1
|
Ben-Azu B, Fokoua AR, Annafi OS, Adebayo OG, Del Re EC, Okuchukwu N, Aregbesola GJ, Ejenavi AEC, Isiwele DM, Efezino AJ, Okpu ID. Effective action of silymarin against ketamine-induced schizophrenia in male mice: Insight into the biochemical and molecular mechanisms of action. J Psychiatr Res 2024; 179:141-155. [PMID: 39293119 DOI: 10.1016/j.jpsychires.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neurochemical dysregulations resulting from N-methyl-D-aspartate hypofunction (NMDA), are exacerbated by neuroimmune and oxidative stress and are known risk factors for neuropsychiatric disorders like schizophrenia-like diseases. Here, we investigate the protective and curative effects, and mechanisms of silymarin, a polyphenolic flavonoid with neuroprotective functions in preventive-reversal model of ketamine, an NMDA antagonist in mice. METHODS Mice were grouped into 6 cohorts (n = 9). In the pre-treatment, groups 1 and 2 received saline (10 mL/kg/p.o.), groups 3 and 4 (silymarin, 50 and 100 mg/kg/p.o.), and group 5 (risperidone, 0.5 mg/kg/p.o.) consecutively for 14 days, then combined with ketamine (20 mg/kg/i.p.) injection in groups 2-5 from days 8-14. However, mice in reversal study received intraperitoneal injection of ketamine for 14 days before silymarin (50 and 100 mg/kg, p.o) and risperidone (0.5 mg/kg, p.o.) treatment between days 8-14. The consequences on schizophrenia-like behavior, neurochemistry, inflammation, and oxidative/nitrergic stress markers were evaluated in critical brain regions of the disease. RESULTS Silymarin prevented and reversed ketamine-induced increase in dopamine, 5-hydroxyltryptamine, acetylcholinesterase, malondialdehyde and nitrite levels in the striatum, prefrontal-cortex and hippocampus. These were accompanied by improvement in hyperlocomotion, stereotypy, memory, and social impairments, notably devoid of cataleptogenic potential. Complementarily, silymarin reduced myeloperoxidase, tumor-necrosis factor-α, and interleukin-6 concentrations relative to the ketamine group. Moreover, ketamine-induced decreased brain-derived neurotrophic factor, glutathione, catalase, superoxide-dismutase levels were normalized by silymarin in the brain regions relative to ketamine. CONCLUSIONS Overall, these findings suggest that silymarin's antipsychotic effect might be primarily associated, among other mechanisms, with the normalization of neurochemical and neurotrophic changes in the mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Division of Medical Sciences, University of Victoria, Canada.
| | - Aliance R Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Research Unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Olajide S Annafi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Elisabetta C Del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton, MA, United States; Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nneka Okuchukwu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gbemileke J Aregbesola
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Akpor-Esiri C Ejenavi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - David M Isiwele
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Arausi J Efezino
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ifelunwa D Okpu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
2
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ahammad GS, Jang SY, Kim IH. Effects of micelle silymarin in corn-soybean meal-based diet on laying hens' performance, egg quality, and blood profile, with comparative assessment of blood absorption rates between powdered and micelle silymarin. Poult Sci 2024; 103:104029. [PMID: 39079328 PMCID: PMC11340492 DOI: 10.1016/j.psj.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/25/2024] Open
Abstract
Micelle silymarin (MS) is recognized for its diverse range of beneficial properties, which encompass anti-inflammatory, antioxidant, hepatoprotective, and antidiabetic effects. The main objective of this study was to examine the effects of micelle silymarin on the performance, egg quality, blood profile, and absorption rate of silymarin in laying hens. In experiment 1: 288 Hy-Line brown laying hens, 28 wk old, were utilized for this experiment. The hens were randomly allocated into 3 dietary treatment groups, with each group comprising eight replicates of 12 hens, each housed in individual pens with access to feed and water. Over a 12-wk feeding trial, the hens were provided with a basal diet supplemented with different levels of MS: 0, 0.03, and 0.06%. In experiment 2: For this experiment, 192 Hy-Line Brown laying hens were divided into 2 dietary treatment groups, with each group comprising eight replications of 12 hens. The dietary treatments were: TRT1, basal diet + powder silymarin 4%; TRT2, basal diet + MS 4%. From the first experiment, the findings revealed that incorporating micelle silymarin (MS) into the hens' diet significantly increased egg weight at wk 6 (P < 0.05). Similarly, at wk 12 and throughout the entire experiment, significant effects were observed on downgraded egg count, egg production, egg weight, and feed conversion ratio (FCR) (P < 0.05). Moreover, Haugh Units (HU) and albumen height showed a linear improvement (P < 0.05) at wk 4 with MS supplementation. Furthermore, there was a linear increase in egg yolk color, albumen height, and eggshell thickness at wk 8 with MS supplementation (P < 0.05). Furthermore, a layers-fed diet supplemented with MS showed a linear increase (P < 0.05) in HU, egg weight, yolk color, albumen height, eggshell strength, and eggshell thickness in wk 12. Regarding blood profile parameters, the study revealed linear reductions for aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) (P < 0.05), whereas there was a tendency for albumin, triglyceride, and cholesterol (P < 0.10). In the second experiment, it was observed that the blood absorption rate of silymarin was higher in TRT2 compared to TRT1 at 2- and 4-h intervals following administration. In summary, increasing MS supplementation in the diet of laying hens enhanced egg production, egg quality, and blood profile. Additionally, silymarin absorption was higher in its micelle form than in its powder form.
Collapse
Affiliation(s)
- Golam Sagir Ahammad
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - Se Yeon Jang
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea.
| |
Collapse
|
4
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
5
|
Ahammad GS, Jeon YH, Kim IH. Assessing the influence of micelle silymarin on laying hens' performance, egg quality, water loss and blood profile. J Anim Physiol Anim Nutr (Berl) 2024; 108:1326-1335. [PMID: 38685593 DOI: 10.1111/jpn.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Micelle silymarin (MS) is known for its various beneficial properties, including antiswelling, antioxidant, hepatoprotective and antidiabetic effects. The primary goal of this research was to investigate how MS impacts the performance, egg quality, water loss and blood profile of laying hens. 288 Hy-Line brown laying hens, 28 weeks in age, were utilized for this experiment. The hens were randomly allocated into three dietary treatment groups, with each group comprising eight replicates of 12 hens, each housed in individual pens with access to feed and water. Over a 12-week feeding trial, the hens were provided with a basal diet supplemented with different levels of MS: 0%, 0.03% and 0.06%. The results indicated that the inclusion of MS in the hens' diet did not have a significant impact on their performance (p > 0.05). However, Haugh units, egg weight and eggshell strength showed a linear improvement (p < 0.05) throughout the entire trial period with MS supplementation. Furthermore, there was a linear decrease in egg yolk colour and eggshell thickness showed linear improvements (p < 0.05), particularly during Week 8, with MS supplementation. Moreover, layers fed diet supplemented with MS showed a linear increased (p < 0.05) in albumen height and eggshell thickness in Week 12. In addition, egg water loss during Week 12, the third day of incubation, linearly decreased as an effect of the increasing level of the MS in the laying hen's diet (p < 0.05). Regarding blood profile parameters, the study revealed a tendency for alkaline phosphatase to decrease, whereas aspartate aminotransferase and cholesterol levels were linearly decreased (p < 0.05). In summary, increasing the level of MS supplementation in the diet of laying hens appeared to be beneficial in improving egg quality, slight improvement for egg water loss and certain aspects of blood profile parameters, without adversely affecting the hens' growth performance.
Collapse
Affiliation(s)
- Golam S Ahammad
- Department of Animal Resource and Science, Dankook University, Choongnam, South Korea
| | - Yong H Jeon
- Department of Animal Resource and Science, Dankook University, Choongnam, South Korea
| | - In H Kim
- Department of Animal Resource and Science, Dankook University, Choongnam, South Korea
| |
Collapse
|
6
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
Toghroli F, Noorbakhsh MF, Sajedianfard J. The Effects of Silymarin on Calcium Chloride-Induced Arrhythmia in Male Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:6720138. [PMID: 39247668 PMCID: PMC11380717 DOI: 10.1155/2024/6720138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Antioxidants play an important role in protecting cardiac arrhythmias. Silymarin, strong antioxidant, is effective in reducing the complications caused by arrhythmias. This study was conducted to determine the effect of silymarin on the prevention and treatment of calcium chloride-induced arrhythmia. In total, 48 male rats were randomly divided into six groups: the first control group for acute administration received intravenous injection of 0.2 mL of dimethylsulfoxide, a cosolvent, immediately after induction of arrhythmia; the second control group for chronic administration, daily gavage of dimethylsulfoxide for 2 weeks before induction of arrhythmia; acute silymarin group, 100 mg/kg intravenous, immediately after the occurrence of arrhythmia; chronic silymarin group, daily gavage of 50 mg/kg for 2 weeks before induction of arrhythmia; amiodarone standard treatment, 5 mg/kg intravenous, immediately after induction of arrhythmia; and quinidine standard treatment, 10 mg/kg intravenous, immediately after induction of arrhythmia. Calcium chloride (140 mg/kg, i.v.) was used to induce arrhythmia. Electrocardiogram was recorded and monitored by PowerLab™ system. The incidence rates of premature ventricular beat (PVB), ventricular tachycardia (VT), and ventricular fibrillation (VF) were calculated. The antiarrhythmic effect of silymarin was observed with a significant decrease in the incidence of premature ventricular beat (22.56 ± 1.04%, P < 0.001), ventricular tachycardia (34.150 ± 1.59%, P < 0.001), and ventricular fibrillation (24.31 ± 1.02%, P < 0.001) compared with the control group (100%). These effects were comparable to antiarrhythmic drugs such as quinidine (29.23% ± 1.24%, 52.23% ± 1.13%, 66.31% ± 1.81%) and amiodarone (22.91% ± .72%, 41.09% ± 1.66%, 61.59% ± 1.11%). Silymarin exerts a potent antioxidant effect, thereby mitigating the risk of VT, VF, and PVC.
Collapse
Affiliation(s)
- Fereshteh Toghroli
- Department of Basic Sciences School of Veterinary Medicine Shiraz University, Shiraz, Iran
| | | | - Javad Sajedianfard
- Department of Basic Sciences School of Veterinary Medicine Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Andani FM, Talebi-Garakani E, Ashabi G, Ganbarirad M, Hashemnia M, Sharifi M, Ghasemi M. Exercise-activated hepatic autophagy combined with silymarin is associated with suppression of apoptosis in rats subjected to dexamethasone induced- fatty liver damage. Mol Biol Rep 2024; 51:928. [PMID: 39172304 DOI: 10.1007/s11033-024-09844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
AIM There is a need for effective treatments for non-alcoholic fatty liver disease (NAFLD) that are economically inexpensive, and have few side effects. The present study aimed to investigate exercise training and silymarin on hepatocyte death factors in rats with liver damage. METHODS Forty-nine male Wistar rats were assigned to seven groups: sedentary control, fatty liver control (DEX), fatty liver + high-intensity interval training (HIIT), fatty liver + HIIT + silymarin (HIIT + SILY), fatty liver + continuous training (CT), fatty liver + CT + silymarin (CT + SILY), and fatty liver + silymarin (SILY). A subcutaneous injection of dexamethasone for 7 days was used to induce fatty liver in rats. Masson's trichrome and hematoxylin-eosin staining were done to evaluate hepatic injury. The hepatocyte apoptosis was determined by TUNEL assay. Real-Time PCR was conducted to evaluate the gene expressions of caspase-9, adenosine monophosphate-activated protein kinase (AMPKα1), mitofusin 2 (Mfn2), and damage-regulated autophagy modulator (DRAM). Liver tissue changes and serum levels of liver enzymes were also evaluated. RESULTS Liver apoptosis was decreased in the CT, HIIT, HIIT + SILY and CT + SILY groups compared to the DEX group. Both continuous and high-intensity training models produced beneficial alterations in liver morphology and hepatic injuries that were significant in exercise training + silymarin group. This impact was accompanied by increased AMPKα1 and DRAM gene expression and decreased caspase-9 and Mfn2 gene expression. Liver enzyme levels were high in the DEX group and treatment with silymarin significantly reduced it. CONCLUSION Silymarin supplementation combined with interval or continuous training substantially improves DEX-induced hepatic steatosis and hepatocyte injury mostly through suppressing liver apoptosis and upregulating autophagy, which may provide a novel perspective for NAFLD treatment.
Collapse
Affiliation(s)
- Fatemeh Mokhtari Andani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Talebi-Garakani
- Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Mazandaran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ganbarirad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Spartali C, Psarra AMG, Marras SI, Tsioptsias C, Georgantopoulos A, Kalousi FD, Tsakalof A, Tsivintzelis I. Silybin-Functionalized PCL Electrospun Fibrous Membranes for Potential Pharmaceutical and Biomedical Applications. Polymers (Basel) 2024; 16:2346. [PMID: 39204566 PMCID: PMC11359364 DOI: 10.3390/polym16162346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Silybin is a natural flavonolignan with potential anticancer, antioxidant, and hepatoprotective properties. In the present study, various loadings of silybin (1, 3, and 5 wt%) were encapsulated in poly-ε-caprolactone (PCL) fibers by electrospinning, in order to produce new pharmaceutical composites with improved bioactive and drug delivery properties. The morphological characteristics of the composite fibrous structures were evaluated by scanning electron microscopy (SEM), and the encapsulation efficiency and the release rate of silybin were quantified using a UV-Vis spectrophotometer. The analysis of the membranes' thermal behavior by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed the existence of interaction between PCL and silybin. An investigation of the cytocompatibility of the composite membranes revealed that normal cells displayed an unimpeded proliferation in the respective silybin concentrations; however, tumor cell growth demonstrated a dose-dependent inhibition. Furthermore, an effective antioxidant activity against hydrogen peroxide-induced oxidative stress in HEK-293 cells was observed for the prepared electrospun fibrous mats.
Collapse
Affiliation(s)
- Christina Spartali
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Sotirios I. Marras
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Costas Tsioptsias
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Ioannis Tsivintzelis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Guo Y, Cheng X, Huang C, Gao J, Shen W. Frataxin Loss Promotes Angiotensin II-Induced Endothelial-to-Mesenchymal Transition. J Am Heart Assoc 2024; 13:e034316. [PMID: 39023059 DOI: 10.1161/jaha.124.034316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The metabolic flexibility of endothelial cells is linked to their phenotypic plasticity. Frataxin is critical in determining the iron metabolism and fate of endothelial cells. This study aimed to investigate frataxin-mediated metabolic remodeling during the endothelial-to-mesenchymal transition (EndoMT). METHODS AND RESULTS Endothelial cell-specific frataxin knockout and frataxin mutation mice were subjected to angiotensin II to induce hypertension. EndoMT and cardiac fibrosis were assessed using histological and protein expression analyses. Fatty acid oxidation (FAO) in microvascular endothelial cells was measured using a Seahorse XF96 analyzer. We showed that inhibition of FAO accompanies angiotensin II-induced EndoMT. Frataxin knockout mice promote EndoMT, associated with increased cardiac fibrosis following angiotensin II infusion. Angiotensin II reduces frataxin expression, which leads to mitochondrial iron overload and subsequent carbonylation of sirtuin 3. In turn, carbonylated sirtuin 3 contributes to the acetylated frataxin at lysine 189, making it more prone to degradation. The frataxin/sirtuin 3 feedback loop reduces hydroxyl-CoA dehydrogenase α subunit-mediated FAO. Additionally, silymarin is a scavenger of free radicals, restoring angiotensin II-induced reduction of FAO activity and sirtuin 3 and frataxin expression, improving EndoMT both in vitro and in vivo. Furthermore, frataxin mutation mice showed suppressed EndoMT and improved cardiac fibrosis. CONCLUSIONS The frataxin/sirtuin 3 feedback loop has the potential to attenuate angiotensin II-induced EndoMT by improving FAO.
Collapse
Affiliation(s)
- Yuetong Guo
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xingyi Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chenglin Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
11
|
Dhande D, Dhok A, Anjankar A, Nagpure S. Silymarin as an Antioxidant Therapy in Chronic Liver Diseases: A Comprehensive Review. Cureus 2024; 16:e67083. [PMID: 39286715 PMCID: PMC11404857 DOI: 10.7759/cureus.67083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Chronic liver diseases (CLDs) such as chronic hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD) present significant global health challenges due to their high morbidity and mortality rates. Silymarin, a flavonoid complex derived from the seeds of the milk thistle plant (Silybum marianum), has been extensively studied for its hepatoprotective properties. This review aims to evaluate the role of silymarin as an antioxidant therapy in managing CLDs. We explore its efficacy, safety, and mechanisms of action through a comprehensive analysis of clinical trials and scientific studies. Silymarin offers protective effects on the liver and shows promise in improving liver function and histological outcomes in various chronic liver conditions. Despite the promising results, further research is needed to fully elucidate the optimal dosing regimens, long-term safety, and potential drug interactions of silymarin. This review underscores the therapeutic potential of silymarin in CLDs and provides a foundation for future studies aimed at enhancing its clinical application.
Collapse
Affiliation(s)
- Devshree Dhande
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Archana Dhok
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | |
Collapse
|
12
|
Dinić S, Arambašić Jovanović J, Uskoković A, Jovanović A, Grdović N, Rajić J, Đorđević M, Sarić A, Bugarski B, Vidaković M, Mihailović M. Liposome Encapsulation Enhances the Antidiabetic Efficacy of Silibinin. Pharmaceutics 2024; 16:801. [PMID: 38931922 PMCID: PMC11207473 DOI: 10.3390/pharmaceutics16060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Silibinin has considerable therapeutic potential for the treatment of diabetes through anti-inflammatory, antioxidant, and immunomodulatory properties. However, the therapeutic application of silibinin is quite limited due to its poor bioavailability. In the present study, an attempt was made to improve the antidiabetic efficacy of silibinin by its encapsulation in liposomal vesicles. The liposomes with a high encapsulation efficiency of silibinin (96%) and a zeta potential of -26.2 ± 0.6 mV were developed and studied using nicotinamide/streptozotocin-induced diabetic rats. Administration of silibinin-loaded liposomes to diabetic rats lowered glucose levels, increased insulin levels, and improved pancreatic islet architecture. The anti-inflammatory effect of silibinin-loaded liposomes was demonstrated by a decrease in serum C-reactive protein (CRP) levels and a reduced deposition of collagen fibers in the islets of diabetic rats. Furthermore, silibinin-loaded liposomes were more efficient in lowering glucose, alanine transaminase, triglyceride, and creatinine levels in diabetic rats than pure silibinin. In addition, silibinin-loaded liposomes had a significantly better effect on beta-cell mass and Glut2 glucose receptor distribution in diabetic islets than pure silibinin. The present results clearly show that liposome encapsulation of silibinin enhances its antidiabetic efficacy, which may contribute to the therapeutic benefit of silibinin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Ana Sarić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| |
Collapse
|
13
|
Yavuz A, Küçük A, Ergörün Aİ, Dursun AD, Yiğman Z, Alkan M, Arslan M. Evaluation of the efficacy of silymarin and dexmedetomidine on kidney and lung tissue in the treatment of sepsis in rats with cecal perforation. Exp Ther Med 2024; 27:242. [PMID: 38655036 PMCID: PMC11036365 DOI: 10.3892/etm.2024.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome that develops in the host against microorganisms. This response develops away from the primary infection site and results in end-organ damage. The present study aimed to investigate the protective and therapeutic effects on lung and kidney tissue of silymarin (S) and dexmedetomidine (DEX) applied 1 h before and after sepsis induced by the cecal ligation and puncture (CLP) method in rats. A total of 62 rats was randomly divided into eight groups: i) Control (n=6); ii) cecal perforation (CLP; n=8); iii) S + CLP (n=8; S + CLP; S administered 1 h before CPL); iv) CLP + S (n=8; S administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX administered 1 h after CLP); vii) SD + CLP (n=8; S and DEX administered 1 h before CLP) and viii) CLP + SD (n=8; S and DEX administered 1 h after CLP). After the cecum filled with stool, it was tied with 3/0 silk under the ileocecal valve and the anterior surface of the cecum was punctured twice with an 18-gauge needle. A total of 100 mg/kg silymarin and 100 µg/kg DEX were administered intraperitoneally to the treatment groups. Lung and kidney tissue samples were collected to evaluate biochemical and histopathological parameters. In the histopathological examination, all parameters indicating kidney injury; interstitial edema, peritubular capillary dilatation, vacuolization, ablation of tubular epithelium from the basement membrane, loss of brush border in the proximal tubule epithelium, cell swelling and nuclear defragmentation; were increased in the CLP compared with the control group. Silymarin administration increased kidney damage, including ablation of tubular epithelium from the basement membrane, compared with that in the CLP group. DEX significantly reduced kidney damage compared with the CLP and silymarin groups. The co-administration of DEX + silymarin decreased kidney damage, although it was not as effective as DEX-alone. To conclude, intraperitoneal DEX ameliorated injury in CLP rats. DEX + silymarin partially ameliorated injury but silymarin administration increased damage. As a result, silymarin has a negative effects with this dosage and DEX has a protective effect. In the present study, it was determined that using the two drugs together had a greater therapeutic effect than silymarin and no differences in the effects were not observed any when the application times of the agents were changed.
Collapse
Affiliation(s)
- Aydin Yavuz
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya 43020, Turkey
| | - Aydan İremnur Ergörün
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Gazi University, Ankara 06510, Turkey
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Research Center, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
14
|
Hassan MAE, Ragab MA, Shazly SA, Ahmed ME, El-Kholany ME, El-Raghi AA. Feasible feeding strategies for sustainable management of serve heat stress conditions: Effect of Milk Thistle extract on growth performance and health status of newly weaned rabbits. J Anim Physiol Anim Nutr (Berl) 2024; 108:778-791. [PMID: 38311824 DOI: 10.1111/jpn.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The trail aimed to explore the effect of dietary supplementation of Milk Thistle (MT) extract on growth performance and health status of growing rabbits exposed to serve heat stress condition, considering the economic efficiency of supplementation. A total of 96 weaned male rabbits were divided into 4 groups (24 rabbits/group). The first group received the basal diet without any supplementation and served as a control (MT0), while 2nd, 3rd and 4th groups supplemented with MT at levels of 5 (MT5), 10 (MT10) and 15 (MT15) g/kg diet, respectively, for 10 consecutive weeks. Both of growth performance and feed utilisation were significantly enhanced by the dietary treatment, the optimum dose of MT was 12 g/kg diet for average daily gain, specific growth rate and performance index. However, it was 13 g/kg diet for feed conversation ratio. The polynomial regression analysis showed that the lowest values of rectal temperature and respiration rate were observed at doses of 11 and 13 g/kg diet respectively. The dressing percentage and the relative weights of liver and total edible giblets were significantly improved by the treatment (p = 0.0416, 0.0112 and 0.0032, respectively), maximising in the MT10 group. The MT10 and MT15 groups showed higher erythrocytes and leucocytes counts and lower levels of urea, creatinine and total cholesterol compared to the control (p < 0.05). Liver functions significantly enhanced in aforementioned two treated groups, the liver ultrastructure represented normal cytoplasmic organelles, and nucleus and mitochondria in MT10 group, while the MT15 group showed hepatocytes with dilated nucleus with most cytoplasmic organelles appeared well organised and normal except few small cytoplasms vacuolated. The levels glutathione, superoxide dismutase, catalase and total antioxidant capacity as well as immunoglobulin M, and immunoglobulin G significant improved in the MT-Treated groups compared to the control (p < 0.05). Economically, MT supplemented diets improved the net revenue of fattened rabbits during the summer season. In conclusion, the supplementation of MT extract at levels of 10 or 15 g/kg diet enhanced growth performance, feed utilisation, dressing percentage, hemato-biochemical attributes, immunity and redox balance of heat stressed growing rabbits during the hot season.
Collapse
Affiliation(s)
- Mahmoud A E Hassan
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mona A Ragab
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Soheir A Shazly
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mohamed E Ahmed
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mohamed E El-Kholany
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
15
|
Jaffar HM, Al‐Asmari F, Khan FA, Rahim MA, Zongo E. Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases-A comprehensive narrative review. Food Sci Nutr 2024; 12:3097-3111. [PMID: 38726410 PMCID: PMC11077231 DOI: 10.1002/fsn3.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Liver diseases, encompassing conditions such as cirrhosis, present a substantial global health challenge with diverse etiologies, including viral infections, alcohol consumption, and non-alcoholic fatty liver disease (NAFLD). The exploration of natural compounds as therapeutic agents has gained traction, notably the herbal remedy milk thistle (Silybum marianum), with its active extract, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations. It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity. Silymarin, a natural compound with antioxidant properties, anti-inflammatory effects, and antifibrotic activity, has shown potential in treating liver damage caused by alcohol, NAFLD, drug-induced toxicity, and viral hepatitis. Legalon® is a top-rated medication with excellent oral bioavailability, effective absorption, and therapeutic effectiveness. Its active component, silymarin, has antioxidant and hepatoprotective properties, Eurosil 85® also, a commercial product, has lipophilic properties enhanced by special formulation processes. Silymarin, during clinical trials, shows potential improvements in liver function, reduced mortality rates, and alleviation of symptoms across various liver disorders, with safety assessments showing low adverse effects. Overall, silymarin emerges as a promising natural compound with multifaceted hepatoprotective properties and therapeutic potential in liver diseases.
Collapse
Affiliation(s)
- Hafiza Madiha Jaffar
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Fahad Al‐Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food SciencesKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Faima Atta Khan
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Eliasse Zongo
- Laboratoire de Recherche et d'Enseignement en Santé et Biotechnologies AnimalesUniversité Nazi BONIBobo DioulassoBurkina Faso
| |
Collapse
|
16
|
Mohammadi S, Ashtary-Larky D, Asbaghi O, Farrokhi V, Jadidi Y, Mofidi F, Mohammadian M, Afrisham R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose-response meta-analysis. Phytother Res 2024; 38:2572-2593. [PMID: 38475999 DOI: 10.1002/ptr.8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
It is suggested that supplementation with silymarin (SIL) has beneficial impacts on kidney and liver functions. This systematic review and dose-response meta-analysis assessed the impact of SIL administration on certain hepatic, renal, and oxidative stress markers. A systematic search was conducted in various databases to identify relevant trials published until January 2023. Randomized controlled trials (RCTs) that evaluated the effects of SIL on kidney and liver markers were included. A random-effects model was used for the analysis and 41 RCTs were included. The pooled results indicated that SIL supplementation led to a significant reduction in serum levels of alkaline phosphatase, alanine transaminase, creatinine, and aspartate aminotransferase, along with a substantial elevation in serum glutathione in the SIL-treated group compared to their untreated counterparts. In addition, there was a nonsignificant decrease in serum levels of gamma-glutamyl transferase, malondialdehyde (MDA), total bilirubin, albumin (Alb), total antioxidant capacity, and blood urea nitrogen. Sub-group analyses revealed a considerable decline in MDA and Alb serum values among SIL-treated participants with liver disease in trials with a longer duration (≥12 weeks). These findings suggest that SIL may ameliorate certain liver markers with potential hepatoprotective effects, specifically with long-term and high-dose supplementation. However, its nephroprotective effects and impact on oxidative stress markers were not observed. Additional high-quality RCTs with longer durations are required to determine the clinical efficacy of SIL supplementation on renal and oxidative stress markers.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mohammadian
- Department of Exercise Physiology, Islamic Azad University of Ahvaz, Ahvaz, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Patel R, Kumar S, Varghese JF, Singh N, Singh RP, Yadav UCS. Silymarin prevents endothelial dysfunction by upregulating Erk-5 in oxidized LDL exposed endothelial cells. Microvasc Res 2024; 153:104667. [PMID: 38307406 DOI: 10.1016/j.mvr.2024.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using in vitro and in vivo models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In in-vivo experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 μg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Rohit Patel
- Metabolic Disorders and Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjay Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Johnna F Varghese
- Metabolic Disorders and Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Navneendra Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi 110062, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
18
|
Mohammadi S, Asbaghi O, Afrisham R, Farrokhi V, Jadidi Y, Mofidi F, Ashtary-Larky D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose-Response Meta-Analysis. Antioxidants (Basel) 2024; 13:390. [PMID: 38671838 PMCID: PMC11047742 DOI: 10.3390/antiox13040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
It has been suggested that silymarin (SIL) supplementation has positive effects on cardiovascular health and reduces the risk of cardiometabolic syndrome (CMS). This systematic review and dose-response meta-analysis assessed the impacts of SIL administration on cardiovascular risk factors. A systematic search of multiple databases was performed to identify eligible controlled trials published up to January 2023. The analysis used a random-effects model and included 33 trials with 1943 participants. It was revealed that SIL supplementation led to a notable reduction in serum levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -21.68 mg/dL, 95% CI: -31.37, -11.99; p < 0.001), diastolic blood pressure (DBP) (WMD: -1.25 mmHg; 95% CI: -2.25, -0.26; p = 0.013), total cholesterol (TC) (WMD: -13.97 mg/dL, 95% CI: -23.09, -4.85; p = 0.003), triglycerides (TG) (WMD: -26.22 mg/dL, 95% CI: -40.32, -12.12; p < 0.001), fasting insulin (WMD: -3.76 mU/mL, 95% CI: -4.80, -2.72; p < 0.001), low-density lipoprotein (LDL) (WMD: -17.13 mg/dL, 95% CI: -25.63, -8.63; p < 0.001), and hemoglobin A1C (HbA1c) (WMD: -0.85%, 95% CI: -1.27, -0.43; p < 0.001) in the SIL-treated groups compared to their untreated counterparts. In addition, there were no substantial differences in body mass index (BMI), systolic blood pressure (SBP), C-reactive protein (CRP), body weight, and high-density lipoprotein (HDL) between the two groups. These outcomes suggest that SIL consumption reduces certain CMS risk factors and has favorable impacts on lipid and glycemic profiles with potential hypotensive effects. These findings should be supported by additional trials with larger sample sizes and longer durations.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| |
Collapse
|
19
|
Salem MB, Mohammed DM, Hammam OA, Elzallat M. Mitigation of intrahepatic cholestasis induced by 17α-ethinylestradiol via nanoformulation of Silybum marianum L. BMC Complement Med Ther 2024; 24:51. [PMID: 38263002 PMCID: PMC10804614 DOI: 10.1186/s12906-024-04351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Cholestasis is an important predisposing factor for hepatocyte damage, liver fibrosis, primary biliary cirrhosis, and even liver failure. Silybum marianum L. (SM) plant is used in teas or eaten in some countries due to its antioxidant and hepatoprotective properties. Because of its low and poor oral bioavailability, so we improve the therapeutic activity of Silybum marianum L. extract (SM) by studying the potential effects of nanoformulation of Silybum marianium L. extract (nano-SM) on 17α-ethinylestradiol (EE)-induced intrahepatic cholestasis. METHODS Thirty female Sprague-Dawley rats were divided into 5 groups (6 rats/group). Group I: Rats were received the treatment vehicle and served as normal group. Group II:Rats were injected daily with EE (10 mg/kg) for five successive days. Group III-V: Rats were injected daily with EE (10 mg/kg) and treated with either Ursodeoxycholic acid (UDCA) (40 mg/kg), SM (100 mg/kg) and nano-SM (100 mg/kg) orally once/day throughout the trialfor five successive days, respectively. RESULTS Nano-SM greatly dampened the increase in serum levels of total and direct bilirubin, alanine aminotransaminase, aspartate aminotransaminase, and alkaline phosphatase caused by EE. Furthermore, nano-SM increased the hepatic contents of reduced glutathione (GSH) and catalase (CAT) and also upregulated the relative hepatic gene expressions of Rho-kinase (ROCK-1), myosin light chain kinase (MLCK), and myosin phosphatase target subunit (MYPT1) compared to the EE-induced group. Administration of nano-SM reduced hepatic lipid peroxidation and downregulated the relative hepatic expressions of the nuclear factor-kappa B (NF-ҡB) and interleukin-1β (IL-1β). In addition, nano-SM improved the histopathological changes induced by EE. CONCLUSION Nano-SM possessed a superior effect over SM, which can be considered an effective protective modality against EE-induced cholestatic liver injury through its antioxidant, anti-inflammatory activities, and enhancing bile acid (BA) efflux.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| |
Collapse
|
20
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Allahyari P, Ahmadzadeh M, Vahid F, Gholamalizadeh M, Shafaei H, Shekari S, Ardekanizadeh NH, Shafiee F, Majidi N, Akbari ME, Doaei S, Goodarzi MO. The association of dietary antioxidant index (DAI) with breast cancer among Iranian women. INT J VITAM NUTR RES 2023; 93:483-489. [PMID: 35240869 DOI: 10.1024/0300-9831/a000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have reported that dietary antioxidants can influence the risk of breast cancer (BC). Therefore, this study aimed to investigate the association of dietary antioxidant index (DAI) with BC among Iranian women. This case-control study was conducted on 180 women with breast cancer and 360 healthy women who were referred to the cancer clinic of Shohadaye Tajrish Hospital in Tehran, Iran. A 168-item validated food frequency questionnaire (FFQ) was used to assess dietary intake. The DAI score was calculated based on the intake of antioxidant vitamins and minerals derived from the FFQ. The control group had a significantly higher intake of vitamin D (1.79±1.56 vs. 1.05±0.84 μg/d; P=0.01) and lower intake of calorie (2315±1066 vs. 2737±925 kcal/d; P=0.01), carbohydrate (311±170 vs. 402±124 g/d; P=0.01), iron (15.4±12.1 vs. 19.7±6.4 mg/d; P=0.01), thiamine (1.5±0.7 vs. 2.3±0.9 mg/d; P=0.01), niacin (18.2±9.2 vs. 24.3±7.9 mg/d; P=0.01), folic acid (465±308.7 vs. 673±205.2 μg/d; P=0.01), and selenium (82.6±41.7 vs. 98.7±40.8 μg/d; P=0.01) compared to the case group. No significant association was found between DAI with breast cancer after adjustments for age. DAI had a negative association with breast cancer after additional adjustments for BMI, the number of pregnancies, duration of breastfeeding, menopause age, and total energy intake (OR: 0.91, 95% CI: 0.90-.93, and all P<0.001). The present study identified a negative association between DAI and the risk of BC, indicating the importance of antioxidants in preventing BC. Longitudinal studies should be conducted to confirm this association.
Collapse
Affiliation(s)
- Pooneh Allahyari
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Population Health Department, Nutrition and Health Research Group, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Shafaei
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazanin Majidi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Saeid Doaei
- Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
22
|
Chou P, Lu Y, Sheu M. Phellinus merrillii extracts induce apoptosis of vascular smooth muscle cells via intrinsic and extrinsic pathways. Food Sci Nutr 2023; 11:7900-7909. [PMID: 38107129 PMCID: PMC10724586 DOI: 10.1002/fsn3.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023] Open
Abstract
Restenosis frequently occurs after balloon angioplasty. Percutaneous coronary intervention (PCI)-induced artery damage is a significant part of triggering restenosis of the vascular smooth muscles (VSMC). This study aimed to study how ethanol extract of Phellinus merrillii (EPM) affected balloon injury-induced overgrowth of VSMC, indicating neointima formation. Firstly, our results demonstrated that EPM notably decreased VSMC viability. A fragmentation assay and Annexin V/Propidium Iodide apoptosis assay showed that higher doses of EPM significantly induced the apoptosis of VSMC after 24 h of exposure. Total protein extracted from VSMC treated with EPM in various time and concentration periods was then conducted in Western blotting analysis. Our data demonstrated that EPM substantially elevated the p53, p21, Fas, Bax, p-p38, and active caspase-3 protein expressions. The results indicated that EPM induces VSMC apoptosis via intrinsic and extrinsic pathways. Also, our results demonstrated that EPM effectively attenuated the balloon injury-induced neointima formation. In conclusion, the information offers a mechanism of EPM in inducing the VSMC apoptosis, thus as a potential interference for restenosis.
Collapse
Affiliation(s)
- Pei‐Yu Chou
- Department of NursingNational Chi Nan UniversityNantouTaiwan
| | - Ya‐Ting Lu
- Department of Hematology & OncologyTainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation)Tainan CityTaiwan
| | - Ming‐Jyh Sheu
- Department of PharmacyChina Medical University, Beigang HospitalYunlin CountyTaiwan
- School of PharmacyChina Medical UniversityTaichung CityTaiwan
| |
Collapse
|
23
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
24
|
Li Z, Zhu JF, Ouyang H. Progress on traditional Chinese medicine in improving hepatic fibrosis through inhibiting oxidative stress. World J Hepatol 2023; 15:1091-1108. [PMID: 37970620 PMCID: PMC10642434 DOI: 10.4254/wjh.v15.i10.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatic fibrosis is a common pathological process that occurs in the development of various chronic liver diseases into cirrhosis and liver cancer, characterized by excessive deposition of the extracellular matrix. In the past, hepatic fibrosis was thought to be a static and irreversible pathological process. In recent years, with the rapid development of molecular biology and the continuous in-depth study of the liver at the microscopic level, more and more evidence has shown that hepatic fibrosis is a dynamic and reversible process. Therefore, it is particularly important to find an effective, simple, and inexpensive method for its prevention and treatment. Traditional Chinese medicine (TCM) occupies an important position in the treatment of hepatic fibrosis due to its advantages of low adverse reactions, low cost, and multi-target effectiveness. A large number of research results have shown that TCM monomers, single herbal extracts, and TCM formulas play important roles in the prevention and treatment of hepatic fibrosis. Oxidative stress (OS) is one of the key factors in the occurrence and development of hepatic fibrosis. Therefore, this article reviews the progress in the understanding of the mechanisms of TCM monomers, single herbal extracts, and TCM formulas in preventing and treating hepatic fibrosis by inhibiting OS in recent years, in order to provide a reference and basis for drug therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhen Li
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun-Feng Zhu
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hao Ouyang
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Kabutey A, Herák D, Mizera Č. Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds. Foods 2023; 12:3636. [PMID: 37835289 PMCID: PMC10573014 DOI: 10.3390/foods12193636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses.
Collapse
Affiliation(s)
- Abraham Kabutey
- Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, 165 20 Prague, Czech Republic; (D.H.); (Č.M.)
| | | | | |
Collapse
|
26
|
Banaee M, Impellitteri F, Multisanti CR, Sureda A, Arfuso F, Piccione G, Faggio C. Evaluating Silymarin Extract as a Potent Antioxidant Supplement in Diazinon-Exposed Rainbow Trout: Oxidative Stress and Biochemical Parameter Analysis. TOXICS 2023; 11:737. [PMID: 37755747 PMCID: PMC10535037 DOI: 10.3390/toxics11090737] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
This study aimed to investigate the effects of diazinon on fish, focusing on hepatotoxic biomarkers and the potential protective effects of silymarin supplementation. One hundred eighty rainbow trout were randomly assigned to four groups: control, diazinon exposed (0.1 mg L-1), silymarin supplemented (400 mg kg-1), and diazinon + silymarin. Blood samples and liver tissue were collected after 7, 14, and 21 days of exposure to analyze biochemical parameters and oxidative biomarkers. Diazinon exposure in fish resulted in liver damage, as indicated by increased antioxidant enzyme activities in the hepatocytes. Silymarin showed the potential to mitigate this damage by reducing oxidative stress and restoring enzyme activities. Nevertheless, diazinon increased creatine phosphokinase activity, which may not be normalized by silymarin. Exposure to diazinon increased glucose, triglyceride, and cholesterol levels, whereas total protein, albumin, and globulin levels were significantly decreased in fish. However, silymarin controlled and maintained these levels within the normal range. Diazinon increased creatinine, urea, uric acid, and ammonia contents. Silymarin could regulate creatinine, urea, and uric acid levels while having limited effectiveness on ammonia excretion. Furthermore, diazinon increased malondialdehyde in hepatocytes, whereas administration of silymarin could restore normal malondialdehyde levels. Overall, silymarin showed potential as a therapeutic treatment for mitigating oxidative damage induced by diazinon in fish, but its effectiveness on creatine phosphokinase, glutathione reductase, and ammonia may be limited.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 6361663973, Iran
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
27
|
Zahedi E, Sadr SS, Sanaeierad A, Roghani M. Valproate-induced murine autism spectrum disorder is associated with dysfunction of amygdala parvalbumin interneurons and downregulation of AMPK/SIRT1/PGC1α signaling. Metab Brain Dis 2023; 38:2093-2103. [PMID: 37184727 DOI: 10.1007/s11011-023-01227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that is characterized by difficulty in social behavior and restricted behaviors. Also, in ASD, several accompanying disorders such as anxiety are observed. Considering the important role of amygdala in the pathophysiology of ASD, the present study focused on the neuronal changes and it possible signaling pathway in amygdala. After prenatal exposure to valproate (VPA; 600 mg/kg, i.p, on embryonic day 12.5), amount of ROS, MMP, caspase-3 activity, AMPK, SIRT1 and PGC1α proteins, and parvalbumin interneurons in the amygdala were assessed following evaluation of ASD and anxiety-like behaviors. Amygdala analysis revealed ROS accumulation and decreased MMP in autistic rats. In addition, caspase-3 activation elevated and immunoreactivity for parvalbumin interneurons decreased. These were accompanied by anxiety and autistic-like behaviors in open field test, elevated zero maze and U-Shaped 2 Choice Field maze. Also, our data showed that in the valproate group, protein levels of AMPK, SIRT1 and PGC1α reduced. Collectively, our results indicate that prenatal exposure to valproate leads to anxiety and autistic-like behaviors, partly through its targeting amygdala parvalbumin interneurons dysfunction and this might be affected by disturbed AMPK/SIRT1/PGC1α signaling pathway.
Collapse
Affiliation(s)
- Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
28
|
Jobe MC, Mthiyane DMN, Dludla PV, Mazibuko-Mbeje SE, Onwudiwe DC, Mwanza M. Pathological Role of Oxidative Stress in Aflatoxin-Induced Toxicity in Different Experimental Models and Protective Effect of Phytochemicals: A Review. Molecules 2023; 28:5369. [PMID: 37513242 PMCID: PMC10386527 DOI: 10.3390/molecules28145369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Doctor M N Mthiyane
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | | - Damian C Onwudiwe
- Department of Chemistry, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Department of Animal Health, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
29
|
Mohammed SAD, Liu H, Baldi S, Wang Y, Chen P, Lu F, Liu S. Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats. Sci Rep 2023; 13:10944. [PMID: 37414816 PMCID: PMC10326066 DOI: 10.1038/s41598-023-38020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.
Collapse
Affiliation(s)
- Shadi A D Mohammed
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana'a, Yemen
| | - Hanxing Liu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
30
|
Khurm M, Guo Y, Wu Q, Zhang X, Ghori MU, Rasool MF, Imran I, Saqib F, Wahid M, Guo Z. Conocarpus lancifolius (Combretaceae): Pharmacological Effects, LC-ESI-MS/MS Profiling and In Silico Attributes. Metabolites 2023; 13:794. [PMID: 37512501 PMCID: PMC10385132 DOI: 10.3390/metabo13070794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
In folklore medicine, Conocarpus lancifolius is used to treat various illnesses. The main objective of this study was a comprehensive investigation of Conocarpus lancifolius leaf aqueous extract (CLAE) for its antioxidant, cardioprotective, anxiolytic, antidepressant and memory-enhancing capabilities by using different in vitro, in vivo and in silico models. The in vitro experimentation revealed that CLAE consumed an ample amount of total phenolics (67.70 ± 0.15 µg GAE/mg) and flavonoids (47.54 ± 0.45 µg QE/mg) with stronger antiradical effects through DPPH (IC50 = 16.66 ± 0.42 µg/mL), TAC (77.33 ± 0.41 µg AAE/mg) and TRP (79.11 ± 0.67 µg GAE/mg) assays. The extract also displayed suitable acetylcholinesterase (AChE) inhibitory (IC50 = 110.13 ± 1.71 µg/mL) activity through a modified Ellman's method. The toxicology examination presented no mortality or any signs of clinical toxicity in both single-dose and repeated-dose tests. In line with the cardioprotective study, the pretreatment of CLAE was found to be effective in relieving the isoproterenol (ISO)-induced myocardial injury in rats by normalizing the heart weight index, serum cardiac biomarkers, lipid profile and various histopathological variations. In the noise-stress-induced model for behavior attributes, the results demonstrated that CLAE has the tendency to increase the time spent in the central zone and elevated open arms in the open field and elevated plus maze tests (examined for anxiety assessment), reduced periods of immobility in the forced swimming test (for depression) and improved recognition and working memory in the novel object recognition and Morris water maze tests, respectively. Moreover, the LC-ESI-MS/MS profiling predicted 53 phytocompounds in CLAE. The drug-likeness and ADMET analysis exhibited that the majority of the identified compounds have reasonable physicochemical and pharmacokinetic profiles. The co-expression of molecular docking and network analysis indicated that top-ranked CLAE phytoconstituents act efficiently against the key proteins and target multiple signaling pathways to exert its cardiovascular-protectant, anxiolytic, antidepressant and memory-enhancing activity. Hence, this artifact illustrates that the observed biological properties of CLAE elucidate its significance as a sustainable source of bioactive phytochemicals, which appears to be advantageous for pursuing further studies for the development of new therapeutic agents of desired interest.
Collapse
Affiliation(s)
- Muhammad Khurm
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuting Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Wu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinxin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Muhammad Umer Ghori
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
31
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
32
|
Janković N, Tadić J, Milović E, Marković Z, Jeremić S, Petronijević J, Joksimović N, Borović TT, Abbas Bukhari SN. Investigation of the radical scavenging potential of vanillin-based pyrido-dipyrimidines: experimental and in silico approach. RSC Adv 2023; 13:15236-15242. [PMID: 37213339 PMCID: PMC10194046 DOI: 10.1039/d3ra02469e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
Antioxidants have a significant contribution in the cell protection against free radicals which may induce oxidative stress, and permanently damage the cells causing different disorders such as tumors, degenerative diseases, and accelerated aging. Nowadays, a multi-functionalized heterocyclic framework plays an important role in drug development, and it is of great importance in organic synthesis and medicinal chemistry. Encouraged by the bioactivity of the pyrido-dipyrimidine scaffold and vanillin core, herein, we made an effort to thoroughly investigate the antioxidant potential of the vanillin-based pyrido-dipyrimidines A-E to reveal novel promising free radical inhibitors. The structural analysis and the antioxidant action of the investigated molecules were performed in silico by DFT calculations. Studied compounds were screened for their antioxidant capacity using in vitro ABTS and DPPH assays. All the investigated compounds showed remarkable antioxidant activity, especially derivative A exhibiting inhibition of free radicals at the IC50 value (ABTS and DPPH assay 0.1 mg ml-1 and 0.081 mg ml-1, respectively). Compound A has higher TEAC values implying its stronger antioxidant activity compared to a trolox standard. The applied calculation method and in vitro tests confirmed that compound A has a strong potential against free radicals and may be a novel candidate for application in antioxidant therapy.
Collapse
Affiliation(s)
- Nenad Janković
- University of Kragujevac, Institute for Information Technologies, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Julijana Tadić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade Mike Petrovića Alasa 12-14 11351 Vinča Belgrade Serbia
| | - Emilija Milović
- University of Kragujevac, Institute for Information Technologies, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
- The State University of Novi Pazar 36300 Novi Pazar Serbia
| | | | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 Kragujevac Serbia
| | - Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 Kragujevac Serbia
| | - Teona Teodora Borović
- Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Al Jouf 72388 Saudi Arabia
| |
Collapse
|
33
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Zhang Y, Zeng M, Li B, Zhang B, Cao B, Wu Y, Ye S, Xu R, Zheng X, Feng W. Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin J Nat Med 2023; 21:371-382. [PMID: 37245875 DOI: 10.1016/s1875-5364(23)60454-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 05/30/2023]
Abstract
This study aimed to investigate the effect and mechanisms of Ephedra Herb (EH) extract on adriamycin-induced nephrotic syndrome (NS), providing an experimental basis for the clinical treatment of NS. Hematoxylin and eosin staining, creatinine, urea nitrogen, and kidn injury molecule-1 were used to evaluate the activities of EH extract on renal function. The levels of inflammatory factors and oxidative stress were detected by kits. The levels of reactive oxygen species, immune cells, and apoptosis were measured by flow cytometry. A network pharmacological approach was used to predict the potential targets and mechanisms of EH extract in the treatment of NS. The protein levels of apoptosis-related proteins and CAMKK2, p-CAMKK2, AMPK, p-AMPK, mTOR and p-mTOR in the kidneys were detected by Western blot. The effective material basis of EH extract was screened by MTT assay. The AMPK pathway inhibitor (compound C, CC) was added to investigate the effect of the potent material basis on adriamycin-induced cell injury. EH extract significantly improved renal injury and relieve inflammation, oxidative stress, and apoptosis in rats. Network pharmacology and Western blot results showed that the effect of EH extract on NS may be associated with the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine significantly ameliorated adriamycin-induced NRK-52e cell injury. Methylephedrine also significantly improved the phosphorylation of AMPK and mTOR, which were blocked by CC. In sum, EH extract may ameliorate renal injury via the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine may be one of the material bases of EH extract.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., Zhengzhou 450000, China
| | - Benke Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Yuanyuan Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Shan Ye
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Ruiqi Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., Zhengzhou 450000, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., Zhengzhou 450000, China.
| |
Collapse
|
35
|
Gu C, Yang Q, Li S, Zhao L, Lyu B, Wang Y, Yu H. Effects of Soybean Trypsin Inhibitor on Pancreatic Oxidative Damage of Mice at Different Growth Periods. Foods 2023; 12:foods12081691. [PMID: 37107486 PMCID: PMC10137855 DOI: 10.3390/foods12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The bioactive components in soybeans have significant physiological functions. However, the intake of soybean trypsin inhibitor (STI) may cause metabolic disorders. To investigate the effect of STI intake on pancreatic injury and its mechanism of action, a five-week animal experiment was conducted, meanwhile, a weekly monitor on the degree of oxidation and antioxidant indexes in the serum and pancreas of the animals was carried out. The results showed that the intake of STI had irreversible damage to the pancreas, according to the analysis of the histological section. Malondialdehyde (MDA) in the pancreatic mitochondria of Group STI increased significantly and reached a maximum (15.7 nmol/mg prot) in the third week. Meanwhile, the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), trypsin (TPS), and somatostatin (SST) were decreased and reached minimum values (10 U/mg prot, 87 U/mg prot, 2.1 U/mg prot, 10 pg/mg prot) compared with the Group Control. The RT-PCR results of the expression of SOD, GSH-Px, TPS, and SST genes were consistent with the above. This study demonstrates that STI causes oxidative structural damage and pancreatic dysfunction by inducing oxidative stress in the pancreas, which could increase with time.
Collapse
Affiliation(s)
- Chunmei Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130000, China
| | - Qiuping Yang
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130000, China
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shujun Li
- Department of Agriculture and Resources Environment, Qinghai Higher Vocational and Technical College, Haidong 810799, China
| | - Linlin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- College of Tourism and Culinary Science, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130000, China
| | - Yingnan Wang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130000, China
| |
Collapse
|
36
|
Wu J, Wang L, Cui Y, Liu F, Zhang J. Allii Macrostemonis Bulbus: A Comprehensive Review of Ethnopharmacology, Phytochemistry and Pharmacology. Molecules 2023; 28:molecules28062485. [PMID: 36985457 PMCID: PMC10054501 DOI: 10.3390/molecules28062485] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The dried bulbs of Allii Macrostemonis Bulbus (AMB) are called “薤白” in China and are mainly distributed in Asia. The plant species included in the 2020 Edition of the Chinese Pharmacopoeia (ChP) are Allium macrostemon Bunge (called xiaogensuan in Chinese, A. macrostemon) and Allium chinense G. Don (called xie in Chinese, A. chinense), respectively. In the traditional Chinese medicine (TCM) theoretical system, AMB is warm in nature, acrid-bitter taste, and attributive to the heart, lung, stomach, large intestine meridian. AMB has the function of activating Yang and removing stasis, regulating Qi and eliminating stagnation. Modern pharmacological studies have shown that AMB has anti-platelet aggregation, hypolipidemic, anti-atherosclerotic, cardiomyocyte, vascular endothelial cell protection, anti-cancer, anti-bacterial, anti-asthmatic, and anti-oxidant effects. In some Asian countries, AMB is often used to treat coronary heart disease (CHD), angina pectoris (AP), asthma, and diarrhea. This review collates the botanical background, ethnopharmacology, phytochemistry, pharmacological activities, quality control, and toxicological studies of AMB, and provides an outlook on the current research deficiencies and future research priorities of AMB, intending to provide ideas for future research directions and commercial development.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lulu Wang
- Department of Traditional Chinese Medicine, College of Medicine, Changchun Sci-Tech University, Changchun 130600, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Fei Liu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Department of Traditional Chinese Medicine, College of Medicine, Changchun Sci-Tech University, Changchun 130600, China
- Correspondence:
| |
Collapse
|
37
|
Yalameha B, Nejabati HR, Nouri M. Cardioprotective potential of vanillic acid. Clin Exp Pharmacol Physiol 2023; 50:193-204. [PMID: 36370144 DOI: 10.1111/1440-1681.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Nowadays, cardiovascular diseases (CVDs) are a global threat to public health, accounting for almost one-third of all deaths worldwide. One of the key mechanistic pathways contributing to the development of CVDs, including cardiotoxicity (CTX) and myocardial ischaemia-reperfusion injury (MIRI) is oxidative stress (OS). Increased generation of reactive oxygen species (ROS) is closely associated with decreased antioxidant capacity and mitochondrial dysfunction. Currently, despite the availability of modern pharmaceuticals, dietary-derived antioxidants are becoming more popular in developed societies to delay the progression of CVDs. One of the antioxidants derived from herbs, fruits, whole grains, juices, beers, and wines is vanillic acid (VA), which, as a phenolic compound, possesses different therapeutic properties, including cardioprotective. Based on experimental evidence, VA improves mitochondrial function as a result of the reduction in ROS production, aggravates antioxidative status, scavenges free radicals, and reduces levels of lipid peroxidation, thereby decreasing cardiac dysfunction, in particular CTX and MIRI. Considering the role of OS in the pathophysiology of CVDs, the purpose of this study is to comprehensively address recent evidence on the antioxidant importance of VA in the cardiovascular system.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Qin X, Zhu L, Zhong Y, Wang Y, Wu G, Qiu J, Wang G, Qu K, Zhang K, Wu W. Spontaneously Right-Side-Out-Orientated Coupling-Driven ROS-Sensitive Nanoparticles on Cell Membrane Inner Leaflet for Efficient Renovation in Vascular Endothelial Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205093. [PMID: 36703487 PMCID: PMC9951580 DOI: 10.1002/advs.202205093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Biomimetic cell membrane camouflaged technology has drawn extensive attention as a feasible and efficient way to realize the biological functions of nanoparticles from the parent cells. As the burgeoning nanotherapeutic, the right-side-out orientation self-assembly and pathological dependent "on-demand" cargo release of cell membrane camouflaged nanocarriers remarkably limit further development for practical applications. In the present study, a spontaneously right-side-out-orientated coupling-driven ROS-sensitive nanotherapeutic has been constructed for target endothelial cells (ECs) repair through the synergistic effects of spontaneously right-side-out-orientated camouflaging. This condition results from the specific affinity between the intracellular domain of key transmembrane receptors band 3 on cell membrane inner leaflet and the corresponding P4.2 peptide-modified nanoparticles without the additional coextrusion. The "on-demand" cargo release results from the pathological ROS-cleavable prodrug. Particularly, the red blood cell camouflaged nanotherapeutics (RBC-LVTNPs) can enhance target drug delivery through low oscillatory shear stress (LSS) blood flow in the injured ECs lesion. Both in vitro and in vivo results collectively confirm that RBC-LVTNPs can restore the damaged ECs and function with the recovered vascular permeability and low inflammation microenvironment. The findings provide a powerful and universal approach for developing the biomimetic cell membrane camouflaged nanotechnology.
Collapse
Affiliation(s)
- Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Yi Wang
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Guicheng Wu
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- JinFeng LaboratoryChongqing401329China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic DiseasesChongqing University Three Gorges HospitalChongqing404000China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
- JinFeng LaboratoryChongqing401329China
| |
Collapse
|
39
|
Ghodousi M, Karbasforooshan H, Arabi L, Elyasi S. Silymarin as a preventive or therapeutic measure for chemotherapy and radiotherapy-induced adverse reactions: a comprehensive review of preclinical and clinical data. Eur J Clin Pharmacol 2023; 79:15-38. [PMID: 36450892 DOI: 10.1007/s00228-022-03434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Thus far, silymarin has been examined in several studies for prevention or treatment of various chemotherapy or radiotherapy-induced adverse reactions. In this review, we try to collect all available human, animal, and pre-clinical data in this field. METHODS The search was done in Scopus, PubMed, Medline, and systematic reviews in the Cochrane database, using the following keywords: "Cancer," "Chemotherapy," "Radiotherapy," "Mucositis," "Nephrotoxicity," "Dermatitis," "Ototoxicity," "Cardiotoxicity," "Nephrotoxicity," "Hepatotoxicity," "Reproductive system," "Silybum marianum," "Milk thistle," and "Silymarin" and "Silybin." We included all relevant in vitro, in vivo, and human studies up to the date of publication. RESULTS Based on 64 included studies in this review, silymarin is considered a safe and well-tolerated compound, with no known clinical drug interaction. Notably, multiple adverse reactions of chemotherapeutic agents are effectively managed by its antioxidant, anti-apoptotic, anti-inflammatory, and anti-immunomodulatory properties. Clinical trials suggest that oral silymarin may be a promising adjuvant with cancer treatments, particularly against hepatotoxicity (n = 10), nephrotoxicity (n = 3), diarrhea (n = 1), and mucositis (n = 3), whereas its topical formulation can be particularly effective against radiodermatitis (n = 2) and hand-foot syndrome (HFS) (n = 1). CONCLUSION Further studies are required to determine the optimal dose, duration, and the best formulation of silymarin to prevent and/or manage chemotherapy and radiotherapy-induced complications.
Collapse
Affiliation(s)
- Mahsa Ghodousi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedyieh Karbasforooshan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Sheta NM, Boshra SA, Mamdouh MA, Abdel-Haleem KM. Design and optimization of silymarin loaded in lyophilized fast melt tablets to attenuate lung toxicity induced via HgCl 2 in rats. Drug Deliv 2022; 29:1299-1311. [PMID: 35470762 PMCID: PMC9045763 DOI: 10.1080/10717544.2022.2068696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to develop fast melting tablets (FMTs) using silymarin (SM) owing to FMTs rapid disintegration and dissolution. FMTs represent a pathway to help patients to increase their compliance level of treatment via facile administration without water or chewing beside reduction cost. One of the methods for FMTs formulation is lyophilization. Optimization of SM-FMTs was developed via a 32 factorial design. All prepared SM-FMTs were evaluated for weight variation, thickness, breaking force, friability, content uniformity, disintegration time (DT), and % SM released. The optimized FMT formula was selected based on the criteria of scoring the fastest DT and highest % SM released after 10 min (Q10). Optimized FMT was subjected to Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) besides investigating its lung-protective efficacy. All SM-FMT tablets showed acceptable properties within the pharmacopeial standards. Optimized FMT (F7) scored a DT of 12.5 ± 0.64 Sec and % SM released at Q10 of 82.69 ± 2.88%. No incompatibilities were found between SM and excipients, it showed a porous structure under SEM. The optimized formula decreased cytokines, up-regulated miRNA133a, and down-regulated miRNA-155 and COX-2 involved in the protection against lung toxicity prompted by HgCl2 in a manner comparable to free SM at the same dosage.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sylvia A. Boshra
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohamed A. Mamdouh
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | |
Collapse
|
41
|
Liu X, Hu M, Ye C, Liao L, Ding C, Sun L, Liang J, Chen Y. Isosilybin regulates lipogenesis and fatty acid oxidation via the AMPK/SREBP-1c/PPARα pathway. Chem Biol Interact 2022; 368:110250. [DOI: 10.1016/j.cbi.2022.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
42
|
Mirzaei N, Jahanian Sadatmahalleh S, Rouholamin S, Nasiri M. A randomized trial assessing the efficacy of Silymarin on endometrioma-related manifestations. Sci Rep 2022; 12:17549. [PMID: 36266431 PMCID: PMC9584967 DOI: 10.1038/s41598-022-22073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
To study the effect of silymarin on the Interleukin-6 (IL-6) level, size of endometrioma lesion, pain, sexual function, and Quality of Life (QoL) in women diagnosed with endometriosis. This randomized, double-blind placebo-controlled clinical trial was performed on 70 women with endometriosis which was divided into two groups of intervention and control. The intervention was 140 mg silymarin (or matching placebo) administered twice daily for 12 weeks. The volume of endometrioma lesions, the level of IL-6 concentration in serum, pain, sexual function, and QoL were analyzed before and after the intervention. The means of endometrioma volume (P = 0.04), IL-6 (P = 0.002), and pain (P < 0.001) were reduced significantly in the silymarin group after intervention. However, the QoL and female sexual function did not improve substantially in the two groups (P > 0.05). Silymarin significantly reduced interleukin-6 levels, sizes of endometrioma lesions, and pain-related symptoms. The trial has been registered in the Iranian Registry of Clinical Trials (IRCT20150905023897N5) on 4th February 2020 (04/02/2020) ( https://en.irct.ir/trial/42215 ) and the date of initial participant enrollment was 2nd March 2020 (02/03/2020).
Collapse
Affiliation(s)
- Negin Mirzaei
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Shahideh Jahanian Sadatmahalleh
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Safoura Rouholamin
- grid.411036.10000 0001 1498 685XDepartment of Obstetrics and Gynecology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave., Isfahan, 81746 73461 Iran
| | - Malihe Nasiri
- grid.411600.2Department of Basic Sciences, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Didamoony MA, Atwa AM, Abd El-Haleim EA, Ahmed LA. Bromelain ameliorates D-galactosamine-induced acute liver injury: role of SIRT1/LKB1/AMPK, GSK3β/Nrf2 and NF-κB p65/TNF-α/caspase-8, -9 signalling pathways. J Pharm Pharmacol 2022; 74:1765-1775. [PMID: 36227279 DOI: 10.1093/jpp/rgac071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The present research focused on estimating, for the first time, the potential protective effects of bromelain against D-galactosamine-induced acute liver injury in rats as well as identifying the possible underlying mechanisms. METHODS Silymarin (100 mg/kg/day, p.o.) as a reference drug or bromelain (20 and 40 mg/kg/day, p.o.) were administered for 10 days, and on the 8th day of the experiment, a single dose of galactosamine (400 mg/kg/i.p.) induced acute liver injury. KEY FINDINGS Pretreatment with bromelain improved liver functions and histopathological alterations induced by galactosamine. Bromelain ameliorated oxidative stress by inducing SIRT1 protein expression and increasing LKB1 content. This resulted in phosphorylating the AMPK/GSK3β axis, which stimulated Nrf2 activation in hepatic cells and thus increased the activity of its downstream antioxidant enzymes [HO-1 and NQO1]. Besides, bromelain exerted significant anti-apoptotic and anti-inflammatory effects by suppressing hepatic contents of TNF-α, NF-κB p65, as well as caspase-8 and caspase-9. The protective effects of bromelain40 were proved to be better than silymarin and bromelain20 in most of the assessed parameters. CONCLUSIONS Our results highlight the significant hepatoprotective effects of bromelain against acute liver injury through modulation of SIRT1/LKB1/AMPK, GSK3β/Nrf2 signalling in addition to NF-κB p65/TNF-α/ caspase-8 and -9 pathway.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Enas A Abd El-Haleim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
44
|
Peng M, Xia T, Zhong Y, Zhao M, Yue Y, Liang L, Zhong R, Zhang H, Li C, Cao X, Yang M, Wang Y, Shu Z. Integrative pharmacology reveals the mechanisms of Erzhi Pill, a traditional Chinese formulation, against diabetic cardiomyopathy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115474. [PMID: 35716918 DOI: 10.1016/j.jep.2022.115474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erzhi Pill (EZP) is a traditional Chinese prescription that has marked effects in treating type 2 diabetes mellitus and diabetic nephropathy. However, its underlying pharmacological mechanisms in the treatment of diabetic cardiomyopathy (DCM), remain to be elucidated. AIM OF THE STUDY This study aimed to apply an integrative pharmacological strategy to systematically evaluate the pharmacological effects and molecular mechanisms of EZP, and provide a solid theoretical basis for the clinical application of EZP in the treatment of DCM. MATERIALS AND METHODS In this study, the potential targets and key pathways of EZP were predicted and validated using network pharmacology and molecular docking, respectively. Changes in cardiac metabolites and major metabolic pathways in rat heart samples were examined using 1H-nuclear magnetic resonance (NMR) metabolomics. Finally, biochemical analysis was conducted to detect the protein expression levels of key pathways. RESULTS We found that EZP decreased fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) levels, increased high-density lipoprotein (HDL) levels in the serum, and alleviated the morphological abnormalities of the heart tissue in diabetic rats. Furthermore, EZP effectively restored superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-8, and caspase-9 activity levels, as well as the levels of reactive oxygen species (ROS), malondialdehyde (MDA), B-cell lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) in the heart tissue. Network pharmacology prediction results indicated that the mechanism of EZP in treating DCM was closely related to apoptosis, oxidative stress, and the HIF-1, PI3K-Akt, and FoxO signaling pathways. In addition, 1H-NMR metabolomics confirmed that EZP primarily regulated both energy metabolism and amino acid metabolism, including the tricarboxylic acid (TCA) cycle, ketone bodies metabolism, glutamine and glutamate metabolism, glycine metabolism, and purine metabolism. Finally, immunohistochemistry results indicated that EZP reduced the expression levels of p-AMPK, p-PI3K, p-Akt, and p-FoxO3a proteins, in the heart tissue of DCM rats. CONCLUSION The results confirmed that the overall therapeutic effect of EZP in the DCM rat model is exerted via inhibition of oxidative stress and apoptosis, alongside the regulation of energy metabolism and amino acid metabolism, as well as the AMPK and PI3K/Akt/FoxO3a signaling pathways. This study provides an experimental basis for the use of EZP in DCM treatment.
Collapse
Affiliation(s)
- Mingming Peng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tianyi Xia
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yanmei Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mantong Zhao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yimin Yue
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lanyuan Liang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Renxing Zhong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Han Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Chuanqiu Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xia Cao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mengru Yang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yi Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zunpeng Shu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
45
|
In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol 2022; 456:116262. [PMID: 36198370 DOI: 10.1016/j.taap.2022.116262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Testicular dysgenesis syndrome in male neonates manifests as cryptorchidism and hypospadias, which can be mimicked by in utero phthalate exposure. However, the underlying phthalate mediated mechanism and therapeutic effects of taxifolin remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundantly used phthalate and can induce testicular dysgenesis syndrome in male rats. To explore the mechanism of DEHP mediated effects and develop a therapeutic drug, the natural phytomedicine taxifolin was used. Pregnant Sprague-Dawley female rats were daily gavaged with 750 mg/kg/d DEHP or 10 or 20 mg/kg/d taxifolin alone or in combination from gestational day 14 to 21, and male pup's fetal Leydig cell function, testicular MDA, and antioxidants were examined. DEHP significantly reduced serum testosterone levels of male pups, down-regulated the expression of SCARB1, CYP11A1, HSD3B1, HSD17B3, and INSL3, reduced the cell size of fetal Leydig cells, decreased the levels of antioxidant and related signals (SOD2 and CAT, SIRT1, and PGC1α), induced abnormal aggregation of fetal Leydig cells, and stimulated formation of multinucleated gonocytes and MDA levels. Taxifolin alone (10 and 20 mg/kg/d) did not affect these parameters. However, taxifolin significantly rescued DEHP-induced alterations. DEHP exposure in utero can induce testicular dysgenesis syndrome by altering the oxidative balance and SIRT1/PGC1α levels, and taxifolin is an ideal phytomedicine to prevent phthalate induced testicular dysgenesis syndrome.
Collapse
|
46
|
Derdak R, Sakoui S, Pop OL, Vodnar DC, Addoum B, Teleky BE, Elemer S, Elmakssoudi A, Suharoschi R, Soukri A, El Khalfi B. Optimisation and characterization of α-D-glucan produced by Bacillus velezensis RSDM1 and evaluation of its protective effect on oxidative stress in Tetrahymena thermophila induced by H2O2. Int J Biol Macromol 2022; 222:3229-3242. [DOI: 10.1016/j.ijbiomac.2022.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
47
|
Karimi R, Bakhshi A, Dayati P, Abazari O, Shahidi M, Savaee M, Kafi E, Rahmanian M, Naghib SM. Silymarin reduces retinal microvascular damage in streptozotocin-induced diabetic rats. Sci Rep 2022; 12:15872. [PMID: 36151457 PMCID: PMC9508129 DOI: 10.1038/s41598-022-20297-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy is a severe microvascular problem in diabetes mellitus. Silymarin is a flavonoid compound, and according to previous studies, it is a bioactive compound with potent antioxidant and anti-inflammatory properties. This investigation aims to peruse the impact of silymarin against diabetic retinopathy in streptozotocin (STZ)-provoked rats. Thirty-two adult male Wistar rats were randomly allocated into the control group, STZ group, STZ + silymarin (50 mg/kg), and STZ + silymarin (100 mg/kg). STZ rats received silymarin every day until 2 months after diabetes induction. The serum and retinal tissues were collected 2 months after silymarin treatment to determine biochemical and molecular analyses. Silymarin markedly lowered the serum glucose concentration in diabetic rats. Silymarin reduced the increased levels of advanced glycosylated end products (AGEs), the receptors for AGEs (RAGE), and reactive oxygen species (ROS) in diabetic rats. Silymarin also attenuated the phosphorylation of p38 MAP kinase and nuclear factor (NF)-κB p65 and diminished diabetes-induced overexpression of inflammatory cytokines, vascular endothelial growth factor (VEGF), adhesion molecules, and extracellular matrix proteins in STZ rats. Our data suggested that silymarin has protective effects against diabetic retinopathy, which might be related to the inhibition of the AGEs/RAGE axis and its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Rahman Karimi
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Bakhshi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Maryamsadat Shahidi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohamadreza Savaee
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ehsan Kafi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
48
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
49
|
Li J, Wang Z, Fan M, Hu G, Guo M. Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red. Antioxidants (Basel) 2022; 11:antiox11091651. [PMID: 36139724 PMCID: PMC9495925 DOI: 10.3390/antiox11091651] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Polygonatum sibiricum Red. (P. sibiricum) has been used as a traditional Chinese medicine with a wide range of pharmacology effects. However, the responsible bioactive compounds and their mechanisms of action concerning its antioxidative and anti-hyperuricemic activities remain unexplored. In this work, the antioxidant capacity of P. sibiricum was firstly evaluated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-(3ethylbenzthiazoline)-6-sulfonic acid (ABTS) and ferric-reducing antioxidant power (FRAP) assays, from which the ethyl acetate (EA) fraction exhibited the highest DPPH, ABTS radical scavenging, and ferric-reducing capacities. Meanwhile, the EA fraction displayed the highest total phenolic and flavonoid contents among the four fractions. Next, the potential ligands from the EA fraction were screened out by bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS) with superoxide dismutase (SOD) and xanthine oxidase (XOD). As a result, N-trans-p-coumaroyloctopamine, N-trans-feruloyloctopamine, N-trans-feruloyltyramine were identified as potential SOD ligands, while N-cis-p-coumaroyltyramine was determined as potential XOD ligand. Additionally, these four ligands effectively interact with SOD and XOD in the molecular docking analysis, with binding energies (BEs) ranging from –6.83 to –6.51 kcal/mol, and the inhibition constants (Ki) from 9.83 to 16.83 μM, which were better than the positive controls. In conclusion, our results indicated that P. sibiricum has good antioxidative and anti-hyperuricemic activities, and its corresponding active ligands targeting SOD and XOD could be explored by the UF-LC-MS method.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (G.H.); (M.G.)
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (G.H.); (M.G.)
| |
Collapse
|
50
|
do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022; 10:1606. [PMID: 36014024 PMCID: PMC9416513 DOI: 10.3390/microorganisms10081606] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
In the growing search for therapeutic strategies, there is an interest in foods containing natural antioxidants and other bioactive compounds capable of preventing or reversing pathogenic processes associated with metabolic disease. Fermentation has been used as a potent way of improving the properties of soybean and their components. Microbial metabolism is responsible for producing the β-glucosidase enzyme that converts glycosidic isoflavones into aglycones with higher biological activity in fermented soy products, in addition to several end-metabolites associated with human health development, including peptides, phenolic acids, fatty acids, vitamins, flavonoids, minerals, and organic acids. Thus, several products have emerged from soybean fermentation by fungi, bacteria, or a combination of both. This review covers the key biological characteristics of soy and fermented soy products, including natto, miso, tofu, douchi, sufu, cheonggukjang, doenjang, kanjang, meju, tempeh, thua-nao, kinema, hawaijar, and tungrymbai. The inclusion of these foods in the diet has been associated with the reduction of chronic diseases, with potential anticancer, anti-obesity, antidiabetic, anticholesterol, anti-inflammatory, and neuroprotective effects. These biological activities and the recently studied potential of fermented soybean molecules against SARS-CoV-2 are discussed. Finally, a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
Affiliation(s)
- Fernanda Guilherme do Prado
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Maria Giovana Binder Pagnoncelli
- Bioprocess Engineering and Biotechnology Department, Federal University of Technology-Paraná (UTFPR), Curitiba 80230-900, PR, Brazil
| | | | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| |
Collapse
|