1
|
Zhu G, Li Y, Wan L, Sun C, Liu X, Zhang J, Liang Y, Liu G, Yan H, Li R, Yang G. Divergent electroencephalogram resting-state functional network alterations in subgroups of autism spectrum disorder: a symptom-based clustering analysis. Cereb Cortex 2024; 34:bhad413. [PMID: 37950877 DOI: 10.1093/cercor/bhad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by etiological and phenotypic heterogeneity. Despite efforts to categorize ASD into subtypes, research on specific functional connectivity changes within ASD subgroups based on clinical presentations is limited. This study proposed a symptom-based clustering approach to identify subgroups of ASD based on multiple clinical rating scales and investigate their distinct Electroencephalogram (EEG) functional connectivity patterns. Eyes-opened resting-state EEG data were collected from 72 children with ASD and 63 typically developing (TD) children. A data-driven clustering approach based on Social Responsiveness Scales-Second Edition and Vinland-3 scores was used to identify subgroups. EEG functional connectivity and topological characteristics in four frequency bands were assessed. Two subgroups were identified: mild ASD (mASD, n = 37) and severe ASD (sASD, n = 35). Compared to TD, mASD showed increased functional connectivity in the beta band, while sASD exhibited decreased connectivity in the alpha band. Significant between-group differences in global and regional topological abnormalities were found in both alpha and beta bands. The proposed symptom-based clustering approach revealed the divergent functional connectivity patterns in the ASD subgroups that was not observed in typical ASD studies. Our study thus provides a new perspective to address the heterogeneity in ASD research.
Collapse
Affiliation(s)
- Gang Zhu
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuhang Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau S.A.R., China
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau S.A.R., China
| | - Lin Wan
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chunhua Sun
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xinting Liu
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Liang
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guoyin Liu
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huimin Yan
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau S.A.R., China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau S.A.R., China
| | - Guang Yang
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Latig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal replicated and novel loci associated with alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23299094. [PMID: 38105948 PMCID: PMC10725575 DOI: 10.1101/2023.11.28.23299094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5mC and 5hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5mC and 5hmC at the genome-wide level. Differential 5mC and 5hmC were evaluated using the methylKit R package and significance was set at false discovery rate <0.05 and differential methylation >2. Functional enrichment analyses were performed and replication was evaluated replication in an independent dataset that assessed 5mC and 5hmC of AUD in bulk cortical tissue. We identified 417 5mC and 363 5hmC genome-wide significant differential CpG sites associated with AUD, with 59% in gene promoters. We also identified genes previously implicated in alcohol consumption, such as SYK, CHRM2, DNMT3A, and GATA4, for 5mC and GATA4, and GAD1, GATA4, DLX1 for 5hmC. Replication was observed for 28 CpG sites from a previous AUD 5mC and 5hmC study, including FOXP1. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5mC genes. This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD. We replicated previous findings and identified novel associations with AUD for both 5mC and 5hmC marks within the OFC. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| | - Maria C. Latig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| |
Collapse
|
3
|
Chan MMY, Choi CXT, Tsoi TCW, Shea CKS, Yiu KWK, Han YMY. Effects of multisession cathodal transcranial direct current stimulation with cognitive training on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-controlled, randomized EEG study. Brain Stimul 2023; 16:1604-1616. [PMID: 37918630 DOI: 10.1016/j.brs.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Few treatment options are available for targeting core symptoms of autism spectrum disorder (ASD). The development of treatments that target common neural circuit dysfunctions caused by known genetic defects, namely, disruption of the excitation/inhibition (E/I) balance, is promising. Transcranial direct current stimulation (tDCS) is capable of modulating the E/I balance in healthy individuals, yet its clinical and neurobiological effects in ASD remain elusive. OBJECTIVE This double-blind, randomized, sham-controlled trial investigated the effects of multisession cathodal prefrontal tDCS coupled with online cognitive remediation on social functioning, information processing efficiency and the E/I balance in ASD patients aged 14-21 years. METHODS Sixty individuals were randomly assigned to receive either active or sham tDCS (10 sessions in total, 20 min/session, stimulation intensity: 1.5 mA, cathode: F3, anode: Fp2, size of electrodes: 25 cm2) combined with 20 min of online cognitive remediation. Social functioning, information processing efficiency during cognitive tasks, and theta- and gamma-band E/I balance were measured one day before and after the treatment. RESULTS Compared to sham tDCS, active cathodal tDCS was effective in enhancing overall social functioning [F(1, 58) = 6.79, p = .012, ηp2 = 0.105, 90% CI: (0.013, 0.234)] and information processing efficiency during cognitive tasks [F(1, 58) = 10.07, p = .002, ηp2 = 0.148, 90% CI: (0.034, 0.284)] in these individuals. Electroencephalography data showed that this cathodal tDCS protocol was effective in reducing the theta-band E/I ratio of the cortical midline structures [F(1, 58) = 4.65, p = .035, ηp2 = 0.074, 90% CI: (0.010, 0.150)] and that this reduction significantly predicted information processing efficiency enhancement (b = -2.546, 95% BCa CI: [-4.979, -0.113], p = .041). CONCLUSION Our results support the use of multisession cathodal tDCS over the left dorsolateral prefrontal cortex combined with online cognitive remediation for reducing the elevated theta-band E/I ratio in sociocognitive information processing circuits in ASD patients, resulting in more adaptive regulation of global brain dynamics that is associated with enhanced information processing efficiency after the intervention.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Caroline K S Shea
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Klaire W K Yiu
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Han YM, Chan MM, Shea CK, Mo FY, Yiu KW, Chung RC, Cheung MC, Chan AS. Effects of prefrontal transcranial direct current stimulation on social functioning in autism spectrum disorder: A randomized clinical trial. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:2465-2482. [PMID: 37151094 DOI: 10.1177/13623613231169547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
LAY ABSTRACT Currently available pharmacological and behavioral interventions for adolescents and young adults with autism spectrum disorder (ASD) yield only modest effect in alleviating their core behavioral and cognitive symptoms, and some of these treatment options are associated with undesirable side effects. Hence, developing effective treatment protocols is urgently needed. Given emerging evidence shows that the abnormal connections of the frontal brain regions contribute to the manifestations of ASD behavioral and cognitive impairments, noninvasive treatment modalities that are capable in modulating brain connections, such as transcranial direct current stimulation (tDCS), have been postulated to be potentially promising for alleviating core symptoms in ASD. However, whether tDCS can reduce behavioral symptoms and enhance cognitive performance in ASD remains unclear. This randomized controlled trial involving 105 adolescents and young adults with ASD showed that multiple sessions of a tDCS protocol, which was paired up with computerized cognitive training, was effective in improving social functioning in adolescents and young adults with ASD. No prolonged and serious side effects were observed. With more future studies conducted in different clinical settings that recruit participants from a wider age range, this tDCS protocol may be potentially beneficial to a broad spectrum of individuals with autism.
Collapse
Affiliation(s)
| | - Melody My Chan
- The Hong Kong Polytechnic University, Hong Kong
- The University of Queensland, Australia
| | - Caroline Ks Shea
- Hospital Authority, Hong Kong
- The Chinese University of Hong Kong, Hong Kong
| | - Flora Ym Mo
- Hospital Authority, Hong Kong
- The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
5
|
Wu CH, Hsu TW, Lai KL, Wang YF, Fuh JL, Wu HM, Lirng JF, Wang SJ, Chen SP. Disrupted Brain Functional Status in Patients with Reversible Cerebral Vasoconstriction Syndrome. Ann Neurol 2023; 94:772-784. [PMID: 37345341 DOI: 10.1002/ana.26724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the functional networks in subjects with reversible cerebral vasoconstriction syndrome (RCVS) using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We prospectively recruited patients with RCVS and healthy controls (HCs) between February 2017 and April 2021. The rs-fMRI data were analyzed using graph theory methods. We compared node-based global and regional topological metrics (Bundle 1) and network-based intranetwork and internetwork connectivity (Bundle 2) between RCVS patients and HCs. We also explored the associations of clinical and vascular (ie, the Lindegaard index, LI) parameters with significant rs-fMRI metrics. RESULTS A total of 104 RCVS patients and 93 HCs were included in the final analysis. We identified significantly decreased local efficiency of the left dorsal anterior insula (dAI; p = 0.0005) in RCVS patients within 30 days after disease onset as compared to HCs, which improved 1 month later. RCVS patients also had increased global efficiency (p = 0.009) and decreased average degree centrality (p = 0.045), clustering coefficient (p = 0.033), and assortativity values (p = 0.003) in node-based analysis. In addition, patients with RCVS had increased internetwork connectivity of the default mode network (DMN) with the salience (p = 0.027) and dorsal attention (p = 0.016) networks. Significant correlations between LI and regional local efficiency in left dAI (rs = -0.418, p = 0.042) was demonstrated. INTERPRETATION The significantly lower local efficiency of the left dAI, suggestive of impaired central autonomic modulation, was negatively correlated with vasoconstriction severity, which is highly plausible for the pathogenesis of RCVS. ANN NEUROL 2023;94:772-784.
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Stier AJ, Cardenas-Iniguez C, Kardan O, Moore TM, Meyer FAC, Rosenberg MD, Kaczkurkin AN, Lahey BB, Berman MG. A pattern of cognitive resource disruptions in childhood psychopathology. Netw Neurosci 2023; 7:1153-1180. [PMID: 37781141 PMCID: PMC10473262 DOI: 10.1162/netn_a_00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/01/2023] [Indexed: 10/03/2023] Open
Abstract
The Hurst exponent (H) isolated in fractal analyses of neuroimaging time series is implicated broadly in cognition. Within this literature, H is associated with multiple mental disorders, suggesting that H is transdimensionally associated with psychopathology. Here, we unify these results and demonstrate a pattern of decreased H with increased general psychopathology and attention-deficit/hyperactivity factor scores during a working memory task in 1,839 children. This pattern predicts current and future cognitive performance in children and some psychopathology in 703 adults. This pattern also defines psychological and functional axes associating psychopathology with an imbalance in resource allocation between fronto-parietal and sensorimotor regions, driven by reduced resource allocation to fronto-parietal regions. This suggests the hypothesis that impaired working memory function in psychopathology follows from a reduced cognitive resource pool and a reduction in resources allocated to the task at hand.
Collapse
Affiliation(s)
| | | | - Omid Kardan
- Department of Psychology, University of Chicago
| | | | | | - Monica D. Rosenberg
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| | | | | | - Marc G. Berman
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| |
Collapse
|
7
|
Long Z, Li J, Fan J, Li B, Du Y, Qiu S, Miao J, Chen J, Yin J, Jing B. Identifying Alzheimer's disease and mild cognitive impairment with atlas-based multi-modal metrics. Front Aging Neurosci 2023; 15:1212275. [PMID: 37719872 PMCID: PMC10501142 DOI: 10.3389/fnagi.2023.1212275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Multi-modal neuroimaging metrics in combination with advanced machine learning techniques have attracted more and more attention for an effective multi-class identification of Alzheimer's disease (AD), mild cognitive impairment (MCI) and health controls (HC) recently. Methods In this paper, a total of 180 subjects consisting of 44 AD, 66 MCI and 58 HC subjects were enrolled, and the multi-modalities of the resting-state functional magnetic resonance imaging (rs-fMRI) and the structural MRI (sMRI) for all participants were obtained. Then, four kinds of metrics including the Hurst exponent (HE) metric and bilateral hippocampus seed independently based connectivity metrics generated from fMRI data, and the gray matter volume (GMV) metric obtained from sMRI data, were calculated and extracted in each region of interest (ROI) based on a newly proposed automated anatomical Labeling (AAL3) atlas after data pre-processing. Next, these metrics were selected with a minimal redundancy maximal relevance (MRMR) method and a sequential feature collection (SFC) algorithm, and only a subset of optimal features were retained after this step. Finally, the support vector machine (SVM) based classification methods and artificial neural network (ANN) algorithm were utilized to identify the multi-class of AD, MCI and HC subjects in single modal and multi-modal metrics respectively, and a nested ten-fold cross-validation was utilized to estimate the final classification performance. Results The results of the SVM and ANN based methods indicated the best accuracies of 80.36 and 74.40%, respectively, by utilizing all the multi-modal metrics, and the optimal accuracies for AD, MCI and HC were 79.55, 78.79 and 82.76%, respectively, in the SVM based method. In contrast, when using single modal metric, the SVM based method obtained a best accuracy of 72.62% with the HE metric, and the accuracies for AD, MCI and HC subjects were just 56.82, 80.30 and 75.86%, respectively. Moreover, the overlapping abnormal brain regions detected by multi-modal metrics were mainly located at posterior cingulate gyrus, superior frontal gyrus and cuneus. Conclusion Taken together, the SVM based method with multi-modal metrics could provide effective diagnostic information for identifying AD, MCI and HC subjects.
Collapse
Affiliation(s)
- Zhuqing Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha, Hunan Province, China
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jie Li
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Jianghua Fan
- Department of Pediatric Emergency Center, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Bo Li
- Department of Traditional Chinese Medicine, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yukeng Du
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Shuang Qiu
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Jichang Miao
- Department of Medical Devices, Nanfang Hospital, Guangzhou, China
| | - Jian Chen
- School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, Fujian, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, China
| | - Juanwu Yin
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, China
| |
Collapse
|
8
|
Gao W, Biswal B, Yang J, Li S, Wang Y, Chen S, Yuan J. Temporal dynamic patterns of the ventromedial prefrontal cortex underlie the association between rumination and depression. Cereb Cortex 2023; 33:969-982. [PMID: 35462398 DOI: 10.1093/cercor/bhac115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
As a major contributor to the development of depression, rumination has proven linked with aberrant default-mode network (DMN) activity. However, it remains unclear how the spontaneous spatial and temporal activity of DMN underlie the association between rumination and depression. To illustrate this issue, behavioral measures and resting-state functional magnetic resonance images were connected in 2 independent samples (NSample1 = 100, NSample2 = 95). Fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) were used to assess spatial characteristic patterns, while voxel-wise functional concordance (across time windows) (VC) and Hurst exponent (HE) were used to assess temporal dynamic patterns of brain activity. Results from both samples consistently show that temporal dynamics but not spatial patterns of DMN are associated with rumination. Specifically, rumination is positively correlated with HE and VC (but not fALFF and ReHo) values, reflecting more consistent and regular temporal dynamic patterns in DMN. Moreover, subregion analyses indicate that temporal dynamics of the ventromedial prefrontal cortex (VMPFC) reliably predict rumination scores. Furthermore, mediation analyses show that HE and VC of VMPFC mediate the association between rumination and depression. These findings shed light on neural mechanisms of individual differences in rumination and corresponding risk for depression.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jiemin Yang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Songlin Li
- School of Educational Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - YanQing Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shengdong Chen
- School of Psychology, Qufu Normal University, Qufu, Shandong, China
| | - JiaJin Yuan
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Young children with autism show atypical prefrontal cortical responses to humanoid robots: An fNIRS study. Int J Psychophysiol 2022; 181:23-32. [PMID: 36037937 DOI: 10.1016/j.ijpsycho.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous behavioral studies have found that children with autism spectrum disorder (ASD) show greater interest in humanoid robots than in humans. However, the neural mechanism underlying this is not clear. This study compared brain activation patterns between children with ASD and neurotypical children while they watched videos with robots and humans. METHOD We recruited 45 children with ASD and 53 neurotypical children aged 4-6 years and recorded their neural activity in the dorsolateral prefrontal cortex (DLPFC) using a functional near-infrared spectroscopy (fNIRS) device when the two groups interacted with a robot or a human in a video. RESULTS First, neural activity in the right DLPFC in children with ASD was significantly lower in the robot condition than in the human condition. Neural activity in the right DLPFC in children with ASD was also significantly lower than that of neurotypical children in the robot condition. Second, the neural activity in the left DLPFC between the human and robot conditions was negatively correlated in children with ASD, while it was positively correlated in neurotypical children. Moreover, neural activity in the left DLPFC in children with ASD was significantly correlated with the ADOS scores in both conditions. CONCLUSIONS While neurotypical children showed comparable neural activity to humanoid robots and human beings, the children with ASD showed significantly different neural activity under those two conditions. Children with ASD may need more selective attention resources for human interaction than for robot interaction. It is also much more difficult for children with ASD to neglect the attraction of robots. Neural activity of the left DLPFC of children with ASD is correlated with their symptoms, which maybe a possible indicator for early diagnosis. Neural activity of the right DLPFC guided their atypical reactions and engagements with robots. Our study contributes to the current understanding of the neural mechanisms responsible for the different behavioral reactions in children with ASD toward robots and humans.
Collapse
|
11
|
Long Z, Li J, Liao H, Deng L, Du Y, Fan J, Li X, Miao J, Qiu S, Long C, Jing B. A Multi-Modal and Multi-Atlas Integrated Framework for Identification of Mild Cognitive Impairment. Brain Sci 2022; 12:751. [PMID: 35741636 PMCID: PMC9221217 DOI: 10.3390/brainsci12060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multi-modal neuroimaging with appropriate atlas is vital for effectively differentiating mild cognitive impairment (MCI) from healthy controls (HC). METHODS The resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (sMRI) of 69 MCI patients and 61 HC subjects were collected. Then, the gray matter volumes obtained from the sMRI and Hurst exponent (HE) values calculated from rs-fMRI data in the Automated Anatomical Labeling (AAL-90), Brainnetome (BN-246), Harvard-Oxford (HOA-112) and AAL3-170 atlases were extracted, respectively. Next, these characteristics were selected with a minimal redundancy maximal relevance algorithm and a sequential feature collection method in single or multi-modalities, and only the optimal features were retained after this procedure. Lastly, the retained characteristics were served as the input features for the support vector machine (SVM)-based method to classify MCI patients, and the performance was estimated with a leave-one-out cross-validation (LOOCV). RESULTS Our proposed method obtained the best 92.00% accuracy, 94.92% specificity and 89.39% sensitivity with the sMRI in AAL-90 and the fMRI in HOA-112 atlas, which was much better than using the single-modal or single-atlas features. CONCLUSION The results demonstrated that the multi-modal and multi-atlas integrated method could effectively recognize MCI patients, which could be extended into various neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhuqing Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Haitao Liao
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Li Deng
- Department of Data Assessment and Examination, Hunan Children’s Hospital, Changsha 410007, China;
| | - Yukeng Du
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Jianghua Fan
- Department of Pediatric Emergency Center, Emergency Generally Department I, Hunan Children’s Hospital, Changsha 410007, China;
| | - Xiaofeng Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410006, China;
| | - Jichang Miao
- Department of Medical Devices, Nanfang Hospital, Guangzhou 510515, China;
| | - Shuang Qiu
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Chaojie Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Campbell OL, Weber AM. Monofractal analysis of functional magnetic resonance imaging: An introductory review. Hum Brain Mapp 2022; 43:2693-2706. [PMID: 35266236 PMCID: PMC9057087 DOI: 10.1002/hbm.25801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
The following review will aid readers in providing an overview of scale-free dynamics and monofractal analysis, as well as its applications and potential in functional magnetic resonance imaging (fMRI) neuroscience and clinical research. Like natural phenomena such as the growth of a tree or crashing ocean waves, the brain expresses scale-invariant, or fractal, patterns in neural signals that can be measured. While neural phenomena may represent both monofractal and multifractal processes and can be quantified with many different interrelated parameters, this review will focus on monofractal analysis using the Hurst exponent (H). Monofractal analysis of fMRI data is an advanced analysis technique that measures the complexity of brain signaling by quantifying its degree of scale-invariance. As such, the H value of the blood oxygenation level-dependent (BOLD) signal specifies how the degree of correlation in the signal may mediate brain functions. This review presents a brief overview of the theory of fMRI monofractal analysis followed by notable findings in the field. Through highlighting the advantages and challenges of the technique, the article provides insight into how to best conduct fMRI fractal analysis and properly interpret the findings with physiological relevance. Furthermore, we identify the future directions necessary for its progression towards impactful functional neuroscience discoveries and widespread clinical use. Ultimately, this presenting review aims to build a foundation of knowledge among readers to facilitate greater understanding, discussion, and use of this unique yet powerful imaging analysis technique.
Collapse
Affiliation(s)
- Olivia Lauren Campbell
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander Mark Weber
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Ouyang M, Peng Y, Sotardi S, Hu D, Zhu T, Cheng H, Huang H. Flattened Structural Network Changes and Association of Hyperconnectivity With Symptom Severity in 2-7-Year-Old Children With Autism. Front Neurosci 2022; 15:757838. [PMID: 35237118 PMCID: PMC8882907 DOI: 10.3389/fnins.2021.757838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/17/2023] Open
Abstract
Understanding the brain differences present at the earliest possible diagnostic age for autism spectrum disorder (ASD) is crucial for delineating the underlying neuropathology of the disorder. However, knowledge of brain structural network changes in the early important developmental period between 2 and 7 years of age is limited in children with ASD. In this study, we aimed to fill the knowledge gap by characterizing age-related brain structural network changes in ASD from 2 to 7 years of age, and identify sensitive network-based imaging biomarkers that are significantly correlated with the symptom severity. Diffusion MRI was acquired in 30 children with ASD and 21 typically developmental (TD) children. With diffusion MRI and quantified clinical assessment, we conducted network-based analysis and correlation between graph-theory-based measurements and symptom severity. Significant age-by-group interaction was found in global network measures and nodal efficiencies during the developmental period of 2-7 years old. Compared with significant age-related growth of the structural network in TD, relatively flattened maturational trends were observed in ASD. Hyper-connectivity in the structural network with higher global efficiency, global network strength, and nodal efficiency were observed in children with ASD. Network edge strength in ASD also demonstrated hyper-connectivity in widespread anatomical connections, including those in default-mode, frontoparietal, and sensorimotor networks. Importantly, identified higher nodal efficiencies and higher network edge strengths were significantly correlated with symptom severity in ASD. Collectively, structural networks in ASD during this early developmental period of 2-7 years of age are characterized by hyper-connectivity and slower maturation, with aberrant hyper-connectivity significantly correlated with symptom severity. These aberrant network measures may serve as imaging biomarkers for ASD from 2 to 7 years of age.
Collapse
Affiliation(s)
- Minhui Ouyang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yun Peng
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China,*Correspondence: Yun Peng,
| | - Susan Sotardi
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Di Hu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Hua Cheng
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Hao Huang,
| |
Collapse
|
14
|
Wang Y, Hu D, Wu Z, Wang L, Huang W, Li G. Developmental abnormalities of structural covariance networks of cortical thickness and surface area in autistic infants within the first 2 years. Cereb Cortex 2022; 32:3786-3798. [PMID: 35034115 PMCID: PMC9433424 DOI: 10.1093/cercor/bhab448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023] Open
Abstract
Converging evidence supports that a collection of brain regions is functionally or anatomically abnormal in autistic subjects. Structural covariance networks (SCNs) representing patterns of coordinated regional maturation are widely used to study abnormalities associated with neurodisorders. However, the possible developmental changes of SCNs in autistic individuals during the first 2 postnatal years, which features dynamic development and can potentially serve as biomarkers, remain unexplored. To fill this gap, for the first time, SCNs of cortical thickness and surface area were constructed and investigated in infants at high familial risk for autism and typically developing infants in this study. Group differences of SCNs emerge at 12 months of age in surface area. By 24 months of age, the autism group shows significantly increased integration, decreased segregation, and decreased small-worldness, compared with controls. The SCNs of surface area are deteriorated and shifted toward randomness in autistic infants. The abnormal brain regions changed during development, and the group differences of the left lateral occipital cortex become more prominent with age. These results indicate that autism has more significant influences on coordinated development of surface area than that of cortical thickness and the occipital cortex maybe an important biomarker of autism during infancy.
Collapse
Affiliation(s)
- Ya Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Hu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenhua Huang
- Address correspondence to Wenhua Huang, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, 11th floor, Southern Medical University, Guangzhou 510515, China. ; Gang Li, The University of North Carolina at Chapel Hill, Bioinformatics Building #3104, Chapel Hill, NC 27599.
| | - Gang Li
- Address correspondence to Wenhua Huang, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, 11th floor, Southern Medical University, Guangzhou 510515, China. ; Gang Li, The University of North Carolina at Chapel Hill, Bioinformatics Building #3104, Chapel Hill, NC 27599.
| |
Collapse
|
15
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2022; 15:781527. [PMID: 35087384 PMCID: PMC8787113 DOI: 10.3389/fnsys.2021.781527] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.
Collapse
Affiliation(s)
- Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Detlef H. Heck,
| |
Collapse
|
16
|
Yang Y, Peng G, Zeng H, Fang D, Zhang L, Xu S, Yang B. Effects of the SNAP25 on Integration Ability of Brain Functions in Children With ADHD. J Atten Disord 2022; 26:88-100. [PMID: 33084494 DOI: 10.1177/1087054720964561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The present study aimed to examine the effects of SNAP25 on the integration ability of intrinsic brain functions in children with ADHD, and whether the integration ability was associated with working memory (WM). METHODS A sliding time window method was used to calculate the spatial and temporal concordance among five rs-fMRI regional indices in 55 children with ADHD and 20 healthy controls. RESULTS The SNAP25 exhibited significant interaction effects with ADHD diagnosis on the voxel-wise concordance in the right posterior central gyrus, fusiform gyrus and lingual gyrus. Specifically, for children with ADHD, G-carriers showed increased voxel-wise concordance in comparison to TT homozygotes in the right precentral gyrus, superior frontal gyrus, postcentral gyrus, and middle frontal gyrus. The voxel-wise concordance was also found to be related to WM. CONCLUSION Our findings provided a new insight into the neural mechanisms of the brain function of ADHD children.
Collapse
Affiliation(s)
- Yue Yang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Gang Peng
- Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | - Shoujun Xu
- Shenzhen Children's Hospital, Shenzhen, China
| | | |
Collapse
|
17
|
Walter J. Consciousness as a multidimensional phenomenon: implications for the assessment of disorders of consciousness. Neurosci Conscious 2021; 2021:niab047. [PMID: 34992792 PMCID: PMC8716840 DOI: 10.1093/nc/niab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023] Open
Abstract
Disorders of consciousness (DoCs) pose a significant clinical and ethical challenge because they allow for complex forms of conscious experience in patients where intentional behaviour and communication are highly limited or non-existent. There is a pressing need for brain-based assessments that can precisely and accurately characterize the conscious state of individual DoC patients. There has been an ongoing research effort to develop neural measures of consciousness. However, these measures are challenging to validate not only due to our lack of ground truth about consciousness in many DoC patients but also because there is an open ontological question about consciousness. There is a growing, well-supported view that consciousness is a multidimensional phenomenon that cannot be fully described in terms of the theoretical construct of hierarchical, easily ordered conscious levels. The multidimensional view of consciousness challenges the utility of levels-based neural measures in the context of DoC assessment. To examine how these measures may map onto consciousness as a multidimensional phenomenon, this article will investigate a range of studies where they have been applied in states other than DoC and where more is known about conscious experience. This comparative evidence suggests that measures of conscious level are more sensitive to some dimensions of consciousness than others and cannot be assumed to provide a straightforward hierarchical characterization of conscious states. Elevated levels of brain complexity, for example, are associated with conscious states characterized by a high degree of sensory richness and minimal attentional constraints, but are suboptimal for goal-directed behaviour and external responsiveness. Overall, this comparative analysis indicates that there are currently limitations to the use of these measures as tools to evaluate consciousness as a multidimensional phenomenon and that the relationship between these neural signatures and phenomenology requires closer scrutiny.
Collapse
Affiliation(s)
- Jasmine Walter
- Cognition and Philosophy Lab, 21 Chancellor’s Walk, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
18
|
Liang D, Xia S, Zhang X, Zhang W. Analysis of Brain Functional Connectivity Neural Circuits in Children With Autism Based on Persistent Homology. Front Hum Neurosci 2021; 15:745671. [PMID: 34588970 PMCID: PMC8473898 DOI: 10.3389/fnhum.2021.745671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder with a complex and unknown etiology. Statistics demonstrate that the number of people diagnosed with ASD is increasing in countries around the world. Currently, although many neuroimaging studies indicate that ASD is characterized by abnormal functional connectivity (FC) patterns within brain networks rather than local functional or structural abnormalities, the FC characteristics of ASD are still poorly understood. In this study, a Vietoris-Rips (VR) complex filtration model of the brain functional network was established by using resting-state functional magnetic resonance imaging (fMRI) data of children aged 6–13 years old [including 54 ASD patients and 52 typical development (TD) controls] from the Autism Brain Imaging Data Exchange (ABIDE) public database. VR complex filtration barcodes are calculated by using persistent homology to describe the changes in the FC neural circuits of brain networks. The number of FC neural circuits with different length ranges at different threshold values is calculated by using the barcodes, the different brain regions participating in FC neural circuits are discussed, and the connectivity characteristics of brain FC neural circuits in the two groups are compared and analyzed. Our results show that the number of FC neural circuits with lengths of 8–12 is significantly decreased in the ASD group compared with the TD control group at threshold values of 0.7, 0.8 and 0.9, and there is no significant difference in the number of FC neural circuits with lengths of 4–7 and 13–16 and lengths 16. When the thresholds are 0.7, 0.8, and 0.9, the number of FC neural circuits in some brain regions, such as the right orbital part of the superior frontal gyrus, the left supplementary motor area, the left hippocampus, and the right caudate nucleus, involved in the study is significantly decreased in the ASD group compared with the TD control group. The results of this study indicate that there are significant differences in the FC neural circuits of brain networks in the ASD group compared with the TD control group.
Collapse
Affiliation(s)
- Di Liang
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shengxiang Xia
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Xianfu Zhang
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Weiwei Zhang
- School of Science, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
19
|
Decreased modulation of segregated SEEKING and selective attention systems in chronic insomnia. Brain Imaging Behav 2021; 15:430-443. [PMID: 32367486 DOI: 10.1007/s11682-020-00271-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sleep-related attentional bias and instinctual craving-sleep status may be associated with value-driven selective attention network and SEEKING system. We hypothesized that the two networks might be important components and underlie etiology of inability to initiate or/and maintain sleep in patients with chronic insomnia (PIs). Our aim is to investigate whether frequency-frequency couplings(temporal and spatial coupling, and differences of a set of imaging parameters) could elevate the sensibility to characterize the two insomnia-related networks in studying their relationships with sleep parameters and post-insomnia emotions. Forty-eight PIs and 48 status-matched good sleepers were requested to complete sleep and emotion-related questionnaires. Receiver operating characteristic curve was used to calculate the discriminatory power of a set of parameters. Granger causality and mediating causality analysis were used to address the causal relationships between the two networks and sleep/emotion-related parameters. Frequency-frequency couplings could characterize the two networks with high discriminatory power (AUC, 0.951; sensitivity, 87.5%; specificity, 95.8%), which suggested that the frequency-frequency couplings could be served as a useful biomarker to address the insomnia-related brain networks. Functional deficits of the SEEKING system played decreased mediator acting in post-insomnia negative emotions (decreased frequency-frequency coupling). Functional hyperarousal of the value-driven attention network played decreased mediator acting in sleep regulation (increased frequency-frequency coupling). Granger causality analysis showed decreased causal effect connectivity between and within the two networks. The between-network causal effect connectivity segregation played decreased mediator acting in sleep regulation (decreased connectivity). These findings suggest that the functional deficits and segregation of the two systems may underlie etiology of PIs.
Collapse
|
20
|
To WT, Song JJ, Mohan A, De Ridder D, Vanneste S. Thalamocortical dysrhythmia underpin the log-dynamics in phantom sounds. PROGRESS IN BRAIN RESEARCH 2021; 262:511-526. [PMID: 33931194 DOI: 10.1016/bs.pbr.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wing Ting To
- Department of Health & Lifestyle Sciences, University of Applied Sciences, Howest, Kortrijk, Belgium
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Abstract
Objective: The aim of this work is to explore the relationship between temporal variability and brain lateralization in ADHD. Method: The temporal variabilities of 116 brain regions based on resting-state functional magnetic resonance imaging (rs-fMRI) data were calculated for analysis. Results: Between-group comparison revealed that in comparison with the controls, ADHD participants showed significantly higher temporal variability in the left superior frontal gyrus (medial), left rectus gyrus, left inferior parietal lobule and angular gyrus, and lower temporal variability in the amygdala, left caudate and putamen. Besides, ADHD patients exhibited significantly increased leftward lateralization in the orbitofrontal cortex (inferior), and decreased rightward lateralization in the orbitofrontal cortex (medial) and rectus gyrus, compared with controls. Lateralization indices were also found to be related with clinical characteristics of ADHD patients. Conclusion: Our results may help us deeper in understanding the pathology of ADHD.
Collapse
Affiliation(s)
- Hongliang Zou
- Nanjing University of Science and Technology, P.R. China
| | - Jian Yang
- Nanjing University of Science and Technology, P.R. China
| |
Collapse
|
22
|
Jia H, Gao F, Yu D. Altered Temporal Structure of Neural Phase Synchrony in Patients With Autism Spectrum Disorder. Front Psychiatry 2021; 12:618573. [PMID: 34899403 PMCID: PMC8660096 DOI: 10.3389/fpsyt.2021.618573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
Functional connectivity, quantified by phase synchrony, between brain regions is known to be aberrant in patients with autism spectrum disorder (ASD). Here, we evaluated the long-range temporal correlations of time-varying phase synchrony (TV-PS) of electrocortical oscillations in patients with ASD as well as typically developing people using detrended fluctuation analysis (DFA) after validating the scale-invariance of the TV-PS time series. By comparing the DFA exponents between the two groups, we found that those of the TV-PS time series of high-gamma oscillations were significantly attenuated in patients with ASD. Furthermore, the regions involved in aberrant TV-PS time series were mainly within the social ability and cognition-related cortical networks. These results support the notion that abnormal social functions observed in patients with ASD may be caused by the highly volatile phase synchrony states of electrocortical oscillations.
Collapse
Affiliation(s)
- Huibin Jia
- Institute of Cognition, Brain and Health, Henan University, Kaifeng, China.,School of Psychology, Henan University, Kaifeng, China.,Institute of Psychology and Behavior, Henan University, Kaifeng, China.,Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Fei Gao
- Department of Pain Medicine, Peking University People's Hospital, Beijing, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Dhamala E, Jamison KW, Sabuncu MR, Kuceyeski A. Sex classification using long-range temporal dependence of resting-state functional MRI time series. Hum Brain Mapp 2020; 41:3567-3579. [PMID: 32627300 PMCID: PMC7416025 DOI: 10.1002/hbm.25030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
A thorough understanding of sex differences that exist in the brains of healthy individuals is crucial for the study of neurological illnesses that exhibit phenotypic differences between males and females. Here we evaluate sex differences in regional temporal dependence of resting-state brain activity in 195 adult male-female pairs strictly matched for total grey matter volume from the Human Connectome Project. We find that males have more persistent temporal dependence in regions within temporal, parietal, and occipital cortices. Machine learning algorithms trained on regional temporal dependence measures achieve sex classification accuracies up to 81%. Regions with the strongest feature importance in the sex classification task included cerebellum, amygdala, and frontal and occipital cortices. Secondarily, we show that even after strict matching of total gray matter volume, significant volumetric sex differences persist; males have larger absolute cerebella, hippocampi, parahippocampi, thalami, caudates, and amygdalae while females have larger absolute cingulates, precunei, and frontal and parietal cortices. Sex classification based on regional volume achieves accuracies up to 85%, highlighting the importance of strict volume-matching when studying brain-based sex differences. Differential patterns in regional temporal dependence between the sexes identifies a potential neurobiological substrate or environmental effect underlying sex differences in functional brain activation patterns.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Keith W. Jamison
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Mert R. Sabuncu
- School of Electrical and Computer EngineeringCornell UniversityIthacaNew YorkUSA
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
24
|
Zimmern V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front Neural Circuits 2020; 14:54. [PMID: 32982698 PMCID: PMC7479292 DOI: 10.3389/fncir.2020.00054] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The past 25 years have seen a strong increase in the number of publications related to criticality in different areas of neuroscience. The potential of criticality to explain various brain properties, including optimal information processing, has made it an increasingly exciting area of investigation for neuroscientists. Recent reviews on this topic, sometimes termed brain criticality, make brief mention of clinical applications of these findings to several neurological disorders such as epilepsy, neurodegenerative disease, and neonatal hypoxia. Other clinicallyrelevant domains - including anesthesia, sleep medicine, developmental-behavioral pediatrics, and psychiatry - are seldom discussed in review papers of brain criticality. Thorough assessments of these application areas and their relevance for clinicians have also yet to be published. In this scoping review, studies of brain criticality involving human data of all ages are evaluated for their current and future clinical relevance. To make the results of these studies understandable to a more clinical audience, a review of the key concepts behind criticality (e.g., phase transitions, long-range temporal correlation, self-organized criticality, power laws, branching processes) precedes the discussion of human clinical studies. Open questions and forthcoming areas of investigation are also considered.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
25
|
Nunes A, Trappenberg T, Alda M. The definition and measurement of heterogeneity. Transl Psychiatry 2020; 10:299. [PMID: 32839448 PMCID: PMC7445182 DOI: 10.1038/s41398-020-00986-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an important concept in psychiatric research and science more broadly. It negatively impacts effect size estimates under case-control paradigms, and it exposes important flaws in our existing categorical nosology. Yet, our field has no precise definition of heterogeneity proper. We tend to quantify heterogeneity by measuring associated correlates such as entropy or variance: practices which are akin to accepting the radius of a sphere as a measure of its volume. Under a definition of heterogeneity as the degree to which a system deviates from perfect conformity, this paper argues that its proper measure roughly corresponds to the size of a system's event/sample space, and has units known as numbers equivalent. We arrive at this conclusion through focused review of more than 100 years of (re)discoveries of indices by ecologists, economists, statistical physicists, and others. In parallel, we review psychiatric approaches for quantifying heterogeneity, including but not limited to studies of symptom heterogeneity, microbiome biodiversity, cluster-counting, and time-series analyses. We argue that using numbers equivalent heterogeneity measures could improve the interpretability and synthesis of psychiatric research on heterogeneity. However, significant limitations must be overcome for these measures-largely developed for economic and ecological research-to be useful in modern translational psychiatric science.
Collapse
Affiliation(s)
- Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
26
|
Neufang S, Akhrif A. Regional Hurst Exponent Reflects Impulsivity-Related Alterations in Fronto-Hippocampal Pathways Within the Waiting Impulsivity Network. Front Physiol 2020; 11:827. [PMID: 32765298 PMCID: PMC7381286 DOI: 10.3389/fphys.2020.00827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/22/2020] [Indexed: 12/01/2022] Open
Abstract
In general, the Hurst exponent. is used as a measure of long-term memory of time series. In previous neuroimaging studies, H has been introduced as one important parameter to define resting-state networks, reflecting upon global scale-free properties emerging from a network. H has been examined in the waiting impulsivity (WI) network in an earlier study. We found that alterations of H in the anterior cingulate cortex (HACC) and the nucleus accumbens (HNAcc) were lower in high impulsive (highIMP) compared to low impulsive (lowIMP) participants. Following up on those findings, we addressed the relation between altered fractality in HACC and HNAcc and brain activation and neural network connectivity. To do so, brain activation maps were calculated, and network connectivity was determined using the Dynamic Causal Modeling (DCM) approach. Finally, 1–H scores were determined to quantify the alterations of H. This way, the focus of the analyses was placed on the potential effects of alterations of H on neural network activation and connectivity. Correlation analyses between the alterations of HACC/HNAcc and activation maps and DCM estimates were performed. We found that the alterations of H predominantly correlated with fronto-hippocampal pathways and correlations were significant only in highIMP subjects. For example, alterations of HACC was associated with a decrease in neural activation in the right HC in combination with increased ACC-hippocampal connectivity. Alteration inHNAcc, in return, was related to an increase in bilateral prefrontal activation in combination with increased fronto-hippocampal connectivity. The findings, that the WI network was related to H alteration in highIMP subjects indicated that impulse control was not reduced per se but lacked consistency. Additionally, H has been used to describe long-term memory processes before, e.g., in capital markets, energy future prices, and human memory. Thus, current findings supported the relation of H toward memory processing even when further prominent cognitive functions were involved.
Collapse
Affiliation(s)
- Susanne Neufang
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Atae Akhrif
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany.,Center of Mental Health, Department of Child and Adolescent Psychiatry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, Ruigrok ANV, Bullmore ET, Suckling J, Markicevic M, Zerbi V, Baron-Cohen S, Gozzi A, Lai MC, Panzeri S, Lombardo MV. Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. eLife 2020; 9:e55684. [PMID: 32746967 PMCID: PMC7402681 DOI: 10.7554/elife.55684] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Excitation-inhibition (E:I) imbalance is theorized as an important pathophysiological mechanism in autism. Autism affects males more frequently than females and sex-related mechanisms (e.g., X-linked genes, androgen hormones) can influence E:I balance. This suggests that E:I imbalance may affect autism differently in males versus females. With a combination of in-silico modeling and in-vivo chemogenetic manipulations in mice, we first show that a time-series metric estimated from fMRI BOLD signal, the Hurst exponent (H), can be an index for underlying change in the synaptic E:I ratio. In autism we find that H is reduced, indicating increased excitation, in the medial prefrontal cortex (MPFC) of autistic males but not females. Increasingly intact MPFC H is also associated with heightened ability to behaviorally camouflage social-communicative difficulties, but only in autistic females. This work suggests that H in BOLD can index synaptic E:I ratio and that E:I imbalance affects autistic males and females differently.
Collapse
Affiliation(s)
- Stavros Trakoshis
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, University of CyprusNicosiaCyprus
| | - Pablo Martínez-Cañada
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di TecnologiaGenovaItaly
| | - Federico Rocchi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Carola Canella
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Wonsang You
- Artificial Intelligence and Image Processing Laboratory, Department of Information and Communications Engineering, Sun Moon UniversityAsanRepublic of Korea
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of ReadingReadingUnited Kingdom
| | - Amber NV Ruigrok
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Edward T Bullmore
- Cambridgeshire and Peterborough National Health Service Foundation TrustCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Marija Markicevic
- Neural Control of Movement Lab, D-HEST, ETH ZurichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, D-HEST, ETH ZurichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Cambridgeshire and Peterborough National Health Service Foundation TrustCambridgeUnited Kingdom
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Azrieli Adult Neurodevelopmental Centre, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthTorontoCanada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick ChildrenTorontoCanada
- Department of Psychiatry, Faculty of Medicine, University of TorontoTorontoCanada
- Department of Psychiatry, National Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
28
|
Duncan NW, Hsu TY, Cheng PZ, Wang HY, Lee HC, Lane TJ. Intrinsic activity temporal structure reactivity to behavioural state change is correlated with depressive symptoms. Eur J Neurosci 2020; 52:4840-4850. [PMID: 32524682 DOI: 10.1111/ejn.14858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/24/2023]
Abstract
The brain's intrinsic activity plays a fundamental role in its function. In normal conditions this activity is responsive to behavioural context, changing as an individual switches between directed tasks and task-free conditions. A key feature of such changes is the movement of the brain between corresponding critical and sub-critical states, with these dynamics supporting efficient cognitive processing. Breakdowns in processing efficiency can occur, however, in brain disorders such as depression. It was therefore hypothesised that depressive symptoms would be related to reduced intrinsic activity responsiveness to changes in behavioural state. This was tested in a mixed group of major depressive disorder patients (n = 26) and healthy participants (n = 37) by measuring intrinsic EEG activity temporal structure, quantified with detrended fluctuation analysis (DFA), in eyes-closed (EC) and eyes-open task-free states and contrasting between the conditions. The degree to which DFA values changed between the states was found to correlate negatively with depressive symptoms. DFA values did not differ between states in those with higher symptom levels, meaning that the brain remained in a less flexible sub-critical condition. This sub-critical condition in the EC state was further found to correlate with levels of maladaptive rumination. This may reflect a general cognitive inflexibility resulting from a lack in neural activity reactivity that may predispose people to overly engage in self-directed attention. These results provide an initial link between intrinsic activity reactivity and psychological features found in psychiatric disorders.
Collapse
Affiliation(s)
- Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, TMU Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Hsu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, TMU Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Paul Z Cheng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, TMU Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Hsin-Yi Wang
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, TMU Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, TMU Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Timothy J Lane
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, TMU Shuang-Ho Hospital, New Taipei City, Taiwan.,College of Humanities and Social Science, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Lee JM, Kim PJ, Kim HG, Hyun HK, Kim YJ, Kim JW, Shin TJ. Analysis of brain connectivity during nitrous oxide sedation using graph theory. Sci Rep 2020; 10:2354. [PMID: 32047246 PMCID: PMC7012909 DOI: 10.1038/s41598-020-59264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Nitrous oxide, the least potent inhalation anesthetic, is widely used for conscious sedation. Recently, it has been reported that the occurrence of anesthetic-induced loss of consciousness decreases the interconnection between brain regions, resulting in brain network changes. However, few studies have investigated these changes in conscious sedation using nitrous oxide. Therefore, the present study aimed to use graph theory to analyze changes in brain networks during nitrous oxide sedation. Participants were 20 healthy volunteers (10 men and 10 women, 20–40 years old) with no history of systemic disease. We acquired electroencephalogram (EEG) recordings of 32 channels during baseline, nitrous oxide inhalation sedation, and recovery. EEG epochs from the baseline and the sedation state (50% nitrous oxide) were extracted and analyzed with the network connection parameters of graph theory. Analysis of 1/f dynamics, revealed a steeper slope while in the sedation state than during the baseline. Network connectivity parameters showed significant differences between the baseline and sedation state, in delta, alpha1, alpha2, and beta2 frequency bands. The most pronounced differences in functional distance during nitrous oxide sedation were observed in the alpha1 and alpha2 frequency bands. Change in 1/f dynamics indicates that changes in brain network systems occur during nitrous oxide administration. Changes in network parameters imply that nitrous oxide interferes with the efficiency of information integration in the frequency bands important for cognitive processes and attention tasks. Alteration of brain network during nitrous oxide administration may be associated to the sedative mechanism of nitrous oxide.
Collapse
Affiliation(s)
- Ji-Min Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Teo Jeon Shin
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
You do not have to act to be impulsive: Brain resting-state activity predicts performance and impulsivity on the Balloon Analogue Risk Task. Behav Brain Res 2020; 379:112395. [DOI: 10.1016/j.bbr.2019.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/19/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023]
|
31
|
Guo X, Simas T, Lai M, Lombardo MV, Chakrabarti B, Ruigrok ANV, Bullmore ET, Baron‐Cohen S, Chen H, Suckling J. Enhancement of indirect functional connections with shortest path length in the adult autistic brain. Hum Brain Mapp 2019; 40:5354-5369. [PMID: 31464062 PMCID: PMC6864892 DOI: 10.1002/hbm.24777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/23/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
Autism is a neurodevelopmental condition characterized by atypical brain functional organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the functional connectome associated with autism. Resting-state functional magnetic resonance imaging scans were acquired from 65 neurotypical adults (33 males/32 females) and 61 autistic adults (30 males/31 females). From functional connectivity networks, semi-metric percentages (SMPs) were calculated to assess the proportion of indirect shortest functional pathways at global, hemisphere, network, and node levels. Group comparisons were then conducted to ascertain differences between autism and neurotypical control groups. Finally, the strength and length of edges were examined to explore the patterns of semi-metric connections associated with autism. Compared with neurotypical controls, autistic adults displayed significantly higher SMP at all spatial scales, similar to prior observations in adolescents. Differences were primarily in weaker, longer-distance edges in the majority between networks. However, no significant diagnosis-by-sex interaction effects were observed on global SMP. These findings suggest increased indirect functional connectivity in the autistic brain is persistent from adolescence to adulthood and is indicative of reduced functional network integration.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Tiago Simas
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Meng‐Chuan Lai
- Centre for Addiction and Mental Health and the Hospital for Sick Children, Department of PsychiatryUniversity of TorontoTorontoCanada
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychiatryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Michael V. Lombardo
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Italian Institute of TechnologyRoveretoItaly
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - Amber N. V. Ruigrok
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Simon Baron‐Cohen
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - John Suckling
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | | |
Collapse
|
32
|
Górriz JM, Ramírez J, Segovia F, Martínez FJ, Lai MC, Lombardo MV, Baron-Cohen S, Suckling J. A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms. Int J Neural Syst 2019; 29:1850058. [DOI: 10.1142/s0129065718500582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above [Formula: see text] on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism ([Formula: see text], [Formula: see text]/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.
Collapse
Affiliation(s)
- Juan M. Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - F. Segovia
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Francisco J. Martínez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Meng-Chuan Lai
- Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada
| | - Michael V. Lombardo
- Department of Psychology, University of Cyprus, 2109 Aglantzia, Nicosia, Cyprus
| | - Simon Baron-Cohen
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | |
Collapse
|
33
|
Jia H, Yu D. Attenuated long-range temporal correlations of electrocortical oscillations in patients with autism spectrum disorder. Dev Cogn Neurosci 2019; 39:100687. [PMID: 31377569 PMCID: PMC6969363 DOI: 10.1016/j.dcn.2019.100687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/24/2019] [Accepted: 07/26/2019] [Indexed: 11/30/2022] Open
Abstract
The LRTCs of beta and low-gamma oscillations were significantly attenuated in ASD patients compared to TD participants. The regions with attenuated LRTCs were mainly located in certain social functions related cortical networks. ASD is associated with highly volatile neuronal states of electrocortical oscillations.
The aim of this study was to investigate the long-range temporal correlations (LRTCs) of instantaneous amplitude of electrocortical oscillations in patients with autism spectrum disorder (ASD). Using the resting-state electroencephalography (EEG) of 15 patients with ASD (aged between 5˜18 years, mean age = 11.6 years, SD = 4.4 years) and 18 typical developing (TD) people (aged between 5˜18 years, mean age = 8.9 years, SD = 2.4 years), we estimated the LRTCs of neuronal oscillations amplitude of 84 predefined cortical regions of interest using detrended fluctuation analysis (DFA) after confirming the presence of scale invariance. We found that the DFA exponents of instantaneous amplitude of beta and low-gamma oscillations were significantly attenuated in patients with ASD compared to TD participants. Moreover, the regions with attenuated DFA exponent were mainly located in social functions related cortical networks, including the default mode network (DMN), the mirror neuron system (MNS) and the salience network (SN). These findings suggest that ASD is associated with highly volatile neuronal states of electrocortical oscillations, which may be related to social and cognitive dysfunction in patients with ASD.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Gao W, Chen S, Biswal B, Lei X, Yuan J. Temporal dynamics of spontaneous default-mode network activity mediate the association between reappraisal and depression. Soc Cogn Affect Neurosci 2019; 13:1235-1247. [PMID: 30339260 PMCID: PMC6277739 DOI: 10.1093/scan/nsy092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Cognitive reappraisal is associated with major depressive disorder (MDD), while spontaneous activity patterns of the default mode network (DMN) is implicated in reappraisal and MDD. However, neural mechanisms subserving the close association of spontaneous reappraisal and depression are unclear. Spontaneous reappraisal, depression and resting-state functional magnetic resonance imaging (rsfMRI) were measured from 105 healthy subjects. We assessed the temporal complexity (Hurst exponent), Regional Homogeneity (ReHo) and fractional Amplitude of Low Frequency Fluctuation (fALFF) profiles of DMN, a network involved in both reappraisal and depression. Mediation effects of these standard measures on the relationship between reappraisal and depression, and the contributions of each DMN subregion, were assessed. Results indicated that Hurst exponent (H) of DMN, whether extracted by independent component analysis (ICA) or region of interest (ROI), was significantly associated with reappraisal scores. An individual with a higher reappraisal score has a lower Hurst value of DMN. Mediation analyses suggest that H of DMN partially mediates the association between reappraisal and the degree of depression, and this mediation effect arises from the contribution of medial prefrontal cortex. Neither ReHo nor fALFF showed a similar correlation or mediation effect. These findings suggest that temporal dynamics of DMN play an important role in emotion regulation and its association with depression. H of DMN may serve as a neural marker mediating the association between reappraisal and depression.
Collapse
Affiliation(s)
- Wei Gao
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education (SWU), Faculty of Psychology, Southwest University, Chongqing, China
| | - ShengDong Chen
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education (SWU), Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xu Lei
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - JiaJin Yuan
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education (SWU), Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Krohn S, Froeling M, Leemans A, Ostwald D, Villoslada P, Finke C, Esteban FJ. Evaluation of the 3D fractal dimension as a marker of structural brain complexity in multiple-acquisition MRI. Hum Brain Mapp 2019; 40:3299-3320. [PMID: 31090254 DOI: 10.1002/hbm.24599] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/26/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
Fractal analysis represents a promising new approach to structural neuroimaging data, yet systematic evaluation of the fractal dimension (FD) as a marker of structural brain complexity is scarce. Here we present in-depth methodological assessment of FD estimation in structural brain MRI. On the computational side, we show that spatial scale optimization can significantly improve FD estimation accuracy, as suggested by simulation studies with known FD values. For empirical evaluation, we analyzed two recent open-access neuroimaging data sets (MASSIVE and Midnight Scan Club), stratified by fundamental image characteristics including registration, sequence weighting, spatial resolution, segmentation procedures, tissue type, and image complexity. Deviation analyses showed high repeated-acquisition stability of the FD estimates across both data sets, with differential deviation susceptibility according to image characteristics. While less frequently studied in the literature, FD estimation in T2-weighted images yielded robust outcomes. Importantly, we observed a significant impact of image registration on absolute FD estimates. Applying different registration schemes, we found that unbalanced registration induced (a) repeated-measurement deviation clusters around the registration target, (b) strong bidirectional correlations among image analysis groups, and (c) spurious associations between the FD and an index of structural similarity, and these effects were strongly attenuated by reregistration in both data sets. Indeed, differences in FD between scans did not simply track differences in structure per se, suggesting that structural complexity and structural similarity represent distinct aspects of structural brain MRI. In conclusion, scale optimization can improve FD estimation accuracy, and empirical FD estimates are reliable yet sensitive to image characteristics.
Collapse
Affiliation(s)
- Stephan Krohn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Computational Cognitive Neuroscience Laboratory, Freie Universität Berlin, Berlin, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dirk Ostwald
- Computational Cognitive Neuroscience Laboratory, Freie Universität Berlin, Berlin, Germany.,Center for Adaptive Rationality, Max-Planck Institute for Human Development, Berlin, Germany
| | - Pablo Villoslada
- Center of Neuroimmunology, Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
36
|
Lin C, Lee SH, Huang CM, Chen GY, Ho PS, Liu HL, Chen YL, Lee TMC, Wu SC. Increased brain entropy of resting-state fMRI mediates the relationship between depression severity and mental health-related quality of life in late-life depressed elderly. J Affect Disord 2019; 250:270-277. [PMID: 30870777 DOI: 10.1016/j.jad.2019.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 03/03/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Entropy analysis is a computational method used to quantify the complexity in a system, and loss of brain complexity is hypothesized to be related to mental disorders. Here, we applied entropy analysis to the resting-state functional magnetic resonance imaging (rs-fMRI) signal in subjects with late-life depression (LLD), an illness combined with emotion dysregulation and aging effect. METHODS A total of 35 unremitted depressed elderly and 22 control subjects were recruited. Multiscale entropy (MSE) analysis was performed in the entire brain, 90 automated anatomical labeling-parcellated ROIs, and five resting networks in each study participant. LIMITATIONS Due to ethical concerns, all the participants were under medication during the study. RESULTS Regionally, subjects with LLD showed decreased entropy only in the right posterior cingulate gyrus but had universally increased entropy in affective processing (putamen and thalamus), sensory, motor, and temporal nodes across different time scales. We also found higher entropy in the left frontoparietal network (FPN), which partially mediated the negative correlation between depression severity and mental components of the quality of life, reflecting the possible neural compensation during depression treatment. CONCLUSION MSE provides a novel and complementary approach in rs-fMRI analysis. The temporal-spatial complexity in the resting brain may provide the adaptive variability beneficial for the elderly with depression.
Collapse
Affiliation(s)
- Chemin Lin
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan; College of Medicine, Chang Gung University, Taoyuan County, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan; Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan County, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yen Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Shan Ho
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tatia Mei-Chun Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
37
|
Zink N, Bensmann W, Arning L, Stock AK, Beste C. CHRM2 Genotype Affects Inhibitory Control Mechanisms During Cognitive Flexibility. Mol Neurobiol 2019; 56:6134-6141. [PMID: 30729426 DOI: 10.1007/s12035-019-1521-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
The cholinergic system is one of the most important neurotransmitter systems, but knowledge about the relevance of the cholinergic muscarinergic receptor system for cognitive functions is still scarce. Evidence suggests that the cholinergic muscarinic 2 receptor (CHRM2) plays an important role in the processing of cueing/prior information that help to increase the efficacy of lower-level attentional processes. In the current study, we investigated whether this is also the case for higher-level cognitive flexibility mechanisms. To this end, we tested N = 210 healthy adults with a backward inhibition task, in which prior information needs to be used to guide cognitive flexibility mechanisms. Testing different polymorphisms of the CHRM2 gene, we found that variation in this gene play a role in cognitive flexibility. It could be demonstrated that rs8191992 TT genotype carriers are better able to suppress no longer relevant information and to use prior information for cognitive flexibility, compared to A allele carriers. We further found that rs2350780 GG genotype carriers performed worse than A allele carriers. The results broaden the relevance of the CHRM2 system for cognitive functions beyond attentional selection processes. Corroborating recent theories on the relevance of the cholinergic system for cognitive processes, these results suggest that CHRM2 is important to process of "prior information" needed to inform subsequent cognitive operations. Considering the importance of prior information for adaptive behavioral control, it is possible that CHRM2 also modulates other instances of higher-level cognitive processes as long as these require the processing of "prior information."
Collapse
Affiliation(s)
- Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany.
| |
Collapse
|
38
|
Iidaka T, Kogata T, Mano Y, Komeda H. Thalamocortical Hyperconnectivity and Amygdala-Cortical Hypoconnectivity in Male Patients With Autism Spectrum Disorder. Front Psychiatry 2019; 10:252. [PMID: 31057443 PMCID: PMC6482335 DOI: 10.3389/fpsyt.2019.00252] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Analyses of resting-state functional magnetic resonance imaging (rs-fMRI) have been performed to investigate pathophysiological changes in the brains of patients with autism spectrum disorder (ASD) relative to typically developing controls (CTLs). However, the results of these previous studies, which have reported mixed patterns of hypo- and hyperconnectivity, are controversial, likely due to the small sample sizes and limited age range of included participants. Methods: To overcome this issue, we analyzed multisite neuroimaging data from a large sample (n = 626) of male participants aged between 5 and 29 years (mean age = 13 years). The rs-fMRI data were preprocessed using SPM12 and DPARSF software, and signal changes in 90 brain regions were extracted. Multiple linear regression was used to exclude the effect of site differences in connectivity data. Subcortical-cortical connectivity was computed using connectivities in the hippocampus, amygdala, caudate nucleus, putamen, pallidum, and thalamus. Eighty-eight connectivities in each structure were compared between patients with ASD and CTLs using multiple linear regression with group, age, and age × group interactions, head movement parameters, and overall connectivity as variables. Results: After correcting for multiple comparisons, patients in the ASD group exhibited significant increases in connectivity between the thalamus and 19 cortical regions distributed throughout the fronto-parietal lobes, including the temporo-parietal junction and posterior cingulate cortices. In addition, there were significant decreases in connectivity between the amygdala and six cortical regions. The mean effect size of hyperconnectivity (0.25) was greater than that for hypoconnectivity (0.08). No other subcortical structures showed significant group differences. A group-by-age interaction was observed for connectivity between the thalamus and motor-somatosensory areas. Conclusions: These results demonstrate that pathophysiological changes associated with ASD are more likely related to thalamocortical hyperconnectivity than to amygdala-cortical hypoconnectivity. Future studies should examine full sets of clinical and behavioral symptoms in combination with functional connectivity to explore possible biomarkers for ASD.
Collapse
Affiliation(s)
- Tetsuya Iidaka
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomohiro Kogata
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoko Mano
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hidetsugu Komeda
- Department of Education, Psychology, and Human Studies, Aoyama Gakuin University, Tokyo, Japan
| |
Collapse
|
39
|
Irrmischer M, Poil S, Mansvelder HD, Intra FS, Linkenkaer‐Hansen K. Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance. Eur J Neurosci 2018; 48:2674-2683. [PMID: 28858404 PMCID: PMC6221163 DOI: 10.1111/ejn.13672] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Neuronal oscillations exhibit complex amplitude fluctuations with autocorrelations that persist over thousands of oscillatory cycles. Such long-range temporal correlations (LRTC) are thought to reflect neuronal systems poised near a critical state, which would render them capable of quick reorganization and responsive to changing processing demands. When we concentrate, however, the influence of internal and external sources of distraction is better reduced, suggesting that neuronal systems involved with sustained attention could benefit from a shift toward the less volatile sub-critical state. To test these ideas, we recorded electroencephalography (EEG) from healthy volunteers during eyes-closed rest and during a sustained attention task requiring a speeded response to images deviating in their presentation duration. We show that for oscillations recorded during rest, high levels of alpha-band LRTC in the sensorimotor region predicted good reaction-time performance in the attention task. During task execution, however, fast reaction times were associated with high-amplitude beta and gamma oscillations with low LRTC. Finally, we show that reduced LRTC during the attention task compared to the rest condition correlates with better performance, while increased LRTC of oscillations from rest to attention is associated with reduced performance. To our knowledge, this is the first empirical evidence that 'resting-state criticality' of neuronal networks predicts swift behavioral responses in a sensorimotor task, and that steady attentive processing of visual stimuli requires brain dynamics with suppressed temporal complexity.
Collapse
Affiliation(s)
- Mona Irrmischer
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| | - Simon‐Shlomo Poil
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
- NBT Analytics BVAmsterdamThe Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| | - Francesca Sangiuliano Intra
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
- IRCCSDon Gnocchi FoundationMilanItaly
| | - Klaus Linkenkaer‐Hansen
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| |
Collapse
|
40
|
Joshi G, Arnold Anteraper S, Patil KR, Semwal M, Goldin RL, Furtak SL, Chai XJ, Saygin ZM, Gabrieli JDE, Biederman J, Whitfield-Gabrieli S. Integration and Segregation of Default Mode Network Resting-State Functional Connectivity in Transition-Age Males with High-Functioning Autism Spectrum Disorder: A Proof-of-Concept Study. Brain Connect 2018; 7:558-573. [PMID: 28942672 DOI: 10.1089/brain.2016.0483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level-dependent functional magnetic resonance imaging data were acquired from adolescent and young adult males with high-functioning ASD (n = 15) and from age-, sex-, and intelligence quotient-matched healthy controls (HCs; n = 16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular, and inferior temporal gyrus regions). RsFc data analysis was performed using a seed-driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra-DMN-positive and -negative RsFc correlations, respectively. In ASD, the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrus regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of subgrouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of DMN RsFc. Future studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Gagan Joshi
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Sheeba Arnold Anteraper
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kaustubh R Patil
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Meha Semwal
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Rachel L Goldin
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Stephannie L Furtak
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | | | - Zeynep M Saygin
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - John D E Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Joseph Biederman
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
| | - Susan Whitfield-Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
41
|
Xie W, Peng CK, Huang CC, Lin CP, Tsai SJ, Yang AC. Functional brain lateralization in schizophrenia based on the variability of resting-state fMRI signal. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:114-121. [PMID: 29807061 DOI: 10.1016/j.pnpbp.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 01/20/2023]
Abstract
Abnormal brain lateralization has been implicated in schizophrenia but few studies have focused on the variability of resting-state fMRI signal and its lateralization in schizophrenia. Here we utilized standard deviations (SD) to quantify the variability of resting-state fMRI signal and measured the lateralization index (LI), on the basis of SD of the resting-state fMRI signal in order to assess the difference of brain signal variability across the hemispheres. We recruited 180 patients with schizophrenia and 358 age- and sex-matched healthy volunteers. Between-group comparison revealed that in comparison to healthy volunteers, schizophrenia patients have significantly higher SD of resting-state fMRI activity in left inferior temporal, left fusiform, and right superior medial frontal cortex, and lower SD in right precuneus, posterior cingulum on both sides, right lingual, and left calcarine in the occipital region. Using region of interest approach, most brain regions showed increased leftward lateralization in patients with schizophrenia, as compared with healthy controls. SD and LI were also found to be correlated to age of onset or duration of illness. These results provide further evidence that abnormal variability and lateralization exist in schizophrenia patients, and abnormality in fusiform, lingual and inferior temporal could have potential help to identify the dysfunctional brain lateralization in schizophrenia.
Collapse
Affiliation(s)
- Wanqing Xie
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Chu-Chung Huang
- Institute of Brain Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Brain Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Institute of Brain Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
42
|
Jia H, Li Y, Yu D. Attenuation of long-range temporal correlations of neuronal oscillations in young children with autism spectrum disorder. NEUROIMAGE-CLINICAL 2018; 20:424-432. [PMID: 30128281 PMCID: PMC6095951 DOI: 10.1016/j.nicl.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/12/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
Abstract
Although autism spectrum disorder (ASD) was previously found to be associated with aberrant brain structure, neuronal amplitudes and spatial neuronal interactions, surprisingly little is known about the temporal dynamics of neuronal oscillations in this disease. Here, the hemoglobin concentration signals (i.e., oxy-Hb and deoxy-Hb) of young children with ASD and typically developing (TD) children were recorded via functional near infrared spectroscopy (fNIRS) when they were watching a cartoon. The long-range temporal correlations (LRTCs) of hemoglobin concentration signals were quantified using detrended fluctuation analysis (DFA). Compared with TD group, the DFA exponents of young children with ASD were significantly smaller over left temporal region for oxy-Hb signal, and over bilateral temporo-occipital regions for deoxy-Hb signals, indicating a shift-to-randomness of brain oscillations in the children with ASD. Testing the relationship between age and DFA exponents revealed that this association could be modulated by autism. The correlation coefficients between age and DFA exponents were significantly more positive in TD group, compared to those in ASD group over several brain regions. Furthermore, the DFA exponents of oxy-Hb in left temporal region were negatively correlated with autistic symptom severity. These results suggest that the decreased DFA exponent of hemoglobin concentration signals may be one of the pathologic changes in ASD, and studying the temporal structure of brain activity via fNIRS technique may provide physiological indicators for autism. The LRTCs of fNIRS signals are attenuated in young children with ASD. Opposite relationships between age and LRTCs of fNIRS signals are revealed in young children with ASD and TD. The LRTCs of oxy-Hb in left temporal region are negatively correlated with autistic symptom severity.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yanwei Li
- College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
Muthukumaraswamy SD, Liley DT. 1/f electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. Neuroimage 2018; 179:582-595. [PMID: 29959047 DOI: 10.1016/j.neuroimage.2018.06.068] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 02/01/2023] Open
Abstract
Neurophysiological recordings are dominated by arhythmical activity whose spectra can be characterised by power-law functions, and on this basis are often referred to as reflecting scale-free brain dynamics (1/fβ). Relatively little is known regarding the neural generators and temporal dynamics of this arhythmical behaviour compared to rhythmical behaviour. Here we used Irregularly Resampled AutoSpectral Analysis (IRASA) to quantify β, in both the high (5-100 Hz, βhf) and low frequency bands (0.1-2.5 Hz, βlf) in MEG/EEG/ECoG recordings and to separate arhythmical from rhythmical modes of activity, such as, alpha rhythms. In MEG/EEG/ECoG data, we demonstrate that oscillatory alpha power dynamically correlates over time with βhf and similarly, participants with higher rhythmical alpha power have higher βhf. In a series of pharmaco-MEG investigations using the GABA reuptake inhibitor tiagabine, the glutamatergic AMPA receptor antagonist perampanel, the NMDA receptor antagonist ketamine and the mixed partial serotonergic agonist LSD, a variety of effects on both βhf and βlf were observed. Additionally, strong modulations of βhf were seen in monkey ECoG data during general anaesthesia using propofol and ketamine. We develop and test a unifying model which can explain, the 1/f nature of electrophysiological spectra, their dynamic interaction with oscillatory rhythms as well as the sensitivity of 1/f activity to drug interventions by considering electrophysiological spectra as being generated by a collection of stochastically perturbed damped oscillators having a distribution of relaxation rates.
Collapse
Affiliation(s)
- Suresh D Muthukumaraswamy
- School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - David Tj Liley
- Centre for Human Psychopharmacology, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
44
|
Ros T, Frewen P, Théberge J, Michela A, Kluetsch R, Mueller A, Candrian G, Jetly R, Vuilleumier P, Lanius RA. Neurofeedback Tunes Scale-Free Dynamics in Spontaneous Brain Activity. Cereb Cortex 2018; 27:4911-4922. [PMID: 27620975 DOI: 10.1093/cercor/bhw285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about self-organized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs.
Collapse
Affiliation(s)
- T Ros
- Geneva Neuroscience Center, Department of Neuroscience, University of Geneva, CH-1202 Geneva, Switzerland
| | - P Frewen
- Department of Psychiatry, Western University, London N6A 5A5, Ontario, Canada
| | - J Théberge
- Department of Medical Imaging, Lawson Health Research Institute, London N6C 2R5, Ontario, Canada
| | - A Michela
- Geneva Neuroscience Center, Department of Neuroscience, University of Geneva, CH-1202 Geneva, Switzerland
| | - R Kluetsch
- Department of Psychosomatic Medicine and Psychotherapy, Mannheim-Heidelberg University, 68159 Mannheim, Germany
| | - A Mueller
- Brain and Trauma Foundation, CH-7000 Chur, Switzerland
| | - G Candrian
- Brain and Trauma Foundation, CH-7000 Chur, Switzerland
| | - R Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa K1A 0K6, Canada
| | - P Vuilleumier
- Geneva Neuroscience Center, Department of Neuroscience, University of Geneva, CH-1202 Geneva, Switzerland
| | - R A Lanius
- Department of Psychiatry, Western University, London N6A 5A5, Ontario, Canada
| |
Collapse
|
45
|
Long Z, Jing B, Guo R, Li B, Cui F, Wang T, Chen H. A Brainnetome Atlas Based Mild Cognitive Impairment Identification Using Hurst Exponent. Front Aging Neurosci 2018; 10:103. [PMID: 29692721 PMCID: PMC5902491 DOI: 10.3389/fnagi.2018.00103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 11/15/2022] Open
Abstract
Mild cognitive impairment (MCI), which generally represents the transition state between normal aging and the early changes related to Alzheimer’s disease (AD), has drawn increasing attention from neuroscientists due that efficient AD treatments need early initiation ahead of irreversible brain tissue damage. Thus effective MCI identification methods are desperately needed, which may be of great importance for the clinical intervention of AD. In this article, the range scaled analysis, which could effectively detect the temporal complexity of a time series, was utilized to calculate the Hurst exponent (HE) of functional magnetic resonance imaging (fMRI) data at a voxel level from 64 MCI patients and 60 healthy controls (HCs). Then the average HE values of each region of interest (ROI) in brainnetome atlas were extracted and compared between MCI and HC. At last, the abnormal average HE values were adopted as the classification features for a proposed support vector machine (SVM) based identification algorithm, and the classification performance was estimated with leave-one-out cross-validation (LOOCV). Our results indicated 83.1% accuracy, 82.8% sensitivity and 83.3% specificity, and an area under curve of 0.88, suggesting that the HE index could serve as an effective feature for the MCI identification. Furthermore, the abnormal HE brain regions in MCI were predominately involved in left middle frontal gyrus, right hippocampus, bilateral parahippocampal gyrus, bilateral amygdala, left cingulate gyrus, left insular gyrus, left fusiform gyrus, left superior parietal gyrus, left orbital gyrus and left basal ganglia.
Collapse
Affiliation(s)
- Zhuqing Long
- Medical Apparatus and Equipment Deployment, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Ru Guo
- Department of Tuberculosis, Beijing Chest Hospital Capital Medical University, Beijing, China
| | - Bo Li
- Department of Traditional Chinese Medicine, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Feiyi Cui
- Medical Apparatus and Equipment Deployment, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- Medical Apparatus and Equipment Deployment, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwen Chen
- Medical Apparatus and Equipment Deployment, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Association between Scale-Free Brain Dynamics and Behavioral Performance: Functional MRI Study in Resting State and Face Processing Task. Behav Neurol 2018; 2017:2824615. [PMID: 29430081 PMCID: PMC5752971 DOI: 10.1155/2017/2824615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
The scale-free dynamics of human brain activity, characterized by an elaborate temporal structure with scale-free properties, can be quantified using the power-law exponent (PLE) as an index. Power laws are well documented in nature in general, particularly in the brain. Some previous fMRI studies have demonstrated a lower PLE during cognitive-task-evoked activity than during resting state activity. However, PLE modulation during cognitive-task-evoked activity and its relationship with an associated behavior remain unclear. In this functional fMRI study in the resting state and face processing + control task, we investigated PLE during both the resting state and task-evoked activities, as well as its relationship with behavior measured using mean reaction time (mRT) during the task. We found that (1) face discrimination-induced BOLD signal changes in the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), amygdala, and fusiform face area; (2) PLE significantly decreased during task-evoked activity specifically in mPFC compared with resting state activity; (3) most importantly, in mPFC, mRT significantly negatively correlated with both resting state PLE and the resting-task PLE difference. These results may lead to a better understanding of the associations between task performance parameters (e.g., mRT) and the scale-free dynamics of spontaneous and task-evoked brain activities.
Collapse
|
47
|
Dong J, Jing B, Ma X, Liu H, Mo X, Li H. Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan. Front Neurosci 2018; 12:34. [PMID: 29456489 PMCID: PMC5801317 DOI: 10.3389/fnins.2018.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/15/2018] [Indexed: 01/16/2023] Open
Abstract
Exploring functional information among various brain regions across time enables understanding of healthy aging process and holds great promise for age-related brain disease diagnosis. This paper proposed a method to explore fractal complexity of the resting-state functional magnetic resonance imaging (rs-fMRI) signal in the human brain across the adult lifespan using Hurst exponent (HE). We took advantage of the examined rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females) from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to investigate the effects of age, gender, and their interaction on complexity. In region-wise analysis, we found that the healthy aging is accompanied by a loss of complexity in frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe. Meanwhile, differences in HE between genders were found to be significant in parietal lobe (p = 0.04, corrected). However, there was no interaction between gender and age. In voxel-wise analysis, the significant complexity decrease with aging was found in frontal and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe, and temporal lobe with aging. Meanwhile, differences in HE between genders were found to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex interaction in right parahippocampal gyrus (p = 0.04, corrected). Our findings reveal HE variations of the rs-fMRI signal across the human adult lifespan and show that HE may serve as a new parameter to assess healthy aging process.
Collapse
Affiliation(s)
- Jianxin Dong
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Yanjing Medical College, Capital Medical University, Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xiangyu Ma
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Han Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xiao Mo
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Haiyun Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Demirtaş M, Deco G. Computational Models of Dysconnectivity in Large-Scale Resting-State Networks. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Chen Z, Guo Y, Feng T. Delay discounting is predicted by scale-free dynamics of default mode network and salience network. Neuroscience 2017; 362:219-227. [DOI: 10.1016/j.neuroscience.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
|
50
|
Identifying current and remitted major depressive disorder with the Hurst exponent: a comparative study on two automated anatomical labeling atlases. Oncotarget 2017; 8:90452-90464. [PMID: 29163844 PMCID: PMC5685765 DOI: 10.18632/oncotarget.19860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a leading world-wide psychiatric disorder with high recurrence rate, therefore, it is desirable to identify current MDD (cMDD) and remitted MDD (rMDD) for their appropriate therapeutic interventions. In the study, 19 cMDD, 19 rMDD and 19 well-matched healthy controls (HC) were enrolled and scanned with the resting-state functional magnetic resonance imaging (rs-fMRI). The Hurst exponent (HE) of rs-fMRI in AAL-90 and AAL-1024 atlases were calculated and compared between groups. Then, a radial basis function (RBF) based support vector machine was proposed to identify every pair of the cMDD, rMDD and HC groups using the abnormal HE features, and a leave-one-out cross-validation was used to evaluate the classification performance. Applying the proposed method with AAL-1024 and AAL-90 atlas respectively, 87% and 84% subjects were correctly identified between cMDD and HC, 84% and 71% between rMDD and HC, and 89% and 74% between cMDD and rMDD. Our results indicated that the HE was an effective feature to distinguish cMDD and rMDD from HC, and the recognition performances with AAL-1024 parcellation were better than that with the conventional AAL-90 parcellation.
Collapse
|