for the uniform Cu-TiO2 composite coating. These agents actively disrupt the integrity and chemical composition of Escherichia coli (E. coli) cells, leading to significant bacterial cell damage and death, thereby conferring superior and persistent antibacterial effects even after specific polishing. This study advances the field of durable antibacterial surface treatments and opens avenues for the sanitary use of nanocomposite coatings in the public health and medical sectors.
Collapse
Affiliation(s)
- Jiahuan Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
- School of Pharmaceutical & Chemical Technology, Zhenjiang College, Zhenjiang 212028, Jiangsu, China
| | - Zhen He
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
| | - Songlin Zheng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
| | - Wei Gao
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Yuxin Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
| |
Collapse
|
3
|
Song Z, Cai Y, Li X, Zhao YC, Yin D, Atrens A, Zhao MC. Fresh insights into structure-function-integrated self-antibacterial Cu-containing Al alloys: giving Al alloys a new function. MATERIALS HORIZONS 2024. [PMID: 39512223 DOI: 10.1039/d4mh00770k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Contact infection by bacteria and viruses is a serious concern to human health. The increasing occurrence of public health problems has stimulated the urgent need for the development of antibacterial materials. Al alloys are the fastest-growing mass-produced material group, a prerequisite for the lightweight design of vehicles, food containers and storage, as well as civil-engineering structures. In this work, the structure-function-integrated concept was used to design and produce self-antibacterial Al-xCu (x = 2.8 and 5.7) alloys for the first time ever. The antibacterial tests indicated that Al-2.8Cu and Al-5.7Cu alloys provided a stable and efficient bacteriostatic rate against S. aureus and E. coli, which was 87% for Al-2.8Cu and 100% for Al-5.7Cu against S. aureus at 24 h, and 89% for Al-2.8Cu and 94% for Al-5.7Cu against E. coli at 24 h. The antibacterial effect was similar to the commonly-used antibacterial materials with a similar Cu content. Furthermore, the mechanical properties and corrosion resistance of Al-2.8Cu and Al-5.7Cu were comparable to those of the current commonly-used commercial casting Al-Cu alloys. Structural insights into the performance and biomedical function by Cu-rich precipitates provided understanding of the mechanisms of these structure-function-integrated self-antibacterial Cu-containing Al alloys: (i) the Cu-rich precipitates produced strengthening, and (ii) the immediate contact with Cu-rich precipitates and the Cu2+ caused a synergistic action in improving antibacterial activity. This work gives Al alloys a new function and inspires fresh insights into structure-function-integrated antibacterial Al alloys.
Collapse
Affiliation(s)
- Zhuanzhuan Song
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Ying Cai
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Ying-Chao Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Dengfeng Yin
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane QLD4072, Australia
| | - Ming-Chun Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Lin S, Li X, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Zhang L, Fu H. Encapsulation nanoarchitectonics of glabridin with sophorolipid micelles for addressing biofilm hazards via extracellular polymeric substance permeation and srtA gene suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117150. [PMID: 39423506 DOI: 10.1016/j.ecoenv.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Biofilm, a common drug-resistant phenotype of Staphylococcus aureus (S. aureus), demonstrates significant drug resistance and recurrence due to its extracellular polymeric substance (EPS) barrier and subsequent bacterial migration. Hence, there is an urgent need for effective solutions to mitigate the hazards posed by biofilms. RESULT This study developed a stable, low-toxicity multifunctional nanomicelle, GLA@SOL/EYL, by encapsulating glabridin (GLA) using sophorolipid (SOL) and egg yolk lecithin (EYL). Optimizations were performed for the hydration medium, the ratio of carrier materials to GLA, and EYL additions. GLA@SOL/EYL exhibited a particle size of 122.1 ± 0.8 nm and a surface potential of -66.4 ± 1.7 mV, endowing it with the ability to permeate biofilms EPS effectively. GLA@SOL/EYL encapsulated 98.3 ± 1.2 % of GLA and demonstrated a slow-release effect, significantly enhancing the bioavailability of GLA. The addition of EYL reduced the hemolytic toxicity of GLA@SOL/EYL and improved its encapsulation rate and stability. GLA@SOL/EYL reduced the minimum inhibitory concentration of GLA to 8 μg/mL and extended its inhibitory effect at low concentrations by rapidly disrupting the structural integrity of S. aureus. GLA@SOL/EYL may penetrate biofilms to disperse EPS and remove twice as much biofilm as GLA alone, thereby eliminating 99.99 % of S. aureus within biofilms, compared to 99 % bactericidal efficacy of GLA. Additionally, GLA@SOL/EYL inhibited 63.8 ± 1.8 % of biofilm formation by affecting the expression of the srtA gene, thereby reducing the expression of cell wall-anchoring protein genes. In contrast, the biofilm inhibition rates of GLA and blank micelles were less than 10 %. CONCLUSION GLA@SOL/EYL utilizes the nanoparticle effect to penetrate biofilms and deliver antimicrobial GLA. The SOL disperses the biofilm matrix while GLA is released to kill S. aureus, preventing bacterial dissemination and colonization. Thus, GLA@SOL/EYL presents an innovative strategy for effectively eradicating S. aureus biofilms and preventing new hazards in a one-step approach.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
5
|
Foley B, Nadaud F, Selmane M, Valentin L, Mezzetti A, Egles C, Jolivalt C, El Kirat K, Guibert C, Landoulsi J. Seriation of Enzyme-Functionalized Multilayers for the Design of Scalable Biomimetic Mineralized Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402128. [PMID: 39246187 DOI: 10.1002/smll.202402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Biomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly-controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel-like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate-substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.
Collapse
Affiliation(s)
- Brittany Foley
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Frédéric Nadaud
- Service Analyses Physico-Chimiques SAPC, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Mohamed Selmane
- Fédération de Chimie et Matériaux de Paris-Centre (FCMat) FR2482, Paris, F-75005, France
| | - Laetitia Valentin
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Christophe Egles
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères et Surfaces (PBS, UMR 6270), 55 Rue Saint-Germain, Évreux, 27 000, France
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Karim El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Clément Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| |
Collapse
|
6
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2024. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
7
|
Yin X, Shan J, Dou L, Cheng Y, Liu S, Hassan RY, Wang Y, Wang J, Zhang D. Multiple bacteria recognition mechanisms and their applications. Coord Chem Rev 2024; 517:216025. [DOI: 10.1016/j.ccr.2024.216025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Xu Y, Phillips KS, Ren D. Micron-scale topographies affect phagocytosis of bacterial cells on polydimethylsiloxane surfaces. Acta Biomater 2024; 187:253-260. [PMID: 39214161 PMCID: PMC11446655 DOI: 10.1016/j.actbio.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Many medical devices implanted in patients to mitigate diseases and medical conditions have different types of topographic features. While appropriate textures can promote the integration of host cells and reduce scar tissue formation, some textured implants with inappropriate topographies have been associated with inflammation, bacterial colonization, or even malignant complications. To better understand how surface topography affects host immune response to colonizing bacteria, a protocol was developed to investigate phagocytosis of bacterial cells attached on polydimethylsiloxane (PDMS) surfaces with different square-shaped recessive patterns. The interaction between activated RAW 264.7 macrophages and Escherichia coli in recessive wells was visualized in 3D using multiple fluorescent markers. The results revealed that there is a threshold dimension of topography, below which phagocytosis of attached bacterial cells is significantly impeded. Specifically, under our experimental condition, up to 100-fold reduction in phagocytosis was observed in square-shaped patterns with 5 µm side length and 10 µm depth compared to the flat control and patterns with 10 µm or longer side length. The spacing between wells also showed significant effects; e.g., phagocytosis in the wells further decreased when spacing increased to 50 µm. These results are helpful for understanding how undesired topographies may contribute to bacterial colonization and thus infection and other associated complications. STATEMENT OF SIGNIFICANCE: Surface topography plays an important role in bacteria-material infections and thus the safety of implantable medical devices. Undesired topographic features can cause biofilm formation and related complications. However, how surface topography affects the capability of host immune cells to clear colonizing bacteria is not well understood. In this study, the interaction between macrophage RAW264.7 and colonizing E. coli cells on polydimethylsiloxane (PDMS) with recessive features is investigated. It was discovered that the size of recessive features and the spacing between these features have significant effects on phagocytosis of bacteria by macrophages. These new results are helpful for understanding the complex interaction among host cells, bacteria, and implanted biomaterials, which will help guide the rational design of safer medical devices.
Collapse
Affiliation(s)
- Yikang Xu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - K Scott Phillips
- Laboratory of Analytical Chemistry, Division of Biological Standards and Quality Control, Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
9
|
Bakitian FA. A Comprehensive Review of the Contemporary Methods for Enhancing Osseointegration and the Antimicrobial Properties of Titanium Dental Implants. Cureus 2024; 16:e68720. [PMID: 39238921 PMCID: PMC11376426 DOI: 10.7759/cureus.68720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Titanium dental implants with various restorative options are popular for replacing missing teeth due to their comfortable fit, excellent stability, natural appearance, and impressive track record in clinical settings. However, challenges such as potential issues with osseointegration, peri-implant bone loss, and peri-implantitis might lead to implant failure, causing concern for patients and dental staff. Surface modification has the potential to significantly enhance the success rate of titanium implants and meet the needs of clinical applications. This involves the application of various physical, chemical, and bioactive coatings, as well as adjustments to implant surface topography, offering significant potential for enhancing implant outcomes in terms of osseointegration and antimicrobial properties. Many surface modification methods have been employed to improve titanium implants, showcasing the diversity of approaches in this field including sandblasting, acid etching, plasma spraying, plasma immersion ion implantation, physical vapor deposition, electrophoretic deposition, electrochemical deposition, anodization, microarc oxidation, laser treatments, sol-gel method, layer-by-layer self-assembly technology, and the adsorption of biomolecules. This article provides a comprehensive overview of the surface modification methods for titanium implants to address issues with insufficient osseointegration and implant-related infections. It encompasses the physical, chemical, and biological aspects of these methods to provide researchers and dental professionals with a robust resource to aid them in their study and practical use of dental implant materials, ensuring they are thoroughly knowledgeable and well-prepared for their endeavors.
Collapse
Affiliation(s)
- Fahad A Bakitian
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
10
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
11
|
Kazemzadeh-Narbat M, Memic A, McGowan KB, Memic A, Tamayol A. Advances in antimicrobial orthopaedic devices and FDA regulatory challenges. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032002. [PMID: 39655841 DOI: 10.1088/2516-1091/ad5cb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 12/18/2024]
Abstract
Implant-associated infections, caused by the formation of biofilms especially antibiotic resistant organisms, are among the leading causes of orthopaedic implant failure. Current strategies to combat infection and biofilm focus on either inhibiting bacterial growth or preventing bacterial adherence that could lead to biofilm creation. Despite research on developing numerous antimicrobial orthopaedic devices, to date, no robust solution has been translated to the clinic. One of the key bottlenecks is the disconnect between researchers and regulatory agencies. In this review, we outline recent strategies for minimizing orthopaedic implant-associated infections. In addition, we discuss the relevant Food and Drug Administration regulatory perspectives, challenges. We also highlight emerging technologies and the directions the field that is expected to expand. We discuss in depth challenges that include identifying strategies that render implants antibacterial permanently or for a long period of time without the use of antimicrobial compounds that could generate resistance in pathogens and negatively impact osseointegration.
Collapse
Affiliation(s)
| | - Asija Memic
- College of Nursing, Wayne State University, Detroit, MI 48202, United States of America
| | - Kevin B McGowan
- MCRA LLC, 803 7th Street NW, Washington, DC 20001, United States of America
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| |
Collapse
|
12
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
13
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Hu Z, Yin X, Fan G, Liao X. Global Trends in Orthopedic Biofilm Research: A Bibliometric Analysis of 1994-2022. J Multidiscip Healthc 2024; 17:3057-3069. [PMID: 38974376 PMCID: PMC11227867 DOI: 10.2147/jmdh.s465632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Bibliometric analysis is commonly used to visualize the knowledge foundation, trends, and patterns in a specific scientific field by performing a quantitative evaluation of the relevant literature. The purpose of this study was to perform a bibliometric analysis of recent studies in the field of orthopedic biofilm research and identify its current trends and hotspots. Methods Research studies were retrieved from the Web of Science Core Collection and Scopus databases and analyzed in bibliometrix with R package (4.2.2). Results A total of 2426 literature were included in the study. Journal of orthopaedic research and Clinical orthopaedics and related research ranked first in terms of productivity and impact, with 57 published articles and 32 h-index, respectively. Trampuz A, Ohio State Univ and the United States ranked as the most productive authors, institutions, and countries. Biofilm formation, role of sonication, biomaterial mechanism and antibiotic loading have been investigated as the trend and hotspots in the field of orthopedic biofilm research. Conclusion This study provides a thorough overview of the state of the art of current orthopedic biofilm research and offers valuable insights into recent trends and hotspots in this field.
Collapse
Affiliation(s)
- Zhouyang Hu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| | - Xiaobing Yin
- Nursing Department, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| |
Collapse
|
15
|
Khursheed A, Xu LC, Siedlecki CA. The effects of submicron-textured surface topography on antibiotic efficacy against biofilms. J Biomed Mater Res B Appl Biomater 2024; 112:e35436. [PMID: 38961592 PMCID: PMC11239140 DOI: 10.1002/jbm.b.35436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 07/05/2024]
Abstract
Submicron-textured surfaces have been a promising approach to mitigate biofilm development and control microbial infection. However, the use of the single surface texturing approach is still far from ideal for achieving complete control of microbial infections on implanted biomedical devices. The use of a surface topographic modification that might improve the utility of standard antibiotic therapy could alleviate the complications of biofilms on devices. In this study, we characterized the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa on smooth and submicron-textured polyurethane surfaces after 1, 2, 3, and 7 days, and measured the efficacy of common antibiotics against these biofilms. Results show that the submicron-textured surfaces significantly reduced biofilm formation and growth, and that the efficacy of antibiotics against biofilms grown on textured surfaces was improved compared with smooth surfaces. The antibiotic efficacy appears to be related to the degree of biofilm development. At early time points in biofilm formation, antibiotic treatment reveals reasonably good antibiotic efficacy against biofilms on both smooth and textured surfaces, but as biofilms mature, the efficacy of antibiotics drops dramatically on smooth surfaces, with lesser decreases seen for the textured surfaces. The results demonstrate that surface texturing with submicron patterns is able to improve the use of standard antibiotic therapy to treat device-centered biofilms by slowing the development of the biofilm, thereby offering less resistance to antibiotic delivery to the bacteria within the biofilm community.
Collapse
Affiliation(s)
- Asma Khursheed
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
16
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
17
|
Kolarijani NR, Mirzaii M, Zamani S, Maghsoodifar H, Naeiji M, Douki SAHS, Salehi M, Fazli M. Assessment of the ability of Pseudomonas aeruginosa and Staphylococcus aureus to create biofilms during wound healing in a rat model treated with carboxymethyl cellulose/carboxymethyl chitosan hydrogel containing EDTA. Int Wound J 2024; 21:e14878. [PMID: 38682897 PMCID: PMC11057379 DOI: 10.1111/iwj.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The primary objective of this study was to develop a carboxymethyl cellulose (CMC) and carboxymethyl chitosan (CMCS) hydrogel containing ethylene diamine tetra acetic acid (EDTA) as the materials for wound healing. CMC and CMCS solutions were prepared with a concentration of 4% (w/v). These solutions were made using normal saline serum with a concentration of 0.5% (v/v). Additionally, EDTA with the concentrations of 0.01%, 0.05%, 0.1%, 0.5%, 1%, and 2% (w/v) was included in the prepared polymer solution. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with average in size 88.71 ± 5.93 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. The antibacterial experiments showed that the formulated CMC/CMCS/EDTA 0.5% hydrogel inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, the produced hydrogels were haemocompatible and biocompatible. At the last stage, the evaluation of wound healing in the animal model demonstrated that the use of the produced hydrogels significantly improved the process of wound healing. Finally, the findings substantiated the effectiveness of the formulated hydrogels as the materials for promoting wound healing and antibacterial agents.
Collapse
Affiliation(s)
| | - Mehdi Mirzaii
- Department of Microbiology, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Hasan Maghsoodifar
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Mahdi Naeiji
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | | | - Majid Salehi
- Department of Tissue Engineering, School of MedicineShahroud University of Medical SciencesShahroudIran
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Health Technology Incubator CenterShahroud University of Medical SciencesShahroudIran
| | - Mozhgan Fazli
- School of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
18
|
Zagiczek SN, Weiss-Tessbach M, Kussmann M, Moser D, Stoiber M, Moscato F, Schima H, Grasl C. Two-photon lithography for customized microstructured surfaces and their influence on wettability and bacterial load. 3D Print Med 2024; 10:12. [PMID: 38627256 PMCID: PMC11022422 DOI: 10.1186/s41205-024-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Device-related bacterial infections account for a large proportion of hospital-acquired infections. The ability of bacteria to form a biofilm as a protective shield usually makes treatment impossible without removal of the implant. Topographic surfaces have attracted considerable attention in studies seeking antibacterial properties without the need for additional antimicrobial substances. As there are still no valid rules for the design of antibacterial microstructured surfaces, a fast, reproducible production technique with good resolution is required to produce test surfaces and to examine their effectiveness with regard to their antibacterial properties. METHODS In this work various surfaces, flat and with microcylinders in different dimensions (flat, 1, 3 and 9 μm) with a surface area of 7 × 7 mm were fabricated with a nanoprinter using two-photon lithography and evaluated for their antibiofilm effect. The microstructured surfaces were cultured for 24 h with different strains of Pseudomonas aeruginosa and Staphylococcus aureus to study bacterial attachment to the patterned surfaces. In addition, surface wettability was measured by a static contact angle measurement. RESULTS Contact angles increased with cylinder size and thus hydrophobicity. Despite the difference in wettability, Staphylococcus aureus was not affected by the microstructures, while for Pseudomonas aeruginosa the bacterial load increased with the size of the cylinders, and compared to a flat surface, a reduction in bacteria was observed for one strain on the smallest cylinders. CONCLUSIONS Two-photon lithography allowed rapid and flexible production of microcylinders of different sizes, which affected surface wettability and bacterial load, however, depending on bacterial type and strain.
Collapse
Affiliation(s)
- Sophie Nilsson Zagiczek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Matthias Weiss-Tessbach
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Manuel Kussmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Stoiber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1090, Vienna, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria
- Department for Cardiac Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian Grasl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria.
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Kispert S, Liguori M, Velikaneye C, Qiu C, Wang S, Zhang N, Gu H. Role of Staphylococcus aureus's Buoyant Density in the Development of Biofilm Associated Antibiotic Susceptibility. Microorganisms 2024; 12:759. [PMID: 38674703 PMCID: PMC11052065 DOI: 10.3390/microorganisms12040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilms are clusters of microorganisms that form at various interfaces, including those between air and liquid or liquid and solid. Due to their roles in enhancing wastewater treatment processes, and their unfortunate propensity to cause persistent human infections through lowering antibiotic susceptibility, understanding and managing bacterial biofilms is of paramount importance. A pivotal stage in biofilm development is the initial bacterial attachment to these interfaces. However, the determinants of bacterial cell choice in colonizing an interface first and heterogeneity in bacterial adhesion remain elusive. Our research has unveiled variations in the buoyant density of free-swimming Staphylococcus aureus cells, irrespective of their growth phase. Cells with a low cell buoyant density, characterized by fewer cell contents, exhibited lower susceptibility to antibiotic treatments (100 μg/mL vancomycin) and favored biofilm formation at air-liquid interfaces. In contrast, cells with higher cell buoyant density, which have richer cell contents, were more vulnerable to antibiotics and predominantly formed biofilms on liquid-solid interfaces when contained upright. Cells with low cell buoyant density were not able to revert to a more antibiotic sensitive and high cell buoyant density phenotype. In essence, S. aureus cells with higher cell buoyant density may be more inclined to adhere to upright substrates.
Collapse
Affiliation(s)
- Sarah Kispert
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Madison Liguori
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Cody Velikaneye
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Chong Qiu
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Shue Wang
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Nan Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huan Gu
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|
20
|
Lee SH, Glover T, Lavey N, Fu X, Donohue M, Karunasena E. Modified in-vitro AATCC-100 procedure to measure viable bacteria from wound dressings. PLoS One 2024; 19:e0298829. [PMID: 38512908 PMCID: PMC10956864 DOI: 10.1371/journal.pone.0298829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
Chronic wounds are reoccurring healthcare problems in the United States and cost up to $50 billion annually. Improper wound care results in complications such as wound debridement, surgical amputation, and increased morbidity/ mortality due to opportunistic infections. To eliminate wound infections, many antimicrobial dressings are developed and submitted to FDA for evaluation. AATCC-100 is a standard method widely used to evaluate cloth wound dressings. This method, requires enrichment, followed by culturing to measure the concentration of culturable organisms; a caveat to this method could result in neglected viable but nonculturable (VBNC) bacteria and overestimate the antimicrobial properties of wound dressings. Therefore, the objectives of this study were to assess this accepted protocol with quantitative real-time polymerase chain reaction (qRT-PCR), to measure time dependent antimicrobial efficacy of wound dressing, and to examine for potential viable bacteria but non-culturable as compared with traditional plating methods. The test organisms included opportunistic pathogens: Pseudomonas aeruginosa (ATCC 15692) and Staphylococcus aureus (ATCC 43300). To mimic a wound dressing environment, samples of commercially available wound dressings (McKesson Inc.) with silver ion (positive control) and dressings without silver ion (positive control) were assessed under sterile conditions. All samples were examined by the original protocol (the extended AATCC-100 method) and qRT-PCR. The expression of specific housekeeping genes was measured (proC for P. aeruginosa and 16s rRNA for S. aureus). Based on these tests, log reduction of experimental conditions was compared to identify time dependent and precise antimicrobial properties from wound dressing samples. These results showed antimicrobial properties of wound dressings diminished as incubation days are increased for both methods from day 1 PCR result of 4.31 ± 0.54 and day 1 plating result of 6.31 ± 3.04 to day 3 PCR result of 1.22 ± 0.97 and day 3 plating result of 5.89 ± 2.41. These results show that data from qRT-PCR generally produced lower standard deviation than that of culture methods, hence shown to be more precise. Complementary parallel analysis of samples using both methods better characterized antimicrobial properties of the tested samples.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Thomas Glover
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Nathan Lavey
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Xiao Fu
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Marc Donohue
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Enusha Karunasena
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
| |
Collapse
|
21
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
22
|
Landoulsi J. Surface (bio)-functionalization of metallic materials: How to cope with real interfaces? Adv Colloid Interface Sci 2024; 325:103054. [PMID: 38359674 DOI: 10.1016/j.cis.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Metallic materials are an important class of biomaterials used in various medical devices, owing to a suitable combination of their mechanical properties. The (bio)-functionalization of their surfaces is frequently performed for biocompatibility requirements, as it offers a powerful way to control their interaction with biological systems. This is particularly important when physicochemical processes and biological events, mainly involving proteins and cells, are initiated at the host-material interface. This review addresses the state of "real interfaces" in the context of (bio)-functionalization of metallic materials, and the necessity to cope with it to avoid frequent improper evaluation of the procedure used. This issue is, indeed, well-recognized but often neglected and emerges from three main issues: (i) ubiquity of surface contamination with organic compounds, (ii) reactivity of metallic surfaces in biological medium, and (iii) discrepancy in (bio)-functionalization procedures between expectations and reality. These disturb the assessment of the strategies adopted for surface modifications and limit the possibilities to provide guidelines for their improvements. For this purpose, X-ray photoelectrons spectroscopy (XPS) comes to the rescue. Based on significant progresses made in methodological developments, and through a large amount of data compiled to generate statistically meaningful information, and to insure selectivity, precision and accuracy, the state of "real interfaces" is explored in depth, while looking after the two main constituents: (i) the bio-organic adlayer, in which the discrimination between the compounds of interest (anchoring molecules, coupling agents, proteins, etc) and organic contaminants can be made, and (ii) the metallic surface, which undergoes dynamic processes due to their reactivity. Moreover, through one of the widespread (bio)-functionalization strategy, given as a case study, a particular attention is devoted to describe the state of the interface at different stages (composition, depth distribution of contaminants and (bio)compounds of interest) and the mode of protein retention. It is highlighted, in particular, that the occurrence or improvement of bioactivity does not demonstrate that the chemical schemes worked in reality. These aspects are particularly essential to make progress on the way to choose the suitable (bio)-functionalization strategy and to provide guidelines to improve its efficiency.
Collapse
Affiliation(s)
- Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 4 place Jussieu, F-75005 Paris, France; Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, 20529 F-60205 Compiègne Cedex, France.
| |
Collapse
|
23
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
24
|
Abushahba F, Kylmäoja E, Areid N, Hupa L, Vallittu PK, Tuukkanen J, Närhi T. Osteoblast Attachment on Bioactive Glass Air Particle Abrasion-Induced Calcium Phosphate Coating. Bioengineering (Basel) 2024; 11:74. [PMID: 38247951 PMCID: PMC10813256 DOI: 10.3390/bioengineering11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 μm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 μm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Leena Hupa
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland;
| | - Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Timo Närhi
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| |
Collapse
|
25
|
Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ferreira EDO, Penna B. Biofilm formation by Staphylococcus pseudintermedius on titanium implants. BIOFOULING 2024; 40:88-97. [PMID: 38407199 DOI: 10.1080/08927014.2024.2320721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Osteomyelitis often involves Staphylococcus spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by Staphylococcus pseudintermedius on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (agr) type III in six samples, agr IV and agr II in two each. Genes encoding hlb, luk-S, luk-F, siet, se_int, and the icaADCB operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by S. pseudintermedius was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.
Collapse
Affiliation(s)
- Camilla Malcher Pesset
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Carolina O da Fonseca
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Milena Antunes
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza L Dos Santos
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Izabel Melo Teixeira
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | | | - Bruno Penna
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
26
|
Wang Y, Xu J, Yu C, Zhou X, Chang L, Liu J, Peng Q. Prevention of bacterial biofilm formation on orthodontic brackets by non-crosslinked chitosan coating. Int J Biol Macromol 2023; 251:126283. [PMID: 37582431 DOI: 10.1016/j.ijbiomac.2023.126283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
During orthodontic treatment, the patients are susceptible to dental caries as a result of the bacterial adhesion and biofilm formation around the orthodontic brackets. Prevention of the caries-related biofilm formation is of significance for maintaining both aesthetics and health of the teeth. Herein, the brackets were functionalized with antibacterial activity via coating a layer of non-crosslinked chitosan (CS). We firstly demonstrated the ability of free CS scaffolds (not coated on brackets) to inhibit the formation of Streptococcus mutans biofilms (inhibition rate 94.3 % for CS-0.3 mg) and to eradicate the mature biofilms (biofilm loss rate 99.8 % for CS-1.2 mg). Further, the inhibition of S. mutans biofilm formation on brackets by CS coating was investigated for the first time. As a result, the CS-coated brackets (Br-CS) kept the great biofilm inhibition capacity of free CS scaffolds. In detail, the Br-CS, prepared by immersing brackets in CS solutions (containing 1.0, 2.5, 5.0 and 10 mg/mL CS) and freeze-drying, showed the biofilm inhibition rate of 48.5 %, 88.6 %, 96.4 % and 99.6 %, respectively. In conclusion, coating orthodontic brackets with the non-crosslinked CS is a potential approach for inhibiting biofilm formation and protecting patients from dental caries.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenhao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Mahmoudi-Qashqay S, Zamani-Meymian MR, Sadati SJ. Improving antibacterial ability of Ti-Cu thin films with co-sputtering method. Sci Rep 2023; 13:16593. [PMID: 37789153 PMCID: PMC10547835 DOI: 10.1038/s41598-023-43875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Due to the resistance of some bacteria to antibiotics, research in the field of dealing with bacterial infections is necessary. A practical approach utilized in this study involves the preparation of an antibacterial thin film on the surfaces, which can effectively inhibit and reduce biofilm formation and bacterial adherence. In this study, we report the fabrication of bactericidal titanium (Ti) and copper (Cu) surfaces which involves a powerful co-sputtering method. This method provides a situation in which constituent elements are deposited simultaneously to control the composition of the thin film. Prepared samples were examined by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. To evaluate antibacterial behavior, we used two bacterial strains Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Antibacterial activity of the prepared sample was assessed by determining the number of colony-forming units per milliliter (CFU/ml) using a standard viable cell count assay. Results indicated that as the Cu concentration increased, the nanoscale surfaces became rougher, with roughness values rising from 11.85 to 49.65 nm, and the contact angle increased from 40 to 80 degrees, indicating a hydrophilic character. These factors play a significant role in the antibacterial properties of the surface. The Ti-Cu films displayed superior antibacterial ability, with a 99.9% reduction (equivalent to a 5-log reduction) in bacterial viability after 2 h compared to Ti alone against both bacterial strains. Field emission scanning electron microscopy (FE-SEM) images verified that both E. coli and S. aureus cells were physically deformed and damaged the bacterial cell ultrastructure was observed. These findings highlight that adding Cu to Ti can improve the antibacterial ability of the surface while inhibiting bacterial adherence. Therefore, the Ti14-Cu86 sample with the highest percentage of Cu had the best bactericidal rate. Investigation of toxicity of Cu-Ti thin films was conducted the using the MTT assay, which revealed their biocompatibility and absence of cytotoxicity, further confirming their potential as promising biomaterials for various applications.
Collapse
Affiliation(s)
- Samaneh Mahmoudi-Qashqay
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | | | - Seyed Javad Sadati
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
28
|
Zhang Y, Cheng Z, Liu Z, Shen X, Cai C, Li M, Luo Z. Functionally Tailored Metal-Organic Framework Coatings for Mediating Ti Implant Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303958. [PMID: 37705110 PMCID: PMC10582459 DOI: 10.1002/advs.202303958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Indexed: 09/15/2023]
Abstract
Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Zhuo Cheng
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Xinkun Shen
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Chunyuan Cai
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Menghuan Li
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zhong Luo
- School of Life ScienceChongqing UniversityChongqing400044China
| |
Collapse
|
29
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
30
|
Papa S, Maalouf M, Claudel P, Sedao X, Di Maio Y, Hamzeh-Cognasse H, Thomas M, Guignandon A, Dumas V. Key topographic parameters driving surface adhesion of Porphyromonas gingivalis. Sci Rep 2023; 13:15893. [PMID: 37741851 PMCID: PMC10518006 DOI: 10.1038/s41598-023-42387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023] Open
Abstract
Dental implant failure is primarily due to peri-implantitis, a consequence of bacterial biofilm formation. Bacterial adhesion is strongly linked to micro-/nano-topographies of a surface; thus an assessment of surface texture parameters is essential to understand bacterial adhesion. In this study, mirror polished titanium samples (Ti6Al4V) were irradiated with a femtosecond laser (fs-L) at a wavelength of 1030 nm (infrared) with variable laser parameters (laser beam polarization, number, spacing and organization of the impacts). Images of 3-D topographies were obtained by focal variation microscopy and analyzed with MountainsMap software to measure surface parameters. From bacteria associated with peri-implantitis, we selected Porphyromonas gingivalis to evaluate its adhesion on Ti6Al4V surfaces in an in vitro study. Correlations between various surface parameters and P. gingivalis adhesion were investigated. We discovered that Sa value, a common measure of surface roughness, was not sufficient in describing the complexity of these fs-L treated surfaces and their bacterial interaction. We found that Sku, density and mean depths of the furrows, were the most accurate parameters for this purpose. These results provide important information that could help anticipate the bacterial adhesive properties of a surface based on its topographic parameters, thus the development of promising laser designed biofunctional implants.
Collapse
Affiliation(s)
- Steve Papa
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France.
| | - Mathieu Maalouf
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Pierre Claudel
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
| | - Xxx Sedao
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
- Laboratory Hubert Curien, UMR 5516 CNRS, Jean Monnet University, University of Lyon, 42000, Saint-Étienne, France
| | - Yoan Di Maio
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Mireille Thomas
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Alain Guignandon
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Virginie Dumas
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR5513, ENISE, Univ Lyon, 42023, Saint-Étienne, France
| |
Collapse
|
31
|
Hsieh PC, Chien HW. Biomimetic surfaces: Insights on the role of surface topography and wetting properties in bacterial attachment and biofilm formation. Colloids Surf B Biointerfaces 2023; 228:113389. [PMID: 37290200 DOI: 10.1016/j.colsurfb.2023.113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The study explores the impact of biomimetic surfaces on bacterial attachment and biofilm formation. Specifically, it investigates the effects of topographic scale and wetting behavior on the attachment and growth of Staphylococcus aureus and Escherichia coli on four different biomimetic surfaces: rose petals, Paragrass leaves, shark skin, and goose feathers. Using soft lithography, epoxy replicas with surface topographies similar to those of the natural surfaces were created. The static water contact angles of the replicas exceeded the hydrophobic threshold of 90°, while the hysteresis angles were found to be in the order of goose feathers, shark skin, Paragrass leaves, and rose petals. The results showed that bacterial attachment and biofilm formation were the lowest on rose petals and the highest on goose feathers, regardless of the bacterial strain. Additionally, the study revealed that surface topography had a significant impact on biofilm formation, with smaller feature sizes inhibiting biofilm formation. Hysteresis angle, rather than static water contact angle, was identified as a critical factor to consider when evaluating bacterial attachment behavior. These unique insights have the potential to lead to the development of more effective biomimetic surfaces for the prevention and eradication of biofilms, ultimately improving human health and safety.
Collapse
Affiliation(s)
- Po-Cheng Hsieh
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Du L, Shi W, Hao X, Luan L, Wang S, Lu J, Zhang Q. Synergistic Photodynamic/Antibiotic Therapy with Photosensitive MOF-Based Nanoparticles to Eradicate Bacterial Biofilms. Pharmaceutics 2023; 15:1826. [PMID: 37514013 PMCID: PMC10385796 DOI: 10.3390/pharmaceutics15071826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms pose a serious threat to human health, as they prevent the penetration of antimicrobial agents. Developing nanocarriers that can simultaneously permeate biofilms and deliver antibacterial agents is an attractive means of treating bacterial biofilm infections. Herein, photosensitive metal-organic framework (MOF) nanoparticles were developed to promote the penetration of antibiotics into biofilms, thereby achieving the goal of eradicating bacterial biofilms through synergistic photodynamic and antibiotic therapy. First, a ligand containing benzoselenadiazole was synthesized and incorporated into MOF skeletons to construct benzoselenadiazole-doped MOFs (Se-MOFs). The growth of the Se-MOFs could be regulated to obtain nanoparticles (Se-NPs) in the presence of benzoic acid. The singlet oxygen (1O2) generation efficiencies of the Se-MOFs and Se-NPs were evaluated. The results show that the Se-NPs exhibited a higher 1O2 generation efficacy than the Se-MOF under visible-light irradiation because the small size of the Se-NPs was conducive to the diffusion of 1O2. Afterward, an antibiotic drug, polymyxin B (PMB), was conjugated onto the surface of the Se-NPs via amidation to yield PMB-modified Se-NPs (PMB-Se-NPs). PMB-Se-NPs exhibit a synergistic antibacterial effect by specifically targeting the lipopolysaccharides present in the outer membranes of Gram-negative bacteria through surface-modified PMB. Benefiting from the synergistic therapeutic effects of antibiotic and photodynamic therapy, PMB-Se-NPs can efficiently eradicate bacterial biofilms at relatively low antibiotic doses and light intensities, providing a promising nanocomposite for combating biofilm infections.
Collapse
Affiliation(s)
- Lehan Du
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenjun Shi
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Hao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Luan
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaju Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
33
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
34
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
36
|
Vieira A, Rodríguez-Lorenzo L, Leonor IB, Reis RL, Espiña B, Dos Santos MB. Innovative Antibacterial, Photocatalytic, Titanium Dioxide Microstructured Surfaces Based on Bacterial Adhesion Enhancement. ACS APPLIED BIO MATERIALS 2023; 6:754-764. [PMID: 36696391 DOI: 10.1021/acsabm.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacterial colonization and biofilm formation are found on nearly all wet surfaces, representing a serious problem for both human healthcare and industrial applications, where traditional treatments may not be effective. Herein, we describe a synergistic approach for improving the performance of antibacterial surfaces based on microstructured surfaces that embed titanium dioxide nanoparticles (TiO2 NPs). The surfaces were designed to enhance bacteria entrapment, facilitating their subsequent eradication by a combination of UVC disinfection and TiO2 NPs photocatalysis. The efficacy of the engineered TiO2-modified microtopographic surfaces was evaluated using three different designs, and it was found that S2-lozenge and S3-square patterns had a higher concentration of trapped bacteria, with increases of 70 and 76%, respectively, compared to flat surfaces. Importantly, these surfaces showed a significant reduction (99%) of viable bacteria after just 30 min of irradiation with UVC 254 nm light at low intensity, being sixfold more effective than flat surfaces. Overall, our results showed that the synergistic effect of combining microstructured capturing surfaces with the chemical functionality of TiO2 NPs paves the way for developing innovative and efficient antibacterial surfaces with numerous potential applications in the healthcare and biotechnology market.
Collapse
Affiliation(s)
- Ana Vieira
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | - Laura Rodríguez-Lorenzo
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | - Isabel B Leonor
- 3B's Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães4805-017, Barco, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães4805-017, Portugal
| | - Rui L Reis
- 3B's Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães4805-017, Barco, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães4805-017, Portugal
| | - Begoña Espiña
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | | |
Collapse
|
37
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
38
|
Li W, Zhu L, Pan C, Chen W, Xu D, Kang D, Guo L, Mei Q, Zheng P, Zhang M. Insights into the Superior Bioavailability of Biogenic Sulfur from the View of Its Unique Properties: The Key Role of Trace Organic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1487-1498. [PMID: 36629799 DOI: 10.1021/acs.est.2c07142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Elemental sulfur (S0) is widely utilized in environmental pollution control, while its low bioavailability has become a bottleneck for S0-based biotechnologies. Biogenic sulfur (bio-S0) has been demonstrated to have superior bioavailability, while little is known about its mechanisms thus far. This study investigated the bioavailability and relevant properties of bio-S0 based on the denitrifying activity of Thiobacillus denitrificans with chemical sulfur (chem-S0) as the control. It was found that the conversion rate and removal efficiency of nitrate in the bio-S0 system were 2.23 and 2.04 times those of the chem-S0 system. Bio-S0 was not pure orthorhombic sulfur [S: 96.88 ± 0.25% (w/w)]. Trace organic substances detected on the bio-S0 surface were revealed to contribute to its hydrophilicity, resulting in better dispersibility in the aqueous liquid. In addition, the adhesion force of T. denitrificans on bio-S0 was 1.54 times that of chem-S0, endowing a higher bacterial adhesion efficiency on the sulfur particle. The weaker intermolecular binding force due to the low crystallinity of bio-S0 led to enhanced cellular uptake by attached bacteria. The mechanisms for the superior bioavailability of bio-S0 were further proposed. This study provides a comprehensive view of the superior bioavailability of bio-S0 and is beneficial to developing high-quality sulfur resources.
Collapse
Affiliation(s)
- Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Lin Zhu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Da Kang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing100124, China
| | - Leiyan Guo
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Qingqing Mei
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang310058, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang310058, China
| |
Collapse
|
39
|
Zhai H, Yeo J. Computational Design of Antimicrobial Active Surfaces via Automated Bayesian Optimization. ACS Biomater Sci Eng 2023; 9:269-279. [PMID: 36537745 DOI: 10.1021/acsbiomaterials.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofilms pose significant problems for engineers in diverse fields, such as marine science, bioenergy, and biomedicine, where effective biofilm control is a long-term goal. The adhesion and surface mechanics of biofilms play crucial roles in generating and removing biofilm. Designing customized nanosurfaces with different surface topologies can alter the adhesive properties to remove biofilms more easily and greatly improve long-term biofilm control. To rapidly design such topologies, we employ individual-based modeling and Bayesian optimization to automate the design process and generate different active surfaces for effective biofilm removal. Our framework successfully generated optimized functional nanosurfaces for improved biofilm removal through applied shear and vibration. Densely distributed short pillar topography is the optimal geometry to prevent biofilm formation. Under fluidic shearing, the optimal topography is to sparsely distribute tall, slim, pillar-like structures. When subjected to either vertical or lateral vibrations, thick trapezoidal cones are found to be optimal. Optimizing the vibrational loading indicates a small vibration magnitude with relatively low frequencies is more efficient in removing biofilm. Our results provide insights into various engineering fields that require surface-mediated biofilm control. Our framework can also be applied to more general materials design and optimization.
Collapse
Affiliation(s)
- Hanfeng Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York14850, United States
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York14850, United States
| |
Collapse
|
40
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
41
|
Surface configuration of microarc oxidized Ti with regionally loaded chitosan hydrogel containing ciprofloxacin for improving biological performance. Mater Today Bio 2022; 16:100380. [PMID: 36033377 PMCID: PMC9399291 DOI: 10.1016/j.mtbio.2022.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The bacterial colonization and poor osseointegration of Ti implants significantly compromise their applications in load-bearing bone repair and replacement. To endorse the Ti with both excellent bioactivity and antibacterial ability, we developed a microarc oxidation coating that was modified uniformly by hydroxyapatite (HA) nanodots arrays and loaded regionally with chitosan hydrogel containing ciprofloxacin. The bonding between the HA nanodots covered coating and the chitosan hydrogel is further enhanced via silanization and chemical grafting of glutaraldehyde. Benefiting from the regionally loaded structure of the chitosan hydrogel, the chitosan hydrogel unloaded area can promote the cell adhesion and proliferation with excellent bioactivity, though relatively low OD value of cck8 has been observed at the beginning of the cell culturing. Whereas, the OD value of cck8 rises with the prolongation of the cell culturing time due to the degradation of the regionally loaded chitosan hydrogel. With the help of the laden ciprofloxacin in chitosan hydrogels, the sample effectively sterilizes the bacterial with a bacteriostatic ring. Therefore, regional loading of chitosan hydrogel containing ciprofloxacin on the modified microarc oxidation coating is a good approach to endorse Ti with both excellent bioactivity and antibacterial ability.
Collapse
|
42
|
Bijimol BI, Sreelekshmy BR, Satheesh Kumar KN, Ratheesh A, Geethanjali CV, Aboobakar Shibli SM. Microbial-Inspired Surface Patterning for Selective Bacterial Actions for Enhanced Performance in Microbial Fuel Cells. ACS APPLIED BIO MATERIALS 2022; 5:5394-5409. [PMID: 36300364 DOI: 10.1021/acsabm.2c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The performance of any bio-electrochemical system is dependent on the efficiency of electrode-microbial interactions. Surface properties play a focal role in bacterial attachment and biofilm formation on the electrodes. In addition to electrode surface properties, selective bacterial adhesion onto the electrode surface is mandatory to mitigate energy loss due to undesired bacterial interactions on the electrode surface. In the present study, microbial-patterned graphite scaffolds are developed for selective bacterial-electrode interactions. A power density as high as 1105 mW/m2 is achieved with mG-E (a graphite electrode patterned with Escherichia coli), which is about 3 times higher than that of the pristine graphite electrode (370 mW/m2). Initial mechanical pre-treatment of the graphite electrode, followed by bacterial patterning, results in the formation of a unique cobblestone topography with a tuned surface area of 127.12 m2/g. This provides suitable morphology with enhanced active sites for selective bacterial intercalation in graphite layers. This cannot be otherwise achieved by any mechanical or other means. A unique methodology of symbolic regression is adopted to validate a genetic algorithm suitable for predicting a perfect correlation between surface characteristics and electrochemical characteristics with a minimum root-mean-square error of 0.08. The bacterial intercalation onto the graphite electrode causes protuberance of the graphite layers that reduces the surface potential and resistance, leading to high electron transfer. The study presents a unique bacterial-inspired surface patterning on the anode, which is critical for the performance of a microbial fuel cell.
Collapse
Affiliation(s)
- Babu Indira Bijimol
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| | | | - Krishnan Nair Satheesh Kumar
- Department of Futures Studies, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| | - Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| | | | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| |
Collapse
|
43
|
Bacterial Response to the Surface Aging of PLA Matrices Loaded with Active Compounds. Polymers (Basel) 2022; 14:polym14224976. [PMID: 36433103 PMCID: PMC9698402 DOI: 10.3390/polym14224976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The use of active components in biomaterials improves the properties of existing ones and makes it possible to obtain new devices with antibacterial properties that prevent infections after implantation, thus guaranteeing the success of the implant. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles were incorporated into polylactic acid (PLA) films to assess the extent to which progressive aging of the new surfaces resists bacterial colonization processes. For this purpose, the films' surface was characterized by contact angle measurements, ToF-SIMS and AFM, and adhesion, viability and biofilm growth of Staphylococcus epidermidis bacteria on these films were also evaluated. The results show that the inclusion of Mg and CTAB in PLA films changes their surface properties both before and after aging and also modifies bacterial adhesion on the polymer. Complete bactericidal activity is exhibited on non-degraded films and films with CTAB. This antibacterial behavior is maintained after degradation for three months in the case of films containing a higher amount of CTAB.
Collapse
|
44
|
Xu LC, Siedlecki CA. Surface Texturing and Combinatorial Approaches to Improve Biocompatibility of Implanted Biomaterials. FRONTIERS IN PHYSICS 2022; 10:994438. [PMID: 38250242 PMCID: PMC10798815 DOI: 10.3389/fphy.2022.994438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Biomaterial associated microbial infection and blood thrombosis are two of the barriers that inhibit the successful use of implantable medical devices in modern healthcare. Modification of surface topography is a promising approach to combat microbial infection and thrombosis without altering bulk material properties necessary for device function and without contributing to bacterial antibiotic resistance. Similarly, the use of other antimicrobial techniques such as grafting poly(ethylene glycol) (PEG) and nitric oxide (NO) release also improve the biocompatibility of biomaterials. In this review, we discuss the development of surface texturing techniques utilizing ordered submicron-size pillars for controlling bacterial adhesion and biofilm formation, and we present combinatorial approaches utilizing surface texturing in combination with poly(ethylene glycol) (PEG) grafting and NO release to improve the biocompatibility of biomaterials. The manuscript also discusses efforts towards understanding the molecular mechanisms of bacterial adhesion responses to the surface texturing and NO releasing biomaterials, focusing on experimental aspects of the approach.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
45
|
Vigué A, Vautier D, Kaytoue A, Senger B, Arntz Y, Ball V, Ben Mlouka A, Gribova V, Hajjar-Garreau S, Hardouin J, Jouenne T, Lavalle P, Ploux L. Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness. J Funct Biomater 2022; 13:jfb13040237. [PMID: 36412878 PMCID: PMC9680287 DOI: 10.3390/jfb13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria's mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth.
Collapse
Affiliation(s)
- Annabelle Vigué
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Dominique Vautier
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amad Kaytoue
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Bernard Senger
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Youri Arntz
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Vincent Ball
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amine Ben Mlouka
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
| | - Varvara Gribova
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Samar Hajjar-Garreau
- Mulhouse Materials Science Institute, CNRS/Haute Alsace University, 68057 Mulhouse, France
| | - Julie Hardouin
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Thierry Jouenne
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Philippe Lavalle
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Lydie Ploux
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
- CNRS, 67037 Strasbourg, France
- Correspondence:
| |
Collapse
|
46
|
Negm NA, Altalhi AA, Saleh Mohamed NE, Kana MTHA, Mohamed EA. Growth Inhibition of Sulfate-Reducing Bacteria during Gas and Oil Production Using Novel Schiff Base Diquaternary Biocides: Synthesis, Antimicrobial, and Toxicological Assessment. ACS OMEGA 2022; 7:40098-40108. [PMID: 36385895 PMCID: PMC9647739 DOI: 10.1021/acsomega.2c04836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Upstream crude oil production equipment is always exposed to destruction damagingly which is caused by sulfate-reducing bacterium (SRB) activities that produce H2S gas, which leads to increased metal corrosion (bio-fouling) rates and inflicts effective infrastructure damage. Hence, oil and gas reservoirs must be injected with biocides and inhibitors which still offer the foremost protection against harmful microbial activity. However, because of the economic and environmental risks associated with biocides, the oil and gas sectors improve better methods for their usage. This work describes the synthesis and evaluation of the biological activities as the cytotoxicity and antimicrobial properties of a series of diquaternary cationic biocides that were studied during the inhibition of microbial biofilms. The prepared diquaternary compound was synthesized by coupling vanillin and 4-aminoantipyrene to achieve the corresponding Schiff base, followed by a quaternization reaction using 1,6-bromohexane, 1,8-bromooctane, and 1,12-bromododecane. The increase of their alkyl chain length from 6 to 12 methylene groups increased the obtained antimicrobial activity and cytotoxicity. Antimicrobial efficacies of Q1-3 against various biofilm-forming microorganisms, including bacteria and fungi, were examined utilizing the diameter of inhibition zone procedures. The results revealed that cytotoxic efficacies of Q1-3 were significantly associated mainly with maximum surface excess and interfacial characteristics. The cytotoxic efficiencies of Q1-3 biocides demonstrated promising results due to their comparatively higher efficacies against SRB. Q3 exhibited the highest cytotoxic biocide against the gram +ve, gram -ve, and SRB species according to the inhibition zone diameter test. The toxicity of the studied microorganisms depended on the nature and type of the target microorganism and the hydrophobicity of the biocide molecules. Cytotoxicity assessment and antimicrobial activity displayed increased activity by the increase in their alkyl chain length.
Collapse
Affiliation(s)
- Nabel A. Negm
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Amal A. Altalhi
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Nermin E. Saleh Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Maram T. H. A. Kana
- National
Institute of LASER Enhanced Science, Cairo
University, Giza11776, Egypt
| | - Eslam A. Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| |
Collapse
|
47
|
Liu Z, Yi Y, Wang S, Dou H, Fan Y, Tian L, Zhao J, Ren L. Bio-Inspired Self-Adaptive Nanocomposite Array: From Non-antibiotic Antibacterial Actions to Cell Proliferation. ACS NANO 2022; 16:16549-16562. [PMID: 36218160 DOI: 10.1021/acsnano.2c05980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pathogenic bacterial infection and poor native tissue integration are two major issues encountered by biomaterial implants and devices, which are extremely hard to overcome within a single surface, especially for those without involvement of antibiotics. Herein, a self-adaptive surface that can transform from non-antibiotic antibacterial actions to promotion of cell proliferation is developed by in situ assembly of bacteriostatic 3,3'-diaminodipropylamine (DADP)-doped zeolitic imidazolate framework-8 (ZIF-8) on bio-inspired nanopillars. Initially, the nanocomposite surface shows impressive antibacterial effects, even under severe bacterial infection, due to the combination of mechano-bactericidal activity from a nanopillar structure and bacteriostatic activity contributed by pH-responsive release of DADP. After the complete degradation of the ZIF-8 layer, the refurbished nanopillars not only can still physically rupture bacterial membrane but also facilitate mammalian cell proliferation, due to the obvious difference in cell size. More strikingly, the nanocomposite surface totally avoids the usage of antibiotics, eradicating the potential risk of antimicrobial resistance, and the surface exhibited excellent histocompatibility and lower inflammatory response properties as revealed by in vivo tests. This type of self-adaptive surface may provide a promising alternative for addressing the intractable implant-associated requirements, where antibiotic-free antibacterial activity and native tissue integration are both highly needed.
Collapse
Affiliation(s)
- Ziting Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shujin Wang
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
48
|
Sotniczuk A, Jastrzębska A, Chlanda A, Kwiatek A, Garbacz H. How Streptococcus mutans Affects the Surface Topography and Electrochemical Behavior of Nanostructured Bulk Ti. Biomolecules 2022; 12:biom12101515. [PMID: 36291724 PMCID: PMC9599476 DOI: 10.3390/biom12101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolization of carbohydrates by Streptococcus mutans leads to the formation of lactic acid in the oral cavity, which can consequently accelerate the degradation of dental implants fabricated from commercially available microcrystalline Ti. Microstructure influences surface topography and hence interaction between bacteria cells and Ti surfaces. This work offers the first description of the effect of S. mutans on the surface topography and properties of nanostructured bulk Ti, which is a promising candidate for modern narrow dental implants owing to its superior mechanical strength. It was found that S. mutans incubation resulted in the slight, unexpected decrease of surface nanoroughness, which was previously developed owing to privileged oxidation in areas of closely spaced boundaries. However, despite the changes in nanoscale surface topography, bacteria incubation did not reduce the high level of protection afforded by the oxide layer formed on the nanostructured Ti surface. The results highlight the need–hitherto ignored–to consider Ti microstructure when analyzing its behavior in the presence of carbohydrate-metabolizing bacteria.
Collapse
Affiliation(s)
- Agata Sotniczuk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
- Correspondence:
| | - Agnieszka Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Adrian Chlanda
- Łukasiewicz Research Network—Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Halina Garbacz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| |
Collapse
|
49
|
Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ribeiro TAN, Sachs D, Penna B. Characterizing biofilm formation of Staphylococcus pseudintermedius in different suture materials. Microb Pathog 2022; 172:105796. [PMID: 36155066 DOI: 10.1016/j.micpath.2022.105796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 10/31/2022]
Abstract
Staphylococcus pseudintermedius is the primary cause of pyoderma and surgical site infection (SSI) in dogs, and biofilm formation is the main reason for persistent SSI. The presence of biofilm in medical devices can directly impact treatment. Methicillin-resistant S. pseudintermedius (MRSP) emerged rapidly in companion animals, limiting treatment options. MRSP is a public health problem since zoonotic transmission can occur. The study seeks to evaluate biofilm formation capacity via Staphylococcus pseudintermedius collected from dogs affected by topical infections, in suture materials commonly used in companion animal surgery. We tested segments of four types of sutures. Biofilm production was measured by staining with safranin and colorimetric absorbance measurement. We calculated colony-forming units (CFUs) for each type of sutures and visualized biofilm via Scanning Electron Microscopy (SEM) images. The genes associated with biofilm formation (icaA and icaD) were identified using PCR. The colorimetric tests showed that the biofilm is most abundantly formed on the cotton sutures and polyglactin 910. The ability to form biofilm on polypropylene and nylon sutures has also been demonstrated, although at varying intensities. PCR revealed the presence of the two genes (icaA and icaD) in all the isolates. We used a positive control using a reference strain and negative control without bacteria for comparisons. Suture material allowing biofilm formation makes it difficult to prevent and treat surgical site infections. Therefore, it is important to know which suture thread is more susceptible to biofilm formation by bacteria to prevent possible secondary infections at surgical sites.
Collapse
Affiliation(s)
- Camilla M Pesset
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Carolina O da Fonseca
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Milena Antunes
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Ana Luiza L Dos Santos
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Izabel M Teixeira
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil
| | - Tainara A N Ribeiro
- Microbiological Testing Laboratory Associated with Materials and Drugs of the Center for Studies, Research and Innovation in Biofunctional Materials and Biotechnology, Federal, University of Itajubá, 37500-903, Itajubá, Brazil
| | - Daniela Sachs
- Microbiological Testing Laboratory Associated with Materials and Drugs of the Center for Studies, Research and Innovation in Biofunctional Materials and Biotechnology, Federal, University of Itajubá, 37500-903, Itajubá, Brazil
| | - Bruno Penna
- Laboratory of Gram-Positive Cocci, Federal Fluminense University, Biomedical Institute, Rua Professor Hernani Melo N.° 101, São Domingos, Niterói, RJ, Cep: 24210-130, Brazil.
| |
Collapse
|
50
|
Radiation synthesis and in vitro evaluation of the antimicrobial property of functionalized nanopolymer-based poly (propargyl alcohol) against multidrug-resistance microbes. Microb Pathog 2022; 172:105777. [PMID: 36152795 DOI: 10.1016/j.micpath.2022.105777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022]
Abstract
Pathogenic microorganisms are responsible for many diseases in biological organisms, including humans. Many of these infections thrive in hospitals, where people are treated with medicines and certain bacteria resist those treatments. Consequently, this research article aims to develop efficient antimicrobial material-based conjugated and functionalized polypropargyl alcohol nanoparticles (nano-PGA) synthesized by gamma irradiation. The monomer of PGA was polymerized in various mediums (water (W), chloroform (Ch), and dimethylformamide (DMF)) without catalysts under the action of γ-rays, producing π-conjugated and colored functional nano-PGA polymers. Nano-PGA is a versatile polymer demonstrated here as suitable for creating next-generation of antimicrobial systems capable of effectively preventing and killing various pathogenic microorganisms. The novelty here is the development of polymeric nanostructures by changing the solvent and irradiation doses. The antimicrobial property of nano-PGA (nanostare-like antibody structure) was examined against different pathogenic bacteria and unicellular fungi. Nano-PGA-DMF exhibits significant antimicrobial potential against Staphylococcus aureus (S. aureus) (20.20 mm; zone of inhibition (ZOI), and 0.47 μg/mL; minimum inhibitory concentration (MIC), followed by Escherichia coli (E. coli) (14.50 mm; ZOI, and 1.87 μg/mL; MIC, and Candida albicans (C.albicans) (12.50 mm; ZOI, and 1.87 μg/mL; MIC). In antibiofilm results, the highest inhibition percentage of the synthesized nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF was documented for S. aureus (17.01%, 37.57%, and 80.27%), followed by E. coli (25.68%, 55.16% and 78.11%), and C.albicans (40.10%, 62.65%, and 76.19%), respectively. The amount of bacterial protein removed is directly proportional after increasing the concentration of nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF samples (at different concentrations) and counted to be 70.58, 102.89, and 200.87 μg/mL, respectively following the treatment with 1.0 mg/mL of each sample. It was found that the nano-PGA polymer prepared in DMF has better antimicrobial activity than one prepared in chloroform than in water.
Collapse
|