1
|
Mounissamy P, Premraj A, Chanadrashekar S, Jeyaraman N, Ramasubramanian S, Jeyaraman M. Effect of granulocyte colony-stimulating factor (G-CSF) in functional outcome of acute spinal cord injury patients: A single-blinded randomized controlled trial. J Orthop 2025; 64:97-101. [PMID: 39691645 PMCID: PMC11648636 DOI: 10.1016/j.jor.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024] Open
Abstract
Background Spinal Cord Injury (SCI) is a major public health issue causing significant disability and economic burden. Current treatments primarily focus on mitigating secondary injury, with limited effective therapies available. This study explores the efficacy of the Granulocyte Colony-Stimulating Factor (G-CSF) in improving functional outcomes in acute SCI patients. Materials and methods This single-blinded randomized control trial was conducted at JIPMER's orthopedic department. Patients with acute spinal cord injury (SCI) were enrolled based on specific inclusion and exclusion criteria. Participants were divided into two groups: Group A (n = 16) received a G-CSF injection whereas Group B (n = 18) received a placebo (normal saline) injection. The primary evaluation was based on the changes in the ASIA impairment scale at 1-, 3-, and 6-months post-injury. Results The study involved 34 participants, predominantly male. Initial assessments showed significant differences in ASIA scores between the groups. Group A demonstrated marked improvement in neurological status at 1, 3, and 6 months post-treatment compared to Group B. The frequency of adverse events was comparable between the two groups. Conclusion G-CSF showed significant improvement in ASIA scores at various time points post-administration compared to placebo. These findings suggest G-CSF as a potential therapeutic agent in acute SCI treatment. However, due to the small sample size, further research is necessary to confirm these results.
Collapse
Affiliation(s)
- Prabu Mounissamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - A.C. Premraj
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Sushma Chanadrashekar
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, 600002, Chennai, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Hao T, Jiang G, Lin C, Boyer C, Huang R. Advanced oral breviscapine sustained-release tablets for improved ischemic stroke treatment. Biomaterials 2025; 316:123030. [PMID: 39705923 DOI: 10.1016/j.biomaterials.2024.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/21/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to address the challenges associated with the low oral bioavailability and the necessity for frequent dosing of breviscapine (BRE), a mainstream drug in the treatment of cardiovascular and cerebrovascular diseases. The poor solubility and permeability of BRE in the gastrointestinal tract were identified as significant barriers to effective drug absorption, thereby impacting therapeutic efficacy and patient compliance. To enhance the gastrointestinal absorption of BRE, particles loaded with BRE were engineered utilizing Cremophor EL (CrEL), an absorption enhancer, in conjunction with mesoporous silica, a biocompatible drug delivery vector, formulating mesoporous silica particles loaded with BRE and CrEL (BRE-CrEL@SiO2). The solubility and mucosal permeability of BRE were ameliorated, facilitating transepithelial transport and improving absorption kinetics. BRE-CrEL@SiO2 were subsequently integrated to prepare sustained-release tablets. The finite element simulation method was utilized in the study of non-planar circular BRE tablet process to ensure tablet quality. The superior bioavailability and therapeutic index of the absorption-promoting sustained-release tablets, compared to commercial tablets, were validated through in vivo pharmacokinetic and pharmacodynamic assessments, while safety was maintained. The oral relative bioavailability of the absorption-enhancing sustained-release tablets was 160.7 % relative to the commercial tablets, demonstrated in Beagle dogs, indicating higher absorption. This innovative formulation represents a significant advancement in improving therapeutic efficacy of ischemic stroke and reducing the treatment burden on patients. The study provides new insights into the development of novel dosage forms for BRE and other drugs with poor solubility and permeability, suggesting a promising approach to enhance their therapeutic effectiveness and improve patient compliance in treatment.
Collapse
Affiliation(s)
- Tingting Hao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Guangwei Jiang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Liang R, Hou X, Zhou D, Zhu L, Teng L, Song W, Tang Q. Exercise preconditioning mitigates Ischemia-Reperfusion injury in rats by enhancing mitochondrial respiration. Neuroscience 2024; 562:64-74. [PMID: 39461659 DOI: 10.1016/j.neuroscience.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Cerebral ischemia and subsequent reperfusion damage are prevalent in clinical practice, linked to numerous neurodegenerative diseases. Cerebral ischemia deprives brain tissue of essential oxygen and nutrients, disrupting energy metabolism and causing cellular dysfunction. Although reperfusion theoretically aids recovery, it instead initiates complex injury responses such as oxidative stress, apoptosis, and inflammation, worsening brain damage. Recent research suggests that enhancing neuronal energy status by modulating energy metabolism pathways can effectively counter these effects. For instance, boosting mitochondrial function, improving energy provision, and decreasing harmful metabolites can mitigate oxidative stress and cellular injury. This study investigated the protective effects of exercise preconditioning against ischemia-reperfusion injury in rats. It was observed that exercise enhances energy levels and mitochondrial respiration by upregulating the expression of COX4 and NAMPT proteins and activating AMPK and mitochondrial complex V. This process facilitates metabolic reprogramming characterized by the promotion of oxidative phosphorylation (OXPHOS) and the pentose phosphate pathway (PPP), alongside a reduction in glycolysis. Such reprogramming reduces harmful metabolites, mitigating apoptosis and oxidative stress, and is a key factor in alleviating acute ischemic hypoxia-induced brain damage. These findings introduce a novel therapeutic approach for ischemic brain reperfusion injury, underscoring the crucial role of ATP production and metabolic regulation in neuroprotection.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinlei Hou
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Daguo Zhou
- Xiang'an Hospital of Xiamen University, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Teng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjing Song
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
4
|
Akkoca A, Büyükakıllı B, Ballı E, Gültekin B, Özbay E, Oruç Demirbağ H, Türkseven ÇH. Protective effect of MitoTEMPO against cardiac dysfunction caused by ischemia-reperfusion: MCAO stroke model study. Int J Neurosci 2024; 134:1582-1593. [PMID: 37862003 DOI: 10.1080/00207454.2023.2273768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Neurological impairments are the leading cause of post-stroke mortality, while stroke-related cardiovascular diseases rank second in significance. This study investigates the potential protective effects of MitoTEMPO (2,2,6,6-tetramethyl-4-[[2-(triphenylphosphonio) acetyl] amino]-1-piperidinyloxy, monochloride, monohydrate), a mitochondria-specific antioxidant, against cardiac and neurological complications following stroke. The objective is to assess whether MitoTEMPO can be utilized as a protective agent for individuals with a high risk of stroke. MATERIALS AND METHODS Seventeen-week-old male Wistar Albino rats were randomly assigned to three groups: SHAM, ischemia-reperfusion and MitoTEMPO + ischemia-reperfusion (MitoTEMPO injection 0.7 mg/kg/day for 14 days). The SHAM group underwent a sham operation, while the ischemia-reperfusion group underwent 1-h middle cerebral artery occlusion followed by three days of reperfusion. Afterwards, noninvasive thoracic electrical bioimpedance and electrocardiography measurements were taken, and sample collection was performed for histological and biochemical examinations. RESULTS Our thoracic electrical bioimpedance and electrocardiography findings demonstrated that MitoTEMPO exhibited a protective effect on most parameters affected by ischemia-reperfusion compared to the SHAM group. Furthermore, our biochemical and histological data revealed a significant protective effect of MitoTEMPO against oxidative damage. CONCLUSIONS The findings suggest that both ischemia-reperfusion-induced cardiovascular abnormalities and the protective effect of MitoTEMPO may involve G-protein coupled receptor-mediated signaling mechanisms. This study was conducted with limitations including a single gender, a uniform age group, a specific stroke model limited to middle cerebral artery, and pre-scheduled only one ischemia-reperfusion period. In future studies, addressing these limitations may enable the implementation of preventive measures for individuals at high risk of stroke.
Collapse
Affiliation(s)
- Ahmet Akkoca
- Department of Occupational Health and Safety, Taşkent Vocational School, Selcuk University, Konya, Türkiye
| | - Belgin Büyükakıllı
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ebru Ballı
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Burcu Gültekin
- Department of Histology and Embryology, Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Erkan Özbay
- Department of Medical Services and Techniques, Health Services Vocational School, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hatice Oruç Demirbağ
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | | |
Collapse
|
5
|
Li Y, Niu L, Zheng D, Zhang X, Feng L, Fu J. KDM2B regulates stroke injury by modulating OGT-mediated 0-GlcNAcylation of SLC7A11. Commun Biol 2024; 7:1530. [PMID: 39558086 PMCID: PMC11574022 DOI: 10.1038/s42003-024-07251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Ischemic stroke poses a significant global health risk. Currently, recanalization of blood flow through surgery or medication is the only effective means to control ischemia-reperfusion injury. This study aims to explore the role and molecular mechanism of OGT in regulating neuronal injury and motor deficits following a stroke. The MCAO and OGD/R models were established to validate the therapeutic efficacy of OGT in mitigating neuronal injury and motor dysfunction following stroke. Molecular biological techniques were employed to assess ferroptosis levels, OGT ubiquitination, and SLC7A11 O-GlcNAcylation. OGT has a therapeutic effect on motor deficits and neuronal damage after stroke by regulating SLC7A11 O-GlcNacylation-mediated ferroptosis, while the KDM2B-mediated ubiquitination pathway is responsible for changes in OGT levels. These findings are crucial for target selection and biomarker identification in stroke treatment.
Collapse
Affiliation(s)
- Yi Li
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liangbo Niu
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dai Zheng
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xinxing Zhang
- Department of Geriatric, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Lu Feng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jing Fu
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Colombo E, Bacigaluppi M, Bartoccetti M, Triolo D, Bassani C, Bergamaschi A, Descamps HC, Gullotta GS, Henley M, Piccoli M, Anastasia L, Pitt D, Newcombe J, Martino G, Farina C. Astrocyte TrkB promotes brain injury and edema formation in ischemic stroke. Neurobiol Dis 2024; 201:106670. [PMID: 39303814 DOI: 10.1016/j.nbd.2024.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion. Neuropathological studies evidenced that edema directly correlated with astrogliosis and was limited in transgenic mice. Importantly, adaptive levels of the water channel AQP4 was astrocyte TrkB-dependent as AQP4 upregulation after stroke did not occur in mice lacking astrocyte TrkB. In vitro experiments with wild-type and/or TrkB-deficient astrocytes highlighted TrkB-dependent upregulation of AQP4 via activation of HIF1-alpha under hypoxia. Collectively, our observations indicate that TrkB signaling in astrocytes contributes to the development of edema and worsens cerebral ischemia.
Collapse
Affiliation(s)
- Emanuela Colombo
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Michela Bartoccetti
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Triolo
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Bassani
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hélène C Descamps
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Henley
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marco Piccoli
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- University Vita-Salute San Raffaele, Milan, Italy; Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Milan, Italy
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Martins-Silva C, Anderson CL, Boyce AKJ, Andrade TES, Tizziani T, Lopes KHS, Micke GA, Cregan SP, Dos Santos ARS, Thompson RJ. The Ethanolic Extract of Polygala paniculata L. Blocks Panx1 Channels and Reduces Ischemic Brain Infarct in a Dose- and Sex-Dependent Way. Mol Neurobiol 2024:10.1007/s12035-024-04453-5. [PMID: 39271622 DOI: 10.1007/s12035-024-04453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Polygala paniculata L. is a native plant from tropical America. The therapeutic potential of the hydroalcoholic extract of P. paniculata (HEPp) has been scientifically explored due to folk medicine reports on its action against several afflictions. HEPp contains several bioactive molecules with neuroprotective activities, making it a promising candidate for stroke treatment. This study used electrophysiological, biochemical, and in vivo experiments to evaluate the molecular mechanisms underlying HEPp as a neuroprotective therapy for stroke targeting Pannexin-1 (Panx1). Panx1 is a non-selective channel that opens during ischemia and contributes to neuronal death. HEPp was not toxic to cortical neurons and pre-treatment with the extract reduced neuronal death promoted by oxygen and glucose deprivation in a dose-dependent manner. Additionally, HEPp blocked Panx1 currents in a dose-dependent manner and the effect, which was shown to be partially due to rutin. Animals submitted to photothrombosis and post-treated with HEPp had reduced infarct volume, and the effective dose was lower in males (1 mg/kg) than in females (10 mg/kg). On the other hand, in Panx1 KD mice (50% Panx1 levels), the acute treatment reduced the infarct volume only in males. Upon chronic treatment with HEPp, a reduction in Panx1 protein levels was observed. The current study provides reliable evidence of the neuroprotective properties of HEPp in both in vitro and in vivo models of stroke. The underlying mechanism involves, at least in part, the inhibition of Panx1 channel function and possibly downregulation of protein levels, suppressing the secondary events that lead to apoptosis and inflammation.
Collapse
Affiliation(s)
- Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Laboratory of Neurochemistry and Behaviour (LabNeC), Graduate Program in Biochemistry, Federal University of Espirito Santo, Vitoria, ES, 29043910, Brazil.
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Andrew K J Boyce
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Tassiane E S Andrade
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Neuroscience Program, Department of Physiology and Pharmacology, University of Western Ontario, Robarts Research Institute, University of Western Ontario, 100 Perth Dr, London, ON, N6A 5K8, Canada
| | - Tiago Tizziani
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Kheytiany H S Lopes
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gustavo A Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Sean P Cregan
- Neuroscience Program, Department of Physiology and Pharmacology, University of Western Ontario, Robarts Research Institute, University of Western Ontario, 100 Perth Dr, London, ON, N6A 5K8, Canada
| | - Adair Roberto Soares Dos Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
8
|
Yu X, Wang S, Wang X, Li Y, Dai Z. Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1. Exp Neurol 2024; 379:114868. [PMID: 38901754 DOI: 10.1016/j.expneurol.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Ischemic stroke is a disease associated with high morbidity and disability rates; however, its pathogenesis remains elusive, and treatment options are limited. Ferroptosis, an iron-dependent form of cell death, represents a novel avenue for investigation. The objective of this study was to explore the role of melatonin in MCAO-induced ferroptosis and elucidate its underlying molecular mechanism. To simulate brain damage and neuronal injury caused by ischemic stroke, we established a mouse model of MCAO and an HT-22 cell model of OGD/R. The therapeutic efficacy of melatonin was assessed through measurements of infarct size, brain edema, and neurological scores. Additionally, qRT-PCR, WB analysis, and Co-IP assays were employed to investigate the impact of melatonin on ferroptosis markers such as NCOA4 and FTH1 expression levels. Confocal microscopy was utilized to confirm the colocalization between ferritin and lysosomes. Furthermore, we constructed a SIRT6 siRNA model to validate the regulatory effect exerted by SIRT6 on NCOA4 as well as their binding interaction. The present study provides initial evidence that melatonin possesses the ability to mitigate neuronal damage induced by MCAO and OGD/R. Assessment of markers for oxidative damage and ferroptosis revealed that melatonin effectively inhibits intracellular Fe2+ levels, thereby suppressing ferroptosis. Additionally, our findings demonstrate that melatonin modulates the interaction between FTH1 and NCOA4 via SIRT6, influencing ferritin autophagy without affecting cellular macroautophagy. These findings provide reliable data support for the promotion and application of melatonin in clinical practice.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Shan Wang
- Department of Echocardiography & Noninvasive Cardiology Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Xu Wang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2 Ward of Hepatobiliary Surgery, Chengdu 610072, Sichuan, China
| | - Yi Li
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| | - Zheng Dai
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| |
Collapse
|
9
|
Choi DH, Choi IA, Lee J. Role of NADPH Oxidases in Stroke Recovery. Antioxidants (Basel) 2024; 13:1065. [PMID: 39334724 PMCID: PMC11428334 DOI: 10.3390/antiox13091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is one of the most significant causes of death and long-term disability globally. Overproduction of reactive oxygen species by NADPH oxidase (NOX) plays an important role in exacerbating oxidative stress and causing neuronal damage after a stroke. There is growing evidence that NOX inhibition prevents ischemic injury and that the role of NOX in brain damage or recovery depends on specific post-stroke phases. In addition to studies on post-stroke neuroprotection by NOX inhibition, recent reports have also demonstrated the role of NOX in stroke recovery, a critical process for brain adaptation and functional reorganization after a stroke. Therefore, in this review, we investigated the role of NOX in stroke recovery with the aim of integrating preclinical findings into potential therapeutic strategies to improve stroke recovery.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Medical Science, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Occupational Therapy, Division of Health, Baekseok University, Cheonan-si 31065, Republic of Korea
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Xu L, Mi Y, Meng Q, Liu Y, Wang Y, Zhang Y, Yang Y, Chen G, Liu Y, Hou Y. A quinolinyl resveratrol derivative alleviates acute ischemic stroke injury by promoting mitophagy for neuroprotection via targeting CK2α'. Int Immunopharmacol 2024; 137:112524. [PMID: 38909494 DOI: 10.1016/j.intimp.2024.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ischemic stroke (IS) is a serious threat to human health. The naturally derived small molecule (E)-5-(2-(quinolin-4-yl) ethenyl) benzene-1,3-diol (RV01) is a quinolinyl analog of resveratrol with great potential in the treatment of IS. The aim of this study was to investigate the potential mechanisms and targets for the protective effect of the RV01 on IS. The mouse middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reperfusion (OGD/R) models were employed to evaluate the effects of RV01 on ischemic injury and neuroprotection. RV01 was found to significantly increase the survival of SH-SY5Y cells and prevent OGD/R-induced apoptosis in SH-SY5Y cells. Furthermore, RV01 reduced oxidative stress and mitochondrial damage by promoting mitophagy in OGD/R-exposed SH-SY5Y cells. Knockdown of CK2α' abolished the RV01-mediated promotion on mitophagy and alleviation on mitochondrial damage as well as neuronal injury after OGD/R. These results were further confirmed by molecular docking, drug affinity responsive target stability and cellular thermal shift assay analysis. Importantly, in vivo study showed that treatment with the CK2α' inhibitor CX-4945 abolished the RV01-mediated alleviation of cerebral infarct volume, brain edema, cerebral blood flow and neurological deficit in MCAO/R mice. These data suggest that RV01 effectively reduces damage caused by acute ischemic stroke by promoting mitophagy through its interaction with CK2α'. These findings offer valuable insights into the underlying mechanisms through which RV01 exerts its therapeutic effects on IS.
Collapse
Affiliation(s)
- Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yongping Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Ying Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
11
|
Candamo-Lourido M, Dopico-López A, López-Arias E, López-Amoedo S, Correa-Paz C, Chantada-Vázquez MP, Bugallo-Casal A, del Pozo-Filíu L, Pérez-Gayol L, Palomar-Alonso N, Bravo SB, Campos F, Pérez-Mato M. Comparative Brain Proteomic Analysis between Sham and Cerebral Ischemia Experimental Groups. Int J Mol Sci 2024; 25:7538. [PMID: 39062782 PMCID: PMC11277324 DOI: 10.3390/ijms25147538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sham control groups are essential in experimental animal studies to reduce the influence of surgical intervention. The intraluminal filament procedure is one of the most common models of middle cerebral artery occlusion (MCAO) used in the study of brain ischemia. However, a sham group is usually not included in the experimental design of these studies. In this study, we aimed to evaluate the relevance of the sham group by analyzing and comparing the brain protein profiles of the sham and MCAO groups. In the sham group, 98 dysregulated proteins were detected, compared to 171 in the ischemic group. Moreover, a comparative study of protein profiles revealed the existence of a pool of 57 proteins that appeared to be dysregulated in both sham and ischemic animals. These results indicated that the surgical procedure required for the intraluminal occlusion of the middle cerebral artery (MCA) induces changes in brain protein expression that are not associated with ischemic lesions. This study highlights the importance of including sham control groups in the experimental design, to ensure that surgical intervention does not affect the therapeutic target under study.
Collapse
Affiliation(s)
- María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Antonio Dopico-López
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Esteban López-Arias
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Sonia López-Amoedo
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - María Pilar Chantada-Vázquez
- Proteomic Unit, Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (M.P.C.-V.); (S.B.B.)
| | - Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Lucía del Pozo-Filíu
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Lara Pérez-Gayol
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Nuria Palomar-Alonso
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - Susana B. Bravo
- Proteomic Unit, Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (M.P.C.-V.); (S.B.B.)
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| | - María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-L.); (A.D.-L.); (E.L.-A.); (S.L.-A.); (C.C.-P.); (A.B.-C.); (L.P.-G.); (N.P.-A.)
| |
Collapse
|
12
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
13
|
Liu T, Shi J, Wu D, Li D, Wang Y, Liu J, Meng P, Hu L, Fu C, Mei Z, Ge J, Zhang X. THSG alleviates cerebral ischemia/reperfusion injury via the GluN2B-CaMKII-ERK1/2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155595. [PMID: 38677275 DOI: 10.1016/j.phymed.2024.155595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The potential therapeutic targeting of PINK1-PARK2-mediated mitophagy against cerebral ischemia/reperfusion (CI/R) injury involves the pathophysiological processes of neurovascular unit (NVU) and is closely associated with N-methyl-D-aspartate receptors (NMDARs) commonly expressed in NVU. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (THSG), a compound derived from the traditional Chinese medicine Polygonum multiflorum Thunb., has demonstrated notable neuroprotective properties against CI/R injury. However, it remains unclear whether THSG exerts its protective effects through GluN2B related PINK1/ PARK2 pathway. PURPOSE This study aims to explore the pharmacological effects of THSG on alleviating CI/R injury via the GluN2B-CaMKII-ERK1/2 pathway. METHODS THSG neuroprotection against CI/R injury was studied in transient middle cerebral artery occlusion/reversion (tMCAO/R) model rats and in oxygen and glucose deprivation/ reoxygenation (OGD/R) induced neurons. PINK1-PARK2-mediated mitophagy involvement in the protective effect of THSG was investigated in tMCAO/R rats and OGD/R-induced neurons via THSG and 3-methyladenine (3-MA) treatment. Furthermore, the beneficial role of GluN2B in reperfusion and its contribution to the THSG effect via CaMKII-ERK1/2 and PINK1-PARK2-mediated mitophagy was explored using the GluN2B-selective antagonist Ro 25-6981 both in vivo and in vitro. Finally, the interaction between THSG and GluN2B was evaluated using molecular docking. RESULTS THSG significantly reduced infarct volume, neurological deficits, penumbral neuron structure, and functional damage, upregulated the inhibitory apoptotic marker Bcl-2, and suppressed the increase of pro-apoptotic proteins including cleaved caspase-3 and Bax in tMCAO/R rats. THSG (1 μM) markedly improved the neuronal survival under OGD/R conditions. Furthermore, THSG promoted PINK1 and PARK2 expression and increased mitophagosome numbers and LC3-II-LC3-I ratio both in vivo and in vitro. The effects of THSG were considerably abrogated by the mitophagy inhibitor 3-MA in OGD/R-induced neurons. Inhibiting GluN2B profoundly decreased mitophagosome numbers and OGD/R-induced neuronal viability. Specifically, inhibiting GluN2B abolished the protection of THSG against CI/R injury and reversed the upregulation of PINK1-PARK2-mediated mitophagy by THSG. Inhibiting GluN2B eliminated THSG upregulation of ERK1/2 and CaMKII phosphorylation. The molecular docking analysis results demonstrated that THSG bound to GluN2B (binding energy: -5.2 ± 0.11 kcal/mol). CONCLUSIONS This study validates the premise that THSG alleviates CI/R injury by promoting GluN2B expression, activating CaMKII and ERK1/2, and subsequently enhancing PINK1-PARK2-mediated mitophagy. This work enlightens the potential of THSG as a promising candidate for novel therapeutic strategies for treating ischemic stroke.
Collapse
Affiliation(s)
- Tonghe Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China; Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiayi Shi
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China
| | - Dahua Wu
- Department of Neurology, Hunan University of Chinese Medicine Integrated Chinese Medicine Affiliated Hospital, Changsha 410208, China
| | - Dandan Li
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pan Meng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lijuan Hu
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chaojun Fu
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhigang Mei
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China.
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China.
| | - Xiuli Zhang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China.
| |
Collapse
|
14
|
Zhou Z, Li W, Ni L, Wang T, Huang Y, Yu Y, Hu M, Liu Y, Wang J, Huang X, Wang Y. Icariin improves oxidative stress injury during ischemic stroke via inhibiting mPTP opening. Mol Med 2024; 30:77. [PMID: 38840035 PMCID: PMC11155182 DOI: 10.1186/s10020-024-00847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Weili Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Lu Ni
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tianlun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yan Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yuanqi Yu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Mingxin Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yinling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jin'e Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xiaofei Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China.
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China.
| | - Yanyan Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, P. R. China.
| |
Collapse
|
15
|
Lysikova T, Tomascova A, Kovalska M, Lehotsky J, Leskova Majdova K, Kaplan P, Tatarkova Z. Dynamics in Redox-Active Molecules Following Ischemic Preconditioning in the Brain. Neurol Int 2024; 16:533-550. [PMID: 38804479 PMCID: PMC11130914 DOI: 10.3390/neurolint16030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
It is well known that the brain is quite vulnerable to oxidative stress, initiating neuronal loss after ischemia-reperfusion (IR) injury. A potent protective mechanism is ischemic preconditioning (IPC), where proteins are among the primary targets. This study explores redox-active proteins' role in preserving energy supply. Adult rats were divided into the control, IR, and IPC groups. Protein profiling was conducted to identify modified proteins and then verified through activity assays, immunoblot, and immunohistochemical analyses. IPC protected cortex mitochondria, as evidenced by a 2.26-fold increase in superoxide dismutase (SOD) activity. Additionally, stable core subunits of respiratory chain complexes ensured sufficient energy production, supported by a 16.6% increase in ATP synthase activity. In hippocampal cells, IPC led to the downregulation of energy-related dehydrogenases, while a significantly higher level of peroxiredoxin 6 (PRX6) was observed. Notably, IPC significantly enhanced glutathione reductase activity to provide sufficient glutathione to maintain PRX6 function. Astrocytes may mobilize PRX6 to protect neurons during initial ischemic events, by decreased PRX6 positivity in astrocytes, accompanied by an increase in neurons following both IR injury and IPC. Maintained redox signaling via astrocyte-neuron communication triggers IPC's protective state. The partnership among PRX6, SOD, and glutathione reductase appears essential in safeguarding and stabilizing the hippocampus.
Collapse
Affiliation(s)
- Terezia Lysikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Anna Tomascova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Katarina Leskova Majdova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| |
Collapse
|
16
|
Tiwari S, Basnet N, Choi JW. Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses. Biomol Ther (Seoul) 2024; 32:319-328. [PMID: 38627097 PMCID: PMC11063482 DOI: 10.4062/biomolther.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.
Collapse
Affiliation(s)
- Supriya Tiwari
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Nikita Basnet
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
17
|
Shu L, Xu H, Ji J, Xu Y, Dong Z, Wu Y, Guo Y. Long-Term Accumulation of T Cytotoxic 1, T Cytotoxic 17, and T Cytotoxic 17/1 Cells in the Brain Contributes to Microglia-Mediated Chronic Neuroinflammation After Ischemic Stroke. Neuromolecular Med 2024; 26:17. [PMID: 38684592 DOI: 10.1007/s12017-024-08786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Post-stroke neuroinflammation affects the damage and recovery of neurological functions. T cells including CD8+ T cells were present in the ipsilateral hemisphere in the subacute and late phases of ischemic stroke. However, the potential roles of CD8+ T cell subsets in the progression of neuroinflammation have not been characterized. In the current mouse transient middle cerebral artery occlusion model, we investigated the existence of CD8+ T cell subsets in the ipsilateral hemisphere in the subacute and late phases of stroke. We found that ipsilateral CD8+ T cells were present on post-stroke day 3 and increased on post-stroke day 30. The day-3 ipsilateral CD8+ T cells predominantly produced interferon-γ (IFN-γ), while the day-30 ipsilateral CD8+ T cells co-expressed IFN-γ and interleukin-17A (IL-17A). In addition, evaluation of cytokines and transcription factors of the day-30 ipsilateral CD8+ T cells revealed the presence of T cytotoxic 1 (Tc1), T cytotoxic 17 (Tc17), and T cytotoxic 17/1 (Tc17/1) cells. Furthermore, based on the expression of a series of chemokine/cytokine receptors, viable ipsilateral Tc1, Tc17, and Tc17.1 cells were identified and enriched from the day-30 ipsilateral CD8+ T cells, respectively. Co-culture of microglia with ipsilateral Tc1, Tc17, or Tc17.1 cells indicated that the three CD8+ T cell subsets up-regulated the expression of pro-inflammatory mediators by microglia, with Tc17.1 cells being the most potent cell in doing so. Collectively, this study sheds light on the contributions of Tc1, Tc17, and Tc17.1 cells to long-term neuroinflammation after ischemic stroke.
Collapse
Affiliation(s)
- Long Shu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- The Department of Neurology, Affiliated Renhe Hospital of China Three Gorges University, Yichang City, 443000, Hubei Province, China
| | - Hui Xu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiale Ji
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yuhan Xu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Ziyue Dong
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yuchen Wu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yijing Guo
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
18
|
Xue M, Huang X, Zhu T, Zhang L, Yang H, Shen Y, Feng L. Unveiling the Significance of Peroxiredoxin 6 in Central Nervous System Disorders. Antioxidants (Basel) 2024; 13:449. [PMID: 38671897 PMCID: PMC11047492 DOI: 10.3390/antiox13040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.
Collapse
Affiliation(s)
- Min Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
| | - Xiaojie Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Tong Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Hao Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
19
|
Cheng W, Wang Y, Zhang L, Cheng C, Chen X, Huang W. The Impact of Dipyridamole on Disease-Associated Microglia Phenotypic Transformation in White Matter Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:744-757. [PMID: 38102341 DOI: 10.1007/s11064-023-04066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
White matter lesions (WMLs) resulting from chronic cerebral hypoperfusion (CCH) are the leading cause of vascular dementia (VaD). This study aimed to investigate whether dipyridamole could alleviate WMLs by regulating the phenotype of disease-associated microglia (DAM) through equilibrative nucleoside transporter 2 (ENT2) and adenosine A2A receptor (Adora2a) and to clarify the underlying molecular mechanisms. CCH rat models were constructed to mimic VaD. Morris water maze and Luxol Fast Blue staining were employed to assess cognitive function and quantify the severity of WMLs, respectively. Immunofluorescent staining was performed to analyze the activation of glial cells and the phenotypic transformation of DAM. Additionally, levels of ENT2, proteins in the NF-κB and ERK1/2 pathways and inflammatory cytokines were detected. The results indicated that dipyridamole diminished the activation and proliferation of microglia and astrocytes, increased the expression of myelin basic protein and ameliorated WMLs and cognitive decline in CCH rats. Further study revealed that dipyridamole decreased the expression of ENT2 and inhibited the activation of ERK1/2 and NF-κB signaling pathways, which ultimately converted DAM to anti-inflammatory phenotype and suppressed the levels of TNF-α, IL-1β, IL-6 in WMLs. However, Adora2a inhibitor (SCH58261) attenuated above effects. Our study demonstrates that dipyridamole facilitates the conversion of DAM to the anti-inflammatory phenotype through ENT2/Adora2a pathway and inhibits the activation of ERK1/2 and NF-κB signaling pathways, thereby alleviating neuroinflammation in WMLs. The current findings establish the basis for using dipyridamole to treat VaD.
Collapse
Affiliation(s)
- Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
20
|
Jo-Watanabe A, Inaba T, Osada T, Hashimoto R, Nishizawa T, Okuno T, Ihara S, Touhara K, Hattori N, Oh-Hora M, Nureki O, Yokomizo T. Bicarbonate signalling via G protein-coupled receptor regulates ischaemia-reperfusion injury. Nat Commun 2024; 15:1530. [PMID: 38413581 PMCID: PMC10899177 DOI: 10.1038/s41467-024-45579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Homoeostatic regulation of the acid-base balance is essential for cellular functional integrity. However, little is known about the molecular mechanism through which the acid-base balance regulates cellular responses. Here, we report that bicarbonate ions activate a G protein-coupled receptor (GPCR), i.e., GPR30, which leads to Gq-coupled calcium responses. Gpr30-Venus knock-in mice reveal predominant expression of GPR30 in brain mural cells. Primary culture and fresh isolation of brain mural cells demonstrate bicarbonate-induced, GPR30-dependent calcium responses. GPR30-deficient male mice are protected against ischemia-reperfusion injury by a rapid blood flow recovery. Collectively, we identify a bicarbonate-sensing GPCR in brain mural cells that regulates blood flow and ischemia-reperfusion injury. Our results provide a perspective on the modulation of GPR30 signalling in the development of innovative therapies for ischaemic stroke. Moreover, our findings provide perspectives on acid/base sensing GPCRs, concomitantly modulating cellular responses depending on fluctuating ion concentrations under the acid-base homoeostasis.
Collapse
Affiliation(s)
- Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Toshiki Inaba
- Department of Neurology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Ryota Hashimoto
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, 230-0045, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Sayoko Ihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Masatsugu Oh-Hora
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
21
|
Gajghate S, Li H, Rom S. GPR55 Inactivation Diminishes Splenic Responses and Improves Neurological Outcomes in the Mouse Ischemia/Reperfusion Stroke Model. Cells 2024; 13:280. [PMID: 38334672 PMCID: PMC10855118 DOI: 10.3390/cells13030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Although strokes are frequent and severe, treatment options are scarce. Plasminogen activators, the only FDA-approved agents for clot treatment (tissue plasminogen activators (tPAs)), are used in a limited patient group. Moreover, there are few approaches for handling the brain's inflammatory reactions to a stroke. The orphan G protein-coupled receptor 55 (GPR55)'s connection to inflammatory processes has been recently reported; however, its role in stroke remains to be discovered. Post-stroke neuroinflammation involves the central nervous system (CNS)'s resident microglia activation and the infiltration of leukocytes from circulation into the brain. Additionally, splenic responses have been shown to be detrimental to stroke recovery. While lymphocytes enter the brain in small numbers, they regularly emerge as a very influential leukocyte subset that causes secondary inflammatory cerebral damage. However, an understanding of how this limited lymphocyte presence profoundly impacts stroke outcomes remains largely unclear. In this study, a mouse model for transient middle cerebral artery occlusion (tMCAO) was used to mimic ischemia followed by a reperfusion (IS/R) stroke. GPR55 inactivation, with a potent GPR55-specific antagonist, ML-193, starting 6 h after tMCAO or the absence of the GPR55 in mice (GPR55 knock out (GPR55ko)) resulted in a reduced infarction volume, improved neurological outcomes, and decreased splenic responses. The inhibition of GPR55 with ML-193 diminished CD4+T-cell spleen egress and attenuated CD4+T-cell brain infiltration. Additionally, ML-193 treatment resulted in an augmented number of regulatory T cells (Tregs) in the brain post-tMCAO. Our report offers documentation and the functional evaluation of GPR55 in the brain-spleen axis and lays the foundation for refining therapeutics for patients after ischemic attacks.
Collapse
Affiliation(s)
- Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Hongbo Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
22
|
Wu Y, Hu C, Li Z, Li F, Lv J, Guo M, Liu X, Li C, Huo X, Chen Z, Yang L, Du X. Development of a new cerebral ischemia reperfusion model of Mongolian gerbils and standardized evaluation system. Animal Model Exp Med 2024; 7:48-55. [PMID: 38372486 PMCID: PMC10961892 DOI: 10.1002/ame2.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis. However, the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle. Additionally, the lack of an evaluation system for the cerebral ischemia/reperfusion (I/R) model of gerbils has shackled the application of this model. METHODS We created a symptom-oriented principle and detailed neurobehavioral scoring criteria. At different time points of reperfusion, we analyzed the alteration in locomotion by rotarod test and grip force score, infarct volume by triphenyltetrazolium chloride (TTC) staining, neuron loss using Nissl staining, and histological characteristics using hematoxylin-eosin (H&E) straining. RESULTS With a successful model rate of 56%, 32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury, and the mortality rate in the male gerbils was significantly higher than that in the female gerbils. The successfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion; formed obvious infarction; exhibited typical pathological features, such as tissue edema, neuronal atrophy and death, and vacuolated structures; and were partially recovered with the extension of reperfusion time. CONCLUSION This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model, which could provide a new cerebral I/R model of gerbils with more practical applications.
Collapse
Affiliation(s)
- Ying Wu
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Caijiao Hu
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Zhihui Li
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Feiyang Li
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jianyi Lv
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Meng Guo
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xin Liu
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Changlong Li
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xueyun Huo
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Zhenwen Chen
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Lifeng Yang
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Xiaoyan Du
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
23
|
Zhang LK, Liu L, Liu Q, Zhang Y, Li Z, Xu H, Bai W, Guo Y, Zhang D, Chen Z, Xia K, Li CH, Ge J, Guan YQ. Hippocampal-derived extracellular vesicle synergistically deliver active adenosine hippocampus targeting to promote cognitive recovery after stroke. Colloids Surf B Biointerfaces 2024; 234:113746. [PMID: 38199187 DOI: 10.1016/j.colsurfb.2024.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingpeng Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiquan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ziqing Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoming Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
24
|
Baranovicova E, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Lehotsky J. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci 2023; 24:17302. [PMID: 38139131 PMCID: PMC10743907 DOI: 10.3390/ijms242417302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| |
Collapse
|
25
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
26
|
Basak JM, Falk M, Mitchell DN, Coakley KA, Quillinan N, Orfila JE, Herson PS. Targeting BACE1-mediated production of amyloid beta improves hippocampal synaptic function in an experimental model of ischemic stroke. J Cereb Blood Flow Metab 2023; 43:66-77. [PMID: 37150606 PMCID: PMC10638992 DOI: 10.1177/0271678x231159597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
Post-stroke cognitive impairment and dementia (PSCID) affects many survivors of large vessel cerebral ischemia. The molecular pathways underlying PSCID are poorly defined but may overlap with neurodegenerative pathophysiology. Specifically, synaptic dysfunction after stroke may be directly mediated by alterations in the levels of amyloid beta (Aβ), the peptide that accumulates in the brains of Alzheimer's disease (AD) patients. In this study, we use the transient middle cerebral artery occlusion (MCAo) model in young adult mice to evaluate if a large vessel stroke increases brain soluble Aβ levels. We show that soluble Aβ40 and Aβ42 levels are increased in the ipsilateral hippocampus in MCAo mice 7 days after the injury. We also analyze the level and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), an enzyme that generates Aβ in the brain, and observe that BACE1 activity is increased in the ipsilateral hippocampus of the MCAo mice. Finally, we highlight that treatment of MCAo mice with a BACE1 inhibitor during the recovery period rescues stroke-induced deficits in hippocampal synaptic plasticity. These findings support a molecular pathway linking ischemia to alterations in BACE1-mediated production of Aβ, and encourage future studies that evaluate whether targeting BACE1 activity improves the cognitive deficits seen with PSCID.
Collapse
Affiliation(s)
- Jacob M Basak
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Macy Falk
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Danae N Mitchell
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Kelley A Coakley
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
27
|
Chun H, Shin WC, Kim JM, Kim H, Cho JH, Song MY, Chung WS. Visual bibliometric analysis of electroacupuncture research in stroke treatment: a 20-year overview. Front Neurosci 2023; 17:1265854. [PMID: 37901432 PMCID: PMC10600454 DOI: 10.3389/fnins.2023.1265854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Electroacupuncture has been used as a treatment; however, a visual bibliometric analysis has not yet been performed in this field. In this study, we aimed to suggest future research topics and directions related to the field by examining the last 20 years of research trends and hotspots of electroacupuncture in stroke. Methods We searched the Web of Science database on electroacupuncture as a treatment for stroke published from 2003 to 2022. We analyzed the papers by annual publication, research fields, nations, affiliations, authors, journals, and keywords. VOSviewer software was used to visualize the bibliometric analysis and results. A total of 440 papers were included in the analysis. Results The number of publications has gradually increased every year, and neuroscience has become the most actively studied field. Neural Regeneration Research journal and China had the most publications. Fujian University of Traditional Chinese Medicine, as an affiliated institute, published the most articles. Chen Lidian and Tao Jing presented the largest number of papers, making them the leading contributors in this field. Four clusters were created by analyzing keywords, such as "neuroprotection," "clinical rehabilitation," "neuroplasticity," and "pretreatment-induced tolerance". Conclusion This study is the first to analyze the research trends in electroacupuncture as a treatment for stroke using the VOSviewer. It shows the current state of research in the field by visualizing research trends and hotspots. This will help offer reference data for future studies.
Collapse
Affiliation(s)
- Hyonjun Chun
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Dong-shin Korean Medicine Hospital, Seoul, Republic of Korea
| | - Woo-Chul Shin
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jong-min Kim
- Department of Oriental Neuropsychiatry, Dong-Seo Medical Center, Seoul, Republic of Korea
| | - Hyungsuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jae-Heung Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Mi-Yeon Song
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Won-Seok Chung
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
28
|
Luo J, Chen D, Mei Y, Li H, Qin B, Lin X, Chan TF, Lai KP, Kong D. Comparative transcriptome findings reveal the neuroinflammatory network and potential biomarkers to early detection of ischemic stroke. J Biol Eng 2023; 17:50. [PMID: 37533068 PMCID: PMC10398984 DOI: 10.1186/s13036-023-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/25/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Ischemic stroke accounts for 70-80% of all stroke cases, leading to over two million people dying every year. Poor diagnosis and late detection are the major causes of the high death and disability rate. METHODS In the present study, we used the middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomic analysis, followed by a systematic advanced bioinformatic analysis, including gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA). We aimed to identify novel biomarkers for the early detection of ischemic stroke. In addition, we aimed to delineate the molecular mechanisms underlying the development of ischemic stroke, in which we hoped to identify novel therapeutic targets for treating ischemic stroke. RESULTS In the comparative transcriptomic analysis, we identified 2657 differentially expressed genes (DEGs) in the brain tissue of the MCAO model. The gene enrichment analysis highlighted the importance of these DEGs in oxygen regulation, neural functions, and inflammatory and immune responses. We identified the elevation of angiopoietin-2 and leptin receptor as potential novel biomarkers for early detection of ischemic stroke. Furthermore, the result of IPA suggested targeting the inflammasome pathway, integrin-linked kinase signaling pathway, and Th1 signaling pathway for treating ischemic stroke. CONCLUSION The results of the present study provide novel insight into the biomarkers and therapeutic targets as potential treatments of ischemic stroke.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| | - Dingzhi Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Yujia Mei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Hepeng Li
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Biyun Qin
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Clinical Medicine Research Center, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, P. R. China.
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| |
Collapse
|
29
|
Howell JA, Gaouette N, Lopez M, Burke SP, Perkins E, Bidwell GL. Elastin-like polypeptide delivery of anti-inflammatory peptides to the brain following ischemic stroke. FASEB J 2023; 37:e23077. [PMID: 37402128 PMCID: PMC10349587 DOI: 10.1096/fj.202300309rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Inflammatory processes are activated following ischemic stroke that lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to the drug carrier elastin-like polypeptide (ELP), decreases NF-κB induced inflammatory cytokine production in cultured macrophages, crosses the plasma membrane and accumulates in the cytoplasm of both neurons and microglia in vitro, and accumulates at the infarct site where the blood-brain barrier (BBB) is compromised following middle cerebral artery occlusion (MCAO) in rats. Additionally, SynB1-ELP-p50i treatment reduces infarct volume by 11.86% compared to saline-treated controls 24 h following MCAO. Longitudinally, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP-delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.
Collapse
Affiliation(s)
- John Aaron Howell
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicholas Gaouette
- School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mariper Lopez
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Stephen P. Burke
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
30
|
Luo Y, Xia Y, Zhang H, Lin Y, He L, Gong T, Zhang Z, Deng L. Human Serum Albumin-enriched Clopidogrel Bisulfate Nanoparticle Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Pharm Res 2023; 40:1821-1833. [PMID: 37291463 DOI: 10.1007/s11095-023-03543-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Cerebral ischemia-reperfusion (I/R) injury remains a leading cause of mobility and mortality among patients with ischemic stroke. This study aims to develop a human serum albumin (HSA)-enriched nanoparticle platform for solubilizing clopidogrel bisulfate (CLP) for intravenous administration, and to explore the protective effect of HSA-enriched nanoparticles loaded with CLP (CLP-ANPs) against cerebral I/R injury in transient middle cerebral artery occlusion (MCAO) rat model. METHODS CLP-ANPs were synthesized via a modified nanoparticle albumin-bound technology, lyophilized, and then characterized by morphology, particle size, zeta potential, drug loading capacity, encapsulation efficiency, stability and in vitro release kinetics. In vivo pharmacokinetic studies were conducted using Sprague-Dawley (SD) rats. Also, an MCAO rat model was established to explore the therapeutic effect of CLP-ANPs on cerebral I/R injury. RESULTS CLP-ANPs remained spherical particles with a layer of proteins forming protein corona. Lyophilized CLP-ANPs after dispersion displayed an average size of about 235.6 ± 6.6 nm (PDI = 0.16 ± 0.08) with a zeta potential of about - 13.5 ± 1.8 mV. CLP-ANPs achieved sustained release for up to 168 h in vitro. Next, a single injection of CLP-ANPs dose-dependently reversed the histopathological changes induced by cerebral I/R injury possibly via attenuating apoptosis and reducing oxidative damages in the brain tissues. CONCLUSIONS CLP-ANPs represent a promising and translatable platform system for the management of cerebral I/R injury during ischemic stroke.
Collapse
Affiliation(s)
- Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yunli Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Haonan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yunzhu Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Li Y, Tan L, Yang C, He L, Liu L, Deng B, Liu S, Guo J. Distinctions between the Koizumi and Zea Longa methods for middle cerebral artery occlusion (MCAO) model: a systematic review and meta-analysis of rodent data. Sci Rep 2023; 13:10247. [PMID: 37353569 PMCID: PMC10290095 DOI: 10.1038/s41598-023-37187-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023] Open
Abstract
Ischemic stroke in rodents is usually induced by intraluminal middle cerebral artery occlusion (MCAO) via the common carotid artery plugging filament invented by Koizumi et al. (MCAO-KM), or the external carotid artery plugging filament created by Zea Longa et al. (MCAO-LG). A systematic review of the distinctions between them is currently lacking. Here, we performed a meta-analysis in terms of model establishment, cerebral blood flow (CBF), and cerebral ischemia-reperfusion injury (CIRI) between them, Weighted Mean Differences and Standardized Mean Difference were used to analyze the combined effects, Cochrane's Q test and the I2 statistic were applied to determine heterogeneity, sensitivity analysis and subgroup analysis were performed to explore the source of heterogeneity. Literature mining suggests that MCAO-KM brings shorter operation time (p = 0.007), higher probability of plugging filament (p < 0.001) and molding establishment (p = 0.006), lower possibility of subarachnoid hemorrhage (p = 0.02), larger infarct volume (p = 0.003), severer brain edema (p = 0.002), and neurological deficits (p = 0.03). Nevertheless, MCAO-LG shows a more adequate CBF after ischemia-reperfusion (p < 0.001), a higher model survival rate (p = 0.02), and a greater infarct rate (p = 0.007). In conclusion, the MCAO-KM method is simple to operate with a high modeling success rate, and is suitable for the study of brain edema under long-term hypoperfusion, while the MCAO-LG method is highly challenging for novices, and is suitable for the study of CIRI caused by complete ischemia-reperfusion. These findings are expected to benefit the selection of intraluminal filament MCAO models before undertaking ischemic stroke preclinical effectiveness trials.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caixia Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowen Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
32
|
Zhao Y, Wang Y, Geng D, Wang Y. Editorial: Neuroinflammation and neuroimmune response in experimental MCAO and ischemic stroke. Front Aging Neurosci 2023; 15:1195395. [PMID: 37251799 PMCID: PMC10213931 DOI: 10.3389/fnagi.2023.1195395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Yingzhe Zhao
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanqiang Wang
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
33
|
Beker MC, Aydinli FI, Caglayan AB, Beker M, Baygul O, Caglayan A, Popa-Wagner A, Doeppner TR, Hermann DM, Kilic E. Age-Associated Resilience Against Ischemic Injury in Mice Exposed to Transient Middle Cerebral Artery Occlusion. Mol Neurobiol 2023:10.1007/s12035-023-03353-4. [PMID: 37093494 DOI: 10.1007/s12035-023-03353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Ischemic stroke is the leading cause of death and disability. Although stroke mainly affects aged individuals, animal research is mostly one on young rodents. Here, we examined the development of ischemic injury in young (9-12-week-old) and adult (72-week-old) C57BL/6 and BALB/c mice exposed to 30 min of intraluminal middle cerebral artery occlusion (MCAo). Post-ischemic reperfusion did not differ between young and adult mice. Ischemic injury assessed by infarct area and blood-brain barrier (BBB) integrity assessed by IgG extravasation analysis was smaller in adult compared with young mice. Microvascular viability and neuronal survival assessed by CD31 and NeuN immunohistochemistry were higher in adult than young mice. Tissue protection was associated with stronger activation of cell survival pathways in adult than young mice. Microglial/macrophage accumulation and activation assessed by F4/80 immunohistochemistry were more restricted in adult than young mice, and pro- and anti-inflammatory cytokine and chemokine responses were reduced by aging. By means of liquid chromatography-mass spectrometry, we identified a hitherto unknown proteome profile comprising the upregulation of glycogen degradation-related pathways and the downregulation of mitochondrial dysfunction-related pathways, which distinguished post-ischemic responses of the aged compared with the young brain. Our study suggests that aging increases the brain's resilience against ischemic injury.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Fatmagul I Aydinli
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Medical Biology, School of Medicine, Nisantasi University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Oguzhan Baygul
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, ARES, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Unalan, TR-34700, Istanbul, Turkey.
| |
Collapse
|
34
|
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int J Mol Sci 2023; 24:ijms24076831. [PMID: 37047799 PMCID: PMC10095190 DOI: 10.3390/ijms24076831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
To date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia. Using this approach, we identified and analyzed 11 SNPs from 6 genes in 553 Russian individuals (331 patients with IS and 222 controls). We assessed the association of SNPs with the risk of IS and IS outcomes. We found that the SNPs rs858239 (GPNMB), rs907611 (LSP1), and rs494356 (TAGLN) were associated with different parameters of IS functional outcomes. In addition, the SNP rs1261025 (PDPN) was associated significantly with IS itself (p = 0.0188, recessive model). All these associations were demonstrated for the first time. Analysis of the literature suggests that they should be characterized as being inflammation related. This supports the pivotal role of inflammation in both the incidence of stroke and post-stroke outcomes. We believe the findings reported here will help with stroke prognosis in the future.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Gennady V. Khvorykh
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Anna S. Arapova
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna E. Kulinskaya
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Svetlana A. Limborska
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
35
|
Wang C, Peng L, Wang Y, Xue Y, Chen T, Ji Y, Li Y, Zhao Y, Yu S. Integrative Analysis of Single-Cell and Bulk Sequencing Data Depicting the Expression and Function of P2ry12 in Microglia Post Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24076772. [PMID: 37047745 PMCID: PMC10095011 DOI: 10.3390/ijms24076772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2ry12 is a microglial marker gene. Recently, increasing evidence has demonstrated that its expression levels can vary in response to different CNS disorders and can affect microglial functions, such as polarization, plasticity, and migration. However, the expression and function of P2ry12 in microglia during ischemia–reperfusion injury (IRI) remain unclear. Here, we developed a computational method to obtain microglia-specific P2ry12 genes (MSPGs) using sequencing data associated with IRI. We evaluated the change in comprehensive expression levels of MSPGs during IRI and compared it to the expression of P2ry12 to determine similarity. Subsequently, the MSPGs were used to explore the P2ry12 functions in microglia through bioinformatics. Moreover, several animal experiments were also conducted to confirm the reliability of the results. The expression of P2ry12 was observed to decrease gradually within 24 h post injury. In response, microglia with reduced P2ry12 expression showed an increase in the expression of one receptor-encoding gene (Flt1) and three ligand-encoding genes (Nampt, Igf1, and Cxcl2). Furthermore, double-labeling immunofluorescence staining revealed that inhibition of P2ry12 blocked microglial migration towards vessels during IRI. Overall, we employ a combined computational and experimental approach to successfully explore P2ry12 expression and function in microglia during IRI.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Xue
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tianyi Chen
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yishan Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Yu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Howell JA, Gaouette N, Lopez M, Burke SP, Perkins E, Bidwell GL. Elastin-like polypeptide delivery of anti-inflammatory peptides to the brain following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532834. [PMID: 36993686 PMCID: PMC10055169 DOI: 10.1101/2023.03.15.532834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inflammatory processes are activated following ischemic strokes and lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to drug carrier elastin-like polypeptide (ELP), is able to enter both neurons and microglia, cross the blood-brain barrier, localize exclusively in the ischemic core and penumbra in Wistar-Kyoto and spontaneously hypertensive rats (SHRs), and reduce infarct volume in male SHRs. Additionally, in male SHRs, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP-delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.
Collapse
Affiliation(s)
- John Aaron Howell
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicholas Gaouette
- School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mariper Lopez
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Stephen P. Burke
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
37
|
Gao X, Chen F, Xu X, Liu J, Dong F, Liu Y. Ro25-6981 alleviates neuronal damage and improves cognitive deficits by attenuating oxidative stress via the Nrf2/ARE pathway in ischemia/reperfusion rats. J Stroke Cerebrovasc Dis 2023; 32:106971. [PMID: 36586245 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Oxidative stress plays a crucial role in the initiation and progression of cerebral ischemia‒reperfusion injury (CIRI). Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of CIRI. NMDAR NR2B subunit antagonists have been reported to be beneficial for synaptic plasticity, neuropathic pain, epilepsy, and cerebral ischemia. However, it remains unclear whether the NR2B subunit antagonist Ro25-6981 has any effect on CIRI. METHODS In this study, the Morris water maze test and passive avoidance test were used to detect spatial learning and memory. Neuronal loss was measured by Nissl staining. The expression of NSE was assayed by immunohistochemistry. The activities of MDA, 8-OHdG, SOD, GSH-Px, GST and CAT were detected by assay kits. Real-time PCR was used to detect the mRNA levels of hippocampal SOD, GSH-Px and HO-1. Western blotting was used to measure the activation of the Nrf2/ARE pathway by Ro25-6981. RESULTS Ro25-6981 ameliorated cognitive deficits and neuronal damage induced by ischemia‒reperfusion (I/R). Neuronal injury was decreased and the expression of NSE was increased in the CA1 regions of the hippocampus of I/R rats after Ro25-6981 treatment. Moreover, Ro25-6981 alleviated the levels of MDA and 8-OHdG by elevating the activities of SOD, GSH-Px, GST and CAT. Meanwhile, the mRNA levels of SOD, GSH-Px and HO-1 were increased in I/R rats after Ro25-6981 treatment. Furthermore, Ro25-6981 promoted the translocation of Nrf2 to the nucleus, promoting the expression of the Nrf2 downstream genes HO-1 and NQO1. CONCLUSION The present study indicated that the improvement in the antioxidant properties of Ro25-6981 is mediated by the Nrf2/ARE pathway. This is the first study to demonstrate a favorable effect of Ro25-6981 on cognitive impairment in a CIRI rat model, rendering this NR2B subunit antagonist a promising agent for the treatment or prevention of CIRI.
Collapse
Affiliation(s)
- Xiuxian Gao
- Department of Neurology, The First People's Hospital of Jiujiang, 48 Taling South Road, Jiujiang, Jiangxi Province 332000, China
| | - Fei Chen
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Xinqi Xu
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
38
|
Cong D, Yu Y, Meng Y, Qi X. Dexmedetomidine (Dex) exerts protective effects on rat neuronal cells injured by cerebral ischemia/reperfusion via regulating the Sphk1/S1P signaling pathway. J Stroke Cerebrovasc Dis 2023; 32:106896. [PMID: 36395661 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
AIM To investigate the influence of dexmedetomidine (Dex) on cerebral ischemia/reperfusion (I/R)-injured rat neuronal cells by regulating the Sphk1/S1P pathway. METHODS The rats were divided into the following groups, with 18 rats in each group categorized on the basis of random number tables: sham (Sham), I/R (I/R), Dex, Sphk1 inhibitor (PF-543), and Dex together with the Sphk1 agonist phorbol-12-myristate-13-acetate (Dex+PMA). The neurological functions of the rats were assessed by the Longa scoring system at 24 h post reperfusion. The area of brain infarction was inspected using 2,3,5-triphenyltetrazolium chloride staining, and the water content of brain tissue was determined by the dry-wet weight method. The morphology of neurons in the CA1 region of the rat hippocampus was inspected using Nissl staining, while the apoptosis of neurons in this region was detected by terminal-deoxynucleotidyl transferase mediated nick end labeling staining. The Sphk1 and S1P protein levels were determined by immunofluorescence and western blotting, respectively. RESULTS Compared to the I/R group, rats in the Dex, PF-543, and Dex+PMA groups had a significantly lower neurological function score, as well as lower brain water content and a decreased infarction area. Moreover, the apoptotic index of the neurons and the Sphk1 and S1P levels in the hippocampal CA1 region were significantly lower in these groups (p<0.05). PMA, an agonist of Sphk1, was able to reverse the protective effects of Dex on I/R-induced neuronal cell injury. CONCLUSION Dex could protect cerebral I/R-induced neuronal cell injury by suppressing the Sphk1/S1P signaling pathway.
Collapse
Affiliation(s)
- Dawei Cong
- Department of Neurosurgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Yunlong Yu
- Department of Neurosurgery, Yantai Harbour Hospital, Yantai 264000, China.
| | - Yan Meng
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| | - Xia Qi
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| |
Collapse
|
39
|
Ma R, Lu D, Xie Q, Yuan J, Ren M, Li Y, Wang J, Li J, Xu Z, Wang J. l-Borneol and d-Borneol promote transdifferentiation of astrocytes into neurons in rats by regulating Wnt/Notch pathway to exert neuroprotective effect during recovery from cerebral ischaemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154583. [PMID: 36610167 DOI: 10.1016/j.phymed.2022.154583] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Chinese medicines Borneolum and l-Borneolum have neuroprotective effects on acute cerebral ischaemia-reperfusion (IR) in rats. Research on their effects during recovery from cerebral IR is lacking. Cerebral ischaemia can activate astrocytes for conversion into neurons. Neurogenesis cannot be achieved without nutritional support from an improved brain microenvironment through the blood circulation. PURPOSE The purpose of this study was to determine whether Borneolum and l-Borneolum can promote transdifferentiation of astrocytes into neurons by regulating the Wnt/Notch pathway to exert neuroprotective effects during recovery from cerebral ischaemia. STUDY DESIGN AND METHODS A suture crossing the external carotid artery to occlude the middle cerebral artery was used to prepare a model of cerebral IR (Longa et al., 1989). The Longa neurological function score, modified neurological severity score, tape removal test and grid misstep experiment were used to evaluate motor nerve function. Triphenyltetrazolium chloride was used to determine the extent of cerebral infarction. Left/right hemisphere contrast was used to measure brain atrophy. Astrocytes labelled with adeno-associated virus were used to track their fate after transdifferentiation. Laser speckle contrast imaging was used to observe the effects of l-Borneolum and Borneolum on cerebral blood flow. Immunofluorescence and western blotting were used to investigate their mechanisms. RESULTS l-Borneolum and Borneolum significantly improved neurological function and limb movement in rats with cerebral ischaemia during recovery and increased cerebral blood flow. l-Borneolum improved forelimb motor coordination more effectively than Borneolum and promoted transdifferentiation of astrocytes to GABAergic neurons in the striatal region. The expression of Wnt3a and Notch-1 was downregulated. The expression of vascular endothelial growth factor was not significantly changed. Borneolum improved forelimb sensitivity and alleviated cerebral infarction and brain atrophy more effectively than l-Borneolum, which promoted transdifferentiation of astrocytes into neurons and nestin expression and neurogenesis in the striatal zone. The expression of glycogen synthase kinase-3β and β-catenin was upregulated. l-Borneolum and Borneolum had no significant neuroprotective effect on the cortex and hippocampus. CONCLUSIONS l-Borneolum and Borneolum exerted neuroprotective effects on cerebral ischaemia during recovery by promoting neurogenesis and blood circulation in the striatal and subventricular zones. Their mechanisms may be related to the Wnt3a and Notch-1 pathways.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Medicine, Foshan University, Foshan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Medicine, Foshan University, Foshan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
40
|
Neuroprotection of boropinol-B in cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis. Brain Res 2023; 1798:148132. [DOI: 10.1016/j.brainres.2022.148132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
|
41
|
Gao ZK, Shen XY, Han Y, Guo YS, Li K, Bi X. Pre-ischemic exercise prevents inflammation and apoptosis by inhibiting MAPK pathway in ischemic stroke. Transl Neurosci 2022; 13:495-505. [PMID: 36636513 PMCID: PMC9803980 DOI: 10.1515/tnsci-2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction Mitogen-activated protein kinase (MAPK) pathway is a major mechanism of acute brain damage in ischemic stroke. Pre-ischemic exercise is an effective method to reduce ischemic injury. However, the regulation by pre-ischemic exercise of MAPK pathway and associated mechanisms in animal models remains unclear. Materials and methods In this study, Male SD rats were randomly divided into sham group, middle cerebral artery occlusion (MCAO) group, and exercise plus MCAO (EX + MCAO) group for 21 days, and then was established by MCAO. Longa score was used to measure neurological deficits at 0, 1, 2, and 3 days after MCAO. Hematoxylin and eosin staining was used to observe the brain injury. The expression of MAPK pathway was quantified by western blot. The M1 microglia protein was quantified by western blot and immunofluorescence, and the level of inflammatory factor was measured by enzyme-linked immunosorbent assay. TUNEL staining and western blot were used to measure apoptosis. Results In the current study, we observed that pre-ischemic exercise effectively decreased infarct volume, neurological deficit score and brain injury in MCAO rats through suppressing the activation of p-JNK and p-ERK1/2. Further investigation revealed that pre-ischemic exercise decreased M1 microglia activation and the serum level of TNF-α and IL-1β. In addition, the increased number of TUNEL-positive cells and Bax/Bcl-2 ratio also were reversed by pre-ischemic exercise. Conclusions Pre-ischemic exercise can alleviate inflammatory response and apoptosis by inhibiting the MAPK pathway in MCAO rats.
Collapse
Affiliation(s)
- Zhen-Kun Gao
- Department of Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Xin-Ya Shen
- Department of Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yu Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai201318, China
| | - Yi-Sha Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai201318, China
| | - Kai Li
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai201318, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai201318, China
| |
Collapse
|
42
|
Ha GH, Kim EJ, Park JS, Kim JE, Nam H, Yeon JY, Lee SH, Lee K, Kim CK, Joo KM. JAK2/STAT3 pathway mediates neuroprotective and pro-angiogenic treatment effects of adult human neural stem cells in middle cerebral artery occlusion stroke animal models. Aging (Albany NY) 2022; 14:8944-8969. [PMID: 36446389 PMCID: PMC9740376 DOI: 10.18632/aging.204410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Mismatches between pre-clinical and clinical results of stem cell therapeutics for ischemic stroke limit their clinical applicability. To overcome these discrepancies, precise planning of pre-clinical experiments that can be translated to clinical trials and the scientific elucidation of treatment mechanisms is important. In this study, adult human neural stem cells (ahNSCs) derived from temporal lobe surgical samples were used (to avoid ethical and safety issues), and their therapeutic effects on ischemic stroke were examined using middle cerebral artery occlusion animal models. 5 × 105 ahNSCs was directly injected into the lateral ventricle of contralateral brain hemispheres of immune suppressed rat stroke models at the subacute phase of stroke. Compared with the mock-treated group, ahNSCs reduced brain tissue atrophy and neurological sensorimotor and memory functional loss. Tissue analysis demonstrated that the significant therapeutic effects were mediated by the neuroprotective and pro-angiogenic activities of ahNSCs, which preserved neurons in ischemic brain areas and decreased reactive astrogliosis and microglial activation. The neuroprotective and pro-angiogenic effects of ahNSCs were validated in in vitro stroke models and were induced by paracrine factors excreted by ahNSCs. When the JAK2/STAT3 signaling pathway was inhibited by a specific inhibitor, AG490, the paracrine neuroprotective and pro-angiogenic effects of ahNSCs were reversed. This pre-clinical study that closely simulated clinical settings and provided treatment mechanisms of ahNSCs for ischemic stroke may aid the development of protocols for subsequent clinical trials of ahNSCs and the realization of clinically available stem cell therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea
| | - Eun Ji Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea
| | - Jee Soo Park
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Ji Eun Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea
| | - Hyun Nam
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Je Young Yeon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Sun-Ho Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| | - Kyunghoon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, South Korea,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Chung Kwon Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Kyeung Min Joo
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, South Korea,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
43
|
de Medeiros Borges H, Dagostin CS, Córneo E, Dondossola ER, Bernardo HT, Pickler KDP, da Costa Pereira B, de Oliveira MA, Scussel R, Michels M, Machado-de-Ávila RA, Dal-Pizzol F, Rico EP. Zebrafish as a potential model for stroke: A comparative study with standardized models. Life Sci 2022; 312:121200. [PMID: 36435227 DOI: 10.1016/j.lfs.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
Animal models of cerebral ischemia have improved our understanding of the pathophysiology and mechanisms involved in stroke, as well as the investigation of potential therapies. The potential of zebrafish to model human diseases has become increasingly evident. The availability of these models allows for an increased understanding of the role of chemical exposure in human conditions and provides essential tools for mechanistic studies of disease. To evaluate the potential neuroprotective properties of minocycline against ischemia and reperfusion injury in zebrafish and compare them with other standardized models. In vitro studies with BV-2 cells were performed, and mammalian transient middle cerebral artery occlusion (tMCAO) was used as a comparative standard with the zebrafish stroke model. Animals were subjected to ischemia and reperfusion injury protocols and treated with minocycline. Infarction size, cytokine levels, oxidative stress, glutamate toxicity, and immunofluorescence for microglial activation, and behavioral test results were determined and compared. Administration of minocycline provided significant protection in the three stroke models in different parameters analyzed. Both experimental models complement each other in their particularities. The proposal also strengthens the findings in the literature in rodent models and allows the validation of alternative models so that they can be used in further research involving diseases with ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Heloisa de Medeiros Borges
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Caroline Serafim Dagostin
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Karolyne De Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariane Amanda de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Gabbia Biotechnology Company, Barra Velha, Santa Catarina, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
44
|
Li X, Li R, Lu L, Dhar A, Sheng H, Yang W. Beneficial effects of neuronal ATF6 activation in permanent ischemic stroke. Front Cell Neurosci 2022; 16:1016391. [PMID: 36313623 PMCID: PMC9614111 DOI: 10.3389/fncel.2022.1016391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: Brain ischemia leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen and consequently, ER stress. To help cells restore ER function, a series of adaptive stress response pathways, collectively termed the unfolded protein response (UPR), are activated. We have previously demonstrated that the UPR pathway initiated by ATF6 is pro-survival in transient ischemic stroke. However, the effect of ATF6 activation on the outcome after permanent ischemic stroke remains unknown. Here, we addressed this knowledge gap. Method: sATF6-KI mice with functional short-form ATF6 (sATF6) predominantly expressed in forebrain neurons were subjected to two ischemic stroke models: photothrombotic stroke and permanent middle cerebral artery occlusion (pMCAO). Both short-term and long-term functional outcomes were evaluated. Changes in neuroinflammation and cerebrovascular density after pMCAO were also assessed. Results: Compared to littermate controls, sATF6-KI mice performed significantly better in open field, cylinder, and foot fault tests on day 1 or 3 after photothrombotic stroke. However, on days 7 and 14 after stroke, the performance of these functional tests was not significantly different between groups, which is likely related to mild brain damage associated with this stroke model. Thus, to evaluate the long-term effects of ATF6 activation in permanent stroke, we turned to our pMCAO model. We first found that on day 4 after pMCAO, functional outcome was better, and infarct volumes were smaller in sATF6-KI mice vs controls. Next, the 15-day stroke outcome study indicated that compared to control mice, sATF6-KI mice consistently exhibited improved performance in neurologic scoring, tight rope test, and tape removal test, after pMCAO. Moreover, sATF6-KI mice showed higher vascular density and lower activation of both astrocytes and microglia around stroke regions on day 16 after pMCAO. Conclusions: Here, we presented the first evidence that activation of the ATF6 UPR branch is protective in permanent ischemic stroke, which further supports the therapeutic potential of targeting the ATF6 pathway in stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
45
|
Sharma R, Chischolm A, Parikh M, Qureshi AI, Sahota P, Thakkar MM. Ischemic Stroke Disrupts Sleep Homeostasis in Middle-Aged Mice. Cells 2022; 11:2818. [PMID: 36139392 PMCID: PMC9497108 DOI: 10.3390/cells11182818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sleep disturbances, including insomnia and excessive daytime sleepiness, are highly prevalent in patients with ischemic stroke (IS), which severely impacts recovery and rehabilitation efforts. However, how IS induces sleep disturbances is unclear. Three experiments were performed on middle-aged C57BL/6J mice, instrumented with sleep recording electrodes and/or subjected to 1 h of middle cerebral artery (MCAO; Stroke group) or sham (Sham group) occlusion to induce IS. After 48 h of reperfusion (a) experiment 1 verified sensorimotor deficit (using Garcia scale) and infarction (using TTC staining) in this mouse model; (b) experiment 2 examined the effects of IS on the quality (sleep latency and NREM delta power) and quantity (duration) of sleep; and (c) experiment 3 determined the effects of IS on sleep homeostasis using sleep deprivation (SD) and recovery sleep (RS) paradigm. Stroke mice display (a) a significant correlation between sensorimotor deficit and cerebral infarction; (b) insomnia-like symptoms (increased sleep latency, reduced NREM duration and delta power) during the light (inactive) period and daytime sleepiness-like symptoms during the dark (active) period mimicking sleep in IS patients; and (c) impairments in the markers of sleep pressure (during SD) and sleep dissipation (during RS). Our results suggest that IS disrupts sleep homeostasis to cause sleep disturbances.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | | | | | | | | | | |
Collapse
|
46
|
Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion. Int J Mol Sci 2022; 23:ijms231810394. [PMID: 36142301 PMCID: PMC9498989 DOI: 10.3390/ijms231810394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration.
Collapse
|
47
|
Bhat JA, Kumar M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab Brain Dis 2022; 37:1787-1801. [PMID: 35587851 DOI: 10.1007/s11011-022-00995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Cerebral hypoperfusion (CH) is a common underlying mechanism of dementia disorders linked to aberrations in the neurovascular unit. Hemodynamic disturbances adversely affect cellular energy homeostasis that triggers a sequence of events leading to irrevocable damage to the brain and neurobehavioral discrepancies. Theobromine is a common ingredient of many natural foods consumed by a large population worldwide. Theobromine has shown health benefits in several studies, attributed to regulation of calcium homeostasis, phosphodiesterase, neurotransmission, and neurotrophins. The current study evaluated the neuroprotective potential of theobromine against CH in the permanent bilateral common carotid artery occlusion (BCCAO) prototype. Wistar rats were distributed in Sham-operated (S), S + T100, CH, CH + T50, and CH + T100 groups. Animals received permanent BCCAO or Sham treatment on day 1. Theobromine (50, 100 mg/kg) was given orally in animals subjected to BCCAO for 14 days daily. CH caused neurological deficits (12-point scale), motor dysfunction, and memory impairment in rats. Treatment with theobromine significantly attenuated neurological deficits and improved sensorimotor functions and memory in rats with CH. In biochemistry investigation of the entire brain, findings disclosed reduction in brain oxidative stress, inflammatory intermediaries (tumor necrosis factor-α, interleukin-1β and - 6, nuclear factor-κB), markers of cell demise (lactate dehydrogenase, caspase-3), acetylcholinesterase activity, and improvement in γ-aminobutyric acid quantity in rats that were given theobromine for 14 days daily after CH. Histopathological analysis substantiated attenuation of neurodegenerative changes by theobromine. The findings of this study indicated that theobromine could improve neurological scores, sensorimotor abilities, and memory in CH prototype.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India
| | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
48
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Ocular Ischemic Syndrome and Its Related Experimental Models. Int J Mol Sci 2022; 23:ijms23095249. [PMID: 35563640 PMCID: PMC9100201 DOI: 10.3390/ijms23095249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Ocular ischemic syndrome (OIS) is one of the severe ocular disorders occurring from stenosis or occlusion of the carotid arteries. As the ophthalmic artery is derived from the branch of the carotid artery, stenosis or occlusion of the carotid arteries could induce chronic ocular hypoperfusion, finally leading to the development of OIS. To date, the pathophysiology of OIS is still not clearly unraveled. To better explore the pathophysiology of OIS, several experimental models have been developed in rats and mice. Surgical occlusion or stenosis of common carotid arteries or internal carotid arteries was conducted bilaterally or unilaterally for model development. In this regard, final ischemic outcomes in the eye varied depending on the surgical procedure, even though similar findings on ocular hypoperfusion could be observed. In the current review, we provide an overview of the pathophysiology of OIS from various experimental models, as well as several clinical cases. Moreover, we cover the status of current therapies for OIS along with promising preclinical treatments with recent advances. Our review will enable more comprehensive therapeutic approaches to prevent the development and/or progression of OIS.
Collapse
|
50
|
|