1
|
Belkozhayev A, Niyazova R, Kamal MA, Ivashchenko A, Sharipov K, Wilson CM. Differential microRNA expression in the SH-SY5Y human cell model as potential biomarkers for Huntington's disease. Front Cell Neurosci 2024; 18:1399742. [PMID: 39049823 PMCID: PMC11267620 DOI: 10.3389/fncel.2024.1399742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Huntington's disease (HD) is caused by an expansion of CAG trinucleotide repeat in the HTT gene; the exact pathogenesis of HD currently remains unclear. One of the promising directions in the study of HDs is to determine the molecular mechanism underlying the development and role of microRNAs (miRNAs). This study aimed to identify the profile of miRNAs in an HD human cell line model as diagnostic biomarkers for HD. To study HD, the human SH-SY5Y HD cell model is based on the expression of two different forms: pEGFP-Q23 and pEGFP-Q74 of HTT. The expression of Htt protein was confirmed using aggregation assays combined with immunofluorescence and Western blotting methods. miRNA levels were measured in SH-SY5Y neuronal cell model samples stably expressing Q23 and Q74 using the extraction-free HTG EdgeSeq protocol. A total of 2083 miRNAs were detected, and 354 (top 18 miRNAs) miRNAs were significantly differentially expressed (DE) (p < 0.05) in Q23 and Q74 cell lines. A majority of the miRNAs were downregulated in the HD cell model. Moreover, we revealed that six DE miRNAs target seven genes (ATN1, GEMIN4, EFNA5, CSMD2, CREBBP, ATXN1, and B3GNT) that play important roles in neurodegenerative disorders and showed significant expression differences in mutant Htt (Q74) when compared to wild-type Htt (Q23) using RT-qPCR (p < 0.05 and 0.01). We demonstrated the most important DE miRNA-mRNA profiles, interaction binding sites, and their related pathways in HD using experimental and bioinformatics methods. This will allow the development of novel diagnostic strategies and provide alternative therapeutic routes for treating HD.
Collapse
Affiliation(s)
- Ayaz Belkozhayev
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich, United Kingdom
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohammad Amjad Kamal
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Enzymoics, Hebersham, NSW, Australia
| | | | - Kamalidin Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich, United Kingdom
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Baum ML, Wilton DK, Fox RG, Carey A, Hsu YHH, Hu R, Jäntti HJ, Fahey JB, Muthukumar AK, Salla N, Crotty W, Scott-Hewitt N, Bien E, Sabatini DA, Lanser TB, Frouin A, Gergits F, Håvik B, Gialeli C, Nacu E, Lage K, Blom AM, Eggan K, McCarroll SA, Johnson MB, Stevens B. CSMD1 regulates brain complement activity and circuit development. Brain Behav Immun 2024; 119:317-332. [PMID: 38552925 DOI: 10.1016/j.bbi.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.
Collapse
Affiliation(s)
- Matthew L Baum
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MD-PhD Program of Harvard & MIT, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel G Fox
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alanna Carey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Han H Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruilong Hu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Henna J Jäntti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jaclyn B Fahey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allie K Muthukumar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikkita Salla
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Crotty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nicole Scott-Hewitt
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sabatini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaud Frouin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick Gergits
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chrysostomi Gialeli
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden; Cardiovascular Research - Translational Studies Research Group, Department of Clinical Sciences, Lund University, S-214 28 Malmö, Sweden
| | - Eugene Nacu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew B Johnson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
3
|
Herrera-Rivero M, Adli M, Akiyama K, Akula N, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cruceanu C, Czerski PM, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisén L, Frye MA, Fullerton JM, Gallo C, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu YH, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy MJ, McElroy SL, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Novák T, Nöthen MM, O'Donovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulte EC, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Streit F, Tekola-Ayele F, Thalamuthu A, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt SH, Zandi PP, Alda M, Bauer M, McMahon FJ, Mitchell PB, Rietschel M, Schulze TG, Baune BT. Exploring the genetics of lithium response in bipolar disorders. Int J Bipolar Disord 2024; 12:20. [PMID: 38865039 PMCID: PMC11169116 DOI: 10.1186/s40345-024-00341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry, University of Münster and Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Fliedner Klinik Berlin, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Unitat de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), University of Barcelona, CIBERSAM, Barcelona, Spain
| | - Jean-Michel Aubry
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, INSERM UMR-S 1144, Université Paris Cité, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière, F. Widal, Paris, France
| | - Antonio Benabarre
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Micah Cearns
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Scott R Clark
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Mental Health Research Group, IMIM-Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, INSERM UMR-S 1144, Université Paris Cité, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière, F. Widal, Paris, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Louise Frisén
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Janice M Fullerton
- Neuroscience Research, Australia and School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porres, Peru
| | - Sébastien Gard
- Service de Psychiatrie, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, Canada
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Roland Hasler
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Herms
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Yi-Hsiang Hsu
- Program for Quantitative Genomics, Harvard School of Public Health and HSL Institute for Aging Research, Harvard Medical School, Boston, USA
| | - Stephane Jamain
- Univ. Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France
| | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Marion Leboyer
- Univ. Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Mondor University Hospital, DMU Impact, Fondation FondaMental, Créteil, France
| | - Susan G Leckband
- Office of Mental Health, VA San Diego Healthcare System, California, USA
| | - Mario Maj
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Cynthia Marie-Claire
- Université Paris Cité, Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006, Paris, France
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, USA
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope/University of Cincinnati, Cincinnati, USA
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marina Mitjans
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Institut de Biomedicina de La Universitat de Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | | | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Norio Ozaki
- Department of Psychiatry & Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Hélène Richard-Lepouriel
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research, Australia and School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Adelaide, Australia
| | - Eva C Schulte
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty University of Bonn, Bonn, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Katzutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Christian Simhandl
- Medical Faculty, Bipolar Center Wiener Neustadt, Sigmund Freud University, Vienna, Austria
| | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Spain
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster and Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, University of Melbourne and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Werren EA, Peirent ER, Jantti H, Guxholli A, Srivastava KR, Orenstein N, Narayanan V, Wiszniewski W, Dawidziuk M, Gawlinski P, Umair M, Khan A, Khan SN, Geneviève D, Lehalle D, van Gassen KLI, Giltay JC, Oegema R, van Jaarsveld RH, Rafiullah R, Rappold GA, Rabin R, Pappas JG, Wheeler MM, Bamshad MJ, Tsan YC, Johnson MB, Keegan CE, Srivastava A, Bielas SL. Biallelic variants in CSMD1 are implicated in a neurodevelopmental disorder with intellectual disability and variable cortical malformations. Cell Death Dis 2024; 15:379. [PMID: 38816421 PMCID: PMC11140003 DOI: 10.1038/s41419-024-06768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CTt, 06032, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henna Jantti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kinshuk Raj Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Naama Orenstein
- Schneider Children's Medical Center of Israel, Petah Tikva, 4920235, Israel
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Wojciech Wiszniewski
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Punjab, 54770, Pakistan
| | - Amjad Khan
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, 28420, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - David Geneviève
- Montpellier University, Inserm Unit U1183, Reference Center for Rare Diseases and Developmental Anomalies, CHU, 34000, Montpellier, France
| | - Daphné Lehalle
- Sorbonne University, Department of Medical Genetics, Hospital Armand Trousseau, 75012, Paris, France
| | - K L I van Gassen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences, BUITEMS, Quetta, 87300, Pakistan
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - John G Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute, Washington, 98195, USA
| | - Yao-Chang Tsan
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew B Johnson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anshika Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India.
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Khan H, Harripaul R, Mikhailov A, Herzi S, Bowers S, Ayub M, Shabbir MI, Vincent JB. Biallelic variants identified in 36 Pakistani families and trios with autism spectrum disorder. Sci Rep 2024; 14:9230. [PMID: 38649688 PMCID: PMC11035605 DOI: 10.1038/s41598-024-57942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.
Collapse
Affiliation(s)
- Hamid Khan
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sumayah Herzi
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sonya Bowers
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | | | - Muhammad Imran Shabbir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Yao Z, Yang H, Liu X, Jiang M, Deng W, Fu B. Preliminary study on the role of the CSMD2 gene in bladder cancer. Heliyon 2024; 10:e22593. [PMID: 38163223 PMCID: PMC10754709 DOI: 10.1016/j.heliyon.2023.e22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background CSMD2 has been reported as a potential prognostic factor in several cancers. However, whether CSMD2 affects bladder cancer (BC) remains unclear. Methods Public data were obtained from the TCGA (https://cancergenome.nih.gov) databases. CSMD2expression and its prognostic value were analyzed using bioinformatics methods. CSMD2 mRNA level in patients with BC and BC cell lines was evaluated via quantitative reverse transcriptase polymerase chain reaction. CSMD2 protein level in patients with BC was evaluated via immunohistochemistry. BC cell lines T24 and UMUC-3 were selected for loss-of-function assays targeting CSMD2. Cell viability was determined by CCK8 and clone formation experiments. Cell migration and invasion were evaluated using Transwell assays. Furthermore, the transcriptome of UMUC-3 with CSMD2 knockdown was sequenced to analyze potential signaling network pathways. Finally, the TIMER2.0 database was employed to identify the correlation between CSMD2 and immune cells in the tumor microenvironment. Results CSMD2 expression was up-regulated in BC tissues compared to adjacent tissues. High CSMD2 expression was associated with poor survival and could serve as an independent predictor for survival in patients with BC. Furthermore, down-regulation of CSMD2 notably restrained the viability, migration, and invasion abilities of T24 and UMUC-3 cells. Moreover, transcriptomic sequencing after CSMD2 knockdown in UMUC-3 cells revealed its involvement in the regulation of the malignant phenotype in BC. Finally, public databases suggest a connection between CSMD2 and immune cell infiltration in BC. Conclusions These findings suggest that CSMD2 may promote proliferation and tumorigenicity, and could represent a potential target for improving the prognosis of BC.
Collapse
Affiliation(s)
- Zhijun Yao
- Department of Urology, The First Affiliated Hospital of Nanchang University, China
| | - Hailang Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, China
| | - Ming Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, China
- Jiangxi Institute of Urology, China
| |
Collapse
|
7
|
Herrera-Rivero M, Adli M, Akiyama K, Akula N, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cruceanu C, Czerski PM, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisén L, Frye MA, Fullerton JM, Gallo C, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu YH, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy MJ, McElroy SL, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Novák T, Nöthen MM, O'Donovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulte EC, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Streit F, Tekola-Ayele F, Thalamuthu A, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt SH, Zandi PP, Alda M, Bauer M, McMahon FJ, Mitchell PB, Rietschel M, Schulze TG, Baune BT. Exploring the genetics of lithium response in bipolar disorders. RESEARCH SQUARE 2023:rs.3.rs-3677630. [PMID: 38077040 PMCID: PMC10705597 DOI: 10.21203/rs.3.rs-3677630/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Background Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Collapse
Affiliation(s)
| | | | | | - Nirmala Akula
- United States Department of Health and Human Services
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Josef Frank
- Central Institute of Mental Health, University of Heidelberg
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liping Hou
- United States Department of Health and Human Services
| | | | | | | | | | - Layla Kassem
- United States Department of Health and Human Services
| | | | | | | | | | | | | | - Gonzalo Laje
- United States Department of Health and Human Services
| | | | | | | | | | - Mario Maj
- University of Campania 'Luigi Vanvitelli'
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Pfennig
- University Hospital Carl Gustav Carus, Technische Universität Dresden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fabian Streit
- Central Institute of Mental Health, University of Heidelberg
| | | | | | | | | | | | - Eduard Vieta
- Hospital Clinic, University of Barcelona, IDIBAPS
| | | | | | | | | | - Michael Bauer
- University Hospital Carl Gustav Carus, Technische Universität Dresden
| | | | | | | | | | | |
Collapse
|
8
|
Chung IH, Huang YS, Fang TH, Chen CH. Whole Genome Sequencing Revealed Inherited Rare Oligogenic Variants Contributing to Schizophrenia and Major Depressive Disorder in Two Families. Int J Mol Sci 2023; 24:11777. [PMID: 37511534 PMCID: PMC10380944 DOI: 10.3390/ijms241411777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and affective disorder are two major complex mental disorders with high heritability. Evidence shows that rare variants with significant clinical impacts contribute to the genetic liability of these two disorders. Also, rare variants associated with schizophrenia and affective disorders are highly personalized; each patient may carry different variants. We used whole genome sequencing analysis to study the genetic basis of two families with schizophrenia and major depressive disorder. We did not detect de novo, autosomal dominant, or recessive pathogenic or likely pathogenic variants associated with psychiatric disorders in these two families. Nevertheless, we identified multiple rare inherited variants with unknown significance in the probands. In family 1, with singleton schizophrenia, we detected four rare variants in genes implicated in schizophrenia, including p.Arg1627Trp of LAMA2, p.Pro1338Ser of CSMD1, p.Arg691Gly of TLR4, and Arg182X of AGTR2. The p.Arg691Gly of TLR4 was inherited from the father, while the other three were inherited from the mother. In family 2, with two affected sisters diagnosed with major depressive disorder, we detected three rare variants shared by the two sisters in three genes implicated in affective disorders, including p.Ala4551Gly of FAT1, p.Val231Leu of HOMER3, and p.Ile185Met of GPM6B. These three rare variants were assumed to be inherited from their parents. Prompted by these findings, we suggest that these rare inherited variants may interact with each other and lead to psychiatric conditions in these two families. Our observations support the conclusion that inherited rare variants may contribute to the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
- Department of Psychiatry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Hsuan Fang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
10
|
Veremeyko T, Jiang R, He M, Ponomarev ED. Complement C4-deficient mice have a high mortality rate during PTZ-induced epileptic seizures, which correlates with cognitive problems and the deficiency in the expression of Egr1 and other immediate early genes. Front Cell Neurosci 2023; 17:1170031. [PMID: 37234916 PMCID: PMC10206007 DOI: 10.3389/fncel.2023.1170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Complement system plays an important role in the immune defense against pathogens; however, recent studies demonstrated an important role of complement subunits C1q, C4, and C3 in normal functions of the central nervous system (CNS) such as non-functional synapse elimination (synapse pruning), and during various neurologic pathologies. Humans have two forms of C4 protein encoded by C4A and C4B genes that share 99.5% homology, while mice have only one C4B gene that is functionally active in the complement cascade. Overexpression of the human C4A gene was shown to contribute to the development of schizophrenia by mediating extensive synapse pruning through the activation C1q-C4-C3 pathway, while C4B deficiency or low levels of C4B expression were shown to relate to the development of schizophrenia and autism spectrum disorders possibly via other mechanisms not related to synapse elimination. To investigate the potential role of C4B in neuronal functions not related to synapse pruning, we compared wildtype (WT) mice with C3- and C4B- deficient animals for their susceptibility to pentylenetetrazole (PTZ)- induced epileptic seizures. We found that C4B (but not C3)-deficient mice were highly susceptible to convulsant and subconvulsant doses of PTZ when compared to WT controls. Further gene expression analysis revealed that in contrast to WT or C3-deficient animals, C4B-deficient mice failed to upregulate expressions of multiple immediate early genes (IEGs) Egrs1-4, c-Fos, c-Jus, FosB, Npas4, and Nur77 during epileptic seizures. Moreover, C4B-deficient mice had low levels of baseline expression of Egr1 on mRNA and protein levels, which was correlated with the cognitive problems of these animals. C4-deficient animals also failed to upregulate several genes downstream of IEGs such as BDNF and pro-inflammatory cytokines IL-1β, IL-6, and TNF. Taken together, our study demonstrates a new role of C4B in the regulation of expression of IEGs and their downstream targets during CNS insults such as epileptic seizures.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Mingliang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Eugene D. Ponomarev
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Jung B, Ahn K, Justice C, Norman L, Price J, Sudre G, Shaw P. Rare copy number variants in males and females with childhood attention-deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:1240-1247. [PMID: 36517639 PMCID: PMC10010944 DOI: 10.1038/s41380-022-01906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
While childhood attention-deficit/hyperactivity disorder (ADHD) is more prevalent in males than females, genetic contributors to this effect have not been established. Here, we explore sex differences in the contribution of common and/or rare genetic variants to ADHD. Participants were from the Adolescent Brain and Cognitive Development study (N = 1253 youth meeting DSM-5 criteria for ADHD [mean age = 11.46 years [SD = 0.87]; 31% female] and 5577 unaffected individuals [mean age = 11.42 years [SD = 0.89]; 50% female], overall 66% White, non-Hispanic (WNH), 19% Black/African American, and 15% other races. Logistic regression tested for interactions between sex (defined genotypically) and both rare copy number variants (CNV) and polygenic (common variant) risk in association with ADHD. There was a significant interaction between sex and the presence of a CNV deletion larger than 200 kb, both in the entire cohort (β = -0.74, CI = [-1.27 to -0.20], FDR-corrected p = 0.048) and, at nominal significance levels in the WNH ancestry subcohort (β = -0.86, CI = [-1.51 to -0.20], p = 0.010). Additionally, the number of deleted genes interacted with sex in association with ADHD (whole cohort. β = -0.13, CI = [-0.23 to -0.029], FDR-corrected p = 0.048; WNH. β = -0.17, CI = [-0.29 to -0.050], FDR-corrected p = 0.044) as did the total length of CNV deletions (whole cohort. β = -0.12, CI = [-0.19 to -0.044], FDR-corrected p = 0.028; WNH. β = -0.17, CI = [-0.28 to -0.061], FDR-corrected p = 0.034). This sex effect was driven by increased odds of childhood ADHD for females but not males in the presence of CNV deletions. No similar sex effect was found for CNV duplications or polygenic risk scores. The association between CNV deletions and ADHD was partially mediated by measures of cognitive flexibility. In summary, CNV deletions were associated with increased odds for childhood ADHD in females, but not males.
Collapse
Affiliation(s)
- Benjamin Jung
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cristina Justice
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Luke Norman
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jolie Price
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
13
|
A family-based study of genetic and epigenetic effects across multiple neurocognitive, motor, social-cognitive and social-behavioral functions. Behav Brain Funct 2022; 18:14. [PMID: 36457050 PMCID: PMC9714039 DOI: 10.1186/s12993-022-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Many psychiatric and neurodevelopmental disorders are known to be heritable, but studies trying to elucidate the genetic architecture of such traits often lag behind studies of somatic traits and diseases. The reasons as to why relatively few genome-wide significant associations have been reported for such traits have to do with the sample sizes needed for the detection of small effects, the difficulty in defining and characterizing the phenotypes, partially due to overlaps in affected underlying domains (which is especially true for cognitive phenotypes), and the complex genetic architectures of the phenotypes, which are not wholly captured in traditional case-control GWAS designs. We aimed to tackle the last two issues by performing GWASs of eight quantitative neurocognitive, motor, social-cognitive and social-behavioral traits, which may be considered endophenotypes for a variety of psychiatric and neurodevelopmental conditions, and for which we employed models capturing both general genetic association and parent-of-origin effects, in a family-based sample comprising 402 children and their parents (mostly family trios). We identified 48 genome-wide significant associations across several traits, of which 3 also survived our strict study-wide quality criteria. We additionally performed a functional annotation of implicated genes, as most of the 48 associations were with variants within protein-coding genes. In total, our study highlighted associations with five genes (TGM3, CACNB4, ANKS1B, CSMD1 and SYNE1) associated with measures of working memory, processing speed and social behavior. Our results thus identify novel associations, including previously unreported parent-of-origin associations with relevant genes, and our top results illustrate new potential gene → endophenotype → disorder pathways.
Collapse
|
14
|
Zhang H, Huang T, Ren X, Fang X, Chen X, Wei H, Sun W, Wang Y. Integrated pan-cancer analysis of CSMD2 as a potential prognostic, diagnostic, and immune biomarker. Front Genet 2022; 13:918486. [PMID: 36061177 PMCID: PMC9428318 DOI: 10.3389/fgene.2022.918486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
The protein encoded by CUB and Sushi Multiple Domains 2 (CSMD2) is likely involved in regulating the complement cascade reaction of the immune system. However, current scientific evidence on the comprehensive roles of CSMD2 in pan-cancer is relatively scarce. Therefore, in this study, we explored the transcriptional level of CSMD2 in pan-caner using TCGA, GEO, and International Cancer Genome Consortium databases. Receiver operating characteristic curve analysis was used to investigate the diagnostic efficacy of CSMD2. The Kaplan-Meier Plotter and Oncolnc were used to investigate the correlation between CSMD2 expression and prognosis. Additionally, we analyzed the correlation between epigenetic methylation and CSMD2 expression in various cancers based on UALCAN, as well as, the correlation between CSMD2 and tumor mutational burden (TMB), microsatellite instability (MSI), and tumor neoantigen burden (TNB) in tumors. TIMER2.0 database was employed to investigate the correlation between CSMD2 and immune cells in the tumor microenvironment and immune checkpoints. Based on TISIDB, the correlation between CSMD2 and MHC molecules and immunostimulators was analyzed. Ultimately, we observed with a pan-cancer analysis that CSMD2 was upregulated in most tumors and had moderate to high diagnostic efficiency, and that high expression was closely associated with poor prognosis in patients with tumors. Moreover, hypermethylation of CSMD2 promoter and high levels of m6A methylation regulators were also observed in most cancers. CSMD2 expression was negatively correlated with TMB and MSI in stomach adenocarcinoma (STAD) and stomach and esophageal carcinoma (STES), as well as with tumor mutational burden, microsatellite instability, and TNB in head-neck squamous cell carcinoma (HNSC). In most cancers, CSMD2 might be associated with immune evasion or immunosuppression, as deficient anti-tumor immunity and upregulation of immune checkpoints were also observed in this study. In conclusion, CSMD2 could serve as a promising prognostic, diagnostic and immune biomarker in pan-cancer.
Collapse
Affiliation(s)
- Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Taobi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiangqing Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hui Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yuping Wang,
| |
Collapse
|
15
|
Sharma R, Frasch MG, Zelgert C, Zimmermann P, Fabre B, Wilson R, Waldenberger M, MacDonald JW, Bammler TK, Lobmaier SM, Antonelli MC. Maternal-fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study. Clin Epigenetics 2022; 14:87. [PMID: 35836289 PMCID: PMC9281078 DOI: 10.1186/s13148-022-01310-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal stress before, during and after pregnancy has profound effects on the development and lifelong function of the infant's neurocognitive development. We hypothesized that the programming of the central nervous system (CNS), hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) induced by prenatal stress (PS) is reflected in electrophysiological and epigenetic biomarkers. In this study, we aimed to find noninvasive epigenetic biomarkers of PS in the newborn salivary DNA. RESULTS A total of 728 pregnant women were screened for stress exposure using Cohen Perceived Stress Scale (PSS), 164 women were enrolled, and 114 dyads were analyzed. Prenatal Distress Questionnaire (PDQ) was also administered to assess specific pregnancy worries. Transabdominal fetal electrocardiograms (taECG) were recorded to derive coupling between maternal and fetal heart rates resulting in a 'Fetal Stress Index' (FSI). Upon delivery, we collected maternal hair strands for cortisol measurements and newborn's saliva for epigenetic analyses. DNA was extracted from saliva samples, and DNA methylation was measured using EPIC BeadChip array (850 k CpG sites). Linear regression was used to identify associations between PSS/PDQ/FSI/Cortisol and DNA methylation. We found epigenome-wide significant associations for 5 CpG with PDQ and cortisol at FDR < 5%. Three CpGs were annotated to genes (Illumina Gene annotation file): YAP1, TOMM20 and CSMD1, and two CpGs were located approximately lay at 50 kb from SSBP4 and SCAMP1. In addition, two differentiated methylation regions (DMR) related to maternal stress measures PDQ and cortisol were found: DAXX and ARL4D. CONCLUSIONS Genes annotated to these CpGs were found to be involved in secretion and transportation, nuclear signaling, Hippo signaling pathways, apoptosis, intracellular trafficking and neuronal signaling. Moreover, some CpGs are annotated to genes related to autism, post-traumatic stress disorder (PTSD) and schizophrenia. However, our results should be viewed as hypothesis generating until replicated in a larger sample. Early assessment of such noninvasive PS biomarkers will allow timelier detection of babies at risk and a more effective allocation of resources for early intervention programs to improve child development. A biomarker-guided early intervention strategy is the first step in the prevention of future health problems, reducing their personal and societal impact.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology and Center On Human Development and Disability (CHDD), University of Washington, Seattle, WA, USA
| | - Camila Zelgert
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Zimmermann
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bibiana Fabre
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Silvia M Lobmaier
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marta C Antonelli
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Wang X, Chen X, Liu Y, Huang S, Ding J, Wang B, Dong P, Sun Z, Chen L. CSMD1 suppresses cancer progression by inhibiting proliferation, epithelial-mesenchymal transition, chemotherapy-resistance and inducing immunosuppression in esophageal squamous cell carcinoma. Exp Cell Res 2022; 417:113220. [PMID: 35623420 DOI: 10.1016/j.yexcr.2022.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Human CUB and Sushi multiple domains (CSMD1) is considered a crucial role in cancer progression, but the specific function in esophageal squamous cell carcinoma (ESCC) is not clear. Understanding the role of CSMD1 in ESCC progression may lead to a novel strategy for ESCC treatment. Here, we found that both CSMD1 mRNA and protein levels were downregulated in ESCC tissues. Reduced CSMD1 expression was correlated with a poor prognosis in ESCC patients. CSMD1 expression inhibited proliferation, migration and invasion in ESCC cell lines in vitro. CSMD1 deficiency in established xenografted tumors increases tumor size and weight. We further found that CSMD1-overexpression cells are more sensitive to chemotherapy. Moreover, we addressed the role of CSMD1 in the CD8+ T cell immune response. An in vitro killing assay showed that the cytotoxicity of CD8+ T cells was inhibited in CSMD1-overexpression tumor cells. In vivo, in CSMD1 deficiency tumor-bearing mice activation and expansion of CD8+ T cells were increased. Further investigation showed that CSMD1 expression on tumor cells was positively correlated with CD8+ T cells infiltration and cytokines secretion. These findings highlight that CSMD1 is a tumor suppressor gene in ESCC patients and a positive regulator of CD8+ T cells expansion and activation, and could increase cytokines secretion, indicating that tumor cell-associated CSMD1 might be a target for ESCC.
Collapse
Affiliation(s)
- Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shan Huang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jian Ding
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Baoxin Wang
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenfeng Sun
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
17
|
Westacott LJ, Wilkinson LS. Complement Dependent Synaptic Reorganisation During Critical Periods of Brain Development and Risk for Psychiatric Disorder. Front Neurosci 2022; 16:840266. [PMID: 35600620 PMCID: PMC9120629 DOI: 10.3389/fnins.2022.840266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
We now know that the immune system plays a major role in the complex processes underlying brain development throughout the lifespan, carrying out a number of important homeostatic functions under physiological conditions in the absence of pathological inflammation or infection. In particular, complement-mediated synaptic pruning during critical periods of early life may play a key role in shaping brain development and subsequent risk for psychopathology, including neurodevelopmental disorders such as schizophrenia and autism spectrum disorders. However, these disorders vary greatly in their onset, disease course, and prevalence amongst sexes suggesting complex interactions between the immune system, sex and the unique developmental trajectories of circuitries underlying different brain functions which are yet to be fully understood. Perturbations of homeostatic neuroimmune interactions during different critical periods in which regional circuits mature may have a plethora of long-term consequences for psychiatric phenotypes, but at present there is a gap in our understanding of how these mechanisms may impact on the structural and functional changes occurring in the brain at different developmental stages. In this article we will consider the latest developments in the field of complement mediated synaptic pruning where our understanding is beginning to move beyond the visual system where this process was first described, to brain areas and developmental periods of potential relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Laura J. Westacott
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Kolarikova K, Vodicka R, Vrtel R, Stellmachova J, Prochazka M, Mensikova K, Kanovsky P. Whole Exome Sequencing Study in Isolated South-Eastern Moravia (Czechia) Population Indicates Heterogenous Genetic Background for Parkinsonism Development. Front Neurosci 2022; 16:817713. [PMID: 35368288 PMCID: PMC8968137 DOI: 10.3389/fnins.2022.817713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinsonism belongs to the most common neurodegenerative disease. Genetic predisposition could be one of the significant risk factor for disease development. It has been described higher prevalence of parkinsonism in large pedigree from southeastern Moravia region. The study aims were to select accessible subfamily trios from the pedigree suitable for segregation genetic analyses to perform whole exome sequencing (WES) in trio individuals and further to evaluate genetic variants in the each trio. We used IonTorrent platform for WES for five subfamily trios (1–5). Each trio included two affected and one healthy person (as control). Found variants were filtered with respect to MAF < 1% (minor allele frequency), variants effect (based on prediction tools) and disease filter (Parkinsonism responsible genes). Finally, the variants from each trio were assessed with respect to the presence in the patients. There were found no one founder mutation in the subfamilies from the pedigree. Trio 1 shares two variants with trio 2:MC1R:c.322G > A (p.A108T) and MTCL1:c.1445C > T (p.A482V), trio 3 shares two variants with trio 5: DNAJC6:c.1817A > C (p.H606P) and HIVEP3:c.3856C > A (p.R1286W). In trios 4 and 5, there were found two variants in gene CSMD1:c.3335A > G (p.E1112G) and c.4071C > G (p.I1357M) respectively. As the most potentially damaging, we evaluated the non-shared variant SLC18A2:c.583G > A (p.G195S). The variant could affect dopamine transport in dopaminergic neurons. The study of the parkinsonism genetic background in isolated Moravian population suggested that there could be significant accumulation of many risk genetic factors. For verification of the variants influence, it would be appropriate to perform a more extensive population study and suitable functional analysis.
Collapse
Affiliation(s)
- Kristyna Kolarikova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
| | - Radek Vodicka
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
- *Correspondence: Radek Vodicka,
| | - Radek Vrtel
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
| | - Julia Stellmachova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Martin Prochazka
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Katerina Mensikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Kanovsky
- Department of Neurology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
19
|
Soteros BM, Sia GM. Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 2021; 14:e1545. [PMID: 34738335 PMCID: PMC9066608 DOI: 10.1002/wsbm.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Synapse elimination, also known as synaptic pruning, is a critical step in the maturation of neural circuits during brain development. Mounting evidence indicates that the complement cascade of the innate immune system plays an important role in synapse elimination. Studies indicate that excess synapses during development are opsonized by complement proteins and subsequently phagocytosed by microglia which expresses complement receptors. The process is regulated by diverse molecular signals, including complement inhibitors that affect the activation of complement, as well as signals that affect microglial recruitment and activation. These signals may promote or inhibit the removal of specific sets of synapses during development. The complement-microglia system has also been implicated in the pathogenesis of several developmental brain disorders, suggesting that the dysregulation of mechanisms of synapse pruning may underlie the specific circuitry defects in these diseases. Here, we review the latest evidence on the molecular and cellular mechanisms of complement-dependent and microglia-dependent synapse elimination during brain development, and highlight the potential of this system as a therapeutic target for developmental brain disorders. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Stem Cells and Development Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gek Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021; 21:454-468. [PMID: 33479477 PMCID: PMC9213174 DOI: 10.1038/s41577-020-00487-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Lim TKY, Ruthazer ES. Microglial trogocytosis and the complement system regulate axonal pruning in vivo. eLife 2021; 10:e62167. [PMID: 33724186 PMCID: PMC7963485 DOI: 10.7554/elife.62167] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Partial phagocytosis-called trogocytosis-of axons by microglia has been documented in ex vivo preparations but has not been directly observed in vivo. The mechanisms that modulate microglial trogocytosis of axons and its function in neural circuit development remain poorly understood. Here, we directly observe axon trogocytosis by microglia in vivo in the developing Xenopus laevis retinotectal circuit. We show that microglia regulate pruning of retinal ganglion cell axons and are important for proper behavioral response to dark and bright looming stimuli. Using bioinformatics, we identify amphibian regulator of complement activation 3, a homolog of human CD46, as a neuronally expressed synapse-associated complement inhibitory molecule that inhibits trogocytosis and axonal pruning. Using a membrane-bound complement C3 fusion protein, we demonstrate that enhancing complement activity enhances axonal pruning. Our results support the model that microglia remodel axons via trogocytosis and that neurons can control this process through expression of complement inhibitory proteins.
Collapse
Affiliation(s)
- Tony KY Lim
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
22
|
Peoples N, Strang C. Complement Activation in the Central Nervous System: A Biophysical Model for Immune Dysregulation in the Disease State. Front Mol Neurosci 2021; 14:620090. [PMID: 33746710 PMCID: PMC7969890 DOI: 10.3389/fnmol.2021.620090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Complement, a feature of the innate immune system that targets pathogens for phagocytic clearance and promotes inflammation, is tightly regulated to prevent damage to host tissue. This regulation is paramount in the central nervous system (CNS) since complement proteins degrade neuronal synapses during development, homeostasis, and neurodegeneration. We propose that dysregulated complement, particularly C1 or C3b, may errantly target synapses for immune-mediated clearance, therefore highlighting regulatory failure as a major potential mediator of neurological disease. First, we explore the mechanics of molecular neuroimmune relationships for the regulatory proteins: Complement Receptor 1, C1-Inhibitor, Factor H, and the CUB-sushi multiple domain family. We propose that biophysical and chemical principles offer clues for understanding mechanisms of dysregulation. Second, we describe anticipated effects to CNS disease processes (particularly Alzheimer's Disease) and nest our ideas within existing basic science, clinical, and epidemiological findings. Finally, we illustrate how the concepts presented within this manuscript provoke new ways of approaching age-old neurodegenerative processes. Every component of this model is testable by straightforward experimentation and highlights the untapped potential of complement dysregulation as a driver of CNS disease. This includes a putative role for complement-based neurotherapeutic agents and companion biomarkers.
Collapse
|
23
|
Host genetics influences the relationship between the gut microbiome and psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110153. [PMID: 33130294 DOI: 10.1016/j.pnpbp.2020.110153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
The gut microbiome is associated with psychiatric disorders; however, the molecular mechanisms mediating this association are poorly understood. The ability of host genetics to modulate the gut microbiome may be an important factor in understanding the association. In this study, we aimed to evaluate the role of genetic variants associated with the gut microbiome in the susceptibility of individuals to four psychiatric disorders: schizophrenia (SCZ), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and major depressive disorder (MDD). A total of 201 host genetic markers associated with microbiome outcomes and reported in available genome-wide association studies (GWAS) were included in the analyses. We searched for these variants in the summary statistics of the largest GWAS on these disorders to date, which were published by the Psychiatric Genomic Consortium, and performed gene-based and gene set association analyses. Two variants were significantly associated with ASD (rs9401458 and rs9401452) and one with MDD (rs75036654). For the gene-based association analysis, eight genes were associated with SCZ (ASIC2, KCND3, ITSN1, SIPA1L3, RBMS3, BANK1, CSMD1, and LHFPL3), one with MDD (ACTL8), two with ADHD (C14orf39 and FBXL17), and one with ASD (PINX). The gene set comprising 83 genes was associated with SCZ (p = 0.047). These findings suggest that genes related to microbiome composition may affect the susceptibility of individuals to psychiatric disorders, mainly schizophrenia. Although less robust, the associations with ASD, ADHD, and MDD cannot be discarded.
Collapse
|
24
|
Huang W, Li G, Wang Z, Zhou L, Yin X, Yang T, Wang P, Teng X, Feng Y, Yu H. A Ten-N 6-Methyladenosine (m 6A)-Modified Gene Signature Based on a Risk Score System Predicts Patient Prognosis in Rectum Adenocarcinoma. Front Oncol 2021; 10:567931. [PMID: 33680913 PMCID: PMC7925823 DOI: 10.3389/fonc.2020.567931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The study aims to analyze the expression of N6-methyladenosine (m6A)-modified genes in rectum adenocarcinoma (READ) and identify reliable prognostic biomarkers to predict the prognosis of READ. MATERIALS AND METHODS RNA sequence data of READ and corresponding clinical survival data were obtained from The Cancer Genome Atlas (TCGA) database. N6-methyladenosine (m6A)-modified genes in READ were downloaded from the "m6Avar" database. Differentially expressed m6A-modified genes in READ stratified by different clinicopathological characteristics were identified using the "limma" package in R. Protein-protein interaction (PPI) network and co-expression analysis of differentially expressed genes (DEGs) were performed using "STRING" and Cytoscape, respectively. Principal component analysis (PCA) was done using R. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to functionally annotate the differentially expressed genes in different subgroups. Univariate Cox regression analyses were conducted to identify the powerful independent prognostic factors in READ associated with overall survival (OS). A robust likelihood-based survival model was built using the "rbsurv" package to screen for survival-associated signature genes. The Support Vector Machine (SVM) was used to predict the prognosis of READ through the risk score of survival-associated signature genes. Correlation analysis were carried out using GraphPad prism 8. RESULTS We screened 974 differentially expressed m6A-modified genes among four types of READ samples. Two READ subgroups (group 1 and group 2) were identified by K means clustering according to the expression of DEGs. The two subgroups were significantly different in overall survival and pathological stages. Next, 118 differentially expressed genes between the two subgroups were screened and the expression of 112 genes was found to be related to the prognosis of READ. Next, a panel of 10 survival-associated signature genes including adamtsl1, csmd2, fam13c, fam184a, klhl4, olfml2b, pdzd4, sec14l5, setbp1, tmem132b was constructed. The signature performed very well for prognosis prediction, time-dependent receiver-operating characteristic (ROC) analysis displaying an area under the curve (AUC) of 0.863, 0.8721, and 0.8752 for 3-year survival rate, prognostic status, and pathological stage prediction, respectively. Correlation analysis showed that the expression levels of the 10 m6A-modified genes were positively correlated with that of m6A demethylase FTO and ALKBH5. CONCLUSION This study identified potential m6A-modified genes that may be involved in the pathophysiology of READ and constructed a novel gene expression panel for READ risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gen Li
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zihang Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pei Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yajuan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Schizophrenia: Complement Cleaning or Killing. Genes (Basel) 2021; 12:genes12020259. [PMID: 33670154 PMCID: PMC7916832 DOI: 10.3390/genes12020259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with a typical onset occurring during adolescence or young adulthood. The heterogeneity of the disorder complicates our understanding of the pathophysiology. Reduced cortical synaptic densities are commonly observed in schizophrenia and suggest a role for excessive synaptic elimination. A major pathway hypothesised to eliminate synapses during postnatal development is the complement system. This review provides an overview of genetic and functional evidence found for the individual players of the classical complement pathway. In addition, the consequences of the absence of complement proteins, in the form of complement protein deficiencies in humans, are taken into consideration. The collective data provide strong evidence for excessive pruning by the classical complement pathway, contributing to cognitive impairment in schizophrenia. In future studies, it will be important to assess the magnitude of the contribution of complement overactivity to the occurrence and prevalence of phenotypic features in schizophrenia. In addition, more insight is required for the exact mechanisms by which the complement system causes excessive pruning, such as the suggested involvement of microglial engulfment and degradation of synapses. Ultimately, this knowledge is a prerequisite for the development of therapeutic interventions for selective groups of schizophrenia patients.
Collapse
|
26
|
Mathkar PP, Chen X, Sulovari A, Li D. Characterization of Hepatitis B Virus Integrations Identified in Hepatocellular Carcinoma Genomes. Viruses 2021; 13:v13020245. [PMID: 33557409 PMCID: PMC7915589 DOI: 10.3390/v13020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. Almost half of HCC cases are associated with hepatitis B virus (HBV) infections, which often lead to HBV sequence integrations in the human genome. Accurate identification of HBV integration sites at a single nucleotide resolution is critical for developing a better understanding of the cancer genome landscape and of the disease itself. Here, we performed further analyses and characterization of HBV integrations identified by our recently reported VIcaller platform in recurrent or known HCC genes (such as TERT, MLL4, and CCNE1) as well as non-recurrent cancer-related genes (such as CSMD2, NKD2, and RHOU). Our pathway enrichment analysis revealed multiple pathways involving the alcohol dehydrogenase 4 gene, such as the metabolism pathways of retinol, tyrosine, and fatty acid. Further analysis of the HBV integration sites revealed distinct patterns involving the integration upper breakpoints, integrated genome lengths, and integration allele fractions between tumor and normal tissues. Our analysis also implies that the VIcaller method has diagnostic potential through discovering novel clonal integrations in cancer-related genes. In conclusion, although VIcaller is a hypothesis free virome-wide approach, it can still be applied to accurately identify genome-wide integration events of a specific candidate virus and their integration allele fractions.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
| | - Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (X.C.); (D.L.)
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Cajal Neuroscience Inc., Seattle, WA 98102, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (X.C.); (D.L.)
| |
Collapse
|
27
|
Sager REH, Walker AK, Middleton F, Robinson K, Webster MJ, Weickert CS. Trajectory of change in brain complement factors from neonatal to young adult humans. J Neurochem 2020; 157:479-493. [PMID: 33190236 DOI: 10.1111/jnc.15241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Accepted: 11/05/2020] [Indexed: 01/17/2023]
Abstract
Immune system components also regulate synapse formation and refinement in neurodevelopment. The complement pathway, associated with cell lysis and phagocytosis, is implicated in synaptic elimination. Aberrant adolescent synaptic pruning may underpin schizophrenia onset; thus, changes in cortical complement activity during human development are of major interest. Complement is genetically linked to schizophrenia via increased C4 copy number variants, but the developmental trajectory of complement expression in the human brain is undetermined. As complement increases during periods of active synaptic engulfment in rodents, we hypothesized that complement expression would increase during postnatal development in humans, particularly during adolescence. Using human postmortem prefrontal cortex, we observed that complement activator (C1QB and C3) transcripts peaked in early neurodevelopment, and were highest in toddlers, declining in teenagers (all ANCOVAs between F = 2.41 -3.325, p = .01-0.05). We found that C4 protein was higher at 1-5 years (H = 16.378, p = .012), whereas C3 protein levels were unchanged with age. The microglial complement receptor subunit CD11b increased in mRNA early in life and peaked in the toddler brain (ANCOVA: pH, F = 4.186, p = .003). Complement inhibitors (CD46 and CD55) increased at school age, but failed to decrease like complement activators (both ANCOVAs, F > 4.4, p < .01). These data suggest the activation of complement in the human prefrontal cortex occurs between 1 and 5 years. We did not find evidence of induction of complement factors during adolescence and instead found increased or sustained levels of complement inhibitor mRNA at maturation. Dysregulation of these typical patterns of complement may predispose the brain to neurodevelopmental disorders such as autism or schizophrenia.
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Adam K Walker
- Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Monash Institute of Pharmaceutical Science, Monash University, Parkville, Vic, Australia
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
28
|
Bogari NM, Al-Allaf FA, Aljohani A, Taher MM, Qutub NA, Alhelfawi S, Alobaidi A, Alqudah DM, Banni H, Dairi G, Amin AA. The Co-existence of ADHD With Autism in Saudi Children: An Analysis Using Next-Generation DNA Sequencing. Front Genet 2020; 11:548559. [PMID: 33384710 PMCID: PMC7770135 DOI: 10.3389/fgene.2020.548559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders. Several studies have confirmed the co-existence of other neuropsychiatric disorders with ADHD. Out of 106 individuals suspected to have ADHD, eight Saudi Arabian pediatric patients were diagnosed with ADHD using a dual assessment procedure based on highly significant scores from the international criteria for diagnosis; (full form DMS) DSM-5. Then, these patients were examined for the co-existence of autism and ADHD using different international diagnostic protocols. Four patients with combined ADHD and autism and four ADHD patients without autism were examined for the presence of genetic variants. Six variants (chr1:98165091, chr6:32029183, chr6:32035603, chr6:32064098, chr8:2909992, chr16:84213434) were identified in 75% of the patients with ADHD and autism, indicating that these genes may have a possible role in causing autism. Five variants (The chr2:116525960, chr15:68624396, chr15:91452595, chr15:92647645, and chr16:82673047) may increase to the severity of ADHD. This study recommends screening these eleven variants in ADHD cases and their relevant controls to confirm the prevalence in the Saudi population. It is recommended that future studies examine the 11 variants in detail.
Collapse
Affiliation(s)
- Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashwag Aljohani
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohiuddin M. Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nermeen A. Qutub
- Special Need Department, School of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Suhair Alhelfawi
- Special Need Department, School of Education, Umm Al-Qura University, Makkah, Saudi Arabia
- Institute of Education, University of Reading, Reading, United Kingdom
| | - Amal Alobaidi
- Sinad City for Special Education, Jeddah, Saudi Arabia
| | - Derar M. Alqudah
- Special Need Department, School of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Banni
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghida Dairi
- Medicine and Medical Sciences Research Center, Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amr A. Amin
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation 2020; 17:354. [PMID: 33239010 PMCID: PMC7690210 DOI: 10.1186/s12974-020-02024-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The complement cascade is a critical effector mechanism of the innate immune system that contributes to the rapid clearance of pathogens and dead or dying cells, as well as contributing to the extent and limit of the inflammatory immune response. In addition, some of the early components of this cascade have been clearly shown to play a beneficial role in synapse elimination during the development of the nervous system, although excessive complement-mediated synaptic pruning in the adult or injured brain may be detrimental in multiple neurogenerative disorders. While many of these later studies have been in mouse models, observations consistent with this notion have been reported in human postmortem examination of brain tissue. Increasing awareness of distinct roles of C1q, the initial recognition component of the classical complement pathway, that are independent of the rest of the complement cascade, as well as the relationship with other signaling pathways of inflammation (in the periphery as well as the central nervous system), highlights the need for a thorough understanding of these molecular entities and pathways to facilitate successful therapeutic design, including target identification, disease stage for treatment, and delivery in specific neurologic disorders. Here, we review the evidence for both beneficial and detrimental effects of complement components and activation products in multiple neurodegenerative disorders. Evidence for requisite co-factors for the diverse consequences are reviewed, as well as the recent studies that support the possibility of successful pharmacological approaches to suppress excessive and detrimental complement-mediated chronic inflammation, while preserving beneficial effects of complement components, to slow the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
- Department of Neurobiology and Behavior, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
| |
Collapse
|
30
|
Rebelo MÂ, Gómez C, Gomes I, Poza J, Martins S, Maturana-Candelas A, Ruiz-Gómez SJ, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Pinto N, Lopes AM. Genome-Wide Scan for Five Brain Oscillatory Phenotypes Identifies a New QTL Associated with Theta EEG Band. Brain Sci 2020; 10:brainsci10110870. [PMID: 33218114 PMCID: PMC7698967 DOI: 10.3390/brainsci10110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Brain waves, measured by electroencephalography (EEG), are a powerful tool in the investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for brain wave relative power (RP), we collected resting state EEG data in five frequency bands (δ, θ, α, β1, and β2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for disease status. One novel association was found with an interesting candidate for a role in brain wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the importance of immune regulation in brain function. Additionally, at a significance cutoff value of 5 × 10−6, 18 independent association signals were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.
Collapse
Affiliation(s)
- Miguel Ângelo Rebelo
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Correspondence: (C.G.); (N.P.)
| | - Iva Gomes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Sandra Martins
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Aarón Maturana-Candelas
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Saúl J. Ruiz-Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | | | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Nádia Pinto
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Centro de Matemática da, Universidade do Porto, 4169-007 Porto, Portugal
- Correspondence: (C.G.); (N.P.)
| | - Alexandra M. Lopes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
31
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
32
|
Cai HQ, Weickert TW, Catts VS, Balzan R, Galletly C, Liu D, O'Donnell M, Shannon Weickert C. Altered levels of immune cell adhesion molecules are associated with memory impairment in schizophrenia and healthy controls. Brain Behav Immun 2020; 89:200-208. [PMID: 32540151 DOI: 10.1016/j.bbi.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/25/2023] Open
Abstract
Increased cytokines and increased intercellular adhesion molecule-1 (ICAM1) found in the schizophrenia prefrontal cortex and in the blood may relate to cognitive deficits. Endothelial ICAM1 regulates immune cell trafficking into the brain by binding to integrins located on the surface of leukocytes. Whether the circulating levels of the main ICAM1 adhesion partners, lymphocyte-function associated antigen-1 (LFA1) and complement receptor 3 (CR3), both integrins, are altered in schizophrenia is unknown. Gene expressions of ICAM1, LFA1 and CR3 were measured in leukocytes from 86 schizophrenia patients and 77 controls. Participants were also administered cognitive testing to determine the extent to which cognitive ability was related to molecular measures of leukocyte adhesion. This cohort was previously stratified into inflammatory subgroups based on circulating cytokine mRNAs; thus, gene expressions were analysed by diagnosis and by inflammatory subgroups. Previously measured plasma ICAM1 protein was elevated in "high inflammation" schizophrenia compared to both "high" and "low inflammation" controls while ICAM1 mRNA was unchanged in leukocytes. LFA1 mRNA was decreased and CR3 mRNA was increased in leukocytes from people with schizophrenia compared to controls. LFA1 mRNA levels were positively correlated with working memory and elevated soluble ICAM1 was negatively correlated with verbal memory in schizophrenia. Altogether, some of the cognitive deficits in schizophrenia may be associated with altered expression of molecules that regulate immune cell trafficking.
Collapse
Affiliation(s)
- Helen Q Cai
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Thomas W Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, Australia; Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Vibeke S Catts
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ryan Balzan
- Discipline of Psychiatry, University of Adelaide, Australia; College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, University of Adelaide, Australia; Northern Adelaide Local Health Network, Adelaide, Australia; Ramsay Health Care (SA) Mental Health, Adelaide, Australia
| | - Dennis Liu
- Discipline of Psychiatry, University of Adelaide, Australia; Northern Adelaide Local Health Network, Adelaide, Australia
| | | | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, Australia; Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
33
|
Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci 2020; 23:1067-1078. [PMID: 32661396 PMCID: PMC7483802 DOI: 10.1038/s41593-020-0672-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Complement-mediated synapse elimination has emerged as an important process in both brain development and neurological diseases, but whether neurons express complement inhibitors that protect synapses against complement-mediated synapse elimination remains unknown. Here, we show that the sushi domain protein SRPX2 is a neuronally expressed complement inhibitor that regulates complement-dependent synapse elimination. SRPX2 directly binds to C1q and blocks its activity, and SRPX2-/Y mice show increased C3 deposition and microglial synapse engulfment. They also show a transient decrease in synapse numbers and increase in retinogeniculate axon segregation in the lateral geniculate nucleus. In the somatosensory cortex, SRPX2-/Y mice show decreased thalamocortical synapse numbers and increased spine pruning. C3-/-;SRPX2-/Y double-knockout mice exhibit phenotypes associated with C3-/- mice rather than SRPX2-/Y mice, which indicates that C3 is necessary for the effect of SRPX2 on synapse elimination. Together, these results show that SRPX2 protects synapses against complement-mediated elimination in both the thalamus and the cortex.
Collapse
Affiliation(s)
- Qifei Cong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gek-Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
34
|
Comer AL, Carrier M, Tremblay MÈ, Cruz-Martín A. The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front Cell Neurosci 2020; 14:274. [PMID: 33061891 PMCID: PMC7518314 DOI: 10.3389/fncel.2020.00274] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a disorder with a heterogeneous etiology involving complex interplay between genetic and environmental risk factors. The immune system is now known to play vital roles in nervous system function and pathology through regulating neuronal and glial development, synaptic plasticity, and behavior. In this regard, the immune system is positioned as a common link between the seemingly diverse genetic and environmental risk factors for schizophrenia. Synthesizing information about how the immune-brain axis is affected by multiple factors and how these factors might interact in schizophrenia is necessary to better understand the pathogenesis of this disease. Such knowledge will aid in the development of more translatable animal models that may lead to effective therapeutic interventions. Here, we provide an overview of the genetic risk factors for schizophrenia that modulate immune function. We also explore environmental factors for schizophrenia including exposure to pollution, gut dysbiosis, maternal immune activation and early-life stress, and how the consequences of these risk factors are linked to microglial function and dysfunction. We also propose that morphological and signaling deficits of the blood-brain barrier, as observed in some individuals with schizophrenia, can act as a gateway between peripheral and central nervous system inflammation, thus affecting microglia in their essential functions. Finally, we describe the diverse roles that microglia play in response to neuroinflammation and their impact on brain development and homeostasis, as well as schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ashley L. Comer
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Alberto Cruz-Martín
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States
| |
Collapse
|
35
|
Abstract
Purpose of Review A better understanding of the key molecules/pathways underlying the pathophysiology of depression and schizophrenia may contribute to novel therapeutic strategies. In this review, we have discussed the recent developments on the role of inflammatory pathways in the pathogenesis of depression and schizophrenia. Recent Findings Inflammation is an innate immune response that can be triggered by various factors, including pathogens, stress and injury. Under normal conditions, the inflammatory responses quiet after pathogen clearance and tissue repair. However, abnormal long-term or chronic inflammation can lead to damaging effects. Accumulating evidence suggest that dysregulated inflammation is linked to the pathogenesis of neuropsychiatric disorders. In this review, we have discussed the roles of complement system, infiltration of peripheral immune cells into the central nervous system (CNS), the gut-brain axis, and the kynurenine pathway in depression and schizophrenia. Summary There is a large body of compelling evidence on the role of inflammatory pathways in depression and schizophrenia. Although most of these findings show their roles in the pathophysiology of the above disorders, additional studies are warranted to investigate the therapeutic potential of various immune signaling targets discussed in this article.
Collapse
|
36
|
Guan F, Ni T, Han W, Lin H, Zhang B, Chen G, Zhu L, Liu D, Zhang T. Evaluation of the relationships of the WBP1L gene with schizophrenia and the general psychopathology scale based on a case-control study. Am J Med Genet B Neuropsychiatr Genet 2020; 183:164-171. [PMID: 31840934 DOI: 10.1002/ajmg.b.32773] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
WBP1L is a target of microRNA 137 (miR-137) and has been considered a candidate gene for schizophrenia (SCZ). To investigate the relationships between WBP1L and SCZ and its related symptom scales, a total of 5,993 Chinese Han subjects, including 2,128 SCZ patients and 3,865 controls, were enrolled. In addition, an independent sample set for replication study including 1,052 SCZ patients and 2,124 controls were also recruited. Thirty-two tag single nucleotide polymorphisms (SNPs) located within gene region of WBP1L were selected for genotyping and analyzing. The expression quantitative trait loci (eQTL) effects for the targeted SNPs were investigated with gene expression data from multiple human tissues. Rs4147157 (OR = 0.84, p = 1.51 × 10-5 ) and rs284854 (OR = 1.14, p = 7.00 × 10-4 ) were significantly associated with SCZ disease status and these association signals were replicated in our replication sample. A significant association was identified between rs4147157 and the general (β = -.66, p = .001) and total (β = -.8, p = .0042) scores of positive and negative syndrome scale scores in SCZ patients. Both SNPs were significant eQTL for genes around WBP1L in human brain tissues including ARL3 and AS3MT. To conclude, SNPs rs4147157 and rs284854 were associated with SCZ in the Chinese Han population. Additionally, rs4147157 was significantly associated with specific symptom features of SCZ.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wei Han
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huali Lin
- Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Chen
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Li Zhu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dan Liu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Shen F, Long Y, Li F, Ge G, Song G, Li Q, Qiao Z, Cui Z. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics 2020; 112:2603-2614. [PMID: 32109564 DOI: 10.1016/j.ygeno.2020.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
Amur catfish is extensively distributed and cultured in Asian countries. Despite of economic importance, the genomic information of this species remains limited. A reference transcriptome of Amur catfish was assembled and the sex-biased gene expression in the gonads was characterized using RNA-sequencing. The assembled transcriptome of Amur catfish consisted of 74,840 transcripts. The N50, mean length and max length of transcripts are 1970, 1235 and 16,748 bp. Putative sex-specific transcripts were identified and sex-specific expression of the representative genes was verified by RT-PCR. Differential expression analysis identified 5401 ovary-biased and 5618 testis-biased genes. The ovary-biased genes were mainly enriched in pathways such as RNA transport and ribosome biogenesis in eukaryotes. The testis-biased genes were enriched in calcium signaling and cytokine-cytokine receptor interaction, etc. Our data provide a valuable genomic resource for further investigating the genetic basis of sex determination, sex differentiation and sexual dimorphism of catfish.
Collapse
Affiliation(s)
- Fangfang Shen
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhigang Qiao
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
38
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
39
|
Predicting novel genomic regions linked to genetic disorders using GWAS and chromosome conformation data - a case study of schizophrenia. Sci Rep 2019; 9:17940. [PMID: 31784692 PMCID: PMC6884554 DOI: 10.1038/s41598-019-54514-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies identified numerous loci harbouring single nucleotide polymorphisms (SNPs) associated with various human diseases, although the causal role of many of them remains unknown. In this paper, we postulate that co-location and shared biological function of novel genes with genes known to associate with a specific phenotype make them potential candidates linked to the same phenotype (“guilt-by-proxy”). We propose a novel network-based approach for predicting candidate genes/genomic regions utilising the knowledge of the 3D architecture of the human genome and GWAS data. As a case study we used a well-studied polygenic disorder ‒ schizophrenia ‒ for which we compiled a comprehensive dataset of SNPs. Our approach revealed 634 novel regions covering ~398 Mb of the human genome and harbouring ~9000 genes. Using various network measures and enrichment analysis, we identified subsets of genes and investigated the plausibility of these genes/regions having an association with schizophrenia using literature search and bioinformatics resources. We identified several genes/regions with previously reported associations with schizophrenia, thus providing proof-of-concept, as well as novel candidates with no prior known associations. This approach has the potential to identify novel genes/genomic regions linked to other polygenic disorders and provide means of aggregating genes/SNPs for further investigation.
Collapse
|
40
|
Stapleton CP, Heinzel A, Guan W, van der Most PJ, van Setten J, Lord GM, Keating BJ, Israni AK, de Borst MH, Bakker SJ, Snieder H, Weale ME, Delaney F, Hernandez‐Fuentes MP, Reindl-Schwaighofer R, Oberbauer R, Jacobson PA, Mark PB, Chapman FA, Phelan PJ, Kennedy C, Sexton D, Murray S, Jardine A, Traynor JP, McKnight AJ, Maxwell AP, Smyth LJ, Oetting WS, Matas AJ, Mannon RB, Schladt DP, Iklé DN, Cavalleri GL, Conlon PJ. The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population. Am J Transplant 2019; 19:2262-2273. [PMID: 30920136 PMCID: PMC6989089 DOI: 10.1111/ajt.15326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 01/25/2023]
Abstract
Genetic variation across the human leukocyte antigen loci is known to influence renal-transplant outcome. However, the impact of genetic variation beyond the human leukocyte antigen loci is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with posttransplant eGFR at different time-points, out to 5 years posttransplantation. We conducted GWAS meta-analyses across 10 844 donors and recipients from five European ancestry cohorts. We also analyzed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with nontransplant eGFR, on posttransplant eGFR. PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1-year posttransplant. Thirty-two percent of the variability in eGFR at 1-year posttransplant was explained by our model containing clinical covariates (including weights for death/graft-failure), principal components and combined donor-recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR posttransplant in the GWAS. This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a posttransplant context. Despite PRS being a significant predictor of eGFR posttransplant, the effect size of common genetic factors is limited compared to clinical variables.
Collapse
Affiliation(s)
- Caragh P. Stapleton
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter J. van der Most
- Departments of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Graham M. Lord
- King’s College London, MRC Centre for Transplantation, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’, NHS Foundation Trust and King’s College London, London, UK
| | - Brendan J. Keating
- Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajay K. Israni
- Department of Medicine, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin H. de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J.L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Departments of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael E. Weale
- Division of Genetics & Molecular Medicine, King’s College London, London, UK
| | - Florence Delaney
- King’s College London, MRC Centre for Transplantation, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’, NHS Foundation Trust and King’s College London, London, UK
| | | | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Patrick B. Mark
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, UK
| | - Fiona A. Chapman
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, UK
| | - Paul J. Phelan
- Department of Nephrology, Royal Infirmary of Edinburgh, NHS Lothian, UK
| | - Claire Kennedy
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Donal Sexton
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Susan Murray
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Alan Jardine
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, UK
| | - Jamie P. Traynor
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, UK
| | | | | | - Laura J. Smyth
- Centre for Public Health, Queen’s University of Belfast, Belfast, UK
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Arthur J. Matas
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Roslyn B. Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter J. Conlon
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
41
|
Pickard BS. Genomics of Lithium Action and Response. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:308-313. [PMID: 32015722 PMCID: PMC6996056 DOI: 10.1176/appi.focus.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
(Reprinted with permission from Neurotherapeutics (2017) 14:582-587).
Collapse
|
42
|
Novel MED12 variant in a multiplex Fragile X syndrome family: dual molecular etiology of two X-linked intellectual disabilities with autism in the same family. Mol Biol Rep 2019; 46:4185-4193. [PMID: 31098807 DOI: 10.1007/s11033-019-04869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Studies of X-linked pedigrees were the first to identify genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD). However, some pedigrees present a huge clinical variability between the affected members. This intrafamilial heterogeneity may be due to cooccurrence of two disorders. In the present study, we describe a multiplex X-linked pedigree in which three siblings have ID, ASD and dysmorphic features but with variable severity. Through Fragile X syndrome test, we identified the full FMR1 mutation in only two males. Whole exome sequencing allowed us to identify a novel hemizygous variant (p.Gln2080_Gln2083del) in MED12 gene in two males. So, the first patient has FXS, the second has both FMR1 and MED12 mutations while the third has only the MED12 variant. MED12 mutations are implicated in several forms of X-linked ID. Family segregation and genotype-phenotype-correlation were in favor of a cooccurrence of two forms of X-linked ID. Our work provides further evidence of the involvement of MED12 in XLID. Moreover, through these results, it is noteworthy to raise awareness that intrafamilial heterogeneity in FXS multiplex families could result from the cooccurrence of multiple clinical entities involving at least two separate genetic loci. This should be taken into consideration for genetic testing and counselling in patients/families with atypical disease symptoms.
Collapse
|
43
|
Csmd2 Is a Synaptic Transmembrane Protein that Interacts with PSD-95 and Is Required for Neuronal Maturation. eNeuro 2019; 6:ENEURO.0434-18.2019. [PMID: 31068362 PMCID: PMC6506821 DOI: 10.1523/eneuro.0434-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations and copy number variants of the CUB and Sushi multiple domains 2 (CSMD2) gene are associated with neuropsychiatric disease. CSMD2 encodes a single-pass transmembrane protein with a large extracellular domain comprising repeats of CUB and Sushi domains. High expression of CSMD2 in the developing and mature brain suggests possible roles in neuron development or function, but the cellular functions of CSMD2 are not known. In this study, we show that mouse Csmd2 is expressed in excitatory and inhibitory neurons in the forebrain. Csmd2 protein exhibits a somatodendritic localization in the neocortex and hippocampus, with smaller puncta localizing to the neuropil. Using immunohistochemical and biochemical methods, we demonstrate that Csmd2 localizes to dendritic spines and is enriched in the postsynaptic density (PSD). Accordingly, we show that the cytoplasmic tail domain of Csmd2 interacts with synaptic scaffolding proteins of the membrane-associated guanylate kinase (MAGUK) family. The association between Csmd2 and MAGUK member PSD-95 is dependent on a PDZ-binding domain on the Csmd2 tail, which is also required for synaptic targeting of Csmd2. Finally, we show that knock-down of Csmd2 expression in hippocampal neuron cultures results in reduced complexity of dendritic arbors and deficits in dendritic spine density. Knock-down of Csmd2 in immature developing neurons results in reduced filopodia density, whereas Csmd2 knock-down in mature neurons causes significant reductions in dendritic spine density and dendrite complexity. Together, these results point toward a function for Csmd2 in development and maintenance of dendrites and synapses, which may account for its association with certain psychiatric disorders.
Collapse
|
44
|
Liu Y, Fu X, Tang Z, Li C, Xu Y, Zhang F, Zhou D, Zhu C. Altered expression of the CSMD1 gene in the peripheral blood of schizophrenia patients. BMC Psychiatry 2019; 19:113. [PMID: 30987620 PMCID: PMC6466712 DOI: 10.1186/s12888-019-2089-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a heritable, refractory, and devastating psychiatric disorder. Previous studies have shown that the variants of CUB and sushi multiple domains 1 (CSMD1) demonstrate significant genome-wide association with SCZ. However, few studies have been conducted on the effect of antipsychotics on the expression levels of CSMD1. This study explored whether a change occurs in the expression of the CSMD1 gene before and after antipsychotic treatment in SCZ patients. METHODS The study population comprised Han Chinese patients from eastern China, including 32 SCZ patients and 48 healthy controls. The expression of CSMD1 before and after treatment in the SCZ group and between the two groups was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS The expression levels of the CSMD1 gene in the peripheral blood mononuclear cells (PBMCs) of SCZ patients were lower than those in the healthy controls. The expression levels of the CSMD1 gene in the PBMCs of the SCZ patients after antipsychotic treatment were higher than those in the baseline SCZ patients (all P < 0.05). CONCLUSIONS Our results showed that the expression levels of CSMD1 are correlated with the development and treatment of SCZ, providing further evidence for the involvement of CSMD1 in SCZ.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Zhen Tang
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Cui Li
- Department of Psychology, Xinghua People's Hospital, Xinghua, 225700, Jiangsu, China
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fuquan Zhang
- Department of Clinical Psychology, Wuxi Mental Health Center, Nanjing Medical University, 156 Qianrong Road, Wuxi, Jiangsu Province, 214151, China
| | - Deyi Zhou
- Department of Clinical Psychology, Wuxi Mental Health Center, Nanjing Medical University, 156 Qianrong Road, Wuxi, Jiangsu Province, 214151, China.
| | - Chunming Zhu
- Department of Clinical Psychology, Wuxi Mental Health Center, Nanjing Medical University, 156 Qianrong Road, Wuxi, Jiangsu Province, 214151, China.
| |
Collapse
|
45
|
Druart M, Le Magueresse C. Emerging Roles of Complement in Psychiatric Disorders. Front Psychiatry 2019; 10:573. [PMID: 31496960 PMCID: PMC6712161 DOI: 10.3389/fpsyt.2019.00573] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The complement system consists of more than 30 proteins that have long been known to participate to the immune defence against pathogens and to the removal of damaged cells. Their role, however, extends beyond immunity and clearance of altered "self" components in the periphery. In particular, complement proteins can be induced by all cell types in the brain. Recent discoveries highlight the role of complement in normal and pathological brain development. Specifically, the complement system mediates synaptic pruning, a developmental process whereby supernumerary synapses are eliminated in the immature brain. The complement system has been implicated in pathological synapse elimination in schizophrenia, West Nile virus infection, and lupus, all of which are associated with psychiatric manifestations. Complement also contributes to synapse loss in neurodegenerative conditions. This review provides a brief overview of the well-studied role of complement molecules in immunity. The contribution of complement to embryonic and adult neurogenesis, neuronal migration, and developmental synaptic elimination in the normal brain is reviewed. We discuss the role of complement in synapse loss in psychiatric and neurological diseases and evaluate the therapeutic potential of complement-targeting drugs for brain disorders.
Collapse
Affiliation(s)
- Mélanie Druart
- INSERM UMR-S 1270, Paris, France.,Science and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Corentin Le Magueresse
- INSERM UMR-S 1270, Paris, France.,Science and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
46
|
Quantitative DNA Methylation Analysis of DLGAP2 Gene using Pyrosequencing in Schizophrenia with Tardive Dyskinesia: A Linear Mixed Model Approach. Sci Rep 2018; 8:17466. [PMID: 30504779 PMCID: PMC6269460 DOI: 10.1038/s41598-018-35718-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Tardive dyskinesia (TD) is a side effect of antipsychotic medications used to treat schizophrenia (SCZ) and other mental health disorders. No study has previously used pyrosequencing to quantify DNA methylation levels of the DLGAP2 gene; while the quantitative methylation levels among CpG sites within a gene may be correlated. To deal with the correlated measures among three CpG sites within the DLGAP2 gene, this study analyzed DNA methylation levels of the DLGAP2 gene using a linear mixed model (LMM) in a Chinese sample consisting of 35 SCZ patients with TD, 35 SCZ without TD (NTD) and 34 healthy controls (HCs) collected in Beijing, China. The initial analysis using the non-parametric Kruskal-Wallis test revealed that three groups (TD, NTD and HC) had significant differences in DNA methylation level for CpG site 2 (p = 0.0119). Furthermore, the average methylation levels among the three CpG sites showed strong correlations (all p values < 0.0001). In addition, using the LMM, three groups had significant differences in methylation level (p = 0.0027); while TD, NTD and TD + NTD groups showed higher average methylation levels than the HC group (p = 0.0024, 0.0151, and 0.0007, respectively). In conclusion, the LMM can accommodate a covariance structure. The findings of this study provide first evidence of DNA methylation levels in DLGAP2 associated with SCZ with TD in Chinese population. However, TD just showed borderline significant differences to NTD in this study.
Collapse
|
47
|
Luo N, Sui J, Chen J, Zhang F, Tian L, Lin D, Song M, Calhoun VD, Cui Y, Vergara VM, Zheng F, Liu J, Yang Z, Zuo N, Fan L, Xu K, Liu S, Li J, Xu Y, Liu S, Lv L, Chen J, Chen Y, Guo H, Li P, Lu L, Wan P, Wang H, Wang H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. A Schizophrenia-Related Genetic-Brain-Cognition Pathway Revealed in a Large Chinese Population. EBioMedicine 2018; 37:471-482. [PMID: 30341038 PMCID: PMC6284414 DOI: 10.1016/j.ebiom.2018.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In the past decades, substantial effort has been made to explore the genetic influence on brain structural/functional abnormalities in schizophrenia, as well as cognitive impairments. In this work, we aimed to extend previous studies to explore the internal mediation pathway among genetic factor, brain features and cognitive scores in a large Chinese dataset. METHODS Gray matter (GM) volume, fractional amplitude of low-frequency fluctuations (fALFF), and 4522 schizophrenia-susceptible single nucleotide polymorphisms (SNP) from 905 Chinese subjects were jointly analyzed, to investigate the multimodal association. Based on the identified imaging-genetic pattern, correlations with cognition and mediation analysis were then conducted to reveal the potential mediation pathways. FINDINGS One linked imaging-genetic pattern was identified to be group discriminative, which was also associated with working memory performance. Particularly, GM reduction in thalamus, putamen and bilateral temporal gyrus in schizophrenia was associated with fALFF decrease in medial prefrontal cortex, both were also associated with genetic factors enriched in neuron development, synapse organization and axon pathways, highlighting genes including CSMD1, CNTNAP2, DCC, GABBR2 etc. This linked pattern was also replicated in an independent cohort (166 subjects), which although showed certain age and clinical differences with the discovery cohort. A further mediation analysis suggested that GM alterations significantly mediated the association from SNP to fALFF, while fALFF mediated the association from SNP and GM to working memory performance. INTERPRETATION This study has not only verified the impaired imaging-genetic association in schizophrenia, but also initially revealed a potential genetic-brain-cognition mediation pathway, indicating that polygenic risk factors could exert impact on phenotypic measures from brain structure to function, thus could further affect cognition in schizophrenia.
Collapse
Affiliation(s)
- Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Mind Research Network & LBERI, Albuquerque, NM 87106, USA; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China.
| | - Jiayu Chen
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA
| | | | - Lin Tian
- Wuxi Mental Health Center, Wuxi 214000, China
| | - Dongdong Lin
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA
| | - Ming Song
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vince D Calhoun
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA; Department of Electrical and Computer Engineer, The University of New, Albuquerque, NM 87131, USA
| | - Yue Cui
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fanfan Zheng
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Liu
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA
| | - Zhenyi Yang
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaibin Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfeng Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Sha Liu
- Department of Psychiatry, First Clinical Medical College, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiling Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China,; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Department of Psychology, Xinxiang Medical University, Xinxiang 453002, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Center for Life Sciences, PKU-IDG, McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China.
| |
Collapse
|
48
|
Soteros BM, Cong Q, Palmer CR, Sia GM. Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene. PLoS One 2018; 13:e0199399. [PMID: 29920554 PMCID: PMC6007900 DOI: 10.1371/journal.pone.0199399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
The FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans. We have previously shown that SRPX2 is a synaptogenic protein that increases excitatory synapse density. Here we provide the first characterization of mice lacking the SRPX2 gene, and show that these mice exhibit defects in both neural circuitry and communication and social behaviors. Specifically, we show that mice lacking SRPX2 show a specific reduction in excitatory VGlut2 synapses in the cerebral cortex, while VGlut1 and inhibitory synapses were largely unaffected. SRPX2 KO mice also exhibit an abnormal ultrasonic vocalization ontogenetic profile in neonatal pups, and reduced preference for social novelty. These data demonstrate a functional role for SRPX2 during brain development, and further implicate FoxP2 and its targets in regulating the development of vocalization and social circuits.
Collapse
Affiliation(s)
- Breeanne M. Soteros
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Qifei Cong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Gek-Ming Sia
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
49
|
Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol 2018; 102:73-83. [PMID: 30217334 DOI: 10.1016/j.molimm.2018.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
The complement system resembles a double-edged sword since its activation can either benefit or harm the host. Thus, regulation of this system is of utmost importance and performed by several circulating and membrane-bound complement inhibitors. The pool of well-established regulators has recently been enriched with proteins that either share structural homology to known complement inhibitors such as Sushi domain-containing (SUSD) protein family and Human CUB and Sushi multiple domains (CSMD) families or extracellular matrix (ECM) macromolecules that interact with and modulate complement activity. In this review, we summarize the current knowledge about newly discovered complement inhibitors and discuss their implications in complement regulation, as well as in processes beyond complement regulation such cancer development. Understanding the behavior of these proteins will introduce new mechanisms of complement regulation and may provide new avenues in the development of novel therapies.
Collapse
|
50
|
The Role of Cell Adhesion Molecule Genes Regulating Neuroplasticity in Addiction. Neural Plast 2018; 2018:9803764. [PMID: 29675039 PMCID: PMC5838467 DOI: 10.1155/2018/9803764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/10/2017] [Indexed: 01/06/2023] Open
Abstract
A variety of genetic approaches, including twin studies, linkage studies, and candidate gene studies, has established a firm genetic basis for addiction. However, there has been difficulty identifying the precise genes that underlie addiction liability using these approaches. This situation became especially clear in genome-wide association studies (GWAS) of addiction. Moreover, the results of GWAS brought into clarity many of the shortcomings of those early genetic approaches. GWAS studies stripped away those preconceived notions, examining genes that would not previously have been considered in the study of addiction, consequently creating a shift in our understanding. Most importantly, those studies implicated a class of genes that had not previously been considered in the study of addiction genetics: cell adhesion molecules (CAMs). Considering the well-documented evidence supporting a role for various CAMs in synaptic plasticity, axonal growth, and regeneration, it is not surprising that allelic variation in CAM genes might also play a role in addiction liability. This review focuses on the role of various cell adhesion molecules in neuroplasticity that might contribute to addictive processes and emphasizes the importance of ongoing research on CAM genes that have been implicated in addiction by GWAS.
Collapse
|