1
|
Rani A, Aslam M, Khan J, Pandey G, Singh P, Maharia RS, Nand B. Computational Insights into Chromene/pyran Derivatives: Molecular Docking, ADMET Studies, DFT Calculations, and MD Simulations as Promising Candidates for Parkinson's Disease. Chem Biodivers 2024; 21:e202400920. [PMID: 38818615 DOI: 10.1002/cbdv.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.
Collapse
Affiliation(s)
- Anjali Rani
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Javed Khan
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Garima Pandey
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - R S Maharia
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - Bhaskara Nand
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| |
Collapse
|
2
|
Semenya J, Yang Y, Picazo E. Cross-Electrophile Coupling of Benzyl Halides and Disulfides Catalyzed by Iron. J Am Chem Soc 2024; 146:4903-4912. [PMID: 38346333 PMCID: PMC10910570 DOI: 10.1021/jacs.3c13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cross-electrophile couplings are influential reactions that typically require a terminal reductant or photoredox conditions. We discovered an iron-catalyzed reaction that couples benzyl halides with disulfides to yield thioether products in the absence of a terminal reductant and under photoredox conditions. The disclosed platform proceeds without sulfur-induced catalyst poisoning or the use of an exogenous base, supporting a broad scope and circumventing undesired elimination pathways. We applied the developed chemistry in a new mode of disulfide bioconjugation, drug synthesis, gram-scale synthesis, and product derivatization. Lastly, we performed mechanistic experiments to better understand the stereoablative reaction between two electrophiles. Disulfides and benzylic thioethers are imperative for biological and pharmaceutical applications but remain severely understudied in comparison to their ethereal and amino counterparts. Hence, we expect this platform of iron catalysis and the downstream applications to be of interest to the greater scientific community.
Collapse
Affiliation(s)
- Julius Semenya
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of
Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Yuanjie Yang
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of
Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Elias Picazo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of
Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| |
Collapse
|
3
|
Egbujor MC. Sulfonamide Derivatives: Recent Compounds with Potent Anti-alzheimer's Disease Activity. Cent Nerv Syst Agents Med Chem 2024; 24:82-104. [PMID: 38275073 DOI: 10.2174/0118715249278489231128042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Facile synthetic procedures and broad spectrum of biological activities are special attributes of sulfonamides. Sulfonamide derivatives have demonstrated potential as a class of compounds for the treatment of Alzheimer's disease (AD). Recent sulfonamide derivatives have been reported as prospective anti-AD agents, with a focus on analogues that significantly inhibit the function of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and exhibit remarkable antioxidant and anti-inflammatory properties, all of which are critical for the treatment of AD. Sulfonamide- mediated activation of nuclear factor erythroid 2-related factor 2 (NRF2), a key regulator of the endogenous antioxidant response, has also been suggested as a potential therapeutic approach in AD. Additionally, it has been discovered that a number of sulfonamide derivatives show selectivity for the β- and γ-secretase enzymes and a significant reduction of amyloid B (Aβ) aggregation, which have been implicated in AD. The comparative molecular docking of benzenesulfonamide and donepezil, an AD reference drug showed comparable anti-AD activities. These suggest that sulfonamide derivatives may represent a new class of drugs for the treatment of AD. Thus, the current review will focus on recent studies on the chemical synthesis and evaluation of the anti-AD properties, molecular docking, pharmacological profile, and structure-activity relationship (SAR) of sulfonamide derivatives, as well as their potential anti-AD mechanisms of action. This paper offers a thorough assessment of the state of the art in this field of study and emphasizes the potential of sulfonamide derivatives synthesized during the 2012-2023 period as a new class of compounds for the treatment of AD.
Collapse
|
4
|
Alblewi FF, Alsehli MH, Hritani ZM, Eskandrani A, Alsaedi WH, Alawad MO, Elhenawy AA, Ahmed HY, El-Gaby MSA, Afifi TH, Okasha RM. Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. Int J Mol Sci 2023; 24:16716. [PMID: 38069037 PMCID: PMC10706804 DOI: 10.3390/ijms242316716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, novel selective antitumor compounds were synthesized based on their fundamental pharmacophoric prerequisites associated with EGFR inhibitors. A molecular hybridization approach was employed to design and prepare a range of 4H-chromene-3-carboxylates 7a-g, 8, and 11a-e derivatives, each incorporating a sulfonamide moiety. The structures of these hybrid molecules were verified using comprehensive analytical and spectroscopic techniques. During the assessment of the newly synthesized compounds for their anticancer properties against three tumor cell lines (HepG-2, MCF-7, and HCT-116), compounds 7f and 7g displayed remarkable antitumor activity against all tested cell lines, outperforming the reference drug Cisplatin in terms of efficacy. Consequently, these promising candidates were selected for further investigation of their anti-EGFR, hCAII, and MMP-2 potential, which exhibited remarkable effectiveness against EGFR and MMP2 when compared to Sorafenib. Additionally, docking investigations regarding the EGFR binding site were implemented for the targeted derivatives in order to attain better comprehension with respect to the pattern in which binding mechanics occur between the investigated molecules and the active site, which illustrated a higher binding efficacy in comparison with Sorafenib.
Collapse
Affiliation(s)
- Fawzia F. Alblewi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Mosa H. Alsehli
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Zainab M. Hritani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Areej Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Wael H. Alsaedi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Majed O. Alawad
- Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia;
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
- Chemistry Department, Faculty of Science and Art, AlBaha University, Al Bahah 65731, Saudi Arabia
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City 11884, Egypt;
| | - Mohamed S. A. El-Gaby
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
| | - Tarek H. Afifi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Rawda M. Okasha
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| |
Collapse
|
5
|
Homoud ZA, Taha M, Rahim F, Iqbal N, Nawaz M, Farooq RK, Wadood A, Alomari M, Islam I, Algheribe S, Rehman AU, Khan KM, Uddin N. Synthesis of indole derivatives as Alzheimer inhibitors and their molecular docking study. J Biomol Struct Dyn 2023; 41:9865-9878. [PMID: 36404604 DOI: 10.1080/07391102.2022.2148126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase prevails in the healthy brain, with butyrylcholinesterase reflected to play a minor role in regulating brain acetylcholine (ACh) levels. However, BuChE activity gradually increases in patients with (AD), while AChE activity remains unaffected or decays. Both enzymes therefore represent legitimate therapeutic targets for ameliorating the cholinergic deficit considered to be responsible for the declines in cognitive, behavioural, and global functioning characteristic of AD. Current study described the synthesis of indole-based sulfonamide derivatives (1-23) and their biological activity. Synthesis of these scaffolds were achieved by mixing chloro-substituted indole bearing amine group with various substituted benzene sulfonyl chloride in pyridine, under refluxed condition to obtained desired products. All products were then evaluated for AchE and BuchE inhibitory potential compare with positive Donepezil as standard drug for both AchE and BchE having IC50 = 0.016 ± 0.12 and 0.30 ± 0.010 μM respectively. In this regard analog 9 was found potent having IC50 value 0.15 ± 0.050 μM and 0.20 ± 0.10 for both AchE and BuChE respectively. All other derivatives also found with better potential. All compounds were characterized by various techniques such as 1H, 13C-NMR and HREI-MS. In addition, biological activity was maintained to explore the bioactive nature of scaffolds and their protein-ligand interaction (PLI) was checked through molecular docking study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Abdulkarim Homoud
- Mawhiba Research Enrichment Program-2021, King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Riyadh, Saudi Arabia
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Munther Alomari
- Medical Laboratory Science, Faculty of Health Science, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, UAE
| | - Imadul Islam
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Shatha Algheribe
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
Mutahir S, Khan MA, Mushtaq M, Deng H, Naglah AM, Almehizia AA, Al-Omar MA, Alrayes FI, Kalmouch A, El-Mowafi SA, Refat MS. Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules 2023; 28:5911. [PMID: 37570881 PMCID: PMC10421429 DOI: 10.3390/molecules28155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Isoflavenes have received the greatest research attention among the many groups of phytoestrogens. In this study, various isoflavene-based Mannich bases were selected for their theoretical studies. The purpose of this research was to discover the binding potential of all the designated Mannich bases acting as inhibitors against cancerous proteins EGFR, cMet, hTrkA, and HER2 (PDB codes: 5GTY, 3RHK, 6PL2, and 7JXH, respectively). For their virtual screening, DFT calculations and molecular docking studies were undertaken using in silico software. Docking studies predicted that ligands 5 and 15 exhibited the highest docking score by forming hydrogen bonds within the active pocket of protein 6PL2, ligands 1 and 15 both with protein 3RHK, and 7JXH, 12, and 17 with protein 5GTY. Rendering to the trends in polarizability and dipole moment, the energy gap values (0.2175 eV, 0.2106 eV) for the firm conformers of Mannich bases (1 and 4) replicate the increase in bioactivity and chemical reactivity. The energy gap values (0.2214 eV and 0.2172 eV) of benzoxazine-substituted isoflavene-based Mannich bases (9 and 10) reflect the increase in chemical potential due to the most stable conformational arrangements. The energy gap values (0.2188 eV and 0.2181 eV) of isoflavenes with tertiary amine-based Mannich bases (14 and 17) reflect the increase in chemical reactivity and bioactivity due to the most stable conformational arrangements. ADME was also employed to explore the pharmacokinetic properties of targeted moieties. This study revealed that these ligands have a strong potential to be used as drugs for cancer treatment.
Collapse
Affiliation(s)
- Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Maryam Mushtaq
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Haishan Deng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faris Ibrahim Alrayes
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Shaima A. El-Mowafi
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Moamen S. Refat
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
7
|
Lolak N, Akocak S, Durgun M, Duran HE, Necip A, Türkeş C, Işık M, Beydemir Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol Divers 2023; 27:1735-1749. [PMID: 36136229 DOI: 10.1007/s11030-022-10527-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey.
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, 63300, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
8
|
Ricardo Dos Santos Correia P, Duarte de Freitas J, André Zeoly L, Silva Porto R, José da Paz Lima D. Discovery and structure-activity relationship of Morita-Baylis-Hillman adducts as larvicides against dengue mosquito vector, Aedes aegypti (Diptera: Culicidae). Bioorg Med Chem 2023; 90:117315. [PMID: 37253304 DOI: 10.1016/j.bmc.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Neglected tropical diseases (NTDs) have become a significant public health problem worldwide, notably the life-threatening dengue hemorrhagic fever borne by the Aedes aegypti mosquito. Thus, mosquito vector control measures remain essential in public health vector surveillance and control to combat Aedes-borne infections. Therefore, a series of MBH adducts were synthesized and assessed towards the fourth instar mosquito larvae, Aedes aegypti, along with the preliminary structure-activity relationship (SAR). Noteworthy, this compound class might be synthetized by an efficient eco-friendly synthesismethod and a rapid route for the synthesis of commercial larvicide through a single synthetic step. The bioassays showed that this compound class is a promising larvicide to control Aedes aegypti mosquito larvae, mainly 3g, with an LC50 of 41.35 µg/mL, which was higher than evaluated positive controls. Nevertheless, it is a viable larvicidalhit candidate for further hit-to-leadproperties optimization of its biphenyl backbone scaffold with enhanced insecticidalbioactivity. Moreover, scanning electron microscopy analysis suggested a disruption of the osmoregulatory/ionoregulatory functions by the complete deterioration of the terminal exoskeleton hindgut and anal papillae. Therefore, this new study shows the larvicidal efficacy of the tested compounds against the Aedes aegypti larvae.
Collapse
Affiliation(s)
- Paulo Ricardo Dos Santos Correia
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | | | - Lucas André Zeoly
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Ricardo Silva Porto
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | - Dimas José da Paz Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil.
| |
Collapse
|
9
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie W, Abd Elmageed ZY, Alharthi F, Althagafi HA, Alghamdi AAA, Hassan IE, Habotta OA, Lokman MS, Kassab RB, El-Hennamy RE. Neuroprotective efficacy of the bacterial metabolite, prodigiosin, against aluminium chloride-induced neurochemical alternations associated with Alzheimer's disease murine model: Involvement of Nrf2/HO-1/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:266-277. [PMID: 36447373 DOI: 10.1002/tox.23718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Walaa Alsanie
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ibrahim Eid Hassan
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Physics, College of Science and Arts, Qassim University, Alnbhaniah, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rehab E El-Hennamy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer's Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020559. [PMID: 36677616 PMCID: PMC9860845 DOI: 10.3390/molecules28020559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.
Collapse
|
11
|
Rezazadeh-Jabalbarezi F, Ranjbar-Karimi R, Atabaki F, Mohammadiannejad K. Site-selective nucleophilic substitution reactions of 2,4,5,6-tetrachloropyrimidine with sulfonamides: Synthesis of novel trichloropyrimidine-arylsulfonamide hybrid derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Synthesis and molecular modeling studies of 1-benzyl-2-indolinones as selective AChE inhibitors. Future Med Chem 2022; 14:1705-1723. [PMID: 36524535 DOI: 10.4155/fmc-2022-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Possible bioisosteres can be developed by replacing the 1-indanone ring (one of three pharmacophore groups) of donepezil with an indoline ring. As H2S donors, thioamide, thiocarbamate and thiourea groups are also critically important. Materials & methods: The 1-benzyl-2-indolinones 6a-n were designed using molecular modeling and synthesized, and their acetylcholinesterase and butyrylcholinesterase inhibitory effects were then investigated. Results: The compounds 6h (inhibition constant [Ki] = 0.22 μM; selectivity index [SI] = 26.22), 6i (Ki = 0.24 μM; SI = 25.83), 6k (Ki = 0.22 μM; SI = 28.31) and 6n (Ki = 0.21 μM; SI = 27.14) were approximately twofold more effective against and >12-fold more selective for acetylcholinesterase compared with donepezil (Ki = 0.41 μM; SI = 2.12). Analysis of molecular dynamics simulations with compounds 6k and 6n indicated that the preferred binding might be at allosteric binding pocket 4 of the enzyme. Conclusion: Benzyl substitution at the 1-position of the indole ring significantly increased potency and selectivity.
Collapse
|
13
|
Exploring the multi-target enzyme inhibition potential of new sulfonamido-thiazoline derivatives; Synthesis and computational studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Synthesis, In Vitro Anti-Microbial Analysis and Molecular Docking Study of Aliphatic Hydrazide-Based Benzene Sulphonamide Derivatives as Potent Inhibitors of α-Glucosidase and Urease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207129. [PMID: 36296720 PMCID: PMC9609496 DOI: 10.3390/molecules27207129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
A unique series of sulphonamide derivatives was attempted to be synthesized in this study using a new and effective method. All of the synthesized compounds were verified using several spectroscopic methods, including FTIR, 1H-NMR, 13C-NMR, and HREI-MS, and their binding interactions were studied using molecular docking. The enzymes urease and α-glucosidase were evaluated against each derivative (1–15). When compared to their respective standard drug such as acarbose and thiourea, almost all compounds were shown to have excellent activity. Among the screened series, analogs 5 (IC50 = 3.20 ± 0.40 and 2.10 ± 0.10 µM) and 6 (IC50 = 2.50 ± 0.40 and 5.30 ± 0.20 µM), emerged as potent molecules when compared to the standard drugs acarbose (IC50 = 8.24 ± 0.08 µM) and urease (IC50 = 7.80 ± 0.30). Moreover, an anti-microbial study also demonstrated that analogs 5 and 6 were found with minimum inhibitory concentrations (MICs) in the presence of standard drugs streptomycin and terinafine.
Collapse
|
15
|
Khadiya NM, Modhavadiya VA. CuAAC-Ensembled 1,2,3-Triazole-Linked Biphenyl and N-Arylamide Systems as Diverse Antimicrobial Agents. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802207017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Khan S, Ullah H, Rahim F, Nawaz M, Hussain R, Rasheed L. Synthesis, in vitro α-amylase, α-glucosidase activities and molecular docking study of new benzimidazole bearing thiazolidinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Tariq S, Mutahir S, Khan MA, Mutahir Z, Hussain S, Ashraf M, Bao X, Zhou B, Stark CB, Khan IU. Synthesis, in vitro cholinesterase inhibition, molecular docking, DFT and ADME studies of novel 1,3,4-oxadiazole 2-thiol derivatives. Chem Biodivers 2022; 19:e202200157. [PMID: 35767725 DOI: 10.1002/cbdv.202200157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
A sequence of 1,3,4-oxadiazole 2-thiol derivatives bearing various alkyl or aryl moieties was designed, synthesized, and characterized by modern spectroscopic methods to yield 17 compounds ( 6a - 6q ) which were screened for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes in search of 'lead' compounds for the treatment of Alzheimer disease (AD). The compounds 6q, 6p, 6k, 6o, and 6l showed inhibitory capability against AChE and BChE, with IC 50 values ranging from 11.730.49 to 27.360.29 µM for AChE and 21.830.39 to 39.430.44 µM for BChE, inhibiting both enzymes within a limited range. The SAR ascertained that the substitution of the aromatic moiety had a profound effect on the AChE and BChE inhibitory potential as compared to the aliphatic substitutions which were supported by the molecular docking studies. In silico ADME studies reinforced the drug-likeness of most of the synthesized molecules. These results were additionally supplemented by the molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps got from DFT calculations. ESP maps expose that on all structures, there are two potential binding sites conquered by the most positive and most negative districts.
Collapse
Affiliation(s)
- Sidrah Tariq
- Government College University Lahore, Department of Chemitry, Anarkaly Lahore, 54000, Lahore, PAKISTAN
| | - Sadaf Mutahir
- University of Sialkot, Department of Chemitry, Daska Road Sialkot, Sialkot, PAKISTAN
| | - Muhammad Asim Khan
- Nanjing University of Science and Technology, School of Chemical Engineering, Xiaolingwei 200, Nanjing 210094, 210000, China, 210000, Nanjing, CHINA
| | - Zeeshan Mutahir
- University of the Punjab Quaid-i-Azam Campus: University of the Punjab, Institute of Biochemistry and Biotechnology, University of the Punjab, 54590 Lahore, Pakistan, Lahore, PAKISTAN
| | - Safdar Hussain
- Islamia University: The Islamia University of Bahawalpur Pakistan, Department of Chemitry, Bahwalpur, Bahwalpur, PAKISTAN
| | - Muhammad Ashraf
- Islamia University: The Islamia University of Bahawalpur Pakistan, Department of Chemitry, Bahwalpur, Government College University Lahore, 54000, Bahwalpur, PAKISTAN
| | - Xiaofang Bao
- Nanjing University of Science and Technology, School of Chemical Engineering, Room No. 104. 2nd Old Chemical Building, School of Chemical Engineering, 210094, 210094, Nanjing, CHINA
| | - Baojing Zhou
- Nanjing University of Science and Technology, School of Chemical Engineering, Room No. 104. 2nd Old Chemical Building, School of Chemical Engineering, 210094, 210094, Nanjing, CHINA
| | - Christian Bw Stark
- Universitat Hamburg Zentralbibliothek Recht: Universitat Hamburg, Fachbereich Chemie, Institut für Organische Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany, Hamburg, GERMANY
| | - Islam Ullah Khan
- University of Mianwali, Department of Chemistry/VC Office, VC Office, Department of Chemistry, University of Mianwali, Pakistan, Mianwali, PAKISTAN
| |
Collapse
|
18
|
Bilen E, Özdemir Özmen Ü, Çete S, Alyar S, Yaşar A. Bioactive sulfonyl hydrazones with alkyl derivative: Characterization, ADME properties, molecular docking studies and investigation of inhibition on choline esterase enzymes for the diagnosis of Alzheimer's disease. Chem Biol Interact 2022; 360:109956. [PMID: 35452634 DOI: 10.1016/j.cbi.2022.109956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 01/24/2023]
Abstract
In this work, new sulfonylhydrazone compounds with alkyl derivatives (SH1- SH4 series) were synthesized via a green chemistry method, and their inhibition effects on acetylcholinesterase and butyrylcholinesterase (AChE, BChE) were determined in vitro. This work was designed in two stages; in the first stage, using compounds that contain both sulfonamide and hydrazine groups which have important pharmacological properties, a series of sulfonyl hydrazone with alkyl derivatives (SH1- SH4) were synthesized with a method that is less time-consuming and more environmentalist that was by using different substitute groups containing aldehyde and ketone compounds. The structures of the synthesized compounds were characterized by elemental analyses, 1H NMR, 13C NMR, FT-IR methods. In the second stage, the effects of the synthesized sulfonyl hydrazones with alkyl derivatives on acetylcholinesterase and butyrylcholinesterase enzymes were examined. According to the results, all the synthesized compounds inhibited AChE and BChE enzymes. When the IC50 values were compared, SH2-3 (IC50 = 5.27 ± 0.05 μM) and SH3-3 (IC50 = 12.29 ± 1.47 μM) compounds which are containing the butyl group have the best inhibition effect on the AChE enzyme and BChE enzyme, respectively. In addition, the predictive properties of all compounds in terms of drug similarity were scanned using five Lipinski rules and ADME estimations. In silico ADME studies play an important role in improving and predicting drug compounds. In the ADME study; The absorption, distribution, metabolism, elimination, and properties of the molecules given below were theoretically calculated. Also, to evaluate the binding interactions between the sulfonylhydrazone compounds and enzymes, molecular docking studies were performed and the compounds with the best inhibition effect SH2-3 (for AChE enzyme) and SH3-3 (for BChE enzyme) were tested. Both in vitro and silico the results showed that two compounds could act as potent inhibitors of AChE, BChE.
Collapse
Affiliation(s)
- Esra Bilen
- Department of Chemistry, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Ümmühan Özdemir Özmen
- Department of Chemistry, Faculty of Science, Gazi University, 06500, Ankara, Turkey.
| | - Servet Çete
- Department of Chemistry, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Saliha Alyar
- Department of Chemistry, Faculty of Science, Karatekin University, 18100, Çankırı, Turkey
| | - Ahmet Yaşar
- Department of Chemistry, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| |
Collapse
|
19
|
Synthesis, molecular modeling and cholinesterase inhibitory effects of 2-indolinone-based hydrazinecarbothioamides. Future Med Chem 2021; 13:2133-2151. [PMID: 34755546 DOI: 10.4155/fmc-2021-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: 2-Indolinone-based hydrazinecarbothioamides carrying a 3-phenylsulfonamide moiety (7-9) were designed by replacement of donepezil's pharmacophore group indanone with a 2-indolinone ring. Method: Compounds 7-9 were synthesized by reaction of N-(3-sulfamoylphenyl)hydrazinecarbothioamide (6) with 1H-indolin-2,3-diones (1-3). Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory effects of compounds 7-9 were assayed. Molecular modeling studies of 5-chloro-1,7-dimethyl-substituted compound 8e were carried out to determine the possible binding interactions at the active site of AChE. Results: Compound 8e showed the strongest inhibition against AChE (Ki = 0.52 ± 0.11 μM) as well as the highest selectivity (SI = 37.69). The selectivity for AChE over BuChE of compound 8e was approximately 17-times higher than donepezil and 26-times higher than galantamine. Conclusion: Further development of compounds 7-9 may present new promising agents for Alzheimer's treatment.
Collapse
|
20
|
Fantacuzzi M, Gallorini M, Gambacorta N, Ammazzalorso A, Aturki Z, Balaha M, Carradori S, Giampietro L, Maccallini C, Cataldi A, Nicolotti O, Amoroso R, De Filippis B. Design, Synthesis and Biological Evaluation of Aromatase Inhibitors Based on Sulfonates and Sulfonamides of Resveratrol. Pharmaceuticals (Basel) 2021; 14:ph14100984. [PMID: 34681208 PMCID: PMC8537897 DOI: 10.3390/ph14100984] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b–c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure–activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b–c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.
Collapse
Affiliation(s)
- Marialuigia Fantacuzzi
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
- Correspondence: (M.F.); (B.D.F.)
| | - Marialucia Gallorini
- Unit of Anatomy, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (M.G.); (M.B.); (A.C.)
| | - Nicola Gambacorta
- Unit of Medicinal Chemistry, Department of Pharmacy, “A. Moro” University, 70121 Bari, Italy; (N.G.); (O.N.)
| | - Alessandra Ammazzalorso
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Zeineb Aturki
- Institute for Biological Systems (ISB), Italian National Research Council, Monterotondo, 00015 Rome, Italy;
| | - Marwa Balaha
- Unit of Anatomy, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (M.G.); (M.B.); (A.C.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Simone Carradori
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Letizia Giampietro
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Cristina Maccallini
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Amelia Cataldi
- Unit of Anatomy, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (M.G.); (M.B.); (A.C.)
| | - Orazio Nicolotti
- Unit of Medicinal Chemistry, Department of Pharmacy, “A. Moro” University, 70121 Bari, Italy; (N.G.); (O.N.)
| | - Rosa Amoroso
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
| | - Barbara De Filippis
- Unit of Medicinal Chemistry, Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.A.); (S.C.); (L.G.); (C.M.); (R.A.)
- Correspondence: (M.F.); (B.D.F.)
| |
Collapse
|
21
|
Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn 2021; 39:5449-5460. [PMID: 32691682 DOI: 10.1080/07391102.2020.1790422] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health Services, Iğdır University, Iğdır, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
22
|
Liu TL, Jhou ML, Hsieh CE, Lin CJ, Su HH, Chou CM. Palladium-Catalyzed Intramolecular Allylic Amidation via Decarboxylative Aromatization: Synthesis of N-Allyl- N-aryl Sulfonamides. J Org Chem 2021; 86:9084-9095. [PMID: 34115505 DOI: 10.1021/acs.joc.1c01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A protocol in the preparation of functionalized N-allyl-N-aryl sulfonamides via palladium-catalyzed intramolecular decarboxylative N-allylation reaction is presented. The alkylated 2,5-cyclohexadienyl ketoesters reacted with arylsulfonamides in the presence of titanium tetrachloride and pyridine, which allows the formation of alkylated 2,5-cyclohexadienyl sulfonyl iminoesters which then undergo a palladium-catalyzed intramolecular allylic amidation through decarboxylative aromatization to provide functionalized N-allyl-N-aryl sulfonamides. This allylation protocol proceeds with good regioselectivity. Moreover, we have also shown that N-allyl-N-aryl sulfonamide can be transformed into 4-aryl-1,2,3,4-tetrahydroquinoline and nitrogen-containing β-hydroxysulfide bioactives.
Collapse
Affiliation(s)
- Tzu-Lun Liu
- Department of Applied Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, 81148 Kaohsiung, Taiwan
| | - Meng-Li Jhou
- Department of Applied Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, 81148 Kaohsiung, Taiwan
| | - Cheng-En Hsieh
- Department of Applied Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, 81148 Kaohsiung, Taiwan
| | - Chia-Jung Lin
- Department of Applied Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, 81148 Kaohsiung, Taiwan
| | - Hsiu-Hui Su
- Department of Applied Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, 81148 Kaohsiung, Taiwan
| | - Chih-Ming Chou
- Department of Applied Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, 81148 Kaohsiung, Taiwan
| |
Collapse
|
23
|
Zhang Q, Yang F, Liao S, Wang B, Li R, Dong Y, Zhou M, Yang Y, Xu G. Synthesis, Antibacterial Activity, and Structure–Activity Relationship of Fusaric Acid Analogs. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing‐Yan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics Guiyang Guizhou 550004 China
| | - Fei‐Yu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Shang‐Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Bing Wang
- School of Biology & Engineering Guizhou Medical University Guian New District Guizhou 550025 China
| | - Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Yong‐Xi Dong
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics Guiyang Guizhou 550004 China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Guo‐Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| |
Collapse
|
24
|
Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N, Shehzad A, Khalid Farooq R, Alomari M, Mohammed Khan K. Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin -induced diabetic albino wistar rats. Bioorg Chem 2021; 110:104808. [PMID: 33756236 DOI: 10.1016/j.bioorg.2021.104808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
We have synthesized new hybrid class of indole bearing sulfonamide scaffolds (1-17) as α-glucosidase inhibitors. All scaffolds were found to be active except scaffold 17 and exhibited IC50 values ranging from 1.60 to 51.20 µM in comparison with standard acarbose (IC50 = 42.45 µM). Among the synthesized hybrid class scaffolds 16 was the most potent analogue with IC50 value 1.60 μM, showing many folds better potency as compared to standard acarbose. Whereas, synthesized scaffolds 1-15 showed good α-glucosidase inhibitory potential. Based on α-glucosidase inhibitory effect, Scaffold 16 was chosen due to highest activity in vitro for further evaluation of antidiabetic activity in Streptozotocin induced diabetic rats. The Scaffold 16 exhibited significant antidiabetic activity. All analogues were characterized through 1H, 13CNMR and HR MS. Structure-activity relationship of synthesized analogues was established and confirmed through molecular docking study.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry University of Poonch, Rawalakot, AJK, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Adeeb Shehzad
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
25
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Shahzad S, Qadir MA, Ahmed M, Ahmad S, Khan MJ, Gulzar A, Muddassar M. Folic acid-sulfonamide conjugates as antibacterial agents: design, synthesis and molecular docking studies. RSC Adv 2020; 10:42983-42992. [PMID: 35514930 PMCID: PMC9058261 DOI: 10.1039/d0ra09051d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
Dihydrofolate reductase (DHFR) inhibitors, as antibacterial agents, contain pyrimidine, pteridine, and azine moieties among many other scaffolds. Folic acid (FA), with a pteridine ring and amine group, was used as our focus scaffold, which was then conjugated with sulfonamides to develop new conjugates. The novel synthesized conjugates were characterized using infrared spectroscopy, and 1H and 13C nuclear magnetic resonance (NMR) spectral studies and consequently screened for antimicrobial activities against bacterial strains with ampicillin as a positive control. Compound DS2 has the highest zone of inhibition (36.6 mm) with a percentage activity index (%AI) value of 122.8% against S. aureus and a minimum inhibitory concentration (MIC) of 15.63 μg mL-1. DHFR enzyme inhibition was also evaluated using the synthesized conjugates through in vitro studies, and inhibition assays revealed that compound DS2 exhibited a 75.4 ± 0.12% (mean ± standard error of the mean (SEM)) inhibition, which is comparable with the standard DHFR inhibitor trimethoprim (74.6 ± 0.09%). The compounds attached to the unsubstituted aryl moiety of the sulfonamides revealed better inhibition against the bacterial strains as compared to the methyl substituted aryl sulfonamides. Molecular docking studies of the novel synthesized conjugates were also performed on the DHFR enzyme to identify the plausible binding modes to explore the binding mechanisms of these conjugates.
Collapse
Affiliation(s)
- Shabnam Shahzad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | | | - Mahmood Ahmed
- Renacon Pharma Limited Lahore-54600 Pakistan .,Division of Science and Technology, University of Education Lahore Pakistan
| | - Saghir Ahmad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Asad Gulzar
- Division of Science and Technology, University of Education Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| |
Collapse
|
27
|
Design, Synthesis and Biological Evaluation of Xanthone Derivatives for Possible Treatment of Alzheimer's Disease Based on Multi‐Target Strategy. Chem Biodivers 2020; 17:e2000442. [DOI: 10.1002/cbdv.202000442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023]
|
28
|
Kumar V, De P, Ojha PK, Saha A, Roy K. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:1601-1627. [DOI: 10.2174/1568026620666200616142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Alzheimer’s disease (AD), a neurological disorder, is the most common cause
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine
(ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually
increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh
plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain,
and thus, is involved in memory consolidation in these sites.
Methods:
In this work, we have developed a partial least squares (PLS)-regression based two dimensional
quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique
and at the end best subset selection prior to development of final model thus reducing noise in the
input. Partial least squares (PLS) regression technique was employed for the development of the final
model while model validation was performed using various stringent validation criteria.
Results:
The results obtained from the QSAR model suggested that the quality of the model is acceptable
in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2
Pred= 0.657) validation parameters.
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model
further suggests that the presence of hydrophobic features like long carbon chain would increase the
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.
Conclusion:
Furthermore, molecular docking studies have been carried out to understand the molecular
interactions between the ligand and receptor, and the results are then correlated with the structural features
obtained from the QSAR models. The information obtained from the QSAR models are well corroborated
with the results of the docking study.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
29
|
Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, Mahmood T, Raza Shah A, Shah SAA, Zakaria ZA, Akhtar MN. Selective Arylation of 2-Bromo-4-chlorophenyl-2-bromobutanoate via a Pd-Catalyzed Suzuki Cross-Coupling Reaction and Its Electronic and Non-Linear Optical (NLO) Properties via DFT Studies. Molecules 2020; 25:molecules25153521. [PMID: 32752125 PMCID: PMC7435822 DOI: 10.3390/molecules25153521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022] Open
Abstract
In the present study, 2-bromo-4-chlorophenyl-2-bromobutanoate (3) was synthesized via the reaction of 2-bromo-4-chlorophenol with 2-bromobutanoyl bromide in the presence of pyridine. A variety of 2-bromo-4-chlorophenyl-2-bromobutanoate derivatives (5a–f) were synthesized with moderate to good yields via a Pd-catalyzed Suzuki cross-coupling reaction. To find out the reactivity and electronic properties of the compounds, Frontier molecular orbital analysis, non-linear optical properties, and molecular electrostatic potential studies were performed.
Collapse
Affiliation(s)
- Usman Nazeer
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
- College of Chemistry and Molecular Engineering, Zhengzhou University, Kexue road No. 100, Zhengzhou 450001, China
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
- Correspondence: (N.R.); (Z.A.Z.); Tel.: +92-332-749-1790 (N.R.); +603-8947-2111 (Z.A.Z.); Fax: +92-419-201-032 (N.R.); +603-8943-6178 (Z.A.Z.)
| | - Aqsa Mujahid
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Muhammad Zubair
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Naveen Kosar
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan; (N.K.); (T.M.)
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan; (N.K.); (T.M.)
| | - Ali Raza Shah
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia;
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Halal Institute Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (N.R.); (Z.A.Z.); Tel.: +92-332-749-1790 (N.R.); +603-8947-2111 (Z.A.Z.); Fax: +92-419-201-032 (N.R.); +603-8943-6178 (Z.A.Z.)
| | - Muhammad Nadeem Akhtar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan 26300, Malaysia;
- Bio-Aromatic Research Center of Excellence, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan 26300, Malaysia
| |
Collapse
|
30
|
Liang S, Zheng Y, Lei L, Deng X, Ai J, Li Y, Zhang T, Mei Z, Ren Y. Corydalis edulis total alkaloids (CETA) ameliorates cognitive dysfunction in rat model of Alzheimer disease through regulation of the antioxidant stress and MAP2/NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112540. [PMID: 31917278 DOI: 10.1016/j.jep.2019.112540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In recent years, the morbidity of Alzheimer's disease in the world has become more and more serious. Therefore, it is an important means to find new drugs for treating AD from traditional medicines. It was found that Corydalis edulis Maxim. has a significant effect in the treatment of Alzheimer's disease (AD) in traditional application. In this work, we evaluated the efficacy of Corydalis edulis Maxim. total alkaloids (CETA) in AD model rats. METHODS In this work, CETA was prepared by alkali extraction and acid precipitation, 11 alkaloids were identified by UPLC-MS/MS from CETA. AD model rats induced with D-galactose (D-gal) for 7 weeks. In modeling, the different doses of CETA (5, 20 mg/kg/Day) were continuously administered. Firstly, the change of the cognitive function, behavior, brain tissue pathology, and the activity of ROS, MDA, SOD, IL-1β, TNF-α and CAT in rat hippocampal homogenate was measurement. Finally, the protein expression of Aβ, microtubule-associated protein 2 (MAP2) and nuclear factor (κBp65) in rat brain was measurement. RESULT CETA was found to have the activity in regulating AD. Compared with the normal control group, the levels of SOD and CAT in the hippocampus of the AD model group were decreased, and the level of ROS, MDA, IL-1β and TNF-α was increased. The protein expression of Aβ, and NF-κB were increased, and MAP2 were decreased. After treatment by CETA, the levels of SOD and CAT in hippocampus of AD model rats was significantly increased, ROS, MDA, IL-1β and TNF-α were significantly decreased. The protein expression of Aβ, and NF-κB were decreased, and MAP2 were increased. CONCLUSION CETA can improve the learning and memory ability in AD model. The mechanism may be achieved by regulating the oxidative stress and inflammatory of AD rats, inhibiting the protein expression levels of Aβ, and NF-κB, and promote the protein expression the levels of MAP2. Among them, 5 mg/kg is more effective than 20 mg/kg of CETA. Therefore, the therapeutic potential of CETA has been confirmed by our research, which may be a valuable drug for the treatment of AD.
Collapse
Affiliation(s)
- Shuai Liang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yao Zheng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Lei Lei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Xin Deng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Jiao Ai
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yanqiu Li
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Tianpei Zhang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Zhinan Mei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yongshen Ren
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
31
|
Debbabi KF, Al-Harbi SA, Al-Saidi HM, Aljuhani EH, Felaly RN, Abd El-Gilil SM, Bashandy MS, Jannet HB. Synthesis, anticancer, antimicrobial, anti-tuberculosis and molecular docking of heterocyclic N-ethyl-N-methylbenzenesulfonamide derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Pervaiz S, Mutahir S, Ullah I, Ashraf M, Liu X, Tariq S, Zhou BJ, Khan MA. Organocatalyzed Solvent Free and Efficient Synthesis of 2,4,5-Trisubstituted Imidazoles as Potential Acetylcholinesterase Inhibitors for Alzheimer's Disease. Chem Biodivers 2020; 17:e1900493. [PMID: 31968151 DOI: 10.1002/cbdv.201900493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/22/2020] [Indexed: 11/12/2022]
Abstract
The catalytic potential of pyridine-2-carboxlic acid has been evaluated for efficient, green and solvent free synthesis of 2,4,5-trisubstituted imidazole derivatives 3a-3m. The compounds 3a-3m were synthesized by one pot condensation reaction of substituted aromatic aldehydes, benzil, and ammonium acetate in good to excellent yields (74-96 %). To explore the potential of these compounds against Alzheimer's disease, their inhibitory activities against acetylcholinesterase (AChE) were evaluated. In this series of compounds, compound 3m, bearing one ethoxy and a hydroxy group on the phenyl ring on 2,4,5-trisubstituted imidazoles, proved to be a potent AChE inhibitor (102.56±0.14). Structure-activity relationship (SAR) of these compounds was developed. Molecular dockings were carried out for the compounds 3m, 3e, 3k, 3c, 3a, 3d, 3j, and 3f in order to further investigate the binding mechanism. The inhibitor molecule was molecularly docked with acetylcholinesterase to further study its binding mechanism. The amino group of the compound 3m forms an H-bond with the oxygen atom of the residue (i. e., THR121) which has a bond length of 3.051 Å.
Collapse
Affiliation(s)
- Sania Pervaiz
- Department of Chemistry, Government College, University, Lahore, 54000, Pakistan
| | - Sadaf Mutahir
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Islam Ullah
- Department of Chemistry, Government College, University, Lahore, 54000, Pakistan.,Department of Chemistry, Faculty of Sciences, University of Sialkot, Sialkot, 51040, Pakistan
| | - Muhammad Ashraf
- Department of Chemistry and Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiao Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Sidrah Tariq
- Department of Chemistry, Government College, University, Lahore, 54000, Pakistan
| | - Bao-Jing Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Muhammad Asim Khan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
33
|
Işık M, Demir Y, Durgun M, Türkeş C, Necip A, Beydemir Ş. Molecular docking and investigation of 4-(benzylideneamino)- and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00988-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Vyas S, Kothari S, Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg Med Chem Lett 2019; 29:2042-2050. [DOI: 10.1016/j.bmcl.2019.06.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
|
36
|
Sulfonamide hybrid schiff bases of anthranilic acid: Synthesis, characterization and their biological potential. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (S VI)-Containing motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:679-734. [PMID: 30496988 PMCID: PMC7111228 DOI: 10.1016/j.ejmech.2018.11.017] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
Sulfur (SVI) based moieties, especially, the sulfonyl or sulfonamide based analogues have showed a variety of pharmacological properties, and its derivatives propose a high degree of structural diversity that has established useful for the finding of new therapeutic agents. The developments of new less toxic, low cost and highly active sulfonamides containing analogues are hot research topics in medicinal chemistry. Currently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with therapeutic power. This comprehensive review highlights the recent developments of sulfonyl or sulfonamides based compounds in huge range of therapeutic applications such as antimicrobial, anti-inflammatory, antiviral, anticonvulsant, antitubercular, antidiabetic, antileishmanial, carbonic anhydrase, antimalarial, anticancer and other medicinal agents. We believe that, this review article is useful to inspire new ideas for structural design and developments of less toxic and powerful Sulfur (SVI) based drugs against the numerous death-causing diseases.
Collapse
Affiliation(s)
- Chuang Zhao
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| | - L Ravidar
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Wan-Yin Fang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| |
Collapse
|
38
|
Andleeb H, Khan I, Franconetti A, Tahir MN, Simpson J, Hameed S, Frontera A. Diverse structural assemblies of U-shaped hydrazinyl-sulfonamides: experimental and theoretical analysis of non-covalent interactions stabilizing solid state conformations. CrystEngComm 2019. [DOI: 10.1039/c8ce01917g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation and structures of five new U-shaped hydrazinyl-sulfonamides are reported.
Collapse
Affiliation(s)
- Hina Andleeb
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
- School of Chemistry & Manchester Institute of Biotechnology
| | - Antonio Franconetti
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | | | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin
- New Zealand
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| |
Collapse
|
39
|
Ahmed M, Qadir MA, Shafiq MI, Muddassar M, Samra ZQ, Hameed A. Synthesis, characterization, biological activities and molecular modeling of Schiff bases of benzene sulfonamides bearing curcumin scaffold. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Comput Biol Chem 2018; 74:304-326. [DOI: 10.1016/j.compbiolchem.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/01/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
|
41
|
Ahmed M, Qadir MA, Hameed A, Arshad MN, Asiri AM, Muddassar M. Sulfonamides containing curcumin scaffold: Synthesis, characterization, carbonic anhydrase inhibition and molecular docking studies. Bioorg Chem 2018; 76:218-227. [DOI: 10.1016/j.bioorg.2017.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
|
42
|
Soyer Z, Uysal S, Parlar S, Tarikogullari Dogan AH, Alptuzun V. Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32:13-19. [PMID: 27766908 PMCID: PMC6009942 DOI: 10.1080/14756366.2016.1226298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/03/2022] Open
Abstract
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman's colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50= 1.35 ± 0.08 μM), while compound 3 exhibited the highest inhibition against BuChE (IC50= 13.41 ± 0.62 μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.
Collapse
Affiliation(s)
- Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Sulunay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | | | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
43
|
Ahmed M, Qadir MA, Hameed A, Imran M, Muddassar M. Screening of curcumin-derived isoxazole, pyrazoles, and pyrimidines for their anti-inflammatory, antinociceptive, and cyclooxygenase-2 inhibition. Chem Biol Drug Des 2017; 91:338-343. [DOI: 10.1111/cbdd.13076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/07/2017] [Accepted: 07/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Mahmood Ahmed
- Institute of Chemistry; University of the Punjab; Lahore Pakistan
| | | | - Abdul Hameed
- H. E. J. Research Institute of Chemistry; International Center for Chemical and Biological Sciences; University of Karachi; Karachi Pakistan
| | - Muhammad Imran
- Department of Biological Sciences; Forman Christian College; (A Chartered University), Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences; COMSATS Institute of Information Technology; Islamabad Pakistan
| |
Collapse
|
44
|
Ahmed M, Qadir MA, Hameed A, Arshad MN, Asiri AM, Muddassar M. Azomethines, isoxazole, N-substituted pyrazoles and pyrimidine containing curcumin derivatives: Urease inhibition and molecular modeling studies. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis -biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies. Eur J Med Chem 2017; 134:406-414. [DOI: 10.1016/j.ejmech.2017.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/18/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
|
46
|
Synthesis and molecular docking against dihydrofolate reductase of novel pyridin-N-ethyl-N-methylbenzenesulfonamides as efficient anticancer and antimicrobial agents. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Kwong HC, Chidan Kumar CS, Mah SH, Chia TS, Quah CK, Loh ZH, Chandraju S, Lim GK. Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies. PLoS One 2017; 12:e0170117. [PMID: 28241010 PMCID: PMC5328250 DOI: 10.1371/journal.pone.0170117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.
Collapse
Affiliation(s)
- Huey Chong Kwong
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - C. S. Chidan Kumar
- Department of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru, Karnataka, India
- * E-mail: (CKQ); (CSCK)
| | - Siau Hui Mah
- School of Biosciences, Taylor’s University, Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Tze Shyang Chia
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia
- * E-mail: (CKQ); (CSCK)
| | - Zi Han Loh
- School of Biosciences, Taylor’s University, Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Siddegowda Chandraju
- Department of Sugar Technology & Chemistry, Sir M.V. PG Center, University of Mysore, Tubinakere, India
| | - Gin Keat Lim
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
48
|
Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg Chem 2017; 70:245-255. [DOI: 10.1016/j.bioorg.2017.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 11/18/2022]
|
49
|
Debbabi KF, Al-Harbi SA, Al-Saidi HM, Aljuhani EH, Abd El-Gilil SM, Bashandy MS. Study of reactivity of cyanoacetohydrazonoethyl-N-ethyl-N-methyl benzenesulfonamide: preparation of novel anticancer and antimicrobial active heterocyclic benzenesulfonamide derivatives and their molecular docking against dihydrofolate reductase. J Enzyme Inhib Med Chem 2016; 31:7-19. [PMID: 27557134 DOI: 10.1080/14756366.2016.1217851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article describes the synthesis of some novel heterocyclic sulfonamides having biologically active thiophene 3, 4, 5, 6, coumarin 8, benzocoumarin 9, thiazole 7, piperidine 10, pyrrolidine 11, pyrazole 14 and pyridine 12, 13. Starting with 4-(1-(2-(2-cyanoacetyl)hydrazono)ethyl)-N-ethyl-N-methylbenzenesulfonamide (2), which was prepared from condensation of acetophenone derivative 1 with 2-cyanoacetohydrazide. The structures of the newly synthesized compounds were confirmed by elemental analysis, IR, 1H NMR, 13C NMR, 19F NMR and MS spectral data. All the newly synthesized heterocyclic sulfonamides were evaluated as in-vitro anti-breast cancer cell line (MCF7) and as in-vitro antimicrobial agents. Compounds 8, 5 and 11 were more active than MTX reference drug and compounds 12, 7, 4, 14, 5 and 8 were highly potent against Klebsiella pneumonia. Molecular operating environment performed virtual screening using molecular docking studies of the synthesized compounds. The results indicated that some prepared compounds are suitable inhibitor against dihydrofolate reductase (DHFR) enzyme (PDBSD:4DFR) with further modification.
Collapse
Affiliation(s)
- Khaled F Debbabi
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia.,b Laboratory of Heterocyclic Chemistry , Natural Products and Reactivity, Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir , Tunisia
| | - Sami A Al-Harbi
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Hamed M Al-Saidi
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Enas H Aljuhani
- c Department of Chemistry , College of Applied Science, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Shimaa M Abd El-Gilil
- d Deparment of Organic Chemistry , Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt , and
| | - Mahmoud S Bashandy
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia.,e Chemistry Department, Faculty of Science (Boys), Al-Azhar University , Nasr City , Cairo , Egypt
| |
Collapse
|