1
|
Campbell TS, Donoghue K, Roth TL. Gene Expression After Exercise Is Disrupted by Early-Life Stress. Dev Psychobiol 2025; 67:e70017. [PMID: 39780028 PMCID: PMC11711301 DOI: 10.1002/dev.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Exercise can be leveraged as an important tool to improve neural and psychological health, either on its own or to bolster the efficacy of evidence-based treatment modalities. Research in both humans and animal models shows that positive experiences, such as exercise, promote neuroprotection while, in contrast, aversive experiences, particularly those in early development, are often neurologically and psychologically disruptive. In the current study, we employed a preclinical model to investigate the therapeutic benefits of exercise on gene expression in the brains of adult rats. Long Evans rats were exposed to maltreatment stress or nurturing care during infancy, with some rats later given voluntary running wheels as an aerobic exercise intervention from Postnatal Days 70 to 90. Our results showed that irisin gene expression, which promotes neuroprotection, was differentially affected by exercise and early exposure to stress. We add to a rapidly growing area of research on the neuroprotective benefits of exercise and shed light on important molecular mechanisms that may affect the efficacy of exercise in different individuals.
Collapse
Affiliation(s)
- Taylor S. Campbell
- Department of Psychological & Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | - Katelyn Donoghue
- Department of Psychological & Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | - Tania L. Roth
- Department of Psychological & Brain SciencesUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
2
|
Merrill SM, Konwar C, Fraihat Z, Parent J, Dajani R. Molecular insights into trauma: A framework of epigenetic pathways to resilience through intervention. MED 2024:100560. [PMID: 39708797 DOI: 10.1016/j.medj.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Experiences of complex trauma and adversity, especially for children, are ongoing global crises necessitating adaptation. Bioadaptability to adversity and its health consequences emphasizes the dynamism of adaptation to trauma and the potential for research to inform intervention strategies. Epigenetic variability, particularly DNA methylation, associates with chronic adversity while allowing for resilience and adaptability. Epigenetics, including age- and site-specific changes in DNA methylation, gene-environment interactions, pharmacological responses, and biomarker characterization and evaluation, may aid in understanding trauma responses and promoting well-being by facilitating psychological and biological adaptation. Understanding these molecular processes provides a foundation for a biologically adaptive framework to shift public health strategies from restorative to long-term adaptation and resilience. Psychological, cultural, and biological trauma must be addressed in innovative interventions for vulnerable populations, particularly children and adolescents. Understanding molecular changes may provide a biopsychosocial perspective for culturally sensitive, evidence-based interventions that promote resilience and thriving in new settings.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychology, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Chaini Konwar
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Zaid Fraihat
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Justin Parent
- Department of Psychology, University of Massachusetts Lowell, Lowell, MA, USA; Department of Psychology, College of Health Sciences, University of Rhode Island, Kingston, RI, USA; Emma Pendleton Bradley Hospital, East Providence, RI, USA
| | - Rana Dajani
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
3
|
Gescher DM, Schanze D, Vavra P, Wolff P, Zimmer-Bensch G, Zenker M, Frodl T, Schmahl C. Differential methylation of OPRK1 in borderline personality disorder is associated with childhood trauma. Mol Psychiatry 2024; 29:3734-3741. [PMID: 38862675 PMCID: PMC11609100 DOI: 10.1038/s41380-024-02628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
According to a growing body of neurobiological evidence, the core symptoms of borderline personality disorder (BPD) may be linked to an opioidergic imbalance between the hedonic and stimulatory activity of mu opioid receptors (MOR) and the reward system inhibiting effects of kappa opioid receptors (KOR). Childhood trauma (CT), which is etiologically relevant to BPD, is also likely to lead to epigenetic and neurobiological adaptations by extensive activation of the stress and endogenous opioid systems. In this study, we investigated the methylation differences in the promoter of the KOR gene (OPRK1) in subjects with BPD (N = 47) and healthy controls (N = 48). Comparing the average methylation rates of regulatorily relevant subregions (specified regions CGI-1, CGI-2, EH1), we found no differences between BPD and HC. Analyzing individual CG nucleotides (N = 175), we found eight differentially methylated CG sites, all of which were less methylated in BPD, with five showing highly interrelated methylation rates. This differentially methylated region (DMR) was found on the falling slope (5') of the promoter methylation gap, whose effect is enhanced by the DMR hypomethylation in BPD. A dimensional assessment of the correlation between disease severity and DMR methylation rate revealed DMR hypomethylation to be negatively associated with BPD symptom severity (measured by BSL-23). Finally, analyzing the influence of CT on DMR methylation, we found DMR hypomethylation to correlate with physical and emotional neglect in childhood (quantified by CTQ). Thus, the newly identified DMR may be a biomarker of the risks caused by CT, which likely epigenetically contribute to the development of BPD.
Collapse
MESH Headings
- Humans
- Borderline Personality Disorder/genetics
- Female
- DNA Methylation/genetics
- Male
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Adult
- Promoter Regions, Genetic/genetics
- Epigenesis, Genetic/genetics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Child Abuse/psychology
- Adverse Childhood Experiences
- Child
- Middle Aged
- Young Adult
Collapse
Affiliation(s)
- Dorothee Maria Gescher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Department for General Psychiatry, Center of Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | - Denny Schanze
- Institute of Human Genetics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Vavra
- Department of Biological Psychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Philip Wolff
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany
| | - Martin Zenker
- Institute of Human Genetics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Veltri A, Nicolì V, Marino R, Rea F, Corsi M, Chiumiento M, Giangreco M, Caldi F, Guglielmi G, Foddis R, Coppedè F, Silvestri R, Buselli R. Plasma Brain-Derived Neurotrophic Factor (BDNF) Levels and BDNF Promoters' DNA Methylation in Workers Exposed to Occupational Stress and Suffering from Psychiatric Disorders. Brain Sci 2024; 14:1106. [PMID: 39595869 PMCID: PMC11592044 DOI: 10.3390/brainsci14111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Decreased plasma BDNF (pBDNF) levels have been proposed as a biomarker in the illness phases of mood disorders. This cross-sectional study aimed to evaluate the pBDNF and BDNF promoters' DNA methylation levels in workers exposed to occupational stress and suffering from work-related stress disorders. METHODS the pBDNF and BDNF exon I and IV promoters' methylation levels were measured by specific immunoassays and methylation-sensitive high-resolution melting (MS-HRM) in 62 patients with adjustment disorders (AD), 79 patients with major depressive disorder (MDD) and 44 healthy controls. Occupational stress was evaluated in the patients and controls using the Job Content Questionnaire (JCQ). RESULTS the pBDNF levels were significantly higher in the MDD (p < 0.001) and AD (p < 0.0001) patients than in the controls. The MDD patients showed significantly lower pBDNF levels than the AD ones (p = 0.01). The BDNF exon I and IV promoters' methylation levels were significantly higher in the MDD patients than in the AD ones (exon I promoter: p = 0.0001, exon IV promoter: p < 0.0001) and controls (exon I promoter: p = 0.0001, exon IV promoter: p < 0.0001). In the patients, but not in the controls, the BDNF promoters' methylation levels showed significant negative correlations with occupational stress. CONCLUSIONS BDNF could play a key role in the pathophysiology of stress-related disorders and the peripheral elevation of it observed in patients exposed to occupational stress could suggest a protective mechanism for neurons from stress-mediated damage. The elevation of the pBDNF levels, even in MDD, may characterize a "reactive" subtype of depressive episode, while the significant elevation of the BDNF promoters' methylation levels in depressed patients could indicate a predisposition to more severe illness under stress. Further research is needed, focusing on biomarkers for stress-related disorders as a potential tool for the diagnosis and prevention of occupational diseases.
Collapse
Affiliation(s)
- Antonello Veltri
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Riccardo Marino
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Filomena Rea
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56124 Pisa, Italy
| | - Martina Corsi
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Martina Chiumiento
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Marianna Giangreco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabrizio Caldi
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Giovanni Guglielmi
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Rudy Foddis
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | | | - Rodolfo Buselli
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| |
Collapse
|
6
|
Benatti BM, Adiletta A, Sgadò P, Malgaroli A, Ferro M, Lamanna J. Epigenetic Modifications and Neuroplasticity in the Pathogenesis of Depression: A Focus on Early Life Stress. Behav Sci (Basel) 2024; 14:882. [PMID: 39457754 PMCID: PMC11504006 DOI: 10.3390/bs14100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental illness, and it is considered to be one of the leading causes of disability globally. The etiology of MDD is multifactorial, involving an interplay between biological, psychological, and social factors. Early life represents a critical period for development. Exposure to adverse childhood experiences is a major contributor to the global burden of disease and disability, doubling the risk of developing MDD later in life. Evidence suggests that stressful events experienced during that timeframe play a major role in the emergence of MDD, leading to epigenetic modifications, which might, in turn, influence brain structure, function, and behavior. Neuroplasticity seems to be a primary pathogenetic mechanism of MDD, and, similarly to epigenetic mechanisms, it is particularly sensitive to stress in the early postnatal period. In this review, we will collect and discuss recent studies supporting the role of epigenetics and neuroplasticity in the pathogenesis of MDD, with a focus on early life stress (ELS). We believe that understanding the epigenetic mechanisms by which ELS affects neuroplasticity offers potential pathways for identifying novel therapeutic targets for MDD, ultimately aiming to improve treatment outcomes for this debilitating disorder.
Collapse
Affiliation(s)
- Bianca Maria Benatti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
| | - Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (A.A.); (P.S.)
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (A.A.); (P.S.)
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Clinical Center Tourette Syndrome, IRCCS Ospedale San Raffaele, 20127 Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Department of Psychology, Sigmund Freud Private University, 20143 Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Clinical Center Tourette Syndrome, IRCCS Ospedale San Raffaele, 20127 Milan, Italy
| |
Collapse
|
7
|
Kodila ZN, Shultz SR, Yamakawa GR, Mychasiuk R. Critical Windows: Exploring the Association Between Perinatal Trauma, Epigenetics, and Chronic Pain. Neuroscientist 2024; 30:574-596. [PMID: 37212380 PMCID: PMC11439237 DOI: 10.1177/10738584231176233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.
Collapse
Affiliation(s)
- Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, Canada
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
10
|
Pan T, Gallo ME, Donald KA, Webb K, Bath KG. Elevated risk for psychiatric outcomes in pediatric patients with Multisystem Inflammatory Syndrome (MIS-C): A review of neuroinflammatory and psychosocial stressors. Brain Behav Immun Health 2024; 38:100760. [PMID: 38586284 PMCID: PMC10992702 DOI: 10.1016/j.bbih.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a secondary immune manifestation of COVID-19 involving multiple organ systems in the body, resulting in fever, skin rash, abdominal pain, nausea, shock, and cardiac dysfunction that often lead to hospitalization. Although many of these symptoms resolve following anti-inflammatory treatment, the long-term neurological and psychiatric sequelae of MIS-C are unknown. In this review, we will summarize two domains of the MIS-C disease course, 1) Neuroinflammation in the MIS-C brain and 2) Psychosocial disruptions resulting from stress and hospitalization. In both domains, we present existing clinical findings and hypothesize potential connections to psychiatric outcomes. This is the first review to conceptualize a holistic framework of psychiatric risk in MIS-C patients that includes neuroinflammatory and psychosocial risk factors. As cases of severe COVID-19 and MIS-C subside, it is important for clinicians to monitor outcomes in this vulnerable patient population.
Collapse
Affiliation(s)
- Tracy Pan
- Stanford University School of Medicine, Stanford, CA, USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 029112, USA
- The Neuroscience Institute, University of Cape Town, South Africa
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Meghan E. Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 029112, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, 7700, South Africa
- Crick African Network, Francis Crick Institute, London, UK
| | - Kevin G. Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, 10032, USA
| |
Collapse
|
11
|
Kang HJ, Kim JW, Kim JT, Park MS, Chun BJ, Kim SW, Shin IS, Stewart R, Kim JM. Brain Derived Neurotrophic Factor Methylation and Long-term Outcomes after Stroke Interacting with Suicidal Ideation. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:306-313. [PMID: 38627077 PMCID: PMC11024691 DOI: 10.9758/cpn.23.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 04/20/2024]
Abstract
Objective This study aimed to evaluate the unexplored relationship between BDNF methylation, long-term outcomes, and its interaction with suicidal ideation (SI), which is closely associated with both BDNF expression and stroke outcomes. Methods A total of 278 stroke patients were assessed for BDNF methylation status and SI using suicide-related item in the Montgomery-Åsberg Depression Rating Scale at 2 weeks post-stroke. We investigated the incidence of composite cerebro-cardiovascular events (CCVEs) during an 8-14-year period after the initial stroke as long-term stroke outcome. We conducted Cox regression models adjusted for covariates to evaluate the association between BDNF methylation status and CCVEs, as well as its interaction with post-stroke SI at 2 weeks. Results Higher methylation status of CpG 1, 3, and 5, but not the average value, predicted a greater number of composite CCVEs during 8-14 years following the stroke. The associations between a higher methylation status of CpGs 1, 3, 5, and 8, as well as the average BDNF methylation value, and a greater number of composite CCVEs, were prominent in patients who had post-stroke SI at 2 weeks. Notably, a significant interaction between methylation status and SI on composite CCVEs was observed only for CpG 8. Conclusion The significant association between BDNF methylation and poor long-term stroke outcomes, particularly amplified in individuals who had post-stroke SI at 2 weeks, suggested that evaluating the biological marker status of BDNF methylation along with assessing SI during the acute phase of stroke can help predict long-term outcomes.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Joon-Tae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Byung Jo Chun
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Robert Stewart
- King’s College London (Institute of Psychiatry, Psychology and Neuroscience), London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
12
|
Nazzari S, Grumi S, Mambretti F, Villa M, Giorda R, Bordoni M, Pansarasa O, Borgatti R, Provenzi L. Sex-dimorphic pathways in the associations between maternal trait anxiety, infant BDNF methylation, and negative emotionality. Dev Psychopathol 2024; 36:908-918. [PMID: 36855816 DOI: 10.1017/s0954579423000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabiana Mambretti
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Marco Villa
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
13
|
Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: Emerging regulators of behavioral complexity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1847. [PMID: 38702948 DOI: 10.1002/wrna.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024]
Abstract
The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sanovar Dayal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chaubey
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samruddhi Ranmale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Campbell TS, Donoghue K, Roth TL. Unlocking the epigenome: Stress and exercise induced Bdnf regulation in the prefrontal cortex. Neurotoxicol Teratol 2024; 103:107353. [PMID: 38648864 PMCID: PMC11636650 DOI: 10.1016/j.ntt.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aversive caregiving in early life is a risk factor for aberrant brain and behavioral development. This outcome is related to epigenetic dysregulation of the brain-derived neurotrophic factor (Bdnf) gene. The Bdnf gene encodes for BDNF, a neurotrophin involved in early brain development, neural plasticity, learning, and memory. Recent work suggests that exercise may be neuroprotective in part by supporting BDNF protein and gene expression, making it an exciting target for therapeutic interventions. To our knowledge, exercise has never been studied as a therapeutic intervention in preclinical rodent models of caregiver maltreatment. To that end, the current study investigated the effect of an adult voluntary wheel running intervention on Bdnf methylation and expression in the prefrontal cortex of rats who experienced aversive caregiving in infancy. We employed a rodent model (Long Evans rats) wherein rat pups experienced intermittent caregiver-induced stress from postnatal days 1-7 and were given voluntary access to a running wheel (except in the control condition) from postnatal days 70-90 as a young adulthood treatment intervention. Our results indicate that maltreatment and exercise affect Bdnf gene methylation in an exon, CG site, and sex-specific manner. Here we add to a growing body of evidence of the ability for our experiences, including exercise, to permeate the brain. Keywords: Early life stress, Bdnf, exercise, prefrontal cortex.
Collapse
Affiliation(s)
- Taylor S Campbell
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America.
| | - Katelyn Donoghue
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America
| | - Tania L Roth
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America
| |
Collapse
|
15
|
Ping J, Wan J, Luo J, Du B, Liu X, Jiang T, Zhang J. The interaction of RELN-DNMT genes involving in neurotrophin signaling pathway contributes to schizophrenia susceptibility. Int J Dev Neurosci 2024; 84:154-159. [PMID: 38296839 DOI: 10.1002/jdn.10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE Schizophrenia belongs to a severe mental illness with complicated clinical presentations, an ill-defined pathogenesis, and no known cause. Many genetic studies imply that polygenic interaction is important in the development of schizophrenia. The main mechanism of the RELN-BDNF-CREB-DNMT signaling pathway in neurodevelopment involves RELN, brain-derived neurotrophic factor (BDNF), transcription factor cyclic adenosine monophosphate response element binding protein (CREB), DNA methyltransferase 1 (DNMT1), as well as DNA methyltransferase 3B (DNMT3B). An early case-control research on 15 polymorphisms in the RELN, CREB, BDNF, DNMT1, and DNMT3B genes was done. A single gene variation has little effect on the pathogenesis of schizophrenia, but the combination of intergenic variation loci has a bigger impact because schizophrenia is a complex polygenic disorder. The objective of the current study sought to explore the impact of genetic interactions between RELN, BDNF, CREB, DNMT1, and DNMT3B on schizophrenia in order to further highlight the genetic factors influencing the risk of schizophrenia. METHODS Taking the case-control study design, with the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to be the evaluation norm, 134 individuals suffering from schizophrenia hospitalized in the Third People's Hospital of Zhongshan City within January 2018 to April 2020 (case group) were selected, and 64 healthy individuals (control group) from the same geographical area had been chosen as well. MassArray identified DNMT1 gene single nucleotide polymorphisms (rs2114724 and rs2228611) and DNMT3B gene SNPs (rs2424932, rs1569686, rs6119954, and rs2424908). Using the generalized multifactor dimensionality reduction (GMDR), the RELN-BDNF-CREB-DNMT pathway's gene interactions were examined for their impact on schizophrenia. RESULTS GMDR analysis showed that the three-order interaction model RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) was the optimal model (p = 0.001), with the consistency of cross-validation of 10/10 and the test accuracy of 0.8711. CONCLUSION The interaction between the RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) may be related to schizophrenia, and large sample sizes should be verified in different population.
Collapse
Affiliation(s)
- Junjiao Ping
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| | - Jing Wan
- Department of Early Intervention, Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Jiali Luo
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| | - Baoguo Du
- Department of Clinical Psychology, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Xinxia Liu
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| | - Tingyun Jiang
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Jie Zhang
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| |
Collapse
|
16
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
17
|
Sepers B, Verhoeven KJF, van Oers K. Early developmental carry-over effects on exploratory behaviour and DNA methylation in wild great tits ( Parus major). Evol Appl 2024; 17:e13664. [PMID: 38487391 PMCID: PMC10937296 DOI: 10.1111/eva.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/17/2024] Open
Abstract
Adverse, postnatal conditions experienced during development are known to induce lingering effects on morphology, behaviour, reproduction and survival. Despite the importance of early developmental stress for shaping the adult phenotype, it is largely unknown which molecular mechanisms allow for the induction and maintenance of such phenotypic effects once the early environmental conditions are released. Here we aimed to investigate whether lasting early developmental phenotypic changes are associated with post-developmental DNA methylation changes. We used a cross-foster and brood size experiment in great tit (Parus major) nestlings, which induced post-fledging effects on biometric measures and exploratory behaviour, a validated personality trait. We investigated whether these post-fledging effects are associated with DNA methylation levels of CpG sites in erythrocyte DNA. Individuals raised in enlarged broods caught up on their developmental delay after reaching independence and became more explorative as days since fledging passed, while the exploratory scores of individuals that were raised in reduced broods remained stable. Although we previously found that brood enlargement hardly affected the pre-fledging methylation levels, we found 420 CpG sites that were differentially methylated between fledged individuals that were raised in small versus large sized broods. A considerable number of the affected CpG sites were located in or near genes involved in metabolism, growth, behaviour and cognition. Since the biological functions of these genes line up with the observed post-fledging phenotypic effects of brood size, our results suggest that DNA methylation provides organisms the opportunity to modulate their condition once the environmental conditions allow it. In conclusion, this study shows that nutritional stress imposed by enlarged brood size during early development associates with variation in DNA methylation later in life. We propose that treatment-associated DNA methylation differences may arise in relation to pre- or post-fledging phenotypic changes, rather than that they are directly induced by the environment during early development.
Collapse
Affiliation(s)
- Bernice Sepers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Koen J. F. Verhoeven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kees van Oers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
| |
Collapse
|
18
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Collins NJ, Campbell TS, Bozeman AL, Martes AC, Ross SE, Doherty TS, Brumley MR, Roth TL. Epigenetic processes associated with neonatal spinal transection. Dev Psychobiol 2024; 66:e22466. [PMID: 38388192 DOI: 10.1002/dev.22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
In early development, the spinal cord in healthy or disease states displays remarkable activity-dependent changes in plasticity, which may be in part due to the increased activity of brain derived neurotrophic factor (BDNF). Indeed, BDNF delivery has been efficacious in partially ameliorating many of the neurobiological and behavioral consequences of spinal cord injury (SCI), making elucidating the role of BDNF in the normative developing and injured spinal cord a critical research focus. Recent work in our laboratory provided evidence for aberrant global and locus-specific epigenetic changes in methylation of the Bdnf gene as a consequence of SCI. In the present study, animals underwent thoracic lesions on P1, with cervical and lumbar tissue being later collected on P7, P14, and P21. Levels of Bdnf expression and methylation (exon IX and exon IV), in addition to global methylation levels were quantified at each timepoint. Results indicated locus-specific reductions of Bdnf expression that was accompanied by a parallel increase in methylation caudal to the injury site, with animals displaying increased Bdnf expression at the P14 timepoint. Together, these findings suggest that epigenetic activity of the Bdnf gene may act as biomarker in the etiology and intervention effort efficacy following SCI.
Collapse
Affiliation(s)
- Nicholas J Collins
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Taylor S Campbell
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Aimee L Bozeman
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Alleyna C Martes
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Sydney E Ross
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Michele R Brumley
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
20
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Sperlagh B, Anderson IM, Deakin B, Bagdy G, Juhasz G, Gonda X. Embers of the Past: Early Childhood Traumas Interact with Variation in P2RX7 Gene Implicated in Neuroinflammation on Markers of Current Suicide Risk. Int J Mol Sci 2024; 25:865. [PMID: 38255938 PMCID: PMC10815854 DOI: 10.3390/ijms25020865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Sara Sutori
- National Centre for Suicide Research and Prevention (NASP), Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Granits väg 4, 17165 Solna, Sweden;
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| |
Collapse
|
21
|
Zhao Y, Bhatnagar S. Epigenetic Modulations by Microbiome in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:55-69. [PMID: 39586993 DOI: 10.1007/978-3-031-66686-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recent studies have identified a critical role of the diverse and dynamic microbiome in modulating various aspects of host physiology and intrinsic processes. However, the altered microbiome has also become a hallmark of cancer, which could influence the tumor microenvironment. Aberrations in epigenetic regulation of tumor suppressors, apoptotic genes, and oncogenes can accentuate breast cancer onset and progression. Interestingly, recent studies have established that the microbiota modulates the epigenetic mechanisms at global and gene-specific levels. While the mechanistic basis is unclear, the cross-talk between the microbiome and epigenetics influences breast cancer trajectory. Here, we review different epigenetic mechanisms of mammalian gene expression and summarize the host-associated microbiota distributed across the human body and their influence on cancer and other disease-related genes. Understanding this complex relationship between epigenetics and the microbiome holds promise for new insights into effective therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
- Yuanji Zhao
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
22
|
Recław R, Lachowicz M, Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Kowalski MT, Kudliński B, Grzywacz A. Analysis of the Methylation Level of the DAT1 Dopamine Transporter Gene in Patients Addicted to Stimulants, Taking into Account an Analysis of Personality Traits. Int J Mol Sci 2023; 25:532. [PMID: 38203701 PMCID: PMC10779366 DOI: 10.3390/ijms25010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Drug addiction is a chronic biochemical drug use disorder that affects the human brain and behavior and leads to the uncontrolled use of legal or illicit drugs. It has been shown that three factors are involved in the development of addiction: genetic factors, a diverse environment, and the effect of medication on gene expression. The comprehensive approach and holistic analysis of the problem are due to the multigenic and multifactorial nature of addiction. Dopamine, one of the major neurotransmitters in the brain, is believed to be the "culprit" that leads to a drug abuse-induced "high". That is why, in our research, we focused mainly on the genes related to dopaminergic reuptake. In the present study, we chose methylation of the DAT1 dopamine transporter gene based on molecular reasons related to the dopaminergic theory of addiction. This study included two groups: 226 stimulant-dependent and 290 non-stimulant-dependent subjects. The analysis consisted of a case-control comparison of people addicted to psychostimulants compared to a control group of healthy and non-addicted people. There were differences in the levels of statistical significance between the groups. Our research shows lower methylation of islands 1, 9, and 14 in addicted people and greater methylation of islands 32 and 33. The difference in individual CpG methylation islands of the gene under study provides valuable information about the DNA methylation process in patients addicted to psychostimulants. Pearson's linear correlation analysis in stimulant dependence showed a negative correlation between total methylation island levels and the NEO-FFI Neuroticism scale. In subjects with neuroticism, the methylation level was statistically significantly lower. Pearson's linear correlation analysis of stimulant-dependent subjects showed a positive correlation between total methylation island levels and the NEO-FFI Openness scale and the NEO-FFI Conscientiousness scale.
Collapse
Affiliation(s)
- Remigiusz Recław
- Foundation Strong in the Spirit, 60 Sienkiewicza St., 90-058 Łodz, Poland;
| | - Milena Lachowicz
- Department of Psychology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1 St., 80-336 Gdansk, Poland;
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland; (K.C.); (J.C.)
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Michał Tomasz Kowalski
- Clinical Department of Cardiology, Nowa Sól Multidisciplinary Hospital, 67-100 Nowa Sol, Poland;
| | - Bartosz Kudliński
- Department of Emergency Medicine, Anesthesiology and Intensive Care in K. Marcinkowski University Hospital, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Gora, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| |
Collapse
|
23
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
25
|
Etami Y, Lildharrie C, Manza P, Wang GJ, Volkow ND. Neuroimaging in Adolescents: Post-Traumatic Stress Disorder and Risk for Substance Use Disorders. Genes (Basel) 2023; 14:2113. [PMID: 38136935 PMCID: PMC10743116 DOI: 10.3390/genes14122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Trauma in childhood and adolescence has long-term negative consequences in brain development and behavior and increases the risk for psychiatric disorders. Among them, post-traumatic stress disorder (PTSD) during adolescence illustrates the connection between trauma and substance misuse, as adolescents may utilize substances to cope with PTSD. Drug misuse may in turn lead to neuroadaptations in learning processes that facilitate the consolidation of traumatic memories that perpetuate PTSD. This reflects, apart from common genetic and epigenetic modifications, overlapping neurocircuitry engagement triggered by stress and drug misuse that includes structural and functional changes in limbic brain regions and the salience, default-mode, and frontoparietal networks. Effective strategies to prevent PTSD are needed to limit the negative consequences associated with the later development of a substance use disorder (SUD). In this review, we will examine the link between PTSD and SUDs, along with the resulting effects on memory, focusing on the connection between the development of an SUD in individuals who struggled with PTSD in adolescence. Neuroimaging has emerged as a powerful tool to provide insight into the brain mechanisms underlying the connection of PTSD in adolescence and the development of SUDs.
Collapse
Affiliation(s)
| | | | | | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.E.); (C.L.); (P.M.); (N.D.V.)
| | | |
Collapse
|
26
|
Farrell K, Auerbach A, Liu C, Martin K, Pareno M, Ray WK, Helm RF, Biase F, Jarome TJ. Sex-differences in proteasome-dependent K48-polyubiquitin signaling in the amygdala are developmentally regulated in rats. Biol Sex Differ 2023; 14:80. [PMID: 37950270 PMCID: PMC10638793 DOI: 10.1186/s13293-023-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Sex differences have been observed in several brain regions for the molecular mechanisms involved in baseline (resting) and memory-related processes. The ubiquitin proteasome system (UPS) is a major protein degradation pathway in cells. Sex differences have been observed in lysine-48 (K48)-polyubiquitination, the canonical degradation mark of the UPS, both at baseline and during fear memory formation within the amygdala. Here, we investigated when, how, and why these baseline sex differences arise and whether both sexes require the K48-polyubiquitin mark for memory formation in the amygdala. METHODS We used a combination of molecular, biochemical and proteomic approaches to examine global and protein-specific K48-polyubiquitination and DNA methylation levels at a major ubiquitin coding gene (Uba52) at baseline in the amygdala of male and female rats before and after puberty to determine if sex differences were developmentally regulated. We then used behavioral and genetic approaches to test the necessity of K48-polyubiquitination in the amygdala for fear memory formation. RESULTS We observed developmentally regulated baseline differences in Uba52 methylation and total K48-polyubiquitination, with sexual maturity altering levels specifically in female rats. K48-polyubiquitination at specific proteins changed across development in both male and female rats, but sex differences were present regardless of age. Lastly, we found that genetic inhibition of K48-polyubiquitination in the amygdala of female, but not male, rats impaired fear memory formation. CONCLUSIONS These results suggest that K48-polyubiquitination differentially targets proteins in the amygdala in a sex-specific manner regardless of age. However, sexual maturity is important in the developmental regulation of K48-polyubiquitination levels in female rats. Consistent with these data, K48-polyubiquitin signaling in the amygdala is selectively required to form fear memories in female rats. Together, these data indicate that sex-differences in baseline K48-polyubiquitination within the amygdala are developmentally regulated, which could have important implications for better understanding sex-differences in molecular mechanisms involved in processes relevant to anxiety-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Kayla Farrell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Aubrey Auerbach
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Catherine Liu
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Myasia Pareno
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Timothy J Jarome
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA.
- School of Neuroscience, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA.
| |
Collapse
|
27
|
Lonstein JS, Vitale EM, Olekanma D, McLocklin A, Pence N, Bredewold R, Veenema AH, Johnson AW, Burt SA. Anxiety, aggression, reward sensitivity, and forebrain dopamine receptor expression in a laboratory rat model of early-life disadvantage. Dev Psychobiol 2023; 65:e22421. [PMID: 37860907 DOI: 10.1002/dev.22421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Erika M Vitale
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Doris Olekanma
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Andrew McLocklin
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Nathan Pence
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
28
|
Laine VN, Sepers B, Lindner M, Gawehns F, Ruuskanen S, van Oers K. An ecologist's guide for studying DNA methylation variation in wild vertebrates. Mol Ecol Resour 2023; 23:1488-1508. [PMID: 35466564 DOI: 10.1111/1755-0998.13624] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.
Collapse
Affiliation(s)
- Veronika N Laine
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fleur Gawehns
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Finland
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
29
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Li Y, Shi DD, Wang Z. Adolescent nonpharmacological interventions for early-life stress and their mechanisms. Behav Brain Res 2023; 452:114580. [PMID: 37453516 DOI: 10.1016/j.bbr.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Those with a negative experience of psychosocial stress during the early stage of life not only have a high susceptibility of the psychiatric disorder in all phases of their life span, but they also demonstrate more severe symptoms and poorer response to treatment compared to those without a history of early-life stress. The interventions targeted to early-life stress may improve the effectiveness of treating and preventing psychiatric disorders. Brain regions associated with mood and cognition develop rapidly and own heightened plasticity during adolescence. So, manipulating nonpharmacological interventions in fewer side effects and higher acceptance during adolescence, which is a probable window of opportunity, may ameliorate or even reverse the constantly deteriorating impact of early-life stress. The present article reviews animal and people studies about adolescent nonpharmacological interventions for early-life stress. We aim to discuss whether those adolescent nonpharmacological interventions can promote individuals' psychological health who expose to early-life stress.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
31
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Zhou A, Ryan J. Biological Embedding of Early-Life Adversity and a Scoping Review of the Evidence for Intergenerational Epigenetic Transmission of Stress and Trauma in Humans. Genes (Basel) 2023; 14:1639. [PMID: 37628690 PMCID: PMC10454883 DOI: 10.3390/genes14081639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Severe or chronic stress and trauma can have a detrimental impact on health. Evidence suggests that early-life adversity can become biologically embedded and has the potential to influence health outcomes decades later. Epigenetics is one mechanism that has been implicated in these long-lasting effects. Observational studies in humans indicate that the effects of stress could even persist across generations, although whether or not epigenetic mechanisms are involved remains under debate. Here, we provide an overview of studies in animals and humans that demonstrate the effects of early-life stress on DNA methylation, one of the most widely studied epigenetic mechanisms, and summarize findings from animal models demonstrating the involvement of epigenetics in the transmission of stress across generations. We then describe the results of a scoping review to determine the extent to which the terms intergenerational or transgenerational have been used in human studies investigating the transmission of trauma and stress via epigenetic mechanisms. We end with a discussion of key areas for future research to advance understanding of the role of epigenetics in the legacy effects of stress and trauma.
Collapse
Affiliation(s)
- Aoshuang Zhou
- Division of Epidemiology, Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
33
|
Giannopoulou I, Georgiades S, Stefanou MI, Spandidos DA, Rizos E. Links between trauma and psychosis (Review). Exp Ther Med 2023; 26:386. [PMID: 37456168 PMCID: PMC10347243 DOI: 10.3892/etm.2023.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between trauma and psychosis is complex and multifaceted, with evidence suggesting that trauma can be both a risk factor for the development of psychosis and a consequence of psychotic experiences. The present review aimed to provide an overview of the current state of knowledge on the relationship between trauma and psychosis, including historical and conceptual considerations, as well as epidemiological evidence. The potential explanation of the link between trauma and psychosis is provided through available models and similarities in their neurobiological associations. Overall, the research confirms the relationship between trauma and psychosis, and suggests that individuals with a co-occurring history of trauma and psychosis may have increased symptom severity and worse functional outcomes compared with individuals with psychosis alone. Future research should focus on elucidating the underlying causal pathways between trauma exposure and psychosis in order to inform effective treatment approaches aiming to prevent the intensification of psychotic symptoms and processes.
Collapse
Affiliation(s)
- Ioanna Giannopoulou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Stelios Georgiades
- Department of Basic Clinical Sciences, Medical School, University of Nicosia, 2415 Nicosia, Cyprus
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
34
|
Meng X, Bao B, Yue G. Global research trends on maternal separation paradigms as an early life stress model: A bibliometric analysis. Heliyon 2023; 9:e18469. [PMID: 37533990 PMCID: PMC10392086 DOI: 10.1016/j.heliyon.2023.e18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
Background Maternal separation (MS) is an early life stress model that is often studied to determine how early life stress affects brain development and psychopathological adaptation. As society has developed, public health problems have become increasingly prominent, and this research area has attracted significant attention. However, to date, there has been no systematic bibliometric study on MS. The aim of this study was to analyze the trends and frontiers in MS using bibliometrics and provide a scientific reference to researchers in the field. Methods Utilizing VOSviewer, CiteSpace, and Microsoft Excel, examined data obtained from the WoSCC, which encompasses the years 2002-2021. Results In this bibliometric study, we analyzed 6209 articles related to MS authored by 24,174 researchers across 121 countries and regions and published in 2219 journals. The United States had the most publications (2,232, 35.95%) and both the United States and the United Kingdom had the highest h-index. Institutions in the United States and France had the most published articles and citations. Keyword clustering analysis revealed associations between MS and adverse early life experiences, the hypothalamic-pituitary-adrenal (HPA) axis, stress, gene expression, and depression. Conclusions This bibliometric analysis highlights the current research focus on the long-term effects of MS on emotional cognition, the HPA axis, epigenetic changes, and their links to gut microbiome imbalances. Future research may expand on these findings to investigate the underlying mechanisms and broader health and societal implications of MS. These results provide a comprehensive overview of the current research landscape in MS and offer valuable insights for researchers to guide future investigations in this field.
Collapse
Affiliation(s)
- Xiaoying Meng
- Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences, Beijing, China
| | - Binghao Bao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
36
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
37
|
Franks H, Wang R, Li M, Wang B, Wildmann A, Ortyl T, O’Brien S, Young D, Liao FF, Sakata K. Heat shock factor HSF1 regulates BDNF gene promoters upon acute stress in the hippocampus, together with pCREB. J Neurochem 2023; 165:131-148. [PMID: 36227087 PMCID: PMC10097844 DOI: 10.1111/jnc.15707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.
Collapse
Affiliation(s)
- Hunter Franks
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ruishan Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Mingqi Li
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Bin Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ashton Wildmann
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Tyler Ortyl
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Shannon O’Brien
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Deborah Young
- Department of Pharmacology & Clinical Pharmacology, The
University of Auckland, Auckland, New Zealand
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| |
Collapse
|
38
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
39
|
EKMEKCİ HS, MUFTAREVİÇ S. Epigenetic Effects of Social Stress and Epigenetic Inheritance. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2023. [DOI: 10.18863/pgy.1059315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Social events that cause stress can cause epigenetic changes on living things. The study of the effects of social events experienced by an individual on epigenetic marks on the genome has created the field of social epigenetics. Social epigenetics examines the effects of psychosocial stress factors such as poverty, war trauma and childhood abuse on epigenetic mechanisms. Epigenetic mechanisms alter chemical markers in the genome structure without changing the DNA sequence. Among these mechanisms, DNA methylation in particular may have different phenotypic effects in response to stressors that may occur in the psychosocial environment. Post-traumatic stress disorder is one of the most significant proofs of the effects of epigenetic expressions altered due to traumatic events on the phenotype. The field of epigenetic inheritance has shown that epigenetic changes triggered by environmental influences can, in some cases, be transmitted through generations. This field provides a better understanding of the basis of many psychological disorders. This review provides an overview of social epigenetics, PTSD, and epigenetic inheritance.
Collapse
|
40
|
Borges JV, Pires VN, de Freitas BS, Rübensam G, Vieira VC, de Souza Dos Santos C, Schröder N, Bromberg E. Behavior, BDNF and epigenetic mechanisms in response to social isolation and social support in middle aged rats exposed to chronic stress. Behav Brain Res 2023; 441:114303. [PMID: 36657665 DOI: 10.1016/j.bbr.2023.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Social deprivation can be stressful for group-living mammals. On the other hand, an amazing response of these animals to stress is seeking social contact to give and receive joint protection in threatening situations. We explored the effects of social isolation and social support on epigenetic and behavioral responses to chronic stress. More specifically, we investigated the behavioral responses, corticosterone levels, BDNF gene expression, and markers of hippocampal epigenetic alterations (levels of H3K9 acetylation and methylation, H3K27 methylation, HDAC5, DNMT1, and DNMT3a gene expressions) in middle-aged adult rats maintained in different housing conditions (isolation or accompanied housing) and exposed to the chronic unpredictable stress protocol (CUS). Isolation was associated with decreased basal levels of corticosterone, impaired long-term memory, and decreased expression of the BDNF gene, besides altering the balance of H3K9 from acetylation to methylation and increasing the DNMT1 gene expression. The CUS protocol decreased H3K9 acetylation, besides increasing H3K27 methylation and DNMT1 gene expression, but had no significant effects on memory and BDNF gene expression. Interestingly, the effects of CUS on corticosterone and HDAC5 gene expression were seen only in isolated animals, whereas the effects of CUS on DNMT1 gene expression were more pronounced in isolated than accompanied animals. In conclusion, social isolation in middle age showed broader effects than chronic unpredictable stress on behavioral and epigenetic alterations potentially associated with decreased BDNF expression. Moreover, social support prevented the adverse effects of CUS on HPA axis functioning, HDAC5, and DNMT1 gene expressions.
Collapse
Affiliation(s)
- Juliano Viana Borges
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Gabriel Rübensam
- Center of Toxicology and Pharmacology Research, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Vitória Corrêa Vieira
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Cristophod de Souza Dos Santos
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.
| |
Collapse
|
41
|
Bekdash RA. Methyl Donors, Epigenetic Alterations, and Brain Health: Understanding the Connection. Int J Mol Sci 2023; 24:ijms24032346. [PMID: 36768667 PMCID: PMC9917111 DOI: 10.3390/ijms24032346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Methyl donors such as choline, betaine, folic acid, methionine, and vitamins B6 and B12 are critical players in the one-carbon metabolism and have neuroprotective functions. The one-carbon metabolism comprises a series of interconnected chemical pathways that are important for normal cellular functions. Among these pathways are those of the methionine and folate cycles, which contribute to the formation of S-adenosylmethionine (SAM). SAM is the universal methyl donor of methylation reactions such as histone and DNA methylation, two epigenetic mechanisms that regulate gene expression and play roles in human health and disease. Epigenetic mechanisms have been considered a bridge between the effects of environmental factors, such as nutrition, and phenotype. Studies in human and animal models have indicated the importance of the optimal levels of methyl donors on brain health and behavior across the lifespan. Imbalances in the levels of these micronutrients during critical periods of brain development have been linked to epigenetic alterations in the expression of genes that regulate normal brain function. We present studies that support the link between imbalances in the levels of methyl donors, epigenetic alterations, and stress-related disorders. Appropriate levels of these micronutrients should then be monitored at all stages of development for a healthier brain.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
42
|
Choi W, Kang HJ, Kim JW, Kim HK, Kang HC, Kim SW, Kim JC, Ahn Y, Jeong MH, Kim JM. Modifying effect of the serum level of brain-derived neurotrophic factor (BDNF) on the association between BDNF methylation and long-term cardiovascular outcomes in patients with acute coronary syndrome. Front Cardiovasc Med 2023; 9:1084834. [PMID: 36741831 PMCID: PMC9889833 DOI: 10.3389/fcvm.2022.1084834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction This study investigated the potential modifying effects of the serum brain-derived neurotrophic factor (sBDNF) level on the association between BDNF methylation status and long-term cardiovascular outcomes in acute coronary syndrome (ACS) patients. Methods From 2006 to 2012, hospitalized ACS patients were consecutively recruited. The sBDNF level and BDNF methylation status were assessed at baseline in 969 patients who were followed up for major adverse cardiac events (MACEs) over 5-12 years, until 2017 or death. Cox proportional hazards models were utilized to compare the time to first composite or individual MACEs between individuals with lower and those with higher average BDNF methylation levels in the low and high sBDNF groups, respectively. The modifying effects of the sBDNF and average BDNF methylation levels on first composite and individual MACEs were analyzed using Cox proportional hazards models after adjusting for potential covariates. Results In the low sBDNF group, a higher average BDNF methylation level was linked to an increase in composite MACEs independent of confounding variables, but not in the high sBDNF group [HR (95 percent CI) = 1.04 (0.76-1.44)]. The interaction effect between the sBDNF and average BDNF methylation levels on composite MACEs was significant after adjusting for covariates (P = 0.008). Conclusion Combining the BDNF methylation status and sBDNF levels may help identify ACS patients who are likely to have unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Ho-Cheol Kang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea,*Correspondence: Jae-Min Kim ✉
| |
Collapse
|
43
|
Increased Methylation of Brain-Derived Neurotrophic Factor ( BDNF) Is Related to Emotionally Unstable Personality Disorder and Severity of Suicide Attempt in Women. Cells 2023; 12:cells12030350. [PMID: 36766691 PMCID: PMC9913473 DOI: 10.3390/cells12030350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been associated with the pathogenesis of both emotionally unstable personality disorder (EUPD) and suicidal behavior. No study has yet investigated BDNF-associated epigenetic alterations in a group of severely impaired EUPD and suicidal patients. The discovery cohort consisted of 97 women with emotionally unstable personality disorder (EUPD) with at least two serious suicide attempts (SAs) and 32 healthy female controls. The genome-wide methylation pattern was measured by the Illumina EPIC BeadChip and analyzed by robust linear regression models to investigate mean BDNF methylation levels in a targeted analysis conditioned upon severity of suicide attempt. The validation cohort encompassed 60 female suicide attempters, stratified into low- (n = 45) and high-risk groups (n = 15) based on degree of intent-to-die and lethality of SA method, and occurrence of death-by-suicide at follow-up. Mean BDNF methylation levels exhibited increased methylation in relation to EUPD (p = 0.0159, percentage mean group difference ~3.8%). Similarly, this locus was confirmed as higher-methylated in an independent cohort of females with severe suicidal behavior (p = 0.0300). Results were independent of age and BMI. This is the first study to reveal emerging evidence of epigenetic dysregulation of BDNF with dependence on features known to confer increased risk of suicide deaths (lethality of suicide-attempt method and presence of EUPD diagnosis with history of recent SAs). Further studies investigating epigenetic and genetic effects of BDNF on severe suicidal behavior and EUPD are needed to further elucidate the role of epigenetic regulatory mechanisms and neurotrophic factors in relation to suicide and EUPD, and hold potential to result in novel treatment methods.
Collapse
|
44
|
Zhou A, Ancelin ML, Ritchie K, Ryan J. Childhood adverse events and BDNF promoter methylation in later-life. Front Psychiatry 2023; 14:1108485. [PMID: 36911114 PMCID: PMC9998928 DOI: 10.3389/fpsyt.2023.1108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Studies have shown that the effects of early-life stress and trauma can be enduring, with long-term negative effects on health. Epigenetics, including DNA methylation, have been implicated as a potential mechanism for these effects. Brain-derived neurotropic factor (BDNF) is a neurotransmitter involved in learning and memory, and altered BDNF promoter methylation measured in peripheral tissue has been found with early-life stress. However, whether such methylation differences remain stable into later life, is unknown. This study aimed to investigate the association between childhood adversity and BDNF promoter methylation in adults aged 65 years and over. Data came from a large study of older community-dwelling individuals in France (ESPRIT). Information on three major childhood adverse events, namely abuse/maltreatment, war/natural disaster, and financial difficulties/poverty, was obtained by retrospective reporting from participants of ESPRIT study. BDNF promoter I and IV methylation was assessed in blood and buccal tissue. Linear regression analysis was performed, adjusting for age, sex, education, depression, and morbidity. Among 927 participants, there was no strong evidence that childhood abuse/maltreatment or financial difficulties/poverty were associated with BDNF methylation in older individuals. For war/natural disaster, differential methylation at four of twenty-nine CpG sites was observed, however, these would not have remained significant after correction for multiple testing. Together, these findings do not support a long-term association between adverse childhood events and BDNF methylation in older age, but further large prospective studies are needed, which do not target specific genes, but consider DNA methylation across the genome.
Collapse
Affiliation(s)
- Aoshuang Zhou
- Division of Epidemiology, Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Marie-Laure Ancelin
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Karen Ritchie
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Suriyaprom K, Pheungruang B, Pooudong S, Putpadungwipon P, Sirikulchayanonta C. Associations of Plasma BDNF and BDNF Gene Polymorphism with Cardiometabolic Parameters in Thai Children: A Pilot Study. J Nutr Metab 2023; 2023:9668626. [PMID: 37007871 PMCID: PMC10065857 DOI: 10.1155/2023/9668626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Background Childhood obesity is an important public health crisis worldwide. The brain-derived neurotrophic factor (BDNF) has been demonstrated to play a role in controlling energy homeostasis and cardiovascular regulation. Objectives To examine brain-derived neurotrophic factor (BDNF) levels and anthropometric-cardiometabolic and hematological parameters in obese and nonobese children and to determine whether two BDNF gene polymorphisms (G196A and C270T) are linked to BDNF levels, obesity, and anthropometric-cardiometabolic and hematological parameters among Thai children. Methods This case-control study included an analysis of 469 Thai children: 279 healthy nonobese and 190 obese children. Anthropometric-cardiometabolic and hematological variables and BDNF levels were measured. Genotyping of BDNF G196A and C270T was performed using the polymerase chain reaction-restriction fragment length polymorphism technique. Results Children in the obese group had significantly higher white blood cell counts and some cardiometabolic parameters. Although the difference in BDNF level between the nonobese and obese groups was not significant, BDNF level was significantly positively correlated with hematological and cardiometabolic parameters, including blood pressure, triglycerides, and triglycerides and the glucose index. The BDNF G196A polymorphism in children was only associated with decreased systolic blood pressure (p < 0.05), while the BDNF C270T polymorphism was found not to be related to BDNF levels, obesity, or other parameters after adjusting for potential covariates. Conclusions These findings in Thai children suggest that obesity is associated with increased cardiometabolic risk factors, but not with BDNF levels or the two BDNF polymorphisms studied, while the BDNF G196A polymorphism is a beneficial marker for controlling blood pressure among Thai children.
Collapse
Affiliation(s)
- Kanjana Suriyaprom
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Pathumthani 12000, Thailand
| | - Banchamaphon Pheungruang
- School of Nutrition and Dietetics, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Somchai Pooudong
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Rajvithi Road, Rajthevee, Bangkok 10400, Thailand
| | - Pumpath Putpadungwipon
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Pathumthani 12000, Thailand
| | | |
Collapse
|
46
|
Moon YK, Kim H, Kim S, Lim SW, Kim DK. Influence of antidepressant treatment on SLC6A4 methylation in Korean patients with major depression. Am J Med Genet B Neuropsychiatr Genet 2023; 192:28-37. [PMID: 36094099 DOI: 10.1002/ajmg.b.32921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation of the serotonin transporter gene (SLC6A4) has been suggested as potential mediator for antidepressant response in patients with depression. This study aimed to determine whether DNA methylation in SLC6A4 changes after antidepressant treatment and whether it affects treatment response in patients with depression. Overall, 221 Korean patients with depression completed 6 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy. DNA was extracted from venous blood pre- and post-treatment, and DNA methylation was analyzed using polymerase chain reaction. We used Wilcoxon's signed-rank test to verify the difference in methylation after treatment. Treatment response was assessed using the 17-item Hamilton Depression Rating Scale, and mRNA levels were quantified. After adjusting for relevant covariates, DNA methylation was significantly altered in specific CpG sites in SLC6A4 (p < .001 in CpG3, CpG4, and CpG5) following 6 weeks of treatment. Methylation change's magnitude (ΔDNA methylation) after drug treatment was not associated with treatment response or mRNA level change. SSRI antidepressants can influence SLC6A4 methylation in patients with depression. However, ΔDNA methylation at CpG3, CpG4, and CpG5 in SLC6A4 was not associated with treatment response. Future studies should investigate the integrative effect of other genetic variants and CpG methylation on gene transcription and antidepressant treatment response.
Collapse
Affiliation(s)
- Young Kyung Moon
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeseung Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Marazziti D, Carter CS, Carmassi C, Della Vecchia A, Mucci F, Pagni G, Carbone MG, Baroni S, Giannaccini G, Palego L, Dell’Osso L. Sex matters: The impact of oxytocin on healthy conditions and psychiatric disorders. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 13:100165. [PMID: 36590869 PMCID: PMC9800179 DOI: 10.1016/j.cpnec.2022.100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxytocin (OT) is involved in the regulation of physiological processes and emotional states, with increasing evidence for its beneficial actions being mediated by the autonomic and immune systems. Growing evidence suggests that OT plays a role in the pathophysiology of different psychiatric disorders. Given the limited information in humans the aim of this study was to retrospectively explore plasma OT levels in psychiatric patients, particularly focusing on sex-related differences, as compared with healthy controls. The patients studied here were divided into three groups diagnosed with obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD) or major depressive disorder (MDD). Plasma OT levels were significantly different between healthy men and women, with the latter showing higher values, while none of the three psychiatric groups showed sex-related differences in the parameters measured here. The intergroup analyses showed that the OT levels were significantly higher in OCD, lower in PTSD and even more reduced in MDD patients than in healthy subjects. These differences were also confirmed when gender was considered, with the exception of PTSD men, in whom OT levels were similar to those of healthy men. The present results indicated that OT levels were higher amongst healthy women than men, while a sex difference was less apparent or reversed in psychiatric patients. Reductions in sex differences in psychopathologies may be related to differential vulnerabilities in processes associated with basic adaptive and social functions.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy,Saint Camillus International University of Health and Medical Sciences – UniCamillus, Rome, Italy,Corresponding author. Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA,Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy,Department of Psychiatry, North-Western Tuscany Region NHS Local Health Unit, Lucca Zone, Lucca, Italy
| | - Giovanni Pagni
- Department of Psychiatry, North-Western Tuscany Region NHS Local Health Unit, Lunigiana Zone, Aulla, Italy
| | - Manuel G. Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Stefano Baroni
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | | | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
48
|
Choi W, Kang HJ, Kim JW, Kim HK, Kang HC, Kim SW, Kim JC, Ahn Y, Jeong MH, Kim JM. Modifying Effect of the Interleukin-18 Level on the Association between BDNF Methylation and Long-Term Cardiovascular Outcomes in Patients with Acute Coronary Syndrome. Int J Mol Sci 2022; 23:ijms232315270. [PMID: 36499595 PMCID: PMC9738340 DOI: 10.3390/ijms232315270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
This study investigated the potential modifying effects of the level of the serum interleukin-18 (IL-18) on the association between BDNF methylation status and long-term cardiovascular outcomes in patients with acute coronary syndrome (ACS). Hospitalized ACS patients were recruited sequentially from 2006 to 2012. At baseline, the IL-18 level and BDNF methylation status were evaluated in 969 patients who were followed for major adverse cardiac events (MACEs) for 5-12 years, until 2017 or death. The time to first composite or individual MACE was compared between individuals with lower and higher average BDNF methylation levels (in the low- and high-IL-18 groups, respectively) using a Cox proportional hazards model. After adjusting for potential covariates, the modifying effects of IL-18 and average BDNF methylation levels on the initial composite and individual MACEs were examined. In the high-IL-18 group, but not in the low-IL-18 group, a higher average BDNF methylation level was associated with increases in composite MACEs (HR (95% CI) = 2.15 (1.42-3.26)), all-cause mortality (HR (95% CI) = 1.89 (1.11-3.22)), myocardial infarction (HR (95% CI) = 1.98 (1.07-3.67)), and percutaneous coronary intervention (HR (95% CI) = 1.81 (1.01-3.23)), independent of confounding variables. The interaction effect between the IL-18 and average BDNF methylation levels on composite MACEs (p = 0.019) and myocardial infarction (p = 0.027) was significant after adjusting for covariates. Analysis of BDNF methylation status and IL-18 levels may help identify ACS patients who are most likely to have adverse clinical outcomes.
Collapse
Affiliation(s)
- Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasuneup 58128, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasuneup 58128, Republic of Korea
| | - Ho-Cheol Kang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasuneup 58128, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jung-Chul Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence:
| |
Collapse
|
49
|
Gee DG. Neurodevelopmental mechanisms linking early experiences and mental health: Translating science to promote well-being among youth. AMERICAN PSYCHOLOGIST 2022; 77:1033-1045. [PMID: 36595400 PMCID: PMC9875304 DOI: 10.1037/amp0001107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Early experiences can have profound and lasting effects on mental health. Delineating neurodevelopmental pathways related to risk and resilience following adversity exposure is critical for promoting well-being and targeting interventions. A rapidly growing cross-species literature has facilitated advances in identifying neural and behavioral mechanisms linking early experiences with mental health, highlighting a central role of corticolimbic circuitry involved in learning and emotion regulation. Building upon knowledge of corticolimbic development related to stress and buffering factors, we describe the importance of the developmental timing and experiential elements of adversity in mental health outcomes. Finally, we discuss opportunities to translate knowledge of the developing brain and early experiences to optimize interventions for youth with psychopathology and to inform policy that promotes healthy development at the societal level. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
50
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|