1
|
Sun D, Amiri M, Meng Q, Unnithan RR, French C. Calcium Signalling in Neurological Disorders, with Insights from Miniature Fluorescence Microscopy. Cells 2024; 14:4. [PMID: 39791705 PMCID: PMC11719922 DOI: 10.3390/cells14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target. Recently, the development of the miniature fluorescence microscope (miniscope) enabled simultaneous recording of the spatiotemporal calcium activity from large neuronal ensembles in unrestrained animals, providing a novel method for studying NDs. In this review, we discuss the abnormalities observed in calcium signalling and its potential as a therapeutic target for NDs. Additionally, we highlight recent studies that utilise miniscope technology to investigate the alterations in calcium dynamics associated with NDs.
Collapse
Affiliation(s)
- Dechuan Sun
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Mona Amiri
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| | - Qi Meng
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| | - Ranjith R. Unnithan
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| |
Collapse
|
2
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Buzea CA, Manu P, Dima L, Correll CU. Drug-drug interactions involving combinations of antipsychotic agents with antidiabetic, lipid-lowering, and weight loss drugs. Expert Opin Drug Metab Toxicol 2022; 18:729-744. [PMID: 36369828 DOI: 10.1080/17425255.2022.2147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Patients with severe mental illness (SMI) have a high risk for diabetes, dyslipidemia, and other components of metabolic syndrome. Patients with these metabolic comorbidities and cardiac risk factors should receive not only antipsychotics but also medications aiming to reduce cardiovascular risk. Therefore, many patients may be exposed to clinically relevant drug-drug interactions. AREAS COVERED This narrative review summarizes data regarding the known or potential drug-drug interactions between antipsychotics and medications treating metabolic syndrome components, except for hypertension, which has been summarized elsewhere. A literature search in PubMed and Scopus up to 7/31/2021 was performed regarding interactions between antipsychotics and drugs used to treat metabolic syndrome components, aiming to inform clinicians' choice of medication for patients with SMI and cardiometabolic risk factors in need of pharmacologic interventions. EXPERT OPINION The cytochrome P450 system and, to a lesser extent, the P-glycoprotein transporter is involved in the pharmacokinetic interactions between antipsychotics and some statins or saxagliptin. Regarding pharmacodynamic interactions, the available information is based mostly on small studies, and for newer classes, like PCSK9 inhibitors or SGLT2 inhibitors, data are still lacking. However, there is sufficient information to guide clinicians in the process of selecting safer antipsychotic-cardiometabolic risk reduction drug combinations.
Collapse
Affiliation(s)
- Catalin Adrian Buzea
- Department 5 - Internal Medicine, Carol Davila' University of Medicine and Pharmacy, 37 Dionisie Lupu, Bucharest, Romania.,Cardiology, Clinical Hospital Colentina, 19-21 Stefan cel Mare, Bucharest, Romania
| | - Peter Manu
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Medical Services, South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Nicolae Balcescu Str 59, 500019, Brașov, Romania
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charite Universitaetsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| |
Collapse
|
4
|
Chan WKB, DasGupta D, Carlson HA, Traynor JR. Mixed-solvent molecular dynamics simulation-based discovery of a putative allosteric site on regulator of G protein signaling 4. J Comput Chem 2021; 42:2170-2180. [PMID: 34494289 DOI: 10.1002/jcc.26747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/19/2021] [Accepted: 07/25/2021] [Indexed: 11/07/2022]
Abstract
Regulator of G protein signaling 4 (RGS4) is an intracellular protein that binds to the Gα subunit ofheterotrimeric G proteins and aids in terminating G protein coupled receptor signaling. RGS4 has been implicated in pain, schizophrenia, and the control of cardiac contractility. Inhibitors of RGS4 have been developed but bind covalently to cysteine residues on the protein. Therefore, we sought to identify alternative druggable sites on RGS4 using mixed-solvent molecular dynamics simulations, which employ low concentrations of organic probes to identify druggable hotspots on the protein. Pseudo-ligands were placed in consensus hotspots, and perturbation with normal mode analysis led to the identification and characterization of a putative allosteric site, which would be invaluable for structure-based drug design of non-covalent, small molecule inhibitors. Future studies on the mechanism of this allostery will aid in the development of novel therapeutics targeting RGS4.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology, Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Debarati DasGupta
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John R Traynor
- Department of Pharmacology, Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
6
|
Abstract
Maternal infection during pregnancy increases the offspring's risk of developing neurodevelopmental disorders. While IL-6 is involved, the mechanism by which IL-6 and other cytokines affect developing neural circuits is unknown. In this issue of Immunity, Mirabella et al. (2021) show that the pro-inflammatory cytokine IL-6 specifically increases synaptogenesis in immature excitatory neurons through downstream neuronal STAT3-dependent transcriptional regulation of Rgs4.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
8
|
Gawel K, Banono NS, Michalak A, Esguerra CV. A critical review of zebrafish schizophrenia models: Time for validation? Neurosci Biobehav Rev 2019; 107:6-22. [PMID: 31381931 DOI: 10.1016/j.neubiorev.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia. In this review, we describe current pharmacological models of schizophrenia with special emphasis on providing insights into the pros and cons of using zebrafish as a behavioural model of this disease. Moreover, we highlight the advantages and utility of using zebrafish for elucidating the genetic mechanisms underlying this psychiatric disorder. We believe that the zebrafish has high potential also in the area of precision medicine and may complement the development of therapeutics, especially for pharmacoresistant patients.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland.
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki St. 4A, 20-093, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
10
|
Lam YWF. Principles of Pharmacogenomics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, Kim YS, Kim KS, Im HI, Moon C. Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain. Mol Cells 2018; 41:454-464. [PMID: 29754475 PMCID: PMC5974622 DOI: 10.14348/molcells.2018.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/27/2022] Open
Abstract
Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knockdown of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Sueun Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Sohi Kang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Man-Jong Kang
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 08826,
Korea
| | - Key-Sun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
13
|
Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 2018; 177:267-273. [PMID: 28544755 DOI: 10.1002/ajmg.b.32547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made to characterize RGS4 as a potential candidate gene for schizophrenia. Investigations span across numerous modalities and include explorations of genetic risk associations, mRNA and protein levels in the brain, and functionally relevant interactions with other candidate genes as well as links to schizophrenia relevant neural phenotypes. While these lines of investigations have yielded partially inconsistent findings, they provide a perspective on RGS4 as an important part of a larger biological system contributing to schizophrenia risk. This gene-based review aims to provide a comprehensive overview of published data from different experimental modalities and discusses the current knowledge of RGS4's systems-biological impact on the schizophrenia pathology.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Medical Faculty Mannheim, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Zouraraki C, Karamaouna P, Karagiannopoulou L, Giakoumaki SG. Schizotypy-Independent and Schizotypy-Modulated Cognitive Impairments in Unaffected First-Degree Relatives of Schizophrenia-spectrum Patients. Arch Clin Neuropsychol 2017; 32:1010-1025. [PMID: 28383650 DOI: 10.1093/arclin/acx029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/27/2017] [Indexed: 11/14/2022] Open
Abstract
Objective The aim of the study was to compare the neurocognitive profile of unaffected first-degree relatives of schizophrenia patients with control individuals, controlling for different schizotypal traits. Method One hundred and fifteen adult unaffected first-degree relatives of schizophrenia-spectrum patients and 122 controls were tested for schizotypy with the Schizotypal Personality Questionnaire. They also underwent a thorough neurocognitive assessment with a range of tasks covering several aspects of executive functioning. Between-group differences in cognition were examined first with multivariate analysis of variance and then with a series of multivariate analyses of covariance, including the schizotypal dimensions as covariates. Results The relatives had higher scores on all schizotypal dimensions compared with controls and poorer planning, problem solving, strategy formation and working memory, irrespective of schizotypal traits. They also scored lower in executive working memory and verbal fluency. The difference in executive working memory was sensitive to the effects of paranoid and negative schizotypy (both dimensions abolished the between-group difference) whereas the difference in verbal fluency was sensitive only to the effects of paranoid schizotypy. Neither cognitive-perceptual nor disorganized schizotypy accounted for any differences in neurocognition between relatives and the controls. Conclusions Impairments in planning, problem solving, strategy formation and working memory are "core" impairments in the schizophrenia-spectrum, possibly due to high heritability effects in these functions. Impairments in executive working memory and verbal fluency are associated with paranoid and negative schizotypy, possibly due to alterations in a common fronto-temporo-parietal neural network.
Collapse
Affiliation(s)
- Chrysoula Zouraraki
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece
| | - Penny Karamaouna
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece
| | - Leda Karagiannopoulou
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece
| | | |
Collapse
|
15
|
Cristóbal‐Narváez P, Sheinbaum T, Myin‐Germeys I, Kwapil TR, de Castro‐Catala M, Domínguez‐Martínez T, Racioppi A, Monsonet M, Hinojosa‐Marqués L, van Winkel R, Rosa A, Barrantes‐Vidal N. The role of stress-regulation genes in moderating the association of stress and daily-life psychotic experiences. Acta Psychiatr Scand 2017; 136:389-399. [PMID: 28865405 PMCID: PMC5697578 DOI: 10.1111/acps.12789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The interaction of single nucleotide polymorphisms with both distal and proximal environmental factors across the extended psychosis phenotype is understudied. This study examined (i) the interaction of relevant SNPs with both early-life adversity and proximal (momentary) stress on psychotic experiences (PEs) in an extended psychosis sample; and (ii) differences between early-psychosis and non-clinical groups for these interactions. METHODS Two hundred and forty-two non-clinical and 96 early-psychosis participants were prompted randomly eight times daily for 1 week to complete assessments of current experiences, including PEs and stress. Participants also reported on childhood trauma and were genotyped for 10 SNPs on COMT, RGS4, BDNF, FKBP5, and OXTR genes. RESULTS Unlike genetic variants, distal and proximal stressors were associated with PEs in both samples and were more strongly associated with PEs in the early-psychosis than in the non-clinical group. The RGS4 TA and FKBP5 CATT haplotypes interacted with distal stress, whereas the A allele of OXTR (rs2254298) interacted with proximal stress, increasing momentary levels of PEs in the early-psychosis group. No interactions emerged with COMT or BDNF variants. CONCLUSION Individual differences in relevant stress-regulation systems interact with both distal and proximal psychosocial stressors in shaping the daily-life manifestation of PEs across the psychosis continuum.
Collapse
Affiliation(s)
- P. Cristóbal‐Narváez
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - T. Sheinbaum
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - I. Myin‐Germeys
- Department of NeuroscienceCentre for Contextual PsychiatryKU Leuven–University of LeuvenLeuvenBelgium
| | - T. R. Kwapil
- University of Illinois at Urbana‐ChampaignChampaignILUSA
| | - M. de Castro‐Catala
- Secció de Zoologia i Antropologia BiològicaDepartament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - T. Domínguez‐Martínez
- CONACYT‐Dirección de Investigaciones Epidemiológicas y PsicosocialesInstituto Nacional de Psiquiatría Ramón de la Fuente MuñizCiudad de MéxicoMéxico
| | - A. Racioppi
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - M. Monsonet
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - L. Hinojosa‐Marqués
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - R. van Winkel
- Department of NeuroscienceCentre for Contextual PsychiatryKU Leuven–University of LeuvenLeuvenBelgium
| | - A. Rosa
- Secció de Zoologia i Antropologia BiològicaDepartament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain,Centre for Biomedical Research Network on Mental HealthInstituto de Salud Carlos III (CIBERSAM)MadridSpain
| | - N. Barrantes‐Vidal
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain,Centre for Biomedical Research Network on Mental HealthInstituto de Salud Carlos III (CIBERSAM)MadridSpain,Sant Pere Claver – Fundació SanitàriaBarcelonaSpain
| |
Collapse
|
16
|
Park HJ, Kim SH, Moon DO. Growth inhibition of human breast carcinoma cells by overexpression of regulator of G-protein signaling 4. Oncol Lett 2017; 13:4357-4363. [PMID: 28588709 DOI: 10.3892/ol.2017.6009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/15/2016] [Indexed: 01/05/2023] Open
Abstract
Breast cancer remains the second largest cause of mortality in women with cancer and does not respond well to conventional therapies. Regulator of G-protein signaling 4 (RGS4) is a GTPase-activating protein of the heterotrimeric Gq and Gi proteins. Altered levels of RGS4 are reportedly linked with several human diseases, including cancer. The present study investigated whether overexpression of RGS4 inhibited the growth of human breast cancer cells. Protein expression was investigated by western blot analysis. Cell viability and apoptosis were analyzed by MTT assay and flow cytometric analysis, respectively. Cell cycle analysis was performed using propidium iodide staining in order to examine the anti-proliferative function of increased RGS4 levels. Next, changes in the expression levels of G2/M cell cycle-related proteins were examined. Overexpression of RGS4 led to the upregulation of phosphorylayed (p)-Ser216 cell division cycle (Cdc)25C and p-Tyr15 Cdc2. Importantly, MG132-induced proteasome blockade prevented degradation of RGS4. Suppression of proliferation was associated with G2/M-phase cell cycle arrest. Furthermore, enhanced endogenous RGS4 protein levels significantly inhibited breast cancer cell growth, which was reversed by a pharmacological inhibitor of RGS4. Taken together, these results suggest that overexpression of RGS4 in human breast cancer cells by molecular means may offer a potential therapeutic approach.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongsangbuk-do 38453, Republic of Korea
| | - Seung-Hyun Kim
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongsangbuk-do 38453, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongsangbuk-do 38453, Republic of Korea
| |
Collapse
|
17
|
Park SM, Park HR, Lee JH. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions. Mol Cells 2017; 40:151-161. [PMID: 28196412 PMCID: PMC5339506 DOI: 10.14348/molcells.2017.2307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023] Open
Abstract
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gαq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gαq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.
Collapse
Affiliation(s)
- Sang Mee Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
| | - Hae Ryoun Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| | - Ji Hye Lee
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| |
Collapse
|
18
|
Zhang Y, Li F, Wang H, Yin C, Huang J, Mahavadi S, Murthy KS, Hu W. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis. Dig Dis Sci 2016; 61:1925-40. [PMID: 26879904 PMCID: PMC4920730 DOI: 10.1007/s10620-016-4078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. AIMS To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. METHODS Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1-9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). RESULTS Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. CONCLUSION Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Chaoran Yin
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - JieAn Huang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, No. 6 Shuangyong Rd, Nanning 530021, Guangxi, China
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, USA
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, USA
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
19
|
Perinatal Treatments with the Dopamine D₂-Receptor Agonist Quinpirole Produces Permanent D₂-Receptor Supersensitization: a Model of Schizophrenia. Neurochem Res 2015; 41:183-92. [PMID: 26547196 DOI: 10.1007/s11064-015-1757-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/24/2023]
Abstract
Repeated daily treatments of perinatal rats with the dopamine D2-receptor (D2-R) agonist quinpirole for a week or more produces the phenomenon of 'priming'-gradual but long-term sensitization of D2-R. In fact a daily dose of quinpirole as low as 50 µg/kg/day is adequate for sensitizing D2-R. Primed rats as neonates and in adolescence, when acutely treated with quinpirole display enhanced eating/gnawing/nursing on dams, also horizontal locomotor activity. Between 3 and 5 weeks of age, acute quinpirole treatment of primed rats produces profound vertical jumping with paw treading-a behavior that is not observed in control rats. At later ages acute quinpirole treatment is associated with enhanced yawning, a D2-R-associated behavior. This long-term D2-R supersensitivity is believed to be life-long, despite the relatively brief period of D2-R priming near the time of birth. D2-R supersensitivity is not associated with an increase in the number or affinity of D2-R, as assessed in the striatum of rats; nor is it induced with the D3-R agonist 7-OH-DPAT. However, quinpirole-induced D2-R supersensitivity is associated with cognitive deficits, also a deficit in pre-pulse inhibition and in neurotrophic factors, and low levels of the transcript regulator of G-protein signaling (RGS) RGS9 in brain; and acute reversal of these alterations by the antipsychotic agent olanzapine. In sum, rats ontogenetically D2-R supersensitized have face validity, construct validity and predictive ability for schizophrenia.
Collapse
|
20
|
Bergon A, Belzeaux R, Comte M, Pelletier F, Hervé M, Gardiner EJ, Beveridge NJ, Liu B, Carr V, Scott RJ, Kelly B, Cairns MJ, Kumarasinghe N, Schall U, Blin O, Boucraut J, Tooney PA, Fakra E, Ibrahim EC. CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophr Res 2015; 168:434-43. [PMID: 26285829 DOI: 10.1016/j.schres.2015.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
The molecular mechanisms underlying schizophrenia remain largely unknown. Although schizophrenia is a mental disorder, there is increasing evidence to indicate that inflammatory processes driven by diverse environmental factors play a significant role in its development. With gene expression studies having been conducted across a variety of sample types, e.g., blood and postmortem brain, it is possible to investigate convergent signatures that may reveal interactions between the immune and nervous systems in schizophrenia pathophysiology. We conducted two meta-analyses of schizophrenia microarray gene expression data (N=474) and non-psychiatric control (N=485) data from postmortem brain and blood. Then, we assessed whether significantly dysregulated genes in schizophrenia could be shared between blood and brain. To validate our findings, we selected a top gene candidate and analyzed its expression by RT-qPCR in a cohort of schizophrenia subjects stabilized by atypical antipsychotic monotherapy (N=29) and matched controls (N=31). Meta-analyses highlighted inflammation as the major biological process associated with schizophrenia and that the chemokine receptor CX3CR1 was significantly down-regulated in schizophrenia. This differential expression was also confirmed in our validation cohort. Given both the recent data demonstrating selective CX3CR1 expression in subsets of neuroimmune cells, as well as behavioral and neuropathological observations of CX3CR1 deficiency in mouse models, our results of reduced CX3CR1 expression adds further support for a role played by monocyte/microglia in the neurodevelopment of schizophrenia.
Collapse
Affiliation(s)
- Aurélie Bergon
- INSERM, TAGC UMR_S 1090, 13288 Marseille Cedex 09, France; Aix Marseille Université, TAGC UMR_S 1090, 13288 Marseille Cedex 09, France
| | - Raoul Belzeaux
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344 Marseille Cedex 15, France; FondaMental, Fondation de Recherche et de Soins en Santé Mentale, 94000 Créteil, France; AP-HM, Hôpital Sainte Marguerite, Pôle de Psychiatrie Universitaire Solaris, 13009 Marseille, France
| | - Magali Comte
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone UMR 7289, 13005 Marseille, France
| | - Florence Pelletier
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344 Marseille Cedex 15, France; FondaMental, Fondation de Recherche et de Soins en Santé Mentale, 94000 Créteil, France
| | - Mylène Hervé
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344 Marseille Cedex 15, France; FondaMental, Fondation de Recherche et de Soins en Santé Mentale, 94000 Créteil, France
| | - Erin J Gardiner
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia
| | - Natalie J Beveridge
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia
| | - Bing Liu
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Kids Cancer Alliance, Cancer Institute NSW, Sydney, Australia
| | - Vaughan Carr
- Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia; School of Psychiatry, University of New South Wales, Randwick, NSW 2301, Australia; Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia
| | - Brian Kelly
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia
| | - Nishantha Kumarasinghe
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia; University of Sri Jayewardenepura, Nugegoda, Sri Lanka; National Institute of Mental Health, Angoda, Sri Lanka
| | - Ulrich Schall
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia
| | - Olivier Blin
- CIC-UPCET et Pharmacologie Clinique, Hôpital de la Timone, 13005 Marseille, France
| | - José Boucraut
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344 Marseille Cedex 15, France; FondaMental, Fondation de Recherche et de Soins en Santé Mentale, 94000 Créteil, France
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy and School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308 Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Darlinghurst, NSW 2010 Australia
| | - Eric Fakra
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone UMR 7289, 13005 Marseille, France; CHU de Saint-Etienne, Pôle de Psychiatrie, 42100 Saint-Etienne, France
| | - El Chérif Ibrahim
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344 Marseille Cedex 15, France; FondaMental, Fondation de Recherche et de Soins en Santé Mentale, 94000 Créteil, France.
| |
Collapse
|
21
|
Eusemann TN, Willmroth F, Fiebich B, Biber K, van Calker D. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells. PLoS One 2015; 10:e0134934. [PMID: 26263491 PMCID: PMC4532427 DOI: 10.1371/journal.pone.0134934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
The “regulators of g-protein signalling” (RGS) comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells) and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.
Collapse
Affiliation(s)
- Till Nicolas Eusemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Frank Willmroth
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Bernd Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Glutamate Receptor Modulation Is Restricted to Synaptic Microdomains. Cell Rep 2015; 12:326-34. [PMID: 26146087 DOI: 10.1016/j.celrep.2015.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/14/2015] [Accepted: 06/05/2015] [Indexed: 01/28/2023] Open
Abstract
A diverse array of neuromodulators governs cellular function in the prefrontal cortex (PFC) via the activation of G-protein-coupled receptors (GPCRs). However, these functionally diverse signals are carried and amplified by a relatively small assortment of intracellular second messengers. Here, we examine whether two distinct Gαi-coupled neuromodulators (norepinephrine and GABA) act as redundant regulators of glutamatergic synaptic transmission. Our results reveal that, within single dendritic spines of layer 5 pyramidal neurons, alpha-2 adrenergic receptors (α2Rs) selectively inhibit excitatory transmission mediated by AMPA-type glutamate receptors, while type B GABA receptors (GABA(B)Rs) inhibit NMDA-type receptors. We show that both modulators act via the downregulation of cAMP and PKA. However, by restricting the lifetime of active Gαi, RGS4 promotes the independent control of these two distinct target proteins. Our findings highlight a mechanism by which neuromodulatory microdomains can be established in subcellular compartments such as dendritic spines.
Collapse
|
23
|
Martin MV, Mirnics K, Nisenbaum LK, Vawter MP. Olanzapine Reversed Brain Gene Expression Changes Induced by Phencyclidine Treatment in Non-Human Primates. MOLECULAR NEUROPSYCHIATRY 2015; 1:82-93. [PMID: 26405684 DOI: 10.1159/000430786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The NMDA receptor antagonist phencyclidine (PCP) creates schizophrenia-like symptoms in normal controls. The effect of PCP on non-human primate brain gene expression was examined and compared to changes induced by olanzapine treatment. Experimental studies of PCP and antipsychotic drugs have direct relevance to understanding the patho-physiology and treatment of schizophrenia. Genome-wide changes in prefrontal cortex gene expression revealed alterations of 146 transcripts in the PCP treatment group compared to vehicle controls. Dysregulated genes were enriched in identified classes implicated in neurological and genetic disorders, including schizophrenia genes from the Psychiatric Genomics Consortium 108 loci as well as cell death in PCP-treated primates. Canonical pathway analysis revealed a significant overrepresentation of several groups including synaptic long-term potentiation and calcium signaling. Olanzapine coadministered with PCP normalized 34% of the 146 PCP-induced probe set expression changes, and a network of 17 olanzapine-normalized genes was identified enriched in schizophrenia candidate genes containing RGS4, SYN1 and AKT as nodes. The results of this study support the use of PCP administration in non-human primates as a glutamatergic model of schizophrenia and suggest that a large number of PCP-induced expression differences can be reversed by olanzapine. The results of this study may be informative for identification of potential candidates for pharmacogenetics and biomarker research related to the treatment of schizophrenia.
Collapse
Affiliation(s)
- Maureen V Martin
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, Calif
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, Tenn
| | - Laura K Nisenbaum
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Ind., USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, Calif
| |
Collapse
|
24
|
Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 2015; 40:190-206. [PMID: 24759129 PMCID: PMC4262918 DOI: 10.1038/npp.2014.95] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
The origins of schizophrenia have eluded clinicians and researchers since Kraepelin and Bleuler began documenting their findings. However, large clinical research efforts in recent decades have identified numerous genetic and environmental risk factors for schizophrenia. The combined data strongly support the neurodevelopmental hypothesis of schizophrenia and underscore the importance of the common converging effects of diverse insults. In this review, we discuss the evidence that genetic and environmental risk factors that predispose to schizophrenia disrupt the development and normal functioning of the GABAergic system.
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Arnsten AFT, Jin LE. Molecular influences on working memory circuits in dorsolateral prefrontal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:211-31. [PMID: 24484703 DOI: 10.1016/b978-0-12-420170-5.00008-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The working memory circuits of the primate dorsolateral prefrontal cortex (dlPFC) are modulated in a unique manner, often opposite to the molecular mechanisms needed for long-term memory consolidation. Working memory, our "mental sketch pad" is an ephemeral process, whereby transient, mental representations form the foundation for abstract thought. The microcircuits that generate mental representations are found in deep layer III of the dlPFC, where pyramidal cells excite each other to keep information "in mind" through NMDA receptor synapses on spines. The catecholaminergic and cholinergic arousal systems have rapid and flexible influences on the strength of these connections, thus allowing coordination between arousal and cognitive states. These modulators can rapidly weaken connectivity, for example, as occurs during uncontrollable stress, via feedforward calcium-cAMP signaling opening potassium (K(+)) channels near synapses on spines. Lower levels of calcium-cAMP-K(+) channel signaling provide negative feedback within recurrent excitatory circuits, and help to gate inputs to shape the contents of working memory. There are also explicit mechanisms to inhibit calcium-cAMP signaling and strengthen connectivity, for example, postsynaptic α2A-adrenoceptors on spines. This work has led to the development of the α2A agonist, guanfacine, for the treatment of a variety of dlPFC disorders. In mental illness, there are a variety of genetic insults to the molecules that normally serve to inhibit calcium-cAMP signaling in spines, thus explaining why so many genetic insults can lead to the same phenotype of impaired dlPFC cognitive function. Thus, the molecular mechanisms that provide mental flexibility may also confer vulnerability when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lu E Jin
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Regulator of G protein signaling 4 [corrected] is a crucial modulator of antidepressant drug action in depression and neuropathic pain models. Proc Natl Acad Sci U S A 2013; 110:8254-9. [PMID: 23630294 DOI: 10.1073/pnas.1214696110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulator of G protein signaling 4 (Rgs4) is a signal transduction protein that controls the function of monoamine, opiate, muscarinic, and other G protein-coupled receptors via interactions with Gα subunits. Rgs4 is expressed in several brain regions involved in mood, movement, cognition, and addiction and is regulated by psychotropic drugs, stress, and corticosteroids. In this study, we use genetic mouse models and viral-mediated gene transfer to examine the role of Rgs4 in the actions of antidepressant medications. We first analyzed human postmortem brain tissue and found robust up-regulation of RGS4 expression in the nucleus accumbens (NAc) of subjects receiving standard antidepressant medications that target monoamine systems. Behavioral studies of mice lacking Rgs4, including specific knockdowns in NAc, demonstrate that Rgs4 in this brain region acts as a positive modulator of the antidepressant-like and antiallodynic-like actions of several monoamine-directed antidepressant drugs, including tricyclic antidepressants, selective serotonin reuptake inhibitors, and norepinephrine reuptake inhibitors. Studies using viral-mediated increases in Rgs4 activity in NAc further support this hypothesis. Interestingly, in prefrontal cortex, Rgs4 acts as a negative modulator of the actions of nonmonoamine-directed drugs that are purported to act as antidepressants: the N-methyl-D-aspartate glutamate receptor antagonist ketamine and the delta opioid agonist (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide. Together, these data reveal a unique modulatory role of Rgs4 in the brain region-specific actions of a wide range of antidepressant drugs and indicate that pharmacological interventions at the level of RGS4 activity may enhance the actions of such drugs used for the treatment of depression and neuropathic pain.
Collapse
|
27
|
Lee EK, Ye Y, Kamat AM, Wu X. Genetic variations in regulator of G-protein signaling (RGS) confer risk of bladder cancer. Cancer 2013; 119:1643-51. [PMID: 23529717 DOI: 10.1002/cncr.27871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alterations in the regulator of G-protein signaling (RGS) pathway have been implicated in several cancers; therefore, the authors investigated the role of such alterations in overall bladder cancer risk, recurrence, progression, and survival. METHODS In this case-control series, 803 patients with bladder cancer were frequency-matched with a control cohort of 803 healthy individuals. Ninety-five single-nucleotide polymorphisms (SNPs) in 17 RGS genes were investigated for an association with overall bladder cancer risk, recurrence, and progression in patients who had nonmuscle-invasive bladder cancer (NMIBC) and for an association with death in patients who had muscle-invasive bladder cancer (MIBC). Cumulative effects and classification and regression tree analyses were performed for SNPs that were associated with overall bladder cancer risk. Kaplan-Meier plots were created to evaluate differences in the survival of patients with MIBC. RESULTS Reference SNP 10759 (rs10759) on the RGS4 gene demonstrated the greatest association with overall bladder cancer risk, conferring a 0.77-fold reduced risk with an increasing number of variant alleles (P < .001). A cumulative effects analysis that included all 5 significant SNPs demonstrated an increasing risk with the number of unfavorable genotypes (odds ratio, 4.13; 95% confidence interval, 2.14-7.98). In patients with NMIBC, 11 SNPs were identified that had an association with disease recurrence, and 13 SNPs were associated with disease progression. Of the 10 SNPs that were associated with death in patients with MIBC, rs2344673 in an additive model was the most significant and was associated with a decreased median survival of 13.3 months compared with 81.9 months in individuals without a variant allele. CONCLUSIONS Genetic variations in the RGS pathway were associated with the overall risk of bladder cancer, recurrence, and progression in patients with NMIBC and with the risk of death in patients with MIBC.
Collapse
Affiliation(s)
- Eugene K Lee
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Cheng YC, Scotting PJ, Hsu LS, Lin SJ, Shih HY, Hsieh FY, Wu HL, Tsao CL, Shen CJ. Zebrafish rgs4 is essential for motility and axonogenesis mediated by Akt signaling. Cell Mol Life Sci 2013; 70:935-50. [PMID: 23052218 PMCID: PMC11113239 DOI: 10.1007/s00018-012-1178-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.
Collapse
Affiliation(s)
- Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, 33383, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brain RGS4 and RGS10 protein expression in schizophrenia and depression. Effect of drug treatment. Psychopharmacology (Berl) 2013; 226:177-88. [PMID: 23093381 DOI: 10.1007/s00213-012-2888-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/02/2012] [Indexed: 02/07/2023]
Abstract
RATIONALE Regulator of G-protein signaling (RGS) proteins, RGS4 and RGS10, may be involved in the pathophysiology of schizophrenia. RGS4 has attracted special interest since the reports of genetic association between SNPs in RGS4 and schizophrenia. However, there is no information about the subcellular distribution of RGS4 and RGS10 proteins in psychiatric disorders. OBJECTIVES Plasma membrane RGS4 and cytosolic RGS10 protein immunoreactivity in prefrontal cortex from schizophrenic subjects (n = 25), non-diagnosed suicides (n = 13), and control subjects (n = 35), matched by age, gender, and postmortem delay, was analyzed by western blot. A second group of depressed subjects (n = 25) and control subjects (n = 25) was evaluated. The effect of the antipsychotic or antidepressant treatments was also assessed. RESULTS No significant differences in plasma membrane RGS4 and cytosolic RGS10 protein expression were observed between schizophrenic subjects, non-diagnosed suicides, and control subjects. However, RGS4 immunoreactivity was significantly higher (Δ = 33 ± 10 %, p < 0.05) in the antipsychotic-treated subgroup (n = 12) than in the antipsychotic-free subgroup (n = 13). Immunodensities of plasma membrane RGS4 and cytosolic RGS10 proteins did not differ between depressed and matched control subjects. CONCLUSIONS Expression of RGS4 and RGS10 proteins at their predominant subcellular location was studied in the postmortem brain of subjects with psychiatric disorders. The results suggest unaltered membrane RGS4 and cytosolic RGS10 proteins levels in schizophrenia and major depression. Antipsychotic treatment seems to increase membrane RGS4 immunoreactivity. Further studies are needed to elucidate RGS4 and RGS10 functional status.
Collapse
|
30
|
Lam YF, Fukui N, Sugai T, Watanabe J, Watanabe Y, Suzuki Y, Someya T. Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Palubinsky AM, Martin JA, McLaughlin B. The role of central nervous system development in late-onset neurodegenerative disorders. Dev Neurosci 2012; 34:129-39. [PMID: 22572535 PMCID: PMC6065248 DOI: 10.1159/000336828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
The human brain is dependent upon successfully maintaining ionic, energetic and redox homeostasis within exceptionally narrow margins for proper function. The ability of neurons to adapt to genetic and environmental perturbations and evoke a 'new normal' can be most fully appreciated in the context of neurological disorders in which clinical impairments do not manifest until late in life, although dysfunctional proteins are expressed early in development. We now know that proteins controlling ATP generation, mitochondrial stability, and the redox environment are associated with neurological disorders such as Parkinson's disease and amyotrophic lateral sclerosis. Generally, focus is placed on the role that early or long-term environmental stress has in altering the survival of cells targeted by genetic dysfunctions; however, the central nervous system undergoes several periods of intense stress during normal maturation. One of the most profound periods of stress occurs when 50% of neurons are removed via programmed cell death. Unfortunately, we have virtually no understanding of how these events proceed in individuals who harbor mutations that are lethal later in life. Moreover, there is a profound lack of information on circuit formation, cell fate during development and neurochemical compensation in either humans or the animals used to model neurodegenerative diseases. In this review, we consider the current knowledge of how energetic and oxidative stress signaling differs between neurons in early versus late stages of life, the influence of a new group of proteins that can integrate cell stress signals at the mitochondrial level, and the growing body of evidence that suggests early development should be considered a critical period for the genesis of chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Amy M. Palubinsky
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob A. Martin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| | - BethAnn McLaughlin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Abstract
An essential mode of acquired resistance to radiotherapy (RT) appears to be promotion of tumor cell motility and invasiveness in various cancer types, including glioblastoma, a process resembling 'evasive resistance'. Hence, a logical advancement of RT would be to identify suitable complementary treatment strategies, ideally targeting cell motility. Here we report that the combination of focal RT and mammalian target of rapamycin (mTOR) inhibition using clinically relevant concentrations of temsirolimus (CCI-779) prolongs survival in a syngeneic mouse glioma model through additive cytostatic effects. In vitro, the mTOR inhibitor CCI-779 exerted marked anti-invasive effects, irrespective of the phosphatase and tensin homolog deleted on chromosome 10 status and counteracted the proinvasive effect of sublethal irradiation. Mechanistically, we identified regulator of G-protein signaling 4 (RGS4) as a novel target of mTOR inhibition and a key driver of glioblastoma invasiveness, sensitive to the anti-invasive properties of CCI-779. Notably, suppression of RGS4-dependent glioma cell invasion was signaled through both mTOR complexes, mTORC1 and mTORC2, in a concentration-dependent manner, indicating that high doses of CCI-779 may overcome tumor-cell resistance associated with the sole inhibition of mTORC1. We conclude that combined RT and mTOR inhibition is a promising therapeutic option that warrants further clinical investigation in upfront glioblastoma therapy.
Collapse
|
33
|
MEKK1-MKK4-JNK-AP1 pathway negatively regulates Rgs4 expression in colonic smooth muscle cells. PLoS One 2012; 7:e35646. [PMID: 22545125 PMCID: PMC3335800 DOI: 10.1371/journal.pone.0035646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/19/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1β is mediated by the activation of NFκB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. METHODOLOGY/PRINCIPAL FINDINGS Cultured cells at first passage were treated with or without IL-1β (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1β stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1β. Mutation of the AP1-binding site within Rgs4 promoter increased the promoter activity. Western blot analysis confirmed that IL-1β treatment increased the phosphorylation of JNK, ATF-2 and c-Jun. Gel shift and chromatin immunoprecipitation assays validated that IL-1β increased the in vitro and ex vivo binding activities of AP1 within rabbit Rgs4 promoter. CONCLUSION/SIGNIFICANCE Activation of MEKK1-MKK4-JNK-AP1 signal pathway plays a tonic inhibitory role in regulating Rgs4 transcription in rabbit colonic smooth muscle cells. This negative regulation may aid in maintaining the transient level of RGS4 expression.
Collapse
|
34
|
Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, Gutierrez B, Gutierrez J. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res 2012; 136:128-36. [PMID: 22104141 DOI: 10.1016/j.schres.2011.10.026] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/11/2011] [Accepted: 10/29/2011] [Indexed: 01/14/2023]
Abstract
Schizophrenia is a highly disabling and limiting disorder for patients and the possibility that infections by some microorganisms may be associated to its development may allow prevention and recovery. In the current study we have done a meta-analysis of studies that have assessed the possible association between detection of different infectious agents and schizophrenia. We report results that support the idea that there is a statistically significant association between schizophrenia and infection by Human Herpesvirus 2 (OR=1.34; CI 95%: 1.09-1.70; p=0.05), Borna Disease Virus (OR=2.03; CI 95%: 1.35-3.06; p<0.01), Human Endogenous Retrovirus W (OR=19.31; CI 95%: 6.74-55.29; p<0.001), Chlamydophila pneumoniae (OR=6.34; CI 95%: 2.83-14.19; p<0.001), Chlamydophila psittaci (OR=29.05; CI 95%: 8.91-94.70; p<0.001) and Toxoplasma gondii (OR=2.70; CI 95%: 1.34-4.42; p=0.005). The implications of these findings are discussed and further research options are also explicated.
Collapse
Affiliation(s)
- Isabel Arias
- CAP El Clot, Institut Català de la Salut, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gamo NJ, Arnsten AFT. Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 2011; 125:282-96. [PMID: 21480691 DOI: 10.1037/a0023165] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dysfunction of the prefrontal cortex (PFC) is a central feature of many psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), schizophrenia, and bipolar disorder. Thus, understanding molecular influences on PFC function through basic research in animals is essential to rational drug development. In this review, we discuss the molecular signaling events initiated by norepinephrine and dopamine that strengthen working memory function mediated by the dorsolateral PFC under optimal conditions, and weaken working memory function during uncontrollable stress. We also discuss how these intracellular mechanisms can be compromised in psychiatric disorders, and how novel treatments based on these findings may restore a molecular environment conducive to PFC regulation of behavior, thought and emotion. Examples of successful translation from animals to humans include guanfacine for the treatment of ADHD and related PFC disorders, and prazosin for the treatment of PTSD.
Collapse
Affiliation(s)
- Nao J Gamo
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| | | |
Collapse
|
36
|
Lin CY, Sawa A, Jaaro-Peled H. Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Dis 2011; 45:48-56. [PMID: 21914480 DOI: 10.1016/j.nbd.2011.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of major mental illnesses, such as schizophrenia and bipolar disorder, are unclear. To address this fundamental question, many groups have studied molecular expression profiles in postmortem brains and other tissues from patients compared with those from normal controls. Development of unbiased high-throughput approaches, such as microarray, RNA-seq, and proteomics, have supported and facilitated this endeavor. In addition to genes directly involved in neuron/glia signaling, especially those encoding for synaptic proteins, genes for metabolic cascades are differentially expressed in the brains of patients with schizophrenia and bipolar disorder, compared with those from normal controls in DNA microarray studies. Here we propose the importance and usefulness of genetic mouse models in which such differentially expressed molecules are modulated. These animal models allow us to dissect the mechanisms of how such molecular changes in patient brains may play a role in neuronal circuitries and overall behavioral phenotypes. We also point out that models in which the metabolic genes are modified are obviously untested from mental illness viewpoints, suggesting the potential to re-address these models with behavioral assays and neurochemical assessments.
Collapse
Affiliation(s)
- Chi-Ying Lin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
37
|
Davies JS, Klein DC, Carter DA. Selective genomic targeting by FRA-2/FOSL2 transcription factor: regulation of the Rgs4 gene is mediated by a variant activator protein 1 (AP-1) promoter sequence/CREB-binding protein (CBP) mechanism. J Biol Chem 2011; 286:15227-39. [PMID: 21367864 PMCID: PMC3083148 DOI: 10.1074/jbc.m110.201996] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/12/2011] [Indexed: 01/21/2023] Open
Abstract
FRA-2/FOSL2 is a basic region-leucine zipper motif transcription factor that is widely expressed in mammalian tissues. The functional repertoire of this factor is unclear, partly due to a lack of knowledge of genomic sequences that are targeted. Here, we identified novel, functional FRA-2 targets across the genome through expression profile analysis in a knockdown transgenic rat. In this model, a nocturnal rhythm of pineal gland FRA-2 is suppressed by a genetically encoded, dominant negative mutant protein. Bioinformatic analysis of validated sets of FRA-2-regulated and -nonregulated genes revealed that the FRA-2 regulon is limited by genomic target selection rules that, in general, transcend core cis-sequence identity. However, one variant AP-1-related (AP-1R) sequence was common to a subset of regulated genes. The functional activity and protein binding partners of a candidate AP-1R sequence were determined for a novel FRA-2-repressed gene, Rgs4. FRA-2 protein preferentially associated with a proximal Rgs4 AP-1R sequence as demonstrated by ex vivo ChIP and in vitro EMSA analysis; moreover, transcriptional repression was blocked by mutation of the AP-1R sequence, whereas mutation of an upstream consensus AP-1 family sequence did not affect Rgs4 expression. Nocturnal changes in protein complexes at the Rgs4 AP-1R sequence are associated with FRA-2-dependent dismissal of the co-activator, CBP; this provides a mechanistic basis for Rgs4 gene repression. These studies have also provided functional insight into selective genomic targeting by FRA-2, highlighting discordance between predicted and actual targets. Future studies should address FRA-2-Rgs4 interactions in other systems, including the brain, where FRA-2 function is poorly understood.
Collapse
Affiliation(s)
- Jeff S. Davies
- From the School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, United Kingdom and
| | - David C. Klein
- the Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Carter
- From the School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, United Kingdom and
| |
Collapse
|
38
|
Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci 2011; 31:2413-20. [PMID: 21325508 DOI: 10.1523/jneurosci.5249-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radial glial (RG) cells, in the neocortical ventricular/subventricular zone (VZ/SVZ), generate cortical projection neurons both in rodents and humans, but whether they can also generate cortical interneurons is not clear. We demonstrated both on cryosections and in cell cultures that in the human VZ/SVZ, cells can be double labeled with RG markers and calretinin (CalR) and GABA, markers that suggest interneuronal lineage. We examined in more detail the cell fate of human RG cells isolated from the VZ/SVZ at midterm. After 24 h, no CalR(+) or GABA(+) cells were seen in cultures, whereas 5-10% cells expressed Nkx2.1 and Dlx, two ventral transcription factors. CalR(+) and GABA(+) cells were apparent for the first time after 3 d in vitro, and their number increased in subsequent days, consistent with the gradual transition of RG cells into CalR(+) or GABA(+) cells. Indeed, the progeny of genetically labeled RG cells could be immunolabeled with antibodies to CalR and GABA or ventral transcription factors (Nkx2.1(+), Dlx(+)). In contrast to humans, in the embryonic mouse, similar experiments showed that only RG cells isolated from the subpallium (ganglionic eminence) generate CalR(+) or GABA(+) cells, whereas this was not the case with RG cells isolated from the pallium. These findings support the idea that human, but not mouse, dorsal RG cells have the potential to generate various subtypes of neocortical interneurons. Multiple progenitors and sites of cortical interneuron origin in human might be an evolutionary adaptation underlying brain expansion and the increased complexity of cortical circuitry in humans.
Collapse
|
39
|
Ruiz de Azua I, Gautam D, Guettier JM, Wess J. Novel insights into the function of β-cell M3 muscarinic acetylcholine receptors: therapeutic implications. Trends Endocrinol Metab 2011; 22:74-80. [PMID: 21106385 PMCID: PMC3053051 DOI: 10.1016/j.tem.2010.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 12/25/2022]
Abstract
Impaired function of pancreatic β-cells is one of the hallmarks of type 2 diabetes. β-cell function is regulated by the activity of many hormones and neurotransmitters, which bind to specific cell surface receptors. The M(3) muscarinic acetylcholine receptor (M3R) belongs to the superfamily of G protein-coupled receptors and, following ligand dependent activation, selectively activates G proteins of the G(q/11) family. Recent studies with M3R mutant mice strongly suggest that β-cell M3Rs play a central role in promoting insulin release and maintaining correct glucose homeostasis. In this review, we highlight recent studies indicating that β-cell M3Rs and components of downstream signaling pathways might represent promising new targets for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Central nervous system disorders are the third greatest health problem in developed countries, and schizophrenia represents some of the most disabling ailments in young individuals. There is an abuse and/or misuse of antipsychotics, and recent advances in pharmacogenomics pose new challenges for the clinical management of this complex disorder. Schizophrenia is a multi-factorial/polygenic complex disorder in which hundreds of different genes are potentially involved, leading to the phenotypic expression of the disease in conjunction with epigenetic and environmental phenomena. Consequently, structural and functional genomic changes induce proteomic and metabolomic defects associated with the disease phenotype. Disease-related genomic profiles and genetic variants in genes involved in drug metabolism are responsible for drug efficacy and safety. About 20% of Caucasians are defective in CYP2D6 enzymes, which participate in the metabolism of 25-30% of central nervous system drugs. Approximately 40% of antipsychotics are substrates of CYP2D6 enzymes, 23% are substrates of CYP3A4, and 18% are substrates of CYP1A2. In order to achieve a mature discipline of pharmacogenomics of schizophrenia it would be effective to accelerate: (i) the education of physicians and the public in the use of genomic screening in daily clinical practice; (ii) the standardization of genetic testing for major categories of drugs; (iii) the validation of pharmacogenomic procedures according to drug category and pathology; (iv) the regulation of ethical, social, and economic issues; and (v) the incorporation of pharmacogenomic procedures of drugs in development and drugs on the market in order to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, Bergondo, Coruña, Spain
| | | | | |
Collapse
|
41
|
Stain HJ, Clark S, O'Donnell M, Schall U. Young rural people at risk for schizophrenia: time for mental health services to translate research evidence into best practice of care. Aust N Z J Psychiatry 2010; 44:872-82. [PMID: 20932200 DOI: 10.3109/00048674.2010.493857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Early intervention into prodromal schizophrenia has shown promise, but controversy continues regarding the ethical acceptability of identifying a group of 'ultra high risk' individuals of whom only 30 to 50% will develop a psychotic disorder. With well developed early intervention services this group faces the possibility of being labelled as 'pre-psychotic', a condition for which the well known stigma associated with the diagnosis of schizophrenia or bipolar disorder is likely to be associated. In addition, the use of potent antipsychotic and other medications (albeit usually at lower doses than those used for those with manifest psychosis) mandates consideration of the risks associated with their use and neurological and metabolic side effects. The potential for iatrogenic morbidity in the 'false positive' group must be weighed against the need of the 'true positives' identified through screening and assessment. Current evidence for the concept of 'at-risk mental state' was reviewed within a neurodevelopmental framework, including emerging data on the effectiveness of early intervention for the purpose of providing recommendations for community mental health services. The review suggests that different treatment strategies may be appropriate depending on the clinical stage of the condition as long as the benefits of intervention outweigh its risk burden. It further suggests that the severity of psychoses and the evidence of its early onset in utero and its acceleration in adolescence positions 'ultra high risk' intervention as a core model for early intervention for young people by teasing apart the symptomatic components of the 'prepsychotic state' and ensuring the population is reaching targeted mental health services for screening. The model is not restricted to the delivery of intervention for 'pre-psychotic' young people but is applicable for targeted programmes for a number of clinical groups considered at 'ultra high risk'. However, only further research in naturalistic populations embedded in clinical practice and ideally conducted in partnership of mental health services with academic research institutions will help clarify potential risks of early identification and intervention and assist in updating and making more explicit the clinical guidelines services will use in approaching those in the 'ultra high risk' group.
Collapse
Affiliation(s)
- Helen J Stain
- Centre for Rural and Remote Mental Health, University of Newcastle, Orange, New South Wales, Australia.
| | | | | | | |
Collapse
|
42
|
Li F, Hu DY, Liu S, Mahavadi S, Yen W, Murthy KS, Khalili K, Hu W. RNA-binding protein HuR regulates RGS4 mRNA stability in rabbit colonic smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C1418-29. [PMID: 20881234 DOI: 10.1152/ajpcell.00093.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regulator of G protein signaling 4 (RGS4) regulates the strength and duration of G protein signaling and plays an important role in smooth muscle contraction, cardiac development, and psychiatric disorders. Little is known about the posttranscriptional regulation of RGS4 expression. We cloned the full-length cDNA of rabbit RGS4, which contains a long 3'-untranslated region (UTR) with several AU-rich elements (AREs). We determined whether RGS4 mRNA stability is mediated by the RNA-binding protein human antigen R (HuR) and contributes to IL-1β-induced upregulation of RGS4 expression. We show that IL-1β treatment in colonic smooth muscle cells doubled the half-life of RGS4 mRNA. Addition of RGS4 3'-UTR to the downstream of Renilla luciferase reporter induced dramatic reduction in the enzyme activity and mRNA expression of luciferase, which was attenuated by the site-directed mutation of the two 3'-most ARE sites. IL-1β increased luciferase mRNA stability in a UTR-dependent manner. Knockdown of HuR significantly aggravated UTR-mediated instability of luciferase and inhibited IL-1β-induced upregulation of RGS4 mRNA. In addition, IL-1β increased cytosolic translocation and RGS4 mRNA binding of HuR. These findings suggest that 3'-most ARE sites within RGS4 3'-UTR are essential for the instability of RGS4 mRNA and IL-1β promotes the stability of RGS4 mRNA through HuR.
Collapse
Affiliation(s)
- Fang Li
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brain region specific actions of regulator of G protein signaling 4 oppose morphine reward and dependence but promote analgesia. Biol Psychiatry 2010; 67:761-9. [PMID: 19914603 PMCID: PMC3077672 DOI: 10.1016/j.biopsych.2009.08.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 07/01/2009] [Accepted: 08/19/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Regulator of G protein signaling 4 (RGS4) is one of the smaller members of the RGS family of proteins, which are known to control signaling amplitude and duration via interactions with G protein alpha subunits or other signaling molecules. Earlier evidence suggests dynamic regulation of RGS4 levels in neuronal networks mediating actions of opiates and other drugs of abuse, but the consequences of RGS4 actions in vivo are largely unknown. METHODS In this study, we use constitutive and nucleus accumbens-inducible RGS4 knockout mice as well as mice overexpressing RGS4 in the nucleus accumbens via viral mediated gene transfer, to examine the influence of RGS4 on behavioral responses to opiates. We also use electrophysiology and immunoprecipitation assays to further understand the mechanisms underlying the tissue-specific actions of RGS4. RESULTS Inducible knockout or selective overexpression of RGS4 in the nucleus accumbens reveals that, in this brain region, RGS4 acts as a negative regulator of morphine reward, whereas in the locus coeruleus RGS4 opposes morphine physical dependence. In contrast, we show that RGS4 does not affect morphine analgesia or tolerance but is a positive modulator of certain opiate analgesics, such as methadone and fentanyl. CONCLUSIONS These findings provide fundamentally novel information concerning the role of RGS4 in the cellular mechanisms underlying the diverse actions of opiate drugs in the nervous system.
Collapse
|
44
|
RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo. Proc Natl Acad Sci U S A 2010; 107:7999-8004. [PMID: 20385802 DOI: 10.1073/pnas.1003655107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Therapeutic strategies that augment insulin release from pancreatic beta-cells are considered beneficial in the treatment of type 2 diabetes. We previously demonstrated that activation of beta-cell M(3) muscarinic receptors (M3Rs) greatly promotes glucose-stimulated insulin secretion (GSIS), suggesting that strategies aimed at enhancing signaling through beta-cell M3Rs may become therapeutically useful. M3R activation leads to the stimulation of G proteins of the G(q) family, which are under the inhibitory control of proteins known as regulators of G protein signaling (RGS proteins). At present, it remains unknown whether RGS proteins play a role in regulating insulin release. To address this issue, we initially demonstrated that MIN6 insulinoma cells express functional M3Rs and that RGS4 was by far the most abundant RGS protein expressed by these cells. Strikingly, siRNA-mediated knockdown of RGS4 expression in MIN6 cells greatly enhanced M3R-mediated augmentation of GSIS and calcium release. We obtained similar findings using pancreatic islets prepared from RGS4-deficient mice. Interestingly, RGS4 deficiency had little effect on insulin release caused by activation of other beta-cell GPCRs. Finally, treatment of mutant mice selectively lacking RGS4 in pancreatic beta-cells with a muscarinic agonist (bethanechol) led to significantly increased plasma insulin and reduced blood glucose levels, as compared to control littermates. Studies with beta-cell-specific M3R knockout mice showed that these responses were mediated by beta-cell M3Rs. These findings indicate that RGS4 is a potent negative regulator of M3R function in pancreatic beta-cells, suggesting that RGS4 may represent a potential target to promote insulin release for therapeutic purposes.
Collapse
|
45
|
Mistry M, Pavlidis P. A cross-laboratory comparison of expression profiling data from normal human postmortem brain. Neuroscience 2010; 167:384-95. [PMID: 20138973 DOI: 10.1016/j.neuroscience.2010.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 11/29/2022]
Abstract
Expression profiling of post-mortem human brain tissue has been widely used to study molecular changes associated with neuropsychiatric diseases as well as normal processes such as aging. Changes in expression associated with factors such as age, gender or postmortem interval are often more pronounced than changes associated with disease. Therefore in addition to being of interest in their own right, careful consideration of these effects are important in the interpretation of disease studies. We performed a large meta-analysis of genome-wide expression studies of normal human cortex to more fully catalogue the effects of age, gender, postmortem interval and brain pH, yielding a "meta-signature" of gene expression changes for each factor. We validated our results by showing a significant overlap with independent gene lists extracted from the literature. Importantly, meta-analysis identifies genes which are not significant in any individual study. Finally, we show that many schizophrenia candidate genes appear in the meta-signatures, reinforcing the idea that studies must be carefully controlled for interactions between these factors and disease. In addition to the inherent value of the meta-signatures, our results provide critical information for future studies of disease effects in the human brain.
Collapse
Affiliation(s)
- M Mistry
- Canadian Institute of Health Research/Michael Smith Foundation for Health Research (CIHR/MSFHR) Graduate Program in Bioinformatics, University of British Columbia, BC, Canada
| | | |
Collapse
|
46
|
The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 2010; 15:115, 204-15. [PMID: 19546860 PMCID: PMC2811213 DOI: 10.1038/mp.2009.58] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have implicated DTNBP1 as a schizophrenia susceptibility gene and its encoded protein, dysbindin, as a potential regulator of synaptic vesicle physiology. In this study, we found that endogenous levels of the dysbindin protein in the mouse brain are developmentally regulated, with higher levels observed during embryonic and early postnatal ages than in young adulthood. We obtained biochemical evidence indicating that the bulk of dysbindin from brain exists as a stable component of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a multi-subunit protein complex involved in intracellular membrane trafficking and organelle biogenesis. Selective biochemical interaction between brain BLOC-1 and a few members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) superfamily of proteins that control membrane fusion, including SNAP-25 and syntaxin 13, was demonstrated. Furthermore, primary hippocampal neurons deficient in BLOC-1 displayed neurite outgrowth defects. Taken together, these observations suggest a novel role for the dysbindin-containing complex, BLOC-1, in neurodevelopment, and provide a framework for considering potential effects of allelic variants in DTNBP1--or in other genes encoding BLOC-1 subunits--in the context of the developmental model of schizophrenia pathogenesis.
Collapse
|
47
|
Zimmer G, Schanuel SM, Bürger S, Weth F, Steinecke A, Bolz J, Lent R. Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon. ACTA ACUST UNITED AC 2010; 20:2411-22. [PMID: 20071458 DOI: 10.1093/cercor/bhp309] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chondroitin sulfate (CS) carrying proteoglycans (PGs) are widely expressed in the nervous system, and there is increasing evidence that they regulate developmental mechanisms like neurite outgrowth, axonal guidance and neuronal migration. Moreover, they can also act indirectly by organizing and/or modulating growth factors and guidance molecules. We found that chondroitin-4-sulfate is coexpressed with semaphorin 3A (Sema 3A) in the striatal mantle zone (SMZ), a nontarget region of neuropilin (Nrp)-1-expressing cortical interneurons flanking their migratory route in the subpallium. Using in vitro assays, we showed that CS PGs exert a repulsive effect on cortical interneurons, independently of Sema 3A, due to the CS side chains. We further showed that extracellular Sema 3A binds to CS. Disrupting Sema 3A-Nrp-1 signaling led migrating medial ganglionic eminence neurons to inappropriately invade the SMZ and even more so after removal of the CS side chains. Moreover, we found that soluble Sema 3A enhances the CS-induced repulsion in vitro. We concluded that CS acts as a repellent for cortical interneurons and that, in addition, CS restricts secreted Sema 3A within SMZ. Thus, both molecules act in concert to repel cortical interneurons from the SMZ during tangential migration toward the cerebral cortex.
Collapse
Affiliation(s)
- Geraldine Zimmer
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21941-902, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
Infragranular gene expression disturbances in the prefrontal cortex in schizophrenia: signature of altered neural development? Neurobiol Dis 2009; 37:738-46. [PMID: 20034564 DOI: 10.1016/j.nbd.2009.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/11/2022] Open
Abstract
The development of the human neocortex gives rise to a complex cytoarchitecture, grouping together cells with similar structure, connectivity and function. As a result, the six neocortical laminae show distinct molecular content. In schizophrenia, many anatomical and neurochemical changes appear to be restricted to a subset of lamina and/or cell types. In this study, we hypothesized that supragranular (SG; laminae II-III) and infragranular layers (IG; laminae V-VI) of area 46 in the human prefrontal cortex will show distinct and specific transcriptome alterations between subjects with schizophrenia and matched controls. To enhance sample homogeneity, we compared the gene expression patterns of the SG and IG layers of 8 matched middle-aged male subjects with schizophrenia to 8 pairwise matched controls using two replicate DNA microarrays for each sample. The study revealed strong disease-related laminar expression differences between the SG and IG layers. Expression changes were dominated by an overall underexpression of the IG-enriched genes in the schizophrenia subjects compared to normal control subjects. Furthermore, using a diagnosis-blind, unsupervised clustering of the control-derived SG or IG-enriched transcripts, the IG-enriched markers segregated the subjects with schizophrenia from the matched controls with a high degree of confidence. Importantly, multiple members of the semaphorin gene family reported altered gene expression, suggesting that the IG gene expression disturbances in subjects with schizophrenia may be a result of altered cortical development and disrupted brain connectivity.
Collapse
|
49
|
Cloning and characterization of rabbit Rgs4 promoter in gut smooth muscle. Gene 2009; 451:45-53. [PMID: 19945517 DOI: 10.1016/j.gene.2009.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/23/2022]
Abstract
Regulator of G-protein signaling 4 (Rgs4) regulates the strength and duration of G-protein signaling, and plays an important role in cardiac development, smooth muscle contraction and psychiatric disorders. Rgs4 expression is regulated at both mRNA and protein levels. In order to examine the transcriptional mechanism of Rgs4 expression, we have cloned and characterized rabbit Rgs4 promoter. The coding sequence of rabbit Rgs4 was obtained by degenerative RT-PCR and used for Northern blot and 5'-RACE analysis. A single transcript was identified in rabbit colonic smooth muscle cells. The 5'-untranslated region (UTR) extended 120 bp nucleotides upstream of the Rgs4 start codon. A putative promoter sequence (1389 bp) showed a consensus TATA box and cis-acting binding sites for several potential transcriptional factors. Reporter gene assay identified strong promoter activity in various cell types. Further analysis by deletion mutagenesis suggested that the proximal region had a highest core promoter activity while the distal region is suppressive. IL-1beta significantly increased the promoter activity. The in vitro and in vivo binding activities for NF-kappaB transcription factor were validated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay respectively. Mutation of NF-kappaB site reduced the promoter activity. These data suggest that the cloned rabbit Rgs4 promoter is functionally active and NF-kappaB binding site possesses enhancer activity in regulating Rgs4 transcription. Our studies provide an important basis for further understanding of Rgs4 regulation and function in different diseases.
Collapse
|
50
|
Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009; 2009:536918. [PMID: 19884986 PMCID: PMC2768871 DOI: 10.1155/2009/536918] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/21/2009] [Accepted: 07/29/2009] [Indexed: 02/04/2023] Open
Abstract
DNA pooling can provide an economic and efficient way to detect susceptibility loci to complex diseases. We carried out a genome screen with 400 microsatellite markers spaced at approximately 10 cm in two DNA pools consisting of 119 schizophrenia (SZ) patients and 119 controls recruited from a homogenous population in the Chang Le area of the Shandong peninsula of China. Association of D6S289, a dinucleotide repeat polymorphism in the JARID2 gene with SZ, was found and confirmed by individual genotyping (X2 = 17.89; P = .047). In order to refine the signal, we genotyped 14 single nucleotide polymorphisms (SNPs) covering JARID2 and the neighboring gene, DNTBP1, in an extended sample of 309 cases and 309 controls from Shandong peninsula (including the samples from the pools). However, rs2235258 and rs9654600 in JARID2 showed association in allelic, genotypic and haplotypic tests with SZ patients from Chang Le area. This was not replicates in the extended sample, we conclude that JARID2 could be a susceptibility gene for SZ.
Collapse
|