1
|
Ciralli B, Malfatti T, Lima TZ, Silva SRB, Cederroth CR, Leao KE. Alterations of auditory sensory gating in mice with noise-induced tinnitus treated with nicotine and cannabis extract. J Psychopharmacol 2023; 37:1116-1131. [PMID: 37837354 DOI: 10.1177/02698811231200879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Tinnitus is a phantom sound perception affecting both auditory and limbic structures. The mechanisms of tinnitus remain unclear and it is debatable whether tinnitus alters attention to sound and the ability to inhibit repetitive sounds, a phenomenon also known as auditory gating. Here we investigate if noise exposure interferes with auditory gating and whether natural extracts of cannabis or nicotine could improve auditory pre-attentional processing in noise-exposed mice. We used 22 male C57BL/6J mice divided into noise-exposed (exposed to a 9-11 kHz narrow band noise for 1 h) and sham (no sound during noise exposure) groups. Hearing thresholds were measured using auditory brainstem responses, and tinnitus-like behavior was assessed using Gap prepulse inhibition of acoustic startle. After noise exposure, mice were implanted with multi-electrodes in the dorsal hippocampus to assess auditory event-related potentials in response to paired clicks. The results showed that mice with tinnitus-like behavior displayed auditory gating of repetitive clicks, but with larger amplitudes and longer latencies of the N40 component of the aERP waveform. The combination of cannabis extract and nicotine improved the auditory gating ratio in noise-exposed mice without permanent hearing threshold shifts. Lastly, the longer latency of the N40 component appears due to an increased sensitivity to cannabis extract in noise-exposed mice compared to sham mice. The study suggests that the altered central plasticity in tinnitus is more sensitive to the combined actions on the cholinergic and the endocannabinoid systems. Overall, the findings contribute to a better understanding of pharmacological modulation of auditory sensory gating.
Collapse
Affiliation(s)
- Barbara Ciralli
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thawann Malfatti
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - Thiago Z Lima
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Applied Mathematics and Statistics, Exact and Earth Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katarina E Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
2
|
Dejean C, Dupont T, Verpy E, Gonçalves N, Coqueran S, Michalski N, Pucheu S, Bourgeron T, Gourévitch B. Detecting Central Auditory Processing Disorders in Awake Mice. Brain Sci 2023; 13:1539. [PMID: 38002499 PMCID: PMC10669832 DOI: 10.3390/brainsci13111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Mice are increasingly used as models of human-acquired neurological or neurodevelopmental conditions, such as autism, schizophrenia, and Alzheimer's disease. All these conditions involve central auditory processing disorders, which have been little investigated despite their potential for providing interesting insights into the mechanisms behind such disorders. Alterations of the auditory steady-state response to 40 Hz click trains are associated with an imbalance between neuronal excitation and inhibition, a mechanism thought to be common to many neurological disorders. Here, we demonstrate the value of presenting click trains at various rates to mice with chronically implanted pins above the inferior colliculus and the auditory cortex for obtaining easy, reliable, and long-lasting access to subcortical and cortical complex auditory processing in awake mice. Using this protocol on a mutant mouse model of autism with a defect of the Shank3 gene, we show that the neural response is impaired at high click rates (above 60 Hz) and that this impairment is visible subcortically-two results that cannot be obtained with classical protocols for cortical EEG recordings in response to stimulation at 40 Hz. These results demonstrate the value and necessity of a more complete investigation of central auditory processing disorders in mouse models of neurological or neurodevelopmental disorders.
Collapse
Affiliation(s)
- Camille Dejean
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
- Cilcare Company, F-34080 Montpellier, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, F-75005 Paris, France
| | - Typhaine Dupont
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | - Elisabeth Verpy
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Noémi Gonçalves
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | - Sabrina Coqueran
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Nicolas Michalski
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | | | - Thomas Bourgeron
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Boris Gourévitch
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
- CNRS, F-75016 Paris, France
| |
Collapse
|
3
|
Postal O, Bakay W, Dupont T, Buck A, Élodie Daoud, Petit C, Michalski N, Gourévitch B. Characterizing subcutaneous cortical auditory evoked potentials in mice. Hear Res 2022; 422:108566. [PMID: 35863162 DOI: 10.1016/j.heares.2022.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Auditory Brainstem Responses (ABRs) are a reliably robust measure of auditory thresholds in the mammalian hearing system and can be used to determine deficits in the auditory periphery. However, because these measures are limited to the lower stages of the auditory pathway, they are insensitive to changes or deficits that occur in the thalamic and cortical regions. Cortical Auditory Evoked Potentials (CAEPs), as longer latency responses, capture information from these regions. However they are less frequently used as a diagnostic tool, particularly in rodent models, due to their inherent variability and subsequent difficult interpretation. The purpose of this study was to develop a consistent measure of subcutaneous CAEPs to auditory stimuli in mice and to determine their origin. To this end, we investigated the effect on the CAEPs recorded in response to different stimuli (noise, click, and tone (16 kHz) bursts), stimulus presentation rates (2/s, 6/s, 10/s) and electrode placements. Recordings were examined for robust CAEP components to determine the optimal experimental paradigm. We argue that CAEPs can measure robust and replicable cortical responses. Furthermore, by deactivating the auditory cortex with lidocaine we demonstrated that the contralateral cortex is the main contributor to the CAEP. Thus CAEP measurements could prove to be of value diagnostically in future for deficits in higher auditory areas.
Collapse
Affiliation(s)
- Olivier Postal
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Warren Bakay
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France
| | - Typhaine Dupont
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France
| | - Alexa Buck
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France
| | - Élodie Daoud
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France
| | - Christine Petit
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France
| | - Nicolas Michalski
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France
| | - Boris Gourévitch
- Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, F-75012 Paris, France; CNRS, France.
| |
Collapse
|
4
|
JA R, Lovelace JW, Kokash J, Hussain A, KA R. Nicotine reduces age-related changes in cortical neural oscillations without affecting auditory brainstem responses. Neurobiol Aging 2022; 120:10-26. [DOI: 10.1016/j.neurobiolaging.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
|
5
|
Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders. Sci Rep 2015; 5:14964. [PMID: 26459883 PMCID: PMC4602219 DOI: 10.1038/srep14964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies.
Collapse
Affiliation(s)
- Xin Wang
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - António Pinto-Duarte
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - M Margarita Behrens
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Featherstone RE, Siegel SJ. The Role of Nicotine in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:23-78. [PMID: 26472525 DOI: 10.1016/bs.irn.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is associated with by severe disruptions in thought, cognition, emotion, and behavior. Patients show a marked increase in rates of smoking and nicotine dependence relative to nonaffected individuals, a finding commonly ascribed to the potential ameliorative effects of nicotine on symptom severity and cognitive impairment. Indeed, many studies have demonstrated improvement in patients following the administration of nicotine. Such findings have led to an increased emphasis on the development of therapeutic agents to target the nicotinic system as well as increasing the impetus to understand the genetic basis for nicotinic dysfunction in schizophrenia. The goal of this review article is to provide a critical summary of evidence for the role of the nicotinic system in schizophrenia. The first part will review the role of nicotine in normalization of primary dysfunctions and endophenotypical changes found in schizophrenia. The second part will provide a summary of genetic evidence linking polymorphisms in nicotinic receptor genes to smoking and schizophrenia. The third part will summarize attempts to treat schizophrenia using agents specifically targeting nicotinic and nicotinic receptor subtypes. Although currently available antipsychotic treatments are generally able to manage some aspects of schizophrenia (e.g., positive symptoms) they fail to address several other critically effected aspects of the disease. As such, the search for novel mechanisms to treat this disease is necessary.
Collapse
Affiliation(s)
- Robert E Featherstone
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Steven J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Smucny J, Stevens KE, Olincy A, Tregellas JR. Translational utility of rodent hippocampal auditory gating in schizophrenia research: a review and evaluation. Transl Psychiatry 2015; 5:e587. [PMID: 26101850 PMCID: PMC4490287 DOI: 10.1038/tp.2015.77] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 01/15/2023] Open
Abstract
Impaired gating of the auditory evoked P50 potential is one of the most pharmacologically well-characterized features of schizophrenia. This deficit is most commonly modeled in rodents by implanted electrode recordings from the hippocampus of the rodent analog of the P50, the P20-N40. The validity and effectiveness of this tool, however, has not been systematically reviewed. Here, we summarize findings from studies that have examined the effects of pharmacologic modulation on gating of the rodent hippocampal P20-N40 and the human P50. We show that drug effects on the P20-N40 are highly predictive of human effects across similar dose ranges. Furthermore, mental status (for example, anesthetized vs alert) does not appear to diminish the predictive capacity of these recordings. We then discuss hypothesized neuropharmacologic mechanisms that may underlie gating effects for each drug studied. Overall, this review supports continued use of hippocampal P20-N40 gating as a translational tool for schizophrenia research.
Collapse
Affiliation(s)
- J Smucny
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Research Service, Denver VA Medical Center, Denver, CO, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K E Stevens
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A Olincy
- Research Service, Denver VA Medical Center, Denver, CO, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J R Tregellas
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Research Service, Denver VA Medical Center, Denver, CO, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 2015; 1344:12-26. [DOI: 10.1111/nyas.12745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert E. Featherstone
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Mary F. McMullen
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Katelyn R. Ward
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jakyung Bang
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jane Xiao
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Steven J. Siegel
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
9
|
Stevens KE, Zheng L, Floyd KL, Stitzel JA. Maximizing the effect of an α7 nicotinic receptor PAM in a mouse model of schizophrenia-like sensory inhibition deficits. Brain Res 2015; 1611:8-17. [PMID: 25744161 DOI: 10.1016/j.brainres.2015.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/30/2022]
Abstract
Positive allosteric modulators (PAMs) for the α7 nicotinic receptor hold promise for the treatment of sensory inhibition deficits observed in schizophrenia patients. Studies of these compounds in the DBA/2 mouse, which models the schizophrenia-related deficit in sensory inhibition, have shown PAMs to be effective in improving the deficit. However, the first published clinical trial of a PAM for both sensory inhibition deficits and related cognitive difficulties failed, casting a shadow on this therapeutic approach. The present study used both DBA/2 mice, and C3H Chrna7 heterozygote mice to assess the ability of the α7 PAM, PNU-120596, to improve sensory inhibition. Both of these strains of mice have reduced hippocampal α7 nicotinic receptor numbers and deficient sensory inhibition similar to schizophrenia patients. Low doses of PNU-120596 (1 or 3.33mg/kg) were effective in the DBA/2 mouse but not the C3H Chrna7 heterozygote mouse. Moderate doses of the selective α7 nicotinic receptor agonist, choline chloride (10 or 33mg/kg), were also ineffective in improving sensory inhibition in the C3H Chrna7 heterozygote mouse. However, combining the lowest doses of both PNU-120596 and choline chloride in this mouse model did improve sensory inhibition. We propose here that the difference in efficacy of PNU-120596 between the 2 mouse strains is driven by differences in hippocampal α7 nicotinic receptor numbers, such that C3H Chrna7 heterozygote mice require additional direct stimulation of the α7 receptors. These data may have implications for further clinical testing of putative α7 nicotinic receptor PAMs.
Collapse
Affiliation(s)
- Karen E Stevens
- Department of Psychiatry, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Lijun Zheng
- Department of Psychiatry, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kirsten L Floyd
- Department of Psychiatry, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 2014; 6:28. [PMID: 25505409 PMCID: PMC4243504 DOI: 10.3389/fnsyn.2014.00028] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| |
Collapse
|
11
|
Abstract
Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability.
Collapse
|
12
|
Tanimoto N, Sothilingam V, Gloeckner G, Bryda EC, Humphries P, Biel M, Seeliger MW. Auditory event-related signals in mouse ERG recordings. Doc Ophthalmol 2013; 128:25-32. [PMID: 24221507 DOI: 10.1007/s10633-013-9417-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE In murine disease models, particularly in cases when retinal electrical activity is reduced, an event-related component becomes apparent that does not change with the stimulus intensity in electroretinogram (ERG) recordings. In this work, we show that this electric component is evoked by the sound of the flash discharge rather than the light flash itself. METHODS Wild-type mice (C57BL/6), mice with rod function only (Cnga3 (-/-)), mice lacking any photoreceptor function (Cnga3 (-/-) rho (-/-)), and mice with no auditory function (Cdh23 (vAlb/vAlb) ) were examined with Xenon flash ERG systems. An acoustic noise generator was used to mask discharge sounds. RESULTS ERG recording modalities were identified where usually no discernible response can be elicited. These include photopic conditions in Cnga3 (-/-) mice, photopic conditions together with very low stimulus intensities in C57BL/6 mice, and both scotopic and photopic conditions in Cnga3 (-/-) rho (-/-) mice. However, in all of these cases, small signals, featuring an initial a-wave like deflection at about 20 ms and a subsequent b-wave like deflection peaking at about 40 ms after the flash, were detected. In contrast, such signals could not be detected in deaf Cdh23 (vAlb/vAlb) mice. Furthermore, masking the Xenon discharge sound by continuous acoustic noise led to a loss of the event-related signals in a reversible manner. CONCLUSIONS We could identify an auditory event-related component, presumably resembling auditory evoked potentials, as a major source of ERG signals of non-visual origin in mice. This finding may be of particular importance for the analysis and interpretation of ERG data in mice with reduced visual responses.
Collapse
Affiliation(s)
- Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Schleichstr. 4/3, 72076, Tübingen, Germany,
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin RE, Ambler L, Billingslea EN, Suh J, Batheja S, Tatard-Leitman V, Featherstone RE, Siegel SJ. Electroencephalographic and early communicative abnormalities in Brattleboro rats. Physiol Rep 2013; 1:e00100. [PMID: 24303172 PMCID: PMC3841036 DOI: 10.1002/phy2.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022] Open
Abstract
Reductions in the levels of the neuropeptide vasopressin (VP) and its receptors have been associated with schizophrenia. VP is also critical for appropriate social behaviors in humans as well as rodents. One of the prominent symptoms of schizophrenia is asociality and these symptoms may develop prodromally. A reduction in event-related potential (ERP) peak amplitudes is an endophenotype of schizophrenia. In this study, we use the Brattleboro (BRAT) rat to assess the role of VP deficiency in vocal communication during early development and on auditory ERPs during adulthood. BRAT rats had similar vocal communication to wild-type littermate controls during postnatal days 2 and 5 but the time between vocalizations was increased and the power of the vocalizations was reduced beginning at postnatal day 9. During adulthood, BRAT rats had deficits in auditory ERPs including reduced N40 amplitude and reduced low and high gamma intertrial coherence. These results suggest that the role of VP on vocal communication is an age-dependent process. Additionally, the deficits in ERPs indicate an impairment of auditory information processing related to the reduction in VP. Therefore, manipulation of the VP system could provide a novel mechanism for treatment for negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Robert E Lin
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Animal models and measures of perceptual processing in schizophrenia. Neurosci Biobehav Rev 2013; 37:2092-8. [PMID: 23867801 DOI: 10.1016/j.neubiorev.2013.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/16/2013] [Accepted: 06/18/2013] [Indexed: 01/14/2023]
Abstract
This paper summarizes the discussions regarding animal paradigms for assessing perception at the seventh meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS). A breakout group at the meeting addressed candidate tests in animals that might best parallel the human paradigms selected previously in the CNTRICS program to assess two constructs in the domain of perception: gain control and visual integration. The perception breakout group evaluated the degree to which each of the nominated tasks met pre-specified criteria: comparability of tasks across multiple species; construct validity; neuroanatomical homology between species; and dynamic range across parametric variation.
Collapse
|
15
|
Metaxas A, Al-Hasani R, Farshim P, Tubby K, Berwick A, Ledent C, Hourani S, Kitchen I, Bailey A. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain. Neuropharmacology 2013; 71:228-36. [PMID: 23583933 DOI: 10.1016/j.neuropharm.2013.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, Institute of Health & Medical Sciences, University of Surrey, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nicotine receptor subtype-specific effects on auditory evoked oscillations and potentials. PLoS One 2012; 7:e39775. [PMID: 22911690 PMCID: PMC3401200 DOI: 10.1371/journal.pone.0039775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022] Open
Abstract
Background Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. Methodology/Principal Findings We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE), and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. Conclusions/Significance These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through activation of α4β2 receptors. Event-related gamma is strongly influenced by activation of α4β2, but not α7, receptor subtypes, while disruption of N40 amplitude requires the activation of multiple receptor subtypes.
Collapse
|
17
|
Mathalon DH, Ford JM. Neurobiology of schizophrenia: search for the elusive correlation with symptoms. Front Hum Neurosci 2012; 6:136. [PMID: 22654745 PMCID: PMC3360476 DOI: 10.3389/fnhum.2012.00136] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/29/2012] [Indexed: 11/13/2022] Open
Abstract
In the last half-century, human neuroscience methods provided a way to study schizophrenia in vivo, and established that it is associated with subtle abnormalities in brain structure and function. However, efforts to understand the neurobiological bases of the clinical symptoms that the diagnosis is based on have been largely unsuccessful. In this paper, we provide an overview of the conceptual and methodological obstacles that undermine efforts to link the severity of specific symptoms to specific neurobiological measures. These obstacles include small samples, questionable reliability and validity of measurements, medication confounds, failure to distinguish state and trait effects, correlation-causation ambiguity, and the absence of compelling animal models of specific symptoms to test mechanistic hypotheses derived from brain-symptom correlations. We conclude with recommendations to promote progress in establishing brain-symptom relationships.
Collapse
Affiliation(s)
- Daniel H. Mathalon
- Psychiatry Service, San Francisco VA Medical CenterSan Francisco, CA, USA
- Department of Psychiatry, University of CaliforniaSan Francisco, CA, USA
| | - Judith M. Ford
- Psychiatry Service, San Francisco VA Medical CenterSan Francisco, CA, USA
- Department of Psychiatry, University of CaliforniaSan Francisco, CA, USA
| |
Collapse
|
18
|
Swerdlow NR, Light GA, Breier MR, Shoemaker JM, Saint Marie RL, Neary AC, Geyer MA, Stevens KE, Powell SB. Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev Neurosci 2012; 34:240-9. [PMID: 22572564 DOI: 10.1159/000336841] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/27/2012] [Indexed: 01/20/2023] Open
Abstract
Neonatal ventral hippocampal lesions (NVHLs) in rats lead to reduced prepulse inhibition (PPI) of startle and other behavioral deficits in adulthood that model abnormalities in schizophrenia patients. A neurophysiological deficit in schizophrenia patients and their first-degree relatives is reduced gating of the P50 event-related potential (ERP). N40 ERP gating in rats may be a cross-species analog of P50 gating, and is disrupted in experimental manipulations related to schizophrenia. Here, we tested whether N40 gating as well as PPI is disrupted after NVHLs, using contemporaneous measures of these two conceptually related phenomena. Male rat pups received sham or ibotenic acid NVHLs on postnatal day 7. PPI was tested on days 35 and 56, after which rats were equipped with cortical surface electrodes for ERP measurements. One week later, PPI and N40 gating were measured in a single test, using paired S1-S2 clicks spaced 500 ms apart to elicit N40 gating. Compared to sham-lesioned rats, those with NVHLs exhibited PPI deficits on days 35 and 56. NVHL rats also exhibited reduced N40 gating and reduced PPI, when measured contemporaneously at day 65. Deficits in PPI and N40 gating appeared most pronounced in rats with larger lesions, focused within the ventral hippocampus. In this first report of contemporaneous measures of two important schizophrenia-related phenotypes in NVHL rats, NVHLs reproduce both sensory (N40) and sensorimotor (PPI) gating deficits exhibited in schizophrenia. In this study, lesion effects were detected prior to pubertal onset, and were sustained well into adulthood.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Turetsky BI, Dent G, Jaeger J, Zukin SR. P50 amplitude reduction: a nicotinic receptor-mediated deficit in first-degree relatives of schizophrenia patients. Psychopharmacology (Berl) 2012; 221:39-52. [PMID: 22048129 DOI: 10.1007/s00213-011-2544-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/10/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE Impaired P50 gating is a putative index of genetically mediated nicotinic dysfunction in schizophrenia. However, assessment is confounded, in patients, by differential effects of smoking, symptoms, and treatment. OBJECTIVES This double-blind placebo-controlled study was designed to tease apart the relationships among P50, acute and chronic nicotine exposure, and familial risk. METHODS AND RESULTS Experiment 1: To assess the putative effects of genetic vulnerability without other confounds, 14 unaffected relatives of schizophrenia patients and 15 controls, all nonsmokers, were tested with/without 7 mg transdermal nicotine. Family members had reduced P50 amplitude to an initial auditory stimulus, but normal P50 gating. Nicotine decreased P50 amplitude in controls; family members had a mixed response: eight decreased and six increased P50 amplitude with nicotine. Experiment 2: To assess chronic nicotine use and short-term withdrawal as a model of nicotinic dysfunction, 26 healthy smokers (14 abstinent for >12 h) received 21 mg transdermal nicotine. Chronic nicotine use, alone, did not alter P50 amplitude or gating. Short-term withdrawal resulted in decreased P50 amplitude, with no effect on P50 gating. Nicotine increased P50 amplitude in abstinent smokers and decreased it in nonabstinent smokers. CONCLUSIONS Familial vulnerability to schizophrenia reduces P50 amplitude. Nicotinic modulation of this deficit mirrors the effect of nicotine during smoking abstinence and suggests an "inverted-U" relationship between P50 amplitude and endogenous nicotinic activity. P50 amplitude may, therefore, be a sensitive marker of nicotinic dysfunction in individuals with familial risk for schizophrenia, which is mediated through mechanisms (e.g., α₄β₂ receptors) that are distinct from those (e.g., α₇ receptors) that mediate P50 gating.
Collapse
Affiliation(s)
- Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, 10th Floor, Gates Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
20
|
Umezu T. Unusual effects of nicotine as a psychostimulant on ambulatory activity in mice. ISRN PHARMACOLOGY 2012; 2012:170981. [PMID: 22530136 PMCID: PMC3317018 DOI: 10.5402/2012/170981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/26/2011] [Indexed: 01/08/2023]
Abstract
The present study examined the effect of nicotine, alone and in combination with various drugs that act on the CNS, on ambulatory activity, a behavioral index for locomotion, in ICR (CD-1) strain mice. Nicotine at 0.25–2 mg/kg acutely reduced ambulatory activity of ICR mice. The effect of nicotine was similar to that of haloperidol and fluphenazine but distinct from that of bupropion and methylphenidate. ICR mice developed tolerance against the inhibitory effect of nicotine on ambulatory activity when nicotine was repeatedly administered. This effect was also distinct from bupropion and methylphenidate as they produced augmentation of their ambulation-stimulating effects in ICR mice. Nicotine reduced the ambulation-stimulating effects of bupropion and methylphenidate as well as haloperidol and fluphenazine. Taken together, nicotine exhibited unusual effects as a psychostimulant on ambulatory activity in ICR mice.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Biological Imaging and Analysis Section, Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
21
|
NMDA antagonists recreate signal-to-noise ratio and timing perturbations present in schizophrenia. Neurobiol Dis 2012; 46:93-100. [PMID: 22245663 DOI: 10.1016/j.nbd.2011.12.049] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/18/2011] [Accepted: 12/31/2011] [Indexed: 01/05/2023] Open
Abstract
RATIONALE There is increasing evidence that functional deficits in schizophrenia may be driven by a reduction in the signal-to-noise ratio (SNR) and consistent timing of neural signals. This study examined the extent to which exposure to the NMDA receptor antagonists ketamine and MK801, frequently used pharmacological models of schizophrenia, recreate deficits in electrophysiological markers of disturbed brain circuits that are thought to underlie the illness. Furthermore, this study characterizes the specificity of these differences across the frequency spectrum so as to help identify the nature of selective circuit abnormalities that mediate each oscillatory response as relevant to schizophrenia. DESIGN Mouse EEG was recorded during exposure to repeated auditory stimuli after injection of either vehicle or drug. The dose-response relationship for each electrophysiological measure was determined for ketamine and MK-801. Time-frequency analyses were performed to assess baseline, total, and evoked power and intertrial coherence (ITC) at low (5-10 Hz) and high (35-80 Hz)-frequencies. RESULTS High frequency evoked and total power was decreased by MK-801 and ketamine in a dose-dependent fashion. High frequency baseline power was increased by MK-801 and ketamine in a dose-dependent fashion. Similar to evoked power, high frequency inter-trial coherence was dose-dependently decreased by both drugs. Low frequency ITC was only decreased by ketamine. CONCLUSIONS Both ketamine and MK-801 cause alterations in high-frequency baseline (noise), total (signal), and evoked (signal) power resulting in a loss of high frequency SNR that is thought to primarily reflect local circuit activity. These changes indicate an inappropriate increase in baseline activity, which can also be interpreted as non-task related activity. Ketamine induced a loss of intertrial coherence at low frequencies, indicating a loss of consistency in low-frequency circuit mechanisms. As a proportion of baseline power, both drugs had a relative shift from low to high frequencies, reflecting a change in the balance of brain activity from coordination of global regions to a pattern of discoordinated, autonomous local activity. These changes are consistent with a pattern of fragmented regional brain activity seen in schizophrenia.
Collapse
|
22
|
A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research. Biol Psychiatry 2011; 70:28-34. [PMID: 21111401 PMCID: PMC3116072 DOI: 10.1016/j.biopsych.2010.09.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 08/16/2010] [Accepted: 09/02/2010] [Indexed: 01/29/2023]
Abstract
New efforts to develop treatments for cognitive dysfunction in mental illnesses would benefit enormously from biomarkers that provide sensitive and reliable measures of the neural events underlying cognition. Here, we evaluate the promise of event-related potentials (ERPs) as biomarkers of cognitive dysfunction in schizophrenia. We conclude that ERPs have several desirable properties: (1) they provide a direct measure of electrical activity during neurotransmission; (2) their high temporal resolutions make it possible to measure neural synchrony and oscillations; (3) they are relatively inexpensive and convenient to record; (4) animal models are readily available for several ERP components; (5) decades of research has established the sensitivity and reliability of ERP measures in psychiatric illnesses; and 6) feasibility of large N (>500) multisite studies has been demonstrated for key measures. Consequently, ERPs may be useful for identifying endophenotypes and defining treatment targets, for evaluating new compounds in animals and in humans, and for identifying individuals who are good candidates for early interventions or for specific treatments. However, several challenges must be overcome before ERPs gain widespread use as biomarkers in schizophrenia research, and we make several recommendations for the research that is necessary to develop and validate ERP-based biomarkers that can have a real impact on treatment development.
Collapse
|
23
|
Leiser SC, Dunlop J, Bowlby MR, Devilbiss DM. Aligning strategies for using EEG as a surrogate biomarker: A review of preclinical and clinical research. Biochem Pharmacol 2011; 81:1408-21. [DOI: 10.1016/j.bcp.2010.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/30/2022]
|
24
|
Millar A, Smith D, Choueiry J, Fisher D, Albert P, Knott V. The moderating role of the dopamine transporter 1 gene on P50 sensory gating and its modulation by nicotine. Neuroscience 2011; 180:148-56. [PMID: 21315807 DOI: 10.1016/j.neuroscience.2011.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/24/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Although schizophrenia has been considered primarily a disease of dopaminergic neurotransmission, the role of dopamine in auditory sensory gating deficits in this disorder and their amelioration by smoking/nicotine is unclear. Hypothesizing that individual differences in striatal dopamine levels may moderate auditory gating and its modulation by nicotine, this preliminary study used the mid-latency (P50) auditory event-related potential (ERP) to examine the single dose (6 mg) effects of nicotine (vs. placebo) gum on sensory gating in 24 healthy nonsmokers varying in the genetic expression of the dopamine transporter (DAT). Consistent with an inverted-U relationship between dopamine level and the drug effects, individuals carrying the 9R (lower gene expression) allele, which is related to greater striatal dopamine levels, tended to evidence increased baseline gating compared to 10R (higher gene expression) allele carriers and showed a reduction in gating with acute nicotine. The present results may help to understand the link between excessive smoking and sensory gating deficits in schizophrenia and to explain the potential functional implications of genetic disposition on nicotinic treatment in schizophrenia.
Collapse
Affiliation(s)
- A Millar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1S5B6, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Knott VJ, Fisher DJ, Millar AM. Differential effects of nicotine on P50 amplitude, its gating, and their neural sources in low and high suppressors. Neuroscience 2010; 170:816-26. [PMID: 20643194 DOI: 10.1016/j.neuroscience.2010.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
Sensory gating impairment in schizophrenia has been documented in the form of aberrant middle latency P50 event-related brain potential responses to S(1) and/or S(2) stimuli in a paired (S(1)-S(2)) auditory stimulus paradigm. Evidenced by a failure to suppress S(2) P50 or by attenuated S(1) P50s, these sensory deficits have been associated with increased smoking behaviour in this disorder, and may be related to the putative ameliorating effects of smoke-inhaled nicotine on neural mechanisms regulating gating. Comparison of healthy controls with low versus high gating efficiency has been forwarded as a model for investigating the actions of antipsychotic agents on aberrant gating functions. In the current study, the effect of a single dose (6 mg) of nicotine gum on P50, gating indices, and their cortical sources indexed with sLORETA (standardized low resolution electromagnetic tomography), was examined in healthy non-smokers (n=24) stratified for low and high gating levels. Scalp surface recordings revealed nicotine modulation of P50 and its gating to be differentially exhibited in high (decreasing gating) and low (increasing gating) suppressors while the underlying cortical sources influenced by nicotine (middle frontal gyrus, inferior/superior parietal lobules, pre- and post-central gyri) were seen only in low suppressors. These findings suggest that nicotine impacts sensory gating in healthy volunteers and as the gating enhancing effects were dependent on low baseline gating efficiency, nicotinic receptor agonists may be associated with unique P50 modulating actions in schizophrenia.
Collapse
Affiliation(s)
- V J Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | | | | |
Collapse
|
26
|
Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ. Ketamine Modulates Theta and Gamma Oscillations. J Cogn Neurosci 2010; 22:1452-64. [DOI: 10.1162/jocn.2009.21305] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Ketamine, an N-methyl-d-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses. In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complex manner. We investigated the effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm. One issue of particular interest was elucidating the effect of ketamine on background network activity, poststimulus evoked and induced activity. We find that ketamine attenuates the theta frequency band in both background activity and in poststimulus evoked activity. Ketamine also disrupts a late, poststimulus theta power reduction seen in control recordings. In the gamma frequency range, ketamine enhances both background and evoked power, but decreases relative induced power. These findings support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli, with possible implications for dysfunction in schizophrenia.
Collapse
|
27
|
Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 2010; 83:147-61. [PMID: 20433908 DOI: 10.1016/j.brainresbull.2010.04.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 12/25/2009] [Accepted: 04/19/2010] [Indexed: 01/20/2023]
Abstract
An endophenotype is a heritable trait that is generally considered to be more highly, associated with a gene-based neurological deficit than a disease phenotype itself. Such, endophenotypic deficits may therefore be observed in the non-affected relatives of disease patients. Once endophenotypes have been established for a given illness, such as schizophrenia, mechanisms of, action may then be established and treatment options developed in order to target such measures. The, current paper describes and assesses the merits and limitations of utilizing behavioral and, electrophysiological endophenotypes of schizophrenia in mice. Such endophenotypic deficits include: decreased auditory event related potential (ERP) amplitude and gating (specifically, that of the P20, N40, P80 and P120); impaired mismatch negativity (MMN); changes in theta and gamma frequency, analyses; decreased pre-pulse inhibition (PPI); impaired working and episodic memories (for instance, novel object recognition [NOR], contextual and cued fear conditioning, latent inhibition, Morris and, radial arm maze identification and nose poke); sociability; and locomotor activity. A variety of, pharmacological treatments, including ketamine, MK-801 and phencyclidine (PCP) can be used to, induce some of the deficits described above, and numerous transgenic mouse strains have been, developed to address the mechanisms responsible for such endophenotypic differences. We also, address the viability and validity of using such measures regarding their potential clinical implications, and suggest several practices that could increase the translatability of preclinical data.
Collapse
|
28
|
Rudnick ND, Strasser AA, Phillips JM, Jepson C, Patterson F, Frey JM, Turetsky BI, Lerman C, Siegel SJ. Mouse model predicts effects of smoking and varenicline on event-related potentials in humans. Nicotine Tob Res 2010; 12:589-97. [PMID: 20395358 DOI: 10.1093/ntr/ntq049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Nicotine alters auditory event-related potentials (ERPs) in rodents and humans and is an effective treatment for smoking cessation. Less is known about the effects of the partial nicotine agonist varenicline on ERPs. METHODS We measured the effects of varenicline and nicotine on the mouse P20 and varenicline and smoking on the human P50 in a paired-click task. Eighteen mice were tested following nicotine, varenicline, and their combination. One hundred and fourteen current smokers enrolled in a placebo-controlled within-subject crossover study to test the effects of varenicline during smoking and abstinence. Thirty-two subjects participated in the ERP study, with half receiving placebo first and half varenicline first (VP). RESULTS Nicotine and varenicline enhanced mouse P20 amplitude, while nicotine improved P20 habituation by selectively increasing the first-click response. Similar to mice, abstinence reduced P50 habituation relative to smoking by reducing the first-click response. There was no effect of varenicline on P50 amplitude during abstinence across subjects. However, there was a significant effect of medication order on P50 amplitude during abstinence. Subjects in the PV group displayed reduced P50 during abstinence, which was blocked by varenicline. However, subjects in the VP group did not display abstinence-induced P50 reduction. CONCLUSIONS Data suggest that smoking improves sensory processing. Varenicline mimics amplitude changes associated with nicotine and smoking but fails to alter habituation. The effect of medication order suggests a possible carryover effect from the previous arm. This study supports the predictive validity of ERPs in mice as a marker of drug effects in human studies.
Collapse
Affiliation(s)
- Noam D Rudnick
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Knott V, Millar A, Fisher D, Albert P. Effects of nicotine on the amplitude and gating of the auditory P50 and its influence by dopamine D2 receptor gene polymorphism. Neuroscience 2010; 166:145-56. [DOI: 10.1016/j.neuroscience.2009.11.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/11/2009] [Accepted: 11/19/2009] [Indexed: 11/16/2022]
|
30
|
Abstract
Schizophrenia may well represent one of the most heterogenous mental disorders in human history. This heterogeneity encompasses (1) etiology; where numerous putative genetic and environmental factors may contribute to disease manifestation, (2) symptomatology; with symptoms characterized by group; positive--behaviors not normally present in healthy subjects (e.g. hallucinations), negative--reduced expression of normal behaviors (e.g. reduced joy), and cognitive--reduced cognitive capabilities separable from negative symptoms (e.g. impaired attention), and (3) individual response variation to treatment. The complexity of this uniquely human disorder has complicated the development of suitable animal models with which to assay putative therapeutics. Moreover, the development of animal models is further limited by a lack of positive controls because currently approved therapeutics only addresses psychotic symptoms, with minor negative symptom treatment. Despite these complexities however, many animal models of schizophrenia have been developed mainly focusing on modeling individual symptoms. Validation criteria have been established to assay the utility of these models, determining the (1) face, (2) predictive, (3) construct, and (4) etiological validities, as well as (5) reproducibility of each model. Many of these models have been created following the development of major hypotheses of schizophrenia, including the dopaminergic, glutamatergic, and neurodevelopmental hypotheses. The former two models have largely consisted of manipulating these neurotransmitter systems to produce behavioral abnormalities with some relevance to symptoms or putative etiology of schizophrenia. Given the serotonergic link to hallucinations and cholinergic link to attention, other models have manipulated these systems also. Finally, there has also been a drive toward creating mouse models of schizophrenia utilizing transgenic technology. Thus, there are opportunities to combine both environmental and genetic factors to create more suitable models of schizophrenia. More sophisticated animal tasks are also being created with which to ascertain whether these models produce behavioral abnormalities consistent with patients with schizophrenia. While animal models of schizophrenia continue to be developed, we must be cognizant that (1) validating these models are limited to the degree by which Clinicians can provide relevant information on the behavior of these patients, and (2) any putative treatments that are developed are also likely to be given with concurrent antipsychotic treatment. While our knowledge of this devastating disorder increases and our animal models and tasks with which to measure their behaviors become more sophisticated, caution must still be taken when validating these models to limit complications when introducing putative therapeutics to human trials.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA.
| | | | | |
Collapse
|
31
|
Wildeboer KM, Zheng L, Choo KS, Stevens KE. Ondansetron results in improved auditory gating in DBA/2 mice through a cholinergic mechanism. Brain Res 2009; 1300:41-50. [PMID: 19728991 DOI: 10.1016/j.brainres.2009.08.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/14/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
The 5-HT(3) receptor antagonist, ondansetron, has been shown to correct the auditory gating deficit in medicated schizophrenia patients. Inhibition of 5-HT(3) receptors releases acetylcholine, the endogenous ligand for nicotinic acetylcholine receptors. The schizophrenia-related auditory gating deficit is modulated, in part, by nicotinic acetylcholine receptors, as is the mouse (DBA/2) model of the deficit. The present study assessed the effects of both acute and chronically administered ondansetron on auditory gating in DBA/2 mice. Auditory gating is defined as a decrease in amplitude of response to the second of a paired identical auditory stimulus presented 0.5 s following an initial auditory stimulus. Acute ondansetron administration at the lowest dose (0.1 mg/kg, IP) tested had no effect, while other doses (0.33 and 1 mg/kg, IP) produced improvements in auditory gating. The improvements were produced through both an increase in response to the first auditory stimulus and a decrease in the response to the second auditory stimulus. Co-administration of an alpha7 nicotinic acetylcholine receptor antagonist, alpha-bungarotoxin, or the alpha4beta2 nicotinic acetylcholine receptor antagonist dihydro-beta-erythroidine, with the 0.33 mg/kg dose of ondansetron blocked the improvement in auditory gating produced by ondansetron alone. There was no difference in response between the chronically injected mice and naive mice. Both showed improved auditory gating, thus, demonstrating no "carry over" effect of daily injections. These data demonstrate that indirect stimulation of nicotinic acetylcholine receptors by ondansetron can improve auditory gating parameters in DBA/2 mice.
Collapse
Affiliation(s)
- Kristin M Wildeboer
- Department of Psychiatry, University of Colorado Denver, Mail Stop 8344, RC-1 North, 12800 East 19th Ave. Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
32
|
Amann L, Halene T, Ehrlichman R, Luminais S, Ma N, Abel T, Siegel S. Chronic ketamine impairs fear conditioning and produces long-lasting reductions in auditory evoked potentials. Neurobiol Dis 2009; 35:311-7. [PMID: 19467327 PMCID: PMC2726963 DOI: 10.1016/j.nbd.2009.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/27/2009] [Accepted: 05/17/2009] [Indexed: 11/29/2022] Open
Abstract
Ketamine is an NMDA receptor antagonist with a variety of uses, ranging from recreational drug to pediatric anesthetic and chronic pain reliever. Despite its value in the clinical setting, little is known about the immediate and long-lasting effects of repeated ketamine treatment. We assessed the effects of chronic administration of a subanesthetic dose of ketamine on contextual fear conditioning, detection of pitch deviants and auditory gating. After four, but not two, weeks of daily ketamine injections, mice exhibited decreased freezing in the fear conditioning paradigm. Gating of the P80 component of auditory evoked potentials was also significantly altered by treatment condition, as ketamine caused a significant decrease in S1 amplitude. Additionally, P20 latency was significantly increased as a result of ketamine treatment. Though no interactions were found involving test week, stimulus and treatment condition, these results suggest that repeated ketamine administration impairs fear memory and has lasting effects on encoding of sensory stimuli.
Collapse
Affiliation(s)
- L.C. Amann
- SMRI Laboratory for Experimental Therapeutics in Psychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - T.B. Halene
- SMRI Laboratory for Experimental Therapeutics in Psychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- International Research Training Group 1328 Schizophrenia and Autism, Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
- Transdisciplinary Tobacco Use Research Center, University of Pennsylvania., Philadelphia, PA, USA
| | - R.S. Ehrlichman
- SMRI Laboratory for Experimental Therapeutics in Psychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - S.N. Luminais
- SMRI Laboratory for Experimental Therapeutics in Psychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - N. Ma
- Department of Biology, University of Pennsylvania., Philadelphia, PA, USA
| | - T. Abel
- Department of Biology, University of Pennsylvania., Philadelphia, PA, USA
| | - S.J. Siegel
- SMRI Laboratory for Experimental Therapeutics in Psychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Transdisciplinary Tobacco Use Research Center, University of Pennsylvania., Philadelphia, PA, USA
| |
Collapse
|
33
|
Ehrlichman RS, Luminais SN, White SL, Rudnick ND, Ma N, Dow HC, Kreibich AS, Abel T, Brodkin ES, Hahn CG, Siegel SJ. Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 2009; 1294:116-27. [PMID: 19643092 DOI: 10.1016/j.brainres.2009.07.065] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neuregulin-1 (NRG1) is one of susceptibility genes for schizophrenia and plays critical roles in glutamatergic, dopaminergic and GABAergic signaling. Using mutant mice heterozygous for Nrg1 (Nrg1(+/-)) we studied the effects of Nrg1 signaling on behavioral and electrophysiological measures relevant to schizophrenia. EXPERIMENTAL PROCEDURE Behavior of Nrg1(+/-) mice and their wild type littermates was evaluated using pre-pulse inhibition, contextual fear conditioning, novel object recognition, locomotor, and social choice paradigms. Event-related potentials (ERPs) were recorded to assess auditory gating and novel stimulus detection. RESULTS Gating of ERPs was unaffected in Nrg1(+/-) mice, but mismatch negativity in response to novel stimuli was attenuated. The Nrg1(+/-) mice exhibited behavioral deficits in contextual fear conditioning and social interactions, while locomotor activity, pre-pulse inhibition and novel object recognition were not impaired. SUMMARY Nrg1(+/-) mice had impairments in a subset of behavioral and electrophysiological tasks relevant to the negative/cognitive symptom domains of schizophrenia that are thought to be influenced by glutamatergic and dopaminergic neurotransmission. These mice are a valuable tool for studying endophenotypes of schizophrenia, but highlight that single genes cannot account for the complex pathophysiology of the disorder.
Collapse
|
34
|
Baker TB, Cummings KM, Hatsukami DK, Johnson CA, Lerman C, Niaura R, O'Malley SS. Transdisciplinary Tobacco Use Research Centers: research achievements and future implications. Nicotine Tob Res 2009; 11:1231-44. [PMID: 19633277 DOI: 10.1093/ntr/ntp112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Timothy B Baker
- Center for Tobacco and Intervention, Department of Medicine, 1930 Monroe Street, Suite 200, Madison, WI 53711, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: How the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther 2009; 122:302-11. [DOI: 10.1016/j.pharmthera.2009.03.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 12/11/2022]
|
36
|
Ehlers CL, Criado JR. Event-related oscillations in mice: effects of stimulus characteristics. J Neurosci Methods 2009; 181:52-7. [PMID: 19406149 DOI: 10.1016/j.jneumeth.2009.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
Event-related oscillations (EROs) are rhythmic changes that are evoked by sensory and/or cognitive processes that influence the dynamics of the EEG. EROs are estimated by a decomposition of the EEG signal into phase and magnitude information for a range of frequencies and then changes in those frequencies are characterized over a millisecond time scale with respect to task events. EROs have been demonstrated to be sensitive measures of both normal and abnormal cognitive functioning in humans but have not been fully described in mice. The results of these studies demonstrate that EROs can be generated in cortical sites in mice in the delta, theta, alpha/beta frequency ranges in response to auditory stimuli. Oscillations in the 7.5-40 Hz frequencies were significantly affected in the 0-50 ms time range in response to differences in tone frequency. Whereas, changes in tone loudness produced changes in oscillations in the 7.5-40 Hz frequencies in the 350-800 ms range. No significant changes in EROs were found to differences in tone probability. These studies suggest that EROs are an electrophysiological assay sensitive to tone characteristics and as such may be suitable for the exploration of the effects of genetic or neuropharmacological manipulations on neurosensory processing in mice.
Collapse
Affiliation(s)
- Cindy L Ehlers
- The Scripps Research Institute, Molecular and Integrative Neuroscience Department, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
37
|
Rudnick ND, Koehler C, Picciotto MR, Siegel SJ. Role of beta2-containing nicotinic acetylcholine receptors in auditory event-related potentials. Psychopharmacology (Berl) 2009; 202:745-51. [PMID: 18931833 DOI: 10.1007/s00213-008-1358-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/26/2008] [Indexed: 01/26/2023]
Abstract
RATIONALE Nicotine improves sensory processing in schizophrenic individuals, as measured by changes in auditory event-related potentials (ERPs). Nicotine administration also alters ERPs in mice by increasing the amplitude and gating of the P20 ERP component while decreasing the amplitude of the N40 ERP component. Less is known about the role of specific nicotinic acetylcholine receptor (nAChR) subtypes. OBJECTIVES In this study, we examined whether nAChRs containing the beta2 subunit contribute to nicotine's effects on auditory ERPs. MATERIALS AND METHODS We tested the effect of nicotine in wild-type mice and mice lacking the beta2 nAChR subunit. Mice underwent stereotaxic implantation of stainless steel electrodes located in the CA3 region of the hippocampus, and 50 paired click stimuli were delivered during each drug condition. RESULTS There was no significant difference in P20 or N40 amplitude or gating between genotypes during the control condition, suggesting that beta2-containing receptors are not essential for the baseline auditory ERP response. Nicotine increased P20 amplitude and enhanced gating in wild-type and beta2 knockout mice, but only decreased N40 amplitude in wild-type mice. There was no effect of nicotine on N40 gating in either genotype. CONCLUSIONS beta2-containing receptors are necessary for nicotine's effects on the N40 component of the mouse auditory ERP. These results suggest that beta2-containing nAChRs modulate sensory processing and may serve as a therapeutic target in schizophrenic individuals.
Collapse
Affiliation(s)
- Noam D Rudnick
- Stanley Center for Experimental Therapeutics, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19312, USA
| | | | | | | |
Collapse
|
38
|
Knott V, Millar A, Fisher D. Sensory gating and source analysis of the auditory P50 in low and high suppressors. Neuroimage 2009; 44:992-1000. [DOI: 10.1016/j.neuroimage.2008.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022] Open
|
39
|
Knott V, Shah D, Fisher D, Millar A, Prise S, Scott TL, Thompson M. Nicotine and attention: event-related potential investigations in nonsmokers. Clin EEG Neurosci 2009; 40:11-20. [PMID: 19278128 DOI: 10.1177/155005940904000108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research into the effects of nicotine and smoking on cognition has largely confirmed the subjective reports of smoking in smokers on mental functions, showing smoking abstinence to disrupt and smoking/nicotine to restore cognitive functioning. Evidence of performance improvements in nonsmokers has provided partial support for the absolute effects of nicotine on cognitive processes, which are independent of withdrawal relief, but the mechanisms underlying its pro-cognitive properties still remain elusive. The attentional facilitation frequently reported with smoking/nicotine may be indirectly related to its diffuse arousal-enhancing actions, as evidenced by electroencephalographic (EEG) fast frequency power increments, or it may reflect nicotine's direct modulating effects on specific neural processes governing stimulus encoding, selection and rejection. Event-related potential (ERP) components extracted during the performance of cognitive tasks have proven to be sensitive to early pre-attentive and later attention-dependent processes that are not otherwise reflected in behavioral probes. To date, the majority of ERP studies have been conducted with smokers using passive non-task paradigms or relatively non-demanding "oddball" tasks. This paper will emphasize our recent ERP investigations with acute nicotine polacrilex (6 mg) administered to nonsmokers, and with a battery of ERP and behavioral performance paradigms focusing on intra- and inter-modal selective attention and distraction processes. These ERP findings of nicotine-augmented early attentional processing add support to the contention that nicotine may be be used by smokers as a "pharmacological tool" for tuning cognitive functions relating to the automatic and controlled aspects of sensory input detection and selection.
Collapse
Affiliation(s)
- Verner Knott
- Clinical Neuroelectrophysiology and Cognitive Research Laboratory, University of Ottawa Institute of Mental Health Research at Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, Canada K1Z 7K4.
| | | | | | | | | | | | | |
Collapse
|
40
|
Gandal MJ, Ehrlichman RS, Rudnick ND, Siegel SJ. A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience 2008; 157:95-104. [PMID: 18835334 DOI: 10.1016/j.neuroscience.2008.08.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022]
Abstract
PURPOSE Chemotherapeutic agents are known to produce persistent cognitive deficits in cancer patients. However, little progress has been made in developing animal models to explore underlying mechanisms and potential therapeutic interventions. We report an electrophysiological model of chemotherapy-induced cognitive deficits using a sensory gating paradigm, to correspond with performance in two behavioral tasks. EXPERIMENTAL DESIGN Mice received four weekly injections of methotrexate and 5-fluorouracil. Whole-brain event-related potentials (ERPs) were recorded throughout using a paired-click paradigm. Mice underwent contextual fear conditioning (CFC) and novel-object recognition testing (NOR). RESULTS Chemotherapy-treated animals showed significantly impaired gating 5 weeks after drug treatments began, as measured by the ratio of the first positive peak in the ERP (P1) minus the first negative peak (N1) between first and second auditory stimuli. There was no effect of drug on the amplitude of P1-N1 or latency of P1. The drug-treated animals also showed significantly increased freezing during fear conditioning and increased exploration without memory impairment during novel object recognition. CONCLUSIONS Chemotherapy causes decreased ability to gate incoming auditory stimuli, which may underlie associated cognitive impairments. These gating deficits were associated with a hyperactive response to fear conditioning and reduced adaptation to novel objects, suggesting an additional component of emotional dysregulation. However, amplitudes and latencies of ERP components were unaffected, as was NOR performance, highlighting the subtle nature of these deficits.
Collapse
Affiliation(s)
- M J Gandal
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
41
|
Tizabi Y. Nicotine and nicotinic system in hypoglutamatergic models of schizophrenia. Neurotox Res 2008; 12:233-46. [PMID: 18201951 DOI: 10.1007/bf03033907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with devastating consequences. It is characterized by thought fragmentation, hallucination and delusion, collectively referred to as positive symptoms. In addition, mood changes or affective disorders, referred to as negative symptoms, as well as cognitive impairments can be manifested in these patients. Arguably, modeling such a disorder in its entirety in animals might not be feasible. Despite this limitation, various models with significant construct, predictive and some face validity have been developed. One such model, based on hypoglutamatergic hypothesis of schizophrenia, makes use of administering NMDA receptor antagonists and evaluating behavioral paradigms such as sensorimotor gating. Because of very high incidence of smoking among schizophrenic patients, it has been postulated that some of these patients may actually be self medicating with tobacco's nicotine. Research on nicotinic-glutamatergic interactions using various animal models has yielded conflicting results. In this review, some of these models and possible confounding factors are discussed. Overall, a therapeutic potential for nicotinic agonists in schizophrenia can be suggested. Moreover, it is evident that various experimental paradigms or models of schizophrenia symptoms need to be combined to provide a wider spectrum of the behavioral phenotype, as each model has its inherent limitations.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
42
|
Cromwell HC, Mears RP, Wan L, Boutros NN. Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 2008; 39:69-72. [PMID: 18450171 PMCID: PMC4127047 DOI: 10.1177/155005940803900209] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory gating (SG) is a prevalent physiological process important for information filtering in complex systems. SG is evaluated by presenting repetitious stimuli and measuring the degree of neural inhibition that occurs. SG has been found to be impaired in several psychiatric disorders. Recent animal and human research has made great progress in the study of SG, and in this review we provide an overview of recent research on SG using different methods. Animal research has uncovered findings that suggest (1) SG is displayed by single neurons and can be similar to SG observed from scalp recordings in humans, (2) SG is found in numerous brain structures located in sensory, motor and limbic subregions, (3) SG can be significantly influenced by state changes of the organism, and (4) SG has a diverse pharmacological profile accented by a strong influence from nicotine receptor activation. Human research has addressed similar issues using deep electrode recordings of brain structures. These experiments have revealed that (1) SG can be found in cortical regions surrounding hippocampus, (2) the order of neural processing places hippocampal involvement during a later stage of sensory processing than originally thought, and (3) multiple subtypes of gating exist that could be dependent on different brain circuits and more or less influenced by alterations in organismal state. Animal and human research both have limitations. We emphasize the need for integrative approaches to understand the process and combine information between basic and clinical fields so that a more complete picture of SG will emerge.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Psychology, Bowling Green State University, Ohio 43403, USA.
| | | | | | | |
Collapse
|
43
|
Rabin C, Liang Y, Ehrlichman RS, Budhian A, Metzger KL, Majewski-Tiedeken C, Winey KI, Siegel SJ. In vitro and in vivo demonstration of risperidone implants in mice. Schizophr Res 2008; 98:66-78. [PMID: 17765477 PMCID: PMC2561216 DOI: 10.1016/j.schres.2007.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Non-adherence with medication is a critical limitation in current long-term treatment of schizophrenia and a primary factor in poor quality-of-life outcomes. However, few treatments have addressed this shortcoming using an implantable drug delivery approach. The goal of this study was to provide in vitro and in vivo proof of concept for a long-term implantable risperidone delivery system in mice. METHODS Implantable formulations of risperidone were created using the biodegradable polymer Poly Lactic co Glycolic Acid (PLGA) combined with various drug loads. Implant bioactivity was tested using in vitro release and stability studies, as well as in vivo pharmacokinetic and behavioral studies in mice. RESULTS The pattern of risperidone release is influenced by various parameters, including polymer composition and drug load. In vitro measures demonstrate that risperidone is stable in implants under physiological conditions. Behavioral measures demonstrate the bioactivity of risperidone implants delivering 3 mg/kg/day in mice, while pharmacokinetic analyses indicate that reversibility is maintained throughout the delivery interval. CONCLUSIONS The current report suggests that implantable formulations are a viable approach to providing long-term delivery of antipsychotic medications based on in vivo animal studies and pharmacokinetics. Implantable medications demonstrated here can last two months or longer while maintaining coherence and removability past full release, suggesting a potential paradigm shift in the long-term treatment of schizophrenia.
Collapse
Affiliation(s)
- C Rabin
- Stanley Center for Experimental Therapeutics, Division of Neuropsychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia 19104, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Adams CE, Yonchek JC, Zheng L, Collins AC, Stevens KE. Altered hippocampal circuit function in C3H alpha7 null mutant heterozygous mice. Brain Res 2007; 1194:138-45. [PMID: 18199426 DOI: 10.1016/j.brainres.2007.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/24/2022]
Abstract
The alpha7 subtype of nicotinic receptor is highly expressed in the hippocampus where it is purported to modulate release of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The alpha7 receptor-mediated release of GABA is thought to contribute to hippocampal inhibition (gating) of response to repetitive auditory stimulation. This hypothesis is supported by observations of hippocampal auditory gating deficits in mouse strains with low levels of hippocampal alpha7 receptors compared to strains with high levels of hippocampal alpha7 receptors. The difficulty with comparisons between mouse strains, however, is that different strains have different genetic backgrounds. Thus, the observed interstrain differences in hippocampal auditory gating might result from factors other than interstrain variations in the density of hippocampal alpha7 receptors. To address this issue, hippocampal binding of the alpha7 receptor-selective antagonist alpha-bungarotoxin as well as hippocampal auditory gating characteristics were compared in C3H wild type and C3H alpha7 receptor null mutant heterozygous mice. The C3H alpha7 heterozygous mice exhibited significant reductions in hippocampal alpha7 receptor levels and abnormal hippocampal auditory gating compared to the C3H wild type mice. In addition, a general increase in CA3 pyramidal neuron responsivity was observed in the heterozygous mice compared to the wild type mice. These data suggest that decreasing hippocampal alpha7 receptor density results in a profound alteration in hippocampal circuit function.
Collapse
Affiliation(s)
- C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, USA.
| | | | | | | | | |
Collapse
|
45
|
Cromwell HC, Woodward DJ. Inhibitory gating of single unit activity in amygdala: effects of ketamine, haloperidol, or nicotine. Biol Psychiatry 2007; 61:880-9. [PMID: 17054921 DOI: 10.1016/j.biopsych.2006.06.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/26/2006] [Accepted: 06/27/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inhibitory gating is thought to be a basic process for filtering incoming stimuli to the brain. Little information is currently available concerning local neural networks of inhibitory gating or the intrinsic neurochemical substrates involved in the process. METHODS The goal of the present study was to examine the pharmacological aspects of inhibitory gating from single units in the amygdala. We tested the effects of ketamine (80 mg/kg) and haloperidol (1 mg/kg) on inhibitory gating. Additionally, we examined the effect of nicotine (1.2 mg/kg) on single unit gating in this same brain structure. RESULTS We found that in one subset of neurons, ketamine administration significantly reduced tone responsiveness with a subsequent loss of inhibitory gating, whereas the other subset persisted in both auditory responding and gating albeit at a weaker level. Haloperidol and nicotine had very similar effects, exemplified by a dramatic increase in the response to the initial "conditioning" tone with a subsequent improvement in inhibitory gating. CONCLUSIONS Tone responsiveness and inhibitory gating persists in a subset of neurons after glutamate N-methyl-D-aspartate receptor blockade. Dopamine and nicotine modulate gating in these normal animals and have similar effects of enhancing responsiveness to auditory stimulation at the single unit and evoked potential level.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
46
|
Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl) 2007; 190:269-319. [PMID: 16896961 DOI: 10.1007/s00213-006-0441-0] [Citation(s) in RCA: 639] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/09/2006] [Indexed: 01/16/2023]
Abstract
RATIONALE This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. OBJECTIVES This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. RESULTS Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. CONCLUSIONS The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
Collapse
Affiliation(s)
- Shannon G Matta
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Phillips JM, Ehrlichman RS, Siegel SJ. Mecamylamine blocks nicotine-induced enhancement of the P20 auditory event-related potential and evoked gamma. Neuroscience 2006; 144:1314-23. [PMID: 17184927 PMCID: PMC1868669 DOI: 10.1016/j.neuroscience.2006.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/14/2006] [Accepted: 11/01/2006] [Indexed: 11/22/2022]
Abstract
Cigarette smoking is significantly more prevalent in individuals with schizophrenia than in non-affected populations. Certain neurocognitive deficits and disruptions common in schizophrenia may be altered by smoking, leading to the hypothesis that schizophrenics engage in smoking behavior to alleviate specific neurocognitive symptoms of the disorder. Additionally, research suggests that individuals with schizophrenia have altered auditory event-related potentials (ERPs) and abnormalities in evoked gamma oscillations which are both indices of sensory information processing. This study was conducted to examine the effect of acute administration of nicotine and the non-specific nicotinic antagonist mecamylamine on the P20 and N40 components of the ERP and evoked gamma oscillations in mice. Acute nicotine (1 mg/kg) significantly increased P20 amplitude, an effect that was blocked by pretreatment with mecamylamine (2 mg/kg). Additionally, acute nicotine increased the normal burst of evoked gamma following an auditory stimulus. The increase in evoked gamma was also blocked by mecamylamine pretreatment. Although acute nicotine decreased amplitude of the N40 component, this decrease was not attenuated by mecamylamine. These results replicate findings that nicotine may enhance early sensory information processing through the nicotinic acetylcholinergic receptor system in an established model (ERPs) and extend these findings in an emerging, novel model (evoked gamma oscillations) of sensory information processing. The results also support the hypothesis that nicotine may be beneficial to individuals with deficits in neurocognitive functions, such as those suffering from schizophrenia.
Collapse
Affiliation(s)
- J M Phillips
- Department of Psychiatry, University of Pennsylvania, Translational Research Laboratories, Room 2223, 125 South 31st Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|