1
|
Fan X, Zang T, Wu N, Liu J, Sun Y, Slack J, Bai J, Liu Y. The mediating effect of maternal gut microbiota between prenatal psychological distress and neurodevelopment of infants. J Affect Disord 2024; 362:893-902. [PMID: 39013520 DOI: 10.1016/j.jad.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Prenatal psychological distress and maternal inflammation can increase the risk of neurodevelopmental delay in offspring; recently, the gut microbiota has been shown to may be a potential mechanism behind this association and not fully elucidated in population study. METHODS Seventy-two maternal-infant pairs who completed the assessments of prenatal psychological distress during the third trimester and neurodevelopment of infants at age 6-8 months of age were included in this study. The gut microbiota and its short-chain fatty acids (SCFAs) of maternal-infant were determined by 16S rRNA sequencing and liquid chromatography-mass spectrometry analysis. Inflammatory cytokines in the blood of pregnant women during the third trimester were detected by luminex liquid suspension microarrays. RESULTS This study found that infants in the prenatal psychological distress group had poorer fine motor skills (β = -4.396, 95 % confidence interval (CI) = -8.546, -0.246, p = 0.038), problem-solving skills (β = -5.198, 95 % CI = -10.358, -0.038, p = 0.048) and total development (β = -22.303, 95%CI = -41.453, -3.153, p = 0.022) compared to the control group. The study also indicated that the higher level of interleukin-1β (IL-1β) (β = -1.951, 95%CI = -3.321, -0.581, p = 0.005) and interferon-inducible protein-10 (IP-10) (β = -0.019, 95%CI = -0.034, -0.004, p = 0.015) during the third trimester, the poorer fine motor skills in infants. Also, the higher level of IL-10 (β = -0.498, 95%CI = -0.862, -0.133, p = 0.007), IL-12p70 (β = -0.113, 95%CI = -0.178, -0.048, p = 0.001), IL-17 A (β = -0.817, 95%CI = -1.517, -0.118, p = 0.022), interferon-γ (β = -0.863, 95%CI = -1.304, -0.422, p < 0.001), IP-10 (β = -0.020, 95%CI = -0.038, -0.001, p = 0.035), and regulated upon activation normal T cell expressed and secreted (β = -0.002, 95%CI = -0.003, -0.001, p = 0.005) during the third trimester, the poorer problem-solving skills in infants. After controlling for relevant covariates, this study found that maternal gut microbiota Roseburia mediates the relationship between prenatal psychological distress and total neurodevelopment of infants (a = 0.433, 95%CI = 0.079, 0.787, p = 0.017; b = -19.835, 95%CI = -33.877, -5.792, p = 0.006; c = 22.407, 95%CI = -43.207,-1.608, p = 0.035; indirect effect = -8.584, 95%CI = -21.227, -0.587). CONCLUSIONS This is the first study to emphasize the role of the maternal-infant gut microbiota in prenatal psychological distress and infant neurodevelopment. Further studies are needed to explore the biological mechanisms underlying the relationship between prenatal psychological distress, maternal-infant gut microbiota, and infant neurodevelopment.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Jun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Yu Sun
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Julia Slack
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
2
|
Ketharanathan T, Pereira A, Sundram S. Gene expression changes in Brodmann's Area 46 differentiate epidermal growth factor and immune system interactions in schizophrenia and mood disorders. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:76. [PMID: 39242583 PMCID: PMC11379811 DOI: 10.1038/s41537-024-00488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/16/2024] [Indexed: 09/09/2024]
Abstract
How early in life stress-immune related environmental factors increase risk predisposition to schizophrenia remains unknown. We examined if pro-inflammatory changes perturb the brain epidermal growth factor (EGF) system, a system critical for neurodevelopment and mature CNS functions including synaptic plasticity. We quantified genes from key EGF and immune system pathways for mRNA levels and eight immune proteins in post-mortem dorsolateral prefrontal (DLPFC; Brodmann's Area (BA) 46) and orbitofrontal (OFC; BA11) cortices from people with schizophrenia, mood disorders and neurotypical controls. In BA46, 64 genes were differentially expressed, predominantly in schizophrenia, where attenuated expression of the MAPK-ERK, NRG1-PI3K-AKT and mTOR cascades indicated reduced EGF system signalling, and similarly diminished immune molecular expression, notably in TLR, TNF and complement pathways, along with low NF-κB1 and elevated IL12RB2 protein levels were noted. There was nominal evidence for altered convergence between ErbB-PI3K-AKT-mTOR and TLR pathways in BA46 in schizophrenia. Comparatively minimal changes were noted in BA11. Overall, distinct pathway gene expression changes may reflect variant pathological processes involving immune and EGF system signalling between schizophrenia and mood disorder, particularly in DLPFC. Further, the abnormal convergence between innate immune signalling and candidate EGF signalling pathways may indicate a pathologically important interaction in the developing brain in response to environmental stressors.
Collapse
Affiliation(s)
- Tharini Ketharanathan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
- Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia.
- Northern Health, Epping, VIC 3076, Australia.
| | - Avril Pereira
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Lv H, Guo M, Guo C, He K. The Interrelationships between Cytokines and Schizophrenia: A Systematic Review. Int J Mol Sci 2024; 25:8477. [PMID: 39126046 PMCID: PMC11313682 DOI: 10.3390/ijms25158477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Schizophrenia (SCZ) imposes a significant burden on patients and their families because of its high prevalence rate and disabling nature. Given the lack of definitive conclusions regarding its pathogenesis, physicians heavily rely on patients' subjective symptom descriptions for diagnosis because reliable diagnostic biomarkers are currently unavailable. The role of the inflammatory response in the pathogenesis of SCZ has been supported by some studies. The findings of these studies showed abnormal changes in the levels of inflammatory factors, such as cytokines (CKs), in both peripheral blood and cerebrospinal fluid (CSF) among individuals affected by SCZ. The findings imply that inflammatory factors could potentially function as risk indicators for the onset of SCZ. Consequently, researchers have directed their attention towards investigating the potential utility of CKs as viable biomarkers for diagnosing SCZ. Extracellular vesicles (EVs) containing disease-specific components exhibit remarkable stability and abundance, making them promising candidates for biomarker discovery across various diseases. CKs encapsulated within EVs secreted by immune cells offer valuable insights into disease progression. This review presents a comprehensive analysis summarizing the relationship between CKs and SCZ and emphasizes the vital role of CKs encapsulated within EVs in the pathogenesis and development of SCZ.
Collapse
Affiliation(s)
- Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| | - Meng Guo
- Finance Office, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| |
Collapse
|
4
|
Zhu ZH, Yin XY, Cai Y, Jia NN, Wang PJ, Qi Q, Hou WL, Man LJ, Hui L. Association between the HHEX polymorphism and delayed memory in first-episode schizophrenic patients. Schizophr Res Cogn 2024; 36:100304. [PMID: 38444400 PMCID: PMC10912683 DOI: 10.1016/j.scog.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
The hematopoietically-expressed homeobox gene (HHEX) played a critical role in regulating the immune system that the abnormality of which was involved in the psychopathology and cognitive deficits of psychiatric disorders. The aim of this study was to investigate the effect of HHEX rs1111875 polymorphism on the susceptibility and cognitive deficits of first-episode schizophrenic patients (FSP). We assessed cognitive function in 239 first-episode patients meeting DSM-IV for schizophrenia, and 368 healthy controls using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The HHEX rs1111875 polymorphism was genotyped. Our results showed that the allelic and genotypic frequencies of HHEX rs1111875 polymorphism didn't differ between FSP and healthy controls (both p > 0.05) after adjusting for sex and age. Cognitive test scores in FSP were significantly lower than those in healthy controls on all scales (all p < 0.001) except for the visuospatial/constructional score (p > 0.05) after adjusting for covariates. There was a significant genotype (p < 0.05) rather than genotype × diagnosis (p > 0.05) effect on the delayed memory score after adjusting for covariates. The HHEX rs1111875 polymorphism was significantly associated with the delayed memory score in FSP (p < 0.05), but not in healthy controls (p > 0.05) after adjusting for covariates. Our findings supported that the HHEX rs1111875 polymorphism did not contribute to the susceptibility to FSP. However, this polymorphism might influence the delayed memory in FSP. Moreover, FSP had poorer cognitive function than healthy controls except for the visuospatial/constructional domain.
Collapse
Affiliation(s)
| | | | | | - Ning Ning Jia
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Pei Jie Wang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Qi Qi
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Wen Long Hou
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Li Juan Man
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou 215137, Jiangsu, PR China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou 215137, Jiangsu, PR China
| |
Collapse
|
5
|
Lipner E, Mac Giollabhui N, Breen EC, Cohn BA, Krigbaum NY, Cirillo PM, Olino TM, Alloy LB, Ellman LM. Sex-Specific Pathways From Prenatal Maternal Inflammation to Adolescent Depressive Symptoms. JAMA Psychiatry 2024; 81:498-505. [PMID: 38324324 PMCID: PMC10851141 DOI: 10.1001/jamapsychiatry.2023.5458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 02/08/2024]
Abstract
Importance Prenatal maternal inflammation has been associated with major depressive disorder in offspring in adulthood as well as with internalizing and externalizing symptoms in childhood; however, the association between prenatal inflammation and offspring depression in adolescence has yet to be examined. Objective To determine whether maternal levels of inflammatory biomarkers during pregnancy are associated with depressive symptomatology in adolescent-aged offspring and to examine how gestational timing, offspring sex, and childhood psychiatric symptoms impact these associations. Design, Setting, and Participants This was an observational study of a population-based birth cohort from the Child Health and Development Studies (CHDS), which recruited almost all mothers receiving obstetric care from the Kaiser Foundation Health Plan (KFHP) in Alameda County, California, between June 1959 and September 1966. Pregnancy data and blood sera were collected from mothers, and offspring psychiatric symptom data were collected in childhood (ages 9-11 years) and adolescence (ages 15-17 years). Mother-offspring dyads with available maternal prenatal inflammatory biomarkers during first and/or second trimesters and offspring depressive symptom data at adolescent follow-up were included. Data analyses took place between March 2020 and June 2023. Exposures Levels of inflammatory biomarkers (interleukin 6 [IL-6], IL-8, IL-1 receptor antagonist [IL-1RA], and soluble tumor necrosis factor receptor-II) assayed from maternal sera in the first and second trimesters of pregnancy. Main Outcomes and Measures Self-reported depressive symptoms at adolescent follow-up. Results A total of 674 mothers (mean [SD] age, 28.1 [5.9] years) and their offspring (350 male and 325 female) were included in this study. Higher second trimester IL-6 was significantly associated with greater depressive symptoms in offspring during adolescence (b, 0.57; SE, 0.26); P = .03). Moderated mediation analyses showed that childhood externalizing symptoms significantly mediated the association between first trimester IL-6 and adolescent depressive symptoms in male offspring (b, 0.18; 95% CI, 0.02-0.47), while childhood internalizing symptoms mediated the association between second trimester IL-1RA and adolescent depressive symptoms in female offspring (b, 0.80; 95% CI, 0.19-1.75). Conclusions and Relevance In this study, prenatal maternal inflammation was associated with depressive symptoms in adolescent-aged offspring. The findings of the study suggest that pathways to adolescent depressive symptomatology from prenatal risk factors may differ based on both the timing of exposure to prenatal inflammation and offspring sex.
Collapse
Affiliation(s)
- Emily Lipner
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| | - Naoise Mac Giollabhui
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
- Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Nickilou Y. Krigbaum
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Piera M. Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Thomas M. Olino
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| | - Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| | - Lauren M. Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Ozdilli K, Mervan Aytac H, Ceren Tuncel F, Oyaci Y, Pehlivan M, Pehlivan S. Evaluation of gene-gene interaction between the interleukin (IL)-2 and IL-2RA gene polymorphisms in schizophrenia patients in the Turkish Population. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:51-56. [PMID: 38195135 PMCID: PMC10827018 DOI: 10.17712/nsj.2024.1.20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES To evaluate the genetic polymorphisms in IL-2 and IL-2RA genes in schizophrenia (SCZ) patients by comparing them with healthy controls. METHODS A sample of 127 patients with SCZ and 100 healthy volunteers were included in the case-control study. These individuals were consecutively selected from the Malazgirt State Hospital Psychiatry Outpatient Clinic in Mus, Turkey, over the three months from October 2020 to December 2020. The Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV) was used to confirm the diagnosis according to the DSM-5 criteria. In addition, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine gene polymorphisms from DNA material. RESULTS Our findings indicated significant differences in the IL-2 genotype and allele frequencies between SCZ patients and the healthy control group. Specifically, the frequency of the homozygous GG genotype was notably higher in SCZ patients compared to the control group. Conversely, when comparing the IL-2RA genotype and allele frequencies of SCZ patients with the control group, no statistically significant differences were observed between the 2 groups. When compared to individuals with other genotypes, interaction analysis indicated that carriers of the GG/AG (IL-2/IL-2RA) genotype demonstrated a significantly increased risk of SCZ. CONCLUSION In light of the analyses, our study indicates that while the IL-2 genotype polymorphism may be considered a risk factor for developing SCZ, the IL-2RA variant was not associated with SCZ among Turkish patients.
Collapse
Affiliation(s)
- Kursat Ozdilli
- From the Department of Medical Biology (Ozdilli), Faculty of Medicine, Medipol University, from the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Institute of Graduate Studies in Health Sciences (Aytac, Tuncel, Oyaci, Pehlivan), Department of Medical Biology (Tuncel, Oyaci, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, and from Department of Hematology (Pehlivan M), Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Hasan Mervan Aytac
- From the Department of Medical Biology (Ozdilli), Faculty of Medicine, Medipol University, from the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Institute of Graduate Studies in Health Sciences (Aytac, Tuncel, Oyaci, Pehlivan), Department of Medical Biology (Tuncel, Oyaci, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, and from Department of Hematology (Pehlivan M), Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Fatima Ceren Tuncel
- From the Department of Medical Biology (Ozdilli), Faculty of Medicine, Medipol University, from the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Institute of Graduate Studies in Health Sciences (Aytac, Tuncel, Oyaci, Pehlivan), Department of Medical Biology (Tuncel, Oyaci, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, and from Department of Hematology (Pehlivan M), Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Yasemin Oyaci
- From the Department of Medical Biology (Ozdilli), Faculty of Medicine, Medipol University, from the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Institute of Graduate Studies in Health Sciences (Aytac, Tuncel, Oyaci, Pehlivan), Department of Medical Biology (Tuncel, Oyaci, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, and from Department of Hematology (Pehlivan M), Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Mustafa Pehlivan
- From the Department of Medical Biology (Ozdilli), Faculty of Medicine, Medipol University, from the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Institute of Graduate Studies in Health Sciences (Aytac, Tuncel, Oyaci, Pehlivan), Department of Medical Biology (Tuncel, Oyaci, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, and from Department of Hematology (Pehlivan M), Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sacide Pehlivan
- From the Department of Medical Biology (Ozdilli), Faculty of Medicine, Medipol University, from the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Institute of Graduate Studies in Health Sciences (Aytac, Tuncel, Oyaci, Pehlivan), Department of Medical Biology (Tuncel, Oyaci, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, and from Department of Hematology (Pehlivan M), Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Guan X, Leng W, Hu Q, Xiu M, Zhang X. Association between cognitive function and IL-18 levels in schizophrenia: Dependent on IL18 - 607 A/C polymorphism. Psychoneuroendocrinology 2023; 158:106386. [PMID: 37741261 DOI: 10.1016/j.psyneuen.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Accumulating evidence suggests that immune system dysregulation is associated with debilitating neurodevelopment in schizophrenia (SZ). Cognitive impairment is a persistent feature that occurs during the onset of SZ and persists throughout the course of the disease. Early studies have found that elevated interleukin (IL)- 18 interacts with IL18 polymorphism and is correlated with psychotic symptoms in SZ. This study aimed to investigate whether elevated IL-18 levels interacted with the -607 A/C polymorphism to determine cognitive decline in patients with chronic SZ. We recruited 693 inpatients and 422 healthy controls to measure IL-18 levels and genotype the - 607 A/C polymorphism. Further, cognitive function was measured by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). We found that IL-18 serum levels were higher in patients than those in healthy controls, and were not associated with IL18 - 607 A/C in combined subjects or either patients or healthy controls, respectively. Moreover, - 607 A/C was correlated with the visuospatial/constructional index only in the patients. In addition, our research found that IL-18 levels were positively correlated to immediate memory only in patients with the C/C genotype, but not in patients with C/A or A/A genotype. This study suggests that the relationship of IL-18 with cognitive function depends on the IL18 - 607 A/C polymorphism of SZ patients.
Collapse
Affiliation(s)
- Xiaoni Guan
- Peking University, Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | | | - Qiongyue Hu
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University, Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Ayilara GO, Owoyele BV. Neuroinflammation and microglial expression in brains of social-isolation rearing model of schizophrenia. IBRO Neurosci Rep 2023; 15:31-41. [PMID: 37359498 PMCID: PMC10285239 DOI: 10.1016/j.ibneur.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a psychiatric disorder with a global prevalence of approximately 0.45%. It is considered a mental illness, with negative symptoms, positive symptoms, and cognitive dysfunction. The outcomes of studies on the role of microglia and neuroinflammation have been conflicting. In addition, there is a poor understanding of the sex differences in microglial expression and neuroinflammation markers in the prefrontal cortex, hippocampus, and nucleus accumbens. Understanding the exact roles of neuroinflammation may guide the development of efficient therapeutic drugs that can address the negative, positive, and cognitive symptoms of the disease. We examined the effect of social isolation rearing on schizophrenia-related behaviours in male and female BALB/c mice. The social-isolation rearing protocol started on post-natal day (PND) 21, lasting for 35 days. Animals were assigned to four cohorts, consisting of five animals per group. On PND 56, animals were assessed for behavioural changes. We used enzyme-linked immunosorbent assays to investigate the expression of nuclear factor kappa B (NF-κB), tumour necrosis factor-α (TNF-α), and Interleukin-1β (IL-1β) in the hippocampus, nucleus accumbens, and prefrontal cortex. Immunohistochemistry was used to assess the expression of microglia in the three brain regions. Our study showed that isolation rearing led to increasing locomotion, heightened anxiety, depression, and a reduced percentage of prepulse inhibition. There was a significant increase (p < 0.05) in anxiety in the female isolation mice compared to male isolation mice. Furthermore, isolation rearing significantly increased microglia count (p < 0.05) in the hippocampus, nucleus accumbens, and prefrontal cortex, only in the male group. There was microglial hyper-activation as evident in the downregulation of CX3CR1 in both male and female social-isolation groups. Male social-isolation mice showed a significant increase (p < 0.05) in neuroinflammation markers only in the nucleus accumbens while the female social-isolation mice showed a significant increase (p < 0.05) in neuroinflammation markers in both the nucleus accumbens and hippocampus. The study showed that therapeutic interventions aimed at modulating CX3CR1 activity and reducing inflammation may be beneficial for patients with schizophrenia.
Collapse
|
9
|
Ebrahimi M, Ahangar N, Zamani E, Shaki F. L-Carnitine Prevents Behavioural Alterations in Ketamine-Induced Schizophrenia in Mice: Possible Involvement of Oxidative Stress and Inflammation Pathways. J Toxicol 2023; 2023:9093231. [PMID: 37363159 PMCID: PMC10289879 DOI: 10.1155/2023/9093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a chronic mental complaint known as cognitive impairment. There has been evidence that inflammation and oxidative stress play a main role in schizophrenia pathophysiology. This study aimed to investigate the effects of l-carnitine, as a potent antioxidant, on the treatment of behavioural and biochemical disturbances in mice with ketamine-induced schizophrenia. In this study, schizophrenia was induced in mice by ketamine (25 mg/kg/day, i.p). Before induction of schizophrenia, mice were treated with l-carnitine (100, 200, and 400 mg/kg/day, i.p). Then, behavioural impairments were evaluated by open field (OF) assessment and social interaction test (SIT). After brain tissue isolation, reactive oxygen species (ROS), glutathione concentration (GSH), lipid peroxidation (LPO), protein carbonyl oxidation, superoxide dismutase activity (SOD), and glutathione peroxidase activity (GPx) were assessed as oxidative stress markers. Furthermore, inflammatory biomarkers such as tumour necrosis factor alpha (TNF-α) and nitric oxide (NO) were evaluated in brain tissue. Our results showed ketamine increased inflammation and oxidative damage in brain tissue that was similar to behaviour disorders in mice. Interestingly, l-carnitine significantly decreased oxidative stress and inflammatory markers compared with ketamine-treated mice. In addition, l-carnitine prevented and reversed ketamine-induced alterations in the activities of SOD and GPx enzymes in mice's brains. Also, improved performance in OFT (locomotor activity test) and SIT was observed in l-carnitine-treated mice. These data provided evidence that, due to the antioxidant and anti-inflammatory effects of l-carnitine, it has a neuroprotective effect on mice model of schizophrenia.
Collapse
Affiliation(s)
- Mehrasa Ebrahimi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Wei Y, Womer FY, Sun K, Zhu Y, Sun D, Duan J, Zhang R, Wei S, Jiang X, Zhang Y, Tang Y, Zhang X, Wang F. Applying dimensional psychopathology: transdiagnostic prediction of executive cognition using brain connectivity and inflammatory biomarkers. Psychol Med 2023; 53:3557-3567. [PMID: 35536000 DOI: 10.1017/s0033291722000174] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The association between executive dysfunction, brain dysconnectivity, and inflammation is a prominent feature across major psychiatric disorders (MPDs), schizophrenia, bipolar disorder, and major depressive disorder. A dimensional approach is warranted to delineate their mechanistic interplay across MPDs. METHODS This single site study included a total of 1543 participants (1058 patients and 485 controls). In total, 1169 participants underwent diffusion tensor and resting-state functional magnetic resonance imaging (745 patients and 379 controls completed the Wisconsin Card Sorting Test). Fractional anisotropy (FA) and regional homogeneity (ReHo) assessed structural and functional connectivity, respectively. Pro-inflammatory cytokine levels [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] were obtained in 325 participants using blood samples collected with 24 h of scanning. Group differences were determined for main measures, and correlation and mediation analyses and machine learning prediction modeling were performed. RESULTS Executive deficits were associated with decreased FA, increased ReHo, and elevated IL-1β and IL-6 levels across MPDs, compared to controls. FA and ReHo alterations in fronto-limbic-striatal regions contributed to executive deficits. IL-1β mediated the association between FA and cognition, and IL-6 mediated the relationship between ReHo and cognition. Executive cognition was better predicted by both brain connectivity and cytokine measures than either one alone for FA-IL-1β and ReHo-IL-6. CONCLUSIONS Transdiagnostic associations among brain connectivity, inflammation, and executive cognition exist across MPDs, implicating common neurobiological substrates and mechanisms for executive deficits in MPDs. Further, inflammation-related brain dysconnectivity within fronto-limbic-striatal regions may represent a transdiagnostic dimension underlying executive dysfunction that could be leveraged to advance treatment.
Collapse
Affiliation(s)
- Yange Wei
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Kaijin Sun
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Dandan Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jia Duan
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ran Zhang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 210001, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
11
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
12
|
Soheili-Nezhad S, Sprooten E, Tendolkar I, Medici M. Exploring the Genetic Link Between Thyroid Dysfunction and Common Psychiatric Disorders: A Specific Hormonal or a General Autoimmune Comorbidity. Thyroid 2023; 33:159-168. [PMID: 36463425 PMCID: PMC10133968 DOI: 10.1089/thy.2022.0304] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Background: The hypothalamus-pituitary-thyroid axis coordinates brain development and postdevelopmental function. Thyroid hormone (TH) variations, even within the normal range, have been associated with the risk of developing common psychiatric disorders, although the underlying mechanisms remain poorly understood. Methods: To get new insight into the potentially shared mechanisms underlying thyroid dysfunction and psychiatric disorders, we performed a comprehensive analysis of multiple phenotypic and genotypic databases. We investigated the relationship of thyroid disorders with depression, bipolar disorder (BIP), and anxiety disorders (ANXs) in 497,726 subjects from U.K. Biobank. We subsequently investigated genetic correlations between thyroid disorders, thyrotropin (TSH), and free thyroxine (fT4) levels, with the genome-wide factors that predispose to psychiatric disorders. Finally, the observed global genetic correlations were furthermore pinpointed to specific local genomic regions. Results: Hypothyroidism was positively associated with an increased risk of major depressive disorder (MDD; OR = 1.31, p = 5.29 × 10-89), BIP (OR = 1.55, p = 0.0038), and ANX (OR = 1.16, p = 6.22 × 10-8). Hyperthyroidism was associated with MDD (OR = 1.11, p = 0.0034) and ANX (OR = 1.34, p = 5.99 × 10-⁶). Genetically, strong coheritability was observed between thyroid disease and both major depressive (rg = 0.17, p = 2.7 × 10-⁴) and ANXs (rg = 0.17, p = 6.7 × 10-⁶). This genetic correlation was particularly strong at the major histocompatibility complex locus on chromosome 6 (p < 10-⁵), but further analysis showed that other parts of the genome also contributed to this global effect. Importantly, neither TSH nor fT4 levels were genetically correlated with mood disorders. Conclusions: Our findings highlight an underlying association between autoimmune hypothyroidism and mood disorders, which is not mediated through THs and in which autoimmunity plays a prominent role. While these findings could shed new light on the potential ineffectiveness of treating (minor) variations in thyroid function in psychiatric disorders, further research is needed to identify the exact underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Emma Sprooten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Environmental Risk Factors and Cognitive Outcomes in Psychosis: Pre-, Perinatal, and Early Life Adversity. Curr Top Behav Neurosci 2023; 63:205-240. [PMID: 35915384 PMCID: PMC9892366 DOI: 10.1007/7854_2022_378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Risk for psychosis begins to accumulate as early as the fetal period through exposure to obstetric complications like fetal hypoxia, maternal stress, and prenatal infection. Stressors in the postnatal period, such as childhood trauma, peer victimization, and neighborhood-level adversity, further increase susceptibility for psychosis. Cognitive difficulties are among the first symptoms to emerge in individuals who go on to develop a psychotic disorder. We review the relationship between pre-, perinatal, and early childhood adversities and cognitive outcomes in individuals with psychosis. Current evidence shows that the aforementioned environmental risk factors may be linked to lower overall intelligence and executive dysfunction, beginning in the premorbid period and persisting into adulthood in individuals with psychosis. It is likely that early life stress contributes to cognitive difficulties in psychosis through dysregulation of the body's response to stress, causing changes such as increased cortisol levels and chronic immune activation, which can negatively impact neurodevelopment. Intersectional aspects of identity (e.g., sex/gender, race/ethnicity), as well as gene-environment interactions, likely inform the developmental cascade to cognitive difficulties throughout the course of psychotic disorders and are reviewed below. Prospective studies of birth cohorts will serve to further clarify the relationship between early-life environmental risk factors and cognitive outcomes in the developmental course of psychotic disorders. Specific methodological recommendations are provided for future research.
Collapse
|
15
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Kazgan Kılıçaslan A, Yıldız S, Sırlıer Emir B, Kılıç F, Atmaca M. Serum Klotho and FGF23 Levels in Patients with Schizophrenia. PSYCHIAT CLIN PSYCH 2022; 32:229-236. [PMID: 38766669 PMCID: PMC11099619 DOI: 10.5152/pcp.2022.22406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/10/2022] [Indexed: 05/22/2024] Open
Abstract
Background The aim of this study is to compare the serum levels of Klotho and fibroblast growth factor 23 in patients with schizophrenia, in whom etiopathogenesis inflammation plays an important role, with those of healthy control subjects and to investigate a possible correlation between these levels. Methods Forty male patients with schizophrenia and 40 healthy male control subjects who were followed up and/or treated at the High-Security Forensic Psychiatry Clinic participated in the study. Sociodemographic data form, the Positive and Negative Syndrome Scale, and the Clinical Global Impression Scale were collected from all subjects, and participants' fibroblast growth factor 23 and Klotho serum levels were measured by the enzyme-linked immunosorbent assay method. Results The serum levels of Klotho and fibroblast growth factor 23 were significantly higher in schizophrenia patients than in healthy controls (P = .048 and P = .010, respectively). A significant positive correlation was observed between serum levels of Klotho and fibroblast growth factor 23 in subjects (r = 0.816; P < .001). Conclusion Our study is the first to show significantly higher combined serum levels of fibroblast growth factor 23 and Klotho in patients with schizophrenia. The Klotho/fibroblast growth factor 23 pathway may play a role in the pathogenesis of schizophrenia. The involvement of Klotho and fibroblast growth factor 23 in inflammatory processes has the potential to provide alternative approaches to elucidate the etiopathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Sevler Yıldız
- Department of Psychiatry, Binali Yıldırım University, Erzincan, Turkey
| | | | - Faruk Kılıç
- Department of Psychiatry, Süleyman Demirel University, Isparta, Turkey
| | - Murad Atmaca
- Department of Psychiatry, Fırat University, School of Medicine, Elazığ, Turkey
| |
Collapse
|
17
|
Chen H, Zhang Z, Zhou Y, Liu Y, Lin X, Wei Y, Sun R, Li L, Deng G. Maternal leucocyte trajectory across pregnancy associated with offspring's growth. Pediatr Res 2022; 92:862-870. [PMID: 34750526 DOI: 10.1038/s41390-021-01827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Leucocytes for individuals during pregnancy may form into different trajectory patterns. Since no studies have been conducted, we aim to examine the associations between leucocyte trajectory across pregnancy and offspring's birth outcomes and growth during the first 2 years. METHODS We conducted a retrospective study enrolled 1070 singleton pregnancies aged 21-46 years old between 2014 and 2018 in Huazhong University of Science and Technology Union Shenzhen Hospital, China. Leucocyte trajectories were modelled using growth mixture modelling and four trajectories were identified: moderate-increasing (n = 41), low-stable (n = 828), high-decreasing (n = 145) and low-increasing (n = 56). RESULTS Relative to the low-stable group, logistic regression analysis after adjusting for covariates indicated that the odds ratios of preterm were 3.06 (95% confidence interval (CI): 1.43-6.23) for moderate-increasing, 0.78 (95% CI: 0.38-1.47) for high-decreasing and 0.68 (95% CI: 0.23-1.61) for the low-increasing group, respectively. By using generalized estimating equation analysis, we observed that infants in the moderate-increasing and low-increasing group had -0.35 and -0.21 (P < 0.01) lower head circumference z-score compared with the low-stable group, respectively. No significant association of leucocyte trajectory with other birth weight measures or anthropometric measure z-scores was found. CONCLUSIONS Changes in leucocytes across pregnancy affected the occurrence of preterm and offspring's head circumference during the first 2 years of life. IMPACT Previous researches on the association of leucocytes with pregnancy outcomes mainly focused on leucocytes in a specific trimester. No studies until now have been conducted to assess the influences of the leucocyte trajectories on the growth and development of infants. Changes in leucocytes across pregnancy affected the occurrence of preterm and offspring's head circumference during the first 2 years of life. Our study will positively contribute to the dialogue regarding the treatment of pregnancies with different levels of inflammation in each trimester to minimize adverse pregnancy outcomes and optimize brain growth.
Collapse
Affiliation(s)
- Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
- School of Public Health, Shantou University, Shantou, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yingyu Zhou
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yao Liu
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoping Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Liping Li
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China.
- School of Public Health, Shantou University, Shantou, China.
| | - Guifang Deng
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
18
|
Maternal immune activation in rats induces dysfunction of placental leucine transport and alters fetal brain growth. Clin Sci (Lond) 2022; 136:1117-1137. [PMID: 35852150 PMCID: PMC9366863 DOI: 10.1042/cs20220245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Maternal infection during pregnancy increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. While the mechanisms remain unclear, dysregulation of placental function is implicated. We hypothesised that maternal infection, leading to maternal immune activation and stimulated cytokine production, alters placental and yolk sac amino acid transport, affecting fetal brain development and thus NDD risk. Using a rat model of maternal immune activation induced by the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), we investigated placental and yolk sac expression of system L amino acid transporter subtypes which transport several essential amino acids including branched-chain amino acids (BCAA), maternal and fetal BCAA concentration, placental 14C-leucine transport activity and associated impacts on fetal growth and development. Poly(I:C) treatment increased acutely maternal IL-6 and TNFα concentration, contrasting with IL-1β. Transcriptional responses for these pro-inflammatory cytokines were found in placenta and yolk sac following poly(I:C) treatment. Placental and yolk sac weights were reduced by poly(I:C) treatment, yet fetal body weight was unaffected, while fetal brain weight was increased. Maternal plasma BCAA concentration was reduced 24 h post-poly(I:C) treatment, yet placental, but not yolk sac, BCAA concentration was increased. Placental and yolk sac gene expression of Slc7a5, Slc7a8 and Slc43a2 encoding LAT1, LAT2 and LAT4 transporter subtypes respectively, was altered by poly(I:C) treatment. Placental 14C-leucine transport was significantly reduced 24 h post-treatment, contrasting with a significant increase six days following poly(I:C) treatment. Maternal immune activation induces dysregulated placental transport of amino acids affecting fetal brain development, and NDD risk potential in offspring.
Collapse
|
19
|
Bernardo M, Anmella G, Verdolini N, Saiz-Masvidal C, Casals S, Contreras F, Garrido I, Pérez F, Safont G, Mas S, Rodriguez N, Meseguer A, Pons-Cabrera MT, Vieta E, Amoretti S. Assessing cognitive reserve outcomes and biomarkers in first episode of psychosis: rationale, objectives, protocol and preliminary results of the CRASH Project. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2022. [DOI: 10.1016/j.rpsm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
21
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
22
|
Amminger GP, Lin A, Kerr M, Weller A, Spark J, Pugh C, O'Callaghan S, Berger M, Clark SR, Scott JG, Baker A, McGregor I, Cotter D, Sarnyai Z, Thompson A, Yung AR, O'Donoghue B, Killackey E, Mihalopoulos C, Yuen HP, Nelson B, McGorry PD. Cannabidiol for at risk for psychosis youth: A randomized controlled trial. Early Interv Psychiatry 2022; 16:419-432. [PMID: 34190422 DOI: 10.1111/eip.13182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND No biological treatment has been firmly established for the at-risk stage of psychotic disorder. In this study we aim to test if subthreshold psychotic symptoms can be effectively treated with cannabidiol (CBD), a non-psychoactive compound of the plant Cannabis sativa. The question has taken on increased importance in the wake of evidence questioning both the need and efficacy of specific pharmacological interventions in the ultra-high risk (UHR) for psychosis group. METHODS Three-arm randomized controlled trial of 405 patients (135 per arm) aged 12-25 years who meet UHR for psychosis criteria. The study includes a 6-week lead-in phase during which 10% of UHR individuals are expected to experience symptom remission. Participants will receive CBD (per oral) at doses 600 or 1000 mg per day (fixed schedule) for 12 weeks. Participants in the third arm of the trial will receive matching placebo capsules. Primary outcome is severity of positive psychotic symptoms as measured by the Comprehensive Assessment of At-Risk Mental States at 12 weeks. We hypothesize that CBD will be significantly more effective than placebo in improving positive psychotic symptoms in UHR patients. All participants will also be followed up 6 months post baseline to evaluate if treatment effects are sustained. CONCLUSION This paper reports on the rationale and protocol of the Cannabidiol for At Risk for psychosis Youth (CanARY) study. This study will test CBD for the first time in the UHR phase of psychotic disorder.
Collapse
Affiliation(s)
- G Paul Amminger
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Melissa Kerr
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Amber Weller
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Jessica Spark
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Charlotte Pugh
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sally O'Callaghan
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Maximus Berger
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, Australia
| | - James G Scott
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, Australia.,Metro North Mental Health Service, Herston, Australia
| | - Andrea Baker
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, Australia
| | - Iain McGregor
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | | | | | - Andrew Thompson
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Alison R Yung
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.,School of Health Science, University of Manchester, Manchester, UK
| | - Brian O'Donoghue
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Eoin Killackey
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | | | - Hok Pan Yuen
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Barnaby Nelson
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick D McGorry
- Orygen, Melbourne, Australia.,The Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Li J, Yoshikawa A, Alliey-Rodriguez N, Meltzer HY. Schizophrenia risk loci from xMHC region were associated with antipsychotic response in chronic schizophrenic patients with persistent positive symptom. Transl Psychiatry 2022; 12:92. [PMID: 35250027 PMCID: PMC8898944 DOI: 10.1038/s41398-022-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
We examined whether common variants from the extended major histocompatibility complex (xMHC) region contribute to the response to antipsychotic drugs (APDs) in patients with schizophrenia with persistent psychosis. Subjects participated in a prospective longitudinal study of the effect of APDs on psychopathology were temporally split into discovery (n = 88) and replication (n = 42) cohorts. The primary endpoint was a change in Brief Psychiatric Rating Scale at 6-week or 6-month after treatment. rs204991 (β = 3.917, p = 3.72 × 10-6), the strongest signal associated with response at 6-week was located near C4A/C4B after a linear regression adjusted for covariates. xMHC SNP imputation disclosed much stronger signals (rs9268469, β = 5.140, p = 1.57 × 10-7) and other weaker signals (p < 1 × 10-5) spanning the entire xMHC region. All the variants were previously identified schizophrenia risk loci. Conditional fine-mapping revealed three subgroups of SNPs which were the eQTLs (p < 1 × 10-7) for C4A, HLA-C, and BTN3A2 in disease-relevant tissue. Epistasis between HLA-C and C4A was observed (p = 0.019). Minor allele (G) carriers of rs204991, eQTL for C4A, having decreased risk for schizophrenia and lower imputed expression of C4A, had a better response to APDs. Some imputed HLA alleles associated with a decreased risk for schizophrenia had a positive association with improvement in psychotic symptoms. An independent cohort validated the association of change in psychosis with C4A. We provide evidence that genetic risk factors for schizophrenia from the xMHC region are associated with response to APDs and those variants significantly alter the imputed expression of C4A, HLA-C, and BTN3A2. The minor alleles predicting higher C4A level are associated with diminished improvement in psychotic symptoms after APD treatment.
Collapse
Affiliation(s)
- Jiang Li
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.415341.60000 0004 0433 4040Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA USA
| | - Akane Yoshikawa
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.258269.20000 0004 1762 2738Department of Psychiatry and Behavioral Sciences, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ney Alliey-Rodriguez
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Herbert Y. Meltzer
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
24
|
Vasconcelos GS, Dos Santos Júnior MA, Monte AS, da Silva FER, Lima CNDC, Moreira Lima Neto AB, Medeiros IDS, Teixeira AL, de Lucena DF, Vasconcelos SMM, Macedo DS. Low-dose candesartan prevents schizophrenia-like behavioral alterations in a neurodevelopmental two-hit model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110348. [PMID: 33984421 DOI: 10.1016/j.pnpbp.2021.110348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
Schizophrenia is a severe mental disorder with complex etiopathogenesis. Based on its neurodevelopmental features, an animal model induced by "two-hit" based on perinatal immune activation followed by peripubertal unpredictable stress was proposed. Sex influences the immune response, and concerning schizophrenia, it impacts the age of onset and symptoms severity. The neurobiological mechanisms underlying the influence of sex in schizophrenia is poorly understood. Our study aimed to evaluate sex influence on proinflammatory and oxidant alterations in male and female mice exposed to the two-hit model of schizophrenia, and its prevention by candesartan, an angiotensin II type 1 receptor (AT1R) blocker with neuroprotective properties. The two-hit model induced schizophrenia-like behavioral changes in animals of both sexes. Hippocampal microglial activation alongside the increased expression of NF-κB, and proinflammatory cytokines, namely interleukin (IL)-1β and TNF-α, were observed in male animals. Conversely, females presented increased hippocampal and plasma levels of nitrite and plasma lipid peroxidation. Peripubertal administration of low-dose candesartan (0.3 mg/kg PO) prevented behavioral, hippocampal, and systemic changes in male and female mice. While these results indicate the influence of sex on inflammatory and oxidative changes induced by the two-hit model, candesartan was effective in both males and females. The present study advances the neurobiological mechanisms underlying sex influence in schizophrenia and opens new avenues to prevent this devasting mental disorder.
Collapse
Affiliation(s)
- Germana Silva Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Manuel Alves Dos Santos Júnior
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Aline Santos Monte
- University of International Integration of Afro-Brazilian Lusophony (Unilab-CE), Brazil
| | - Francisco Eliclécio Rodrigues da Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Camila Nayane de Carvalho Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Ingridy da Silva Medeiros
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Antonio Lucio Teixeira
- Institute of Education and Research, Santa Casa BH, Belo Horizonte, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, UTHealth Houston, United States of America
| | - David Freitas de Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Associations between expression of indoleamine 2, 3-dioxygenase enzyme and inflammatory cytokines in patients with first-episode drug-naive Schizophrenia. Transl Psychiatry 2021; 11:595. [PMID: 34802039 PMCID: PMC8606005 DOI: 10.1038/s41398-021-01688-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
The indoleamine 2,3-dioxygenase (IDO) enzyme is the first rate-limiting enzyme of the tryptophan degradation pathway in which dysfunction of neuroactive metabolites has been implicated in the pathophysiology of schizophrenia. Inflammatory molecules such as pro-inflammatory cytokines could enhance the activity of IDO. There are few studies on the expression of IDO levels and its correlation with levels of inflammatory cytokines in first-episode drug-naive patients with schizophrenia. One hundred inpatients (female = 33, male = 67) with first-episode drug-naive schizophrenia entered a 6-week, double-blind, randomized, placebo-controlled clinical trial. All individuals were assigned celecoxib or placebo combined with risperidone. Serum levels of IDO and six inflammatory cytokines (IL-1β, IL-6, TNF-α IL-17, IL-4, and INF-γ) were measured. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of psychotic symptoms. Compared to healthy subjects, patients had significantly elevated levels of IDO and six cytokines at baseline. Over the 6-week treatment period, the decrease in the levels of IDO and TNF-α and the improvement in the PANSS total score, positive scores, and negative scores in the celecoxib group were significantly greater than in the placebo group. There was a significantly positive correlation between IDO levels and the PANSS negative scores and between IDO levels and TNF-α and IFN-γ levels in the celecoxib group. These findings showed abnormal expression of IDO levels which correlated with negative symptoms and pro-inflammatory cytokine levels in patients with first-episode drug-naive schizophrenia, suggesting the important role of IDO in the pathological mechanism of schizophrenia. Registration number: ChiCTR2000041403.
Collapse
|
26
|
Aytac HM, Yazar MS, Erol A, Pehlivan S. Investigation of inflammation related gene polymorphism of the mannose-binding lectin 2 in schizophrenia and bipolar disorder. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2021; 26:346-356. [PMID: 34663707 PMCID: PMC9037773 DOI: 10.17712/nsj.2021.4.20200050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the association between mannose-binding lectin 2 (MBL2) codon 54 polymorphism and clinical features of patients diagnosed with schizophrenia (SCZ) or bipolar disorder (BD). METHODS One hundred and eighteen patients with SCZ, 100 patients with BD, and 100 healthy volunteers were included in the case-control study. The patients consecutively admitted to the outpatient clinic in December 2017-May 2018 and were evaluated with some scales for clinical parameters. Polymerase chain reaction and RFLP were used to determine MBL2 polymorphism in DNA material. RESULTS The MBL2 gene polymorphism distributions in SCZ or BD patients were significantly different from the control group. The heterozygous genotype percentages were significantly higher in the control group than in the SCZ or BD patients (OR: 0.450; 95% Cl: 0.243-0.830; p=0.010; OR: 0.532; 95%Cl: 0.284-0.995; p=0.047, respectively), and there were statistically significant differences in the MBL2 polymorphism distributions between treatment-responsive SCZ or BD patients and treatment-resistant patients diagnosed with SCZ or BD. The heterozygous genotype percentages were also significantly higher in the treatment-responsive group than in the treatment-resistant group in SCZ or BD patients (OR: 7.857; 95% Cl: 1.006-61.363; p=0.023; OR: 8.782; 95% Cl: 1.114-69.197; p=0.016, respectively). CONCLUSION The presence of a heterozygous MBL2 genotype seems to be favorable both in terms of the absence of SCZ and BD in the healthy population and treatment response for Turkish patients.
Collapse
Affiliation(s)
- Hasan M. Aytac
- From the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, from the Department of Psychiatry (Yazar), the Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery; from the Department of Medical Biology (Erol, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Menekse S. Yazar
- From the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, from the Department of Psychiatry (Yazar), the Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery; from the Department of Medical Biology (Erol, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ayse Erol
- From the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, from the Department of Psychiatry (Yazar), the Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery; from the Department of Medical Biology (Erol, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sacide Pehlivan
- From the Department of Psychiatry (Aytac), Basaksehir Cam and Sakura City Hospital, from the Department of Psychiatry (Yazar), the Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery; from the Department of Medical Biology (Erol, Pehlivan), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
27
|
Aytac HM, Oyaci Y, Yazar MS, Pehlivan S. Macrophage Migration Inhibitory Factor - 173 G/C Polymorphism is Associated With The Age of Onset and Insight in Schizophrenia in the Turkish Population. Neurol Res 2021; 43:977-984. [PMID: 34264160 DOI: 10.1080/01616412.2021.1948748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To evaluate the genetic variant in the macrophage migration inhibitory factor (MIF) -173 G/C in patients with schizophrenia (SCZ) by comparing genotype distributions of MIF -173 G/C between patients and healthy controls considering clinical parameters. METHODS A sample of 118 patients with SCZ and 100 healthy volunteers were included in the study. The patients were evaluated with some scales in terms of clinical features (symptom severity, level of insight, age of onset, and treatment resistance). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine gene polymorphism. RESULTS There was a statistically significant difference between the allele frequency (G, C) distributions of SCZ patients with early- and adult-onset. The C allele frequency was significantly higher in SCZ patients with early-onset (p = .033). According to the impairment of insight, we observed statistically significant differences in genotype (GG, GC, CC) distributions between SCZ patients with good and poor insight. SCZ patients with poor insight had a higher GG genotype frequency than SCZ patients with good insight (p = .021). Again, there was a statistically significant difference between genotype groups (GG, GC/CC) regarding the age of illness onset (p = .037) and schedule for assessing the three components of insight (SATCI) score (p = .005). While the age of onset of SCZ was significantly earlier in patients with the GC/CC genotype, SATCI scores of SCZ patients with the GG genotype were significantly lower than SCZ patients with GC/CC genotype. CONCLUSIONS MIF -173 G/C polymorphism may be associated with the age of illness onset and impairment of insight in SCZ.
Collapse
Affiliation(s)
- Hasan Mervan Aytac
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Menekse Sila Yazar
- Department of Psychiatry, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
28
|
Chen Y, Zhao Z, Lin F, Wang L, Lin Z, Yue W. Associations Between Genotype and Peripheral Complement Proteins in First-Episode Psychosis: Evidences From C3 and C4. Front Genet 2021; 12:647246. [PMID: 34306006 PMCID: PMC8301372 DOI: 10.3389/fgene.2021.647246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia is a common neuropsychiatric disorder with complex pathophysiology. Recent reports suggested that complement system alterations contributed to pathological synapse elimination that was associated with psychiatric symptoms in schizophrenia. Complement component 3 (C3) and complement component 4 (C4) play central roles in complement cascades. In this study, we compared peripheral C3 and C4 protein levels between first-episode psychosis (FEP) and healthy control (HC). Then we explored whether single nucleotide polymorphisms (SNPs) at C3 or C4 genes affect peripheral C3 or C4 protein levels. In total, 181 FEPs and 204 HCs were recruited after providing written informed consent. We measured serum C3 and C4 protein levels using turbidimetric inhibition immunoassay and genotyped C3 and C4 polymorphisms using the Sequenom MassArray genotyping. Our results showed that three SNPs were nominally associated with schizophrenia (rs11569562/C3: A > G, p = 0.048; rs2277983/C3: A > G, p = 0.040; rs149898426/C4: G > A, p = 0.012); one haplotype was nominally associated with schizophrenia, constructed by rs11569562–rs2277983–rs1389623 (GGG, p = 0.048); FEP had higher serum C3 and C4 (both p < 0.001) levels than HC; rs1389623 polymorphisms were associated with elevated C3 levels in our meta-analysis (standard mean difference, 0.50; 95% confidence interval, 0.30 to 0.71); the FEP with CG genotype of rs149898426 had higher C4 levels than that with GG genotypes (p = 0.005). Overall, these findings indicated that complement system altered in FEP and rs149898426 of C4 gene represented a genetic risk marker for schizophrenia likely through mediating complement system. Further studies with larger sample sizes needs to be validated.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Zhenguo Zhao
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Fen Lin
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Lifang Wang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China
| | - Zheng Lin
- Second Hospital Zhejiang University School of Medicine (SAHZU), Hangzhou, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Ministry of Health (Peking University), Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
29
|
Anglin DM, Ereshefsky S, Klaunig MJ, Bridgwater MA, Niendam TA, Ellman LM, DeVylder J, Thayer G, Bolden K, Musket CW, Grattan RE, Lincoln SH, Schiffman J, Lipner E, Bachman P, Corcoran CM, Mota NB, van der Ven E. From Womb to Neighborhood: A Racial Analysis of Social Determinants of Psychosis in the United States. Am J Psychiatry 2021; 178:599-610. [PMID: 33934608 PMCID: PMC8655820 DOI: 10.1176/appi.ajp.2020.20071091] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The authors examine U.S.-based evidence that connects characteristics of the social environment with outcomes across the psychosis continuum, from psychotic experiences to schizophrenia. The notion that inequitable social and economic systems of society significantly influence psychosis risk through proxies, such as racial minority and immigrant statuses, has been studied more extensively in European countries. While there are existing international reviews of social determinants of psychosis, none to the authors' knowledge focus on factors in the U.S. context specifically-an omission that leaves domestic treatment development and prevention efforts incomplete and underinformed. In this review, the authors first describe how a legacy of structural racism in the United States has shaped the social gradient, highlighting consequential racial inequities in environmental conditions. The authors offer a hypothesized model linking structural racism with psychosis risk through interwoven intermediary factors based on existing theoretical models and a review of the literature. Neighborhood factors, cumulative trauma and stress, and prenatal and perinatal complications were three key areas selected for review because they reflect social and environmental conditions that may affect psychosis risk through a common pathway shaped by structural racism. The authors describe evidence showing that Black and Latino people in the United States suffer disproportionately from risk factors within these three key areas, in large part as a result of racial discrimination and social disadvantage. This broad focus on individual and community factors is intended to provide a consolidated space to review this growing body of research and to guide continued inquiries into social determinants of psychosis in U.S. contexts.
Collapse
Affiliation(s)
- Deidre M Anglin
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Sabrina Ereshefsky
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Mallory J Klaunig
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Miranda A Bridgwater
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Tara A Niendam
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Lauren M Ellman
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Jordan DeVylder
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Griffin Thayer
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Khalima Bolden
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Christie W Musket
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Rebecca E Grattan
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Sarah Hope Lincoln
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Jason Schiffman
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Emily Lipner
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Peter Bachman
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Cheryl M Corcoran
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Natália B Mota
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| | - Els van der Ven
- Department of Psychology, City College of New York, City University of New York, New York (Anglin, Thayer); Graduate Center, City University of New York (Anglin); Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento (Ereshefsky, Niendam, Bolden, Grattan); Department of Psychology, University of Maryland, Baltimore County (Klaunig, Bridgwater, Schiffman); Department of Psychology, Temple University, Philadelphia (Ellman, Lipner); Graduate School of Social Service, Fordham University, New York (DeVylder); Department of Psychology (Musket) and Department of Psychiatry (Bachman), University of Pittsburgh, Pittsburgh; ISN Innovations, Institute for Social Neuroscience, Ivanhoe, Australia (Grattan); Department of Psychological Sciences, Case Western Reserve University, Cleveland (Lincoln); Department of Psychological Science, University of California, Irvine (Schiffman); Department of Psychiatry, Icahn School of Medicine, New York, and James J. Peters VA Medical Center, Bronx, N.Y. (Corcoran); Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil (Mota); Mailman School of Public Health, Columbia University, New York (van der Ven); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (van der Ven); Department of Clinical, Neuro, and Developmental Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam (van der Ven)
| |
Collapse
|
30
|
Abstract
BACKGROUND Despite adequate antipsychotic treatment, most people with schizophrenia continue to exhibit persistent positive and negative symptoms and cognitive impairments. The current study was designed to examine the efficacy and safety of adjunctive anti-inflammatory combination therapy for these illness manifestations. METHODS Thirty-nine people with either Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, schizophrenia or schizoaffective disorder were entered into a 12-week double-blind, 2-arm, triple-dummy, placebo-controlled, randomized clinical trial: 19 were randomized to anti-inflammatory combination therapy and 20 were randomized to placebo. The Brief Psychiatric Rating Scale positive symptom item total score was used to assess positive symptom change, the Scale for the Assessment of Negative Symptoms total score was used to assess negative symptom change, the Calgary Depression Scale total score was used to assess depressive symptom change, and the MATRICS Consensus Cognitive Battery was used to assess neuropsychological test performance. RESULTS There was a significant time effect for Brief Psychiatric Rating Scale positive symptom item score (t226 = -2.66, P = 0.008), but the treatment (t54=1.52, P = 0.13) and treatment × time (t223 = 0.47, P = 0.64) effects were not significant. There were no significant time (t144 = 0.53, P = 0.72), treatment (t58=0.48, P = 0.63), or treatment × time (t143 = -0.20, P = 0.84) effects for the Scale for the Assessment of Negative Symptoms total score; or for any of the other symptom measures. There were no significant group differences in the change in the MATRICS Consensus Cognitive Battery composite score over the course of the study (F1,26=2.20, P = 0.15). CONCLUSIONS The study results suggest that there is no significant benefit of combined anti-inflammatory treatment for persistent positive symptoms or negative symptoms or cognitive impairments (clinicaltrials.gov trial number: NCT01514682).
Collapse
|
31
|
Mizuki Y, Sakamoto S, Okahisa Y, Yada Y, Hashimoto N, Takaki M, Yamada N. Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. Int J Neuropsychopharmacol 2021; 24:367-382. [PMID: 33315097 PMCID: PMC8130204 DOI: 10.1093/ijnp/pyaa097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of patients with schizophrenia is high, and life expectancy is shorter by 10 to 20 years. Metabolic abnormalities including type 2 diabetes mellitus (T2DM) are among the main reasons. The prevalence of T2DM in patients with schizophrenia may be epidemiologically frequent because antipsychotics induce weight gain as a side effect and the cognitive dysfunction of patients with schizophrenia relates to a disordered lifestyle, poor diet, and low socioeconomic status. Apart from these common risk factors and risk factors unique to schizophrenia, accumulating evidence suggests the existence of common susceptibility genes between schizophrenia and T2DM. Functional proteins translated from common genetic susceptibility genes are known to regulate neuronal development in the brain and insulin in the pancreas through several common cascades. In this review, we discuss common susceptibility genes, functional cascades, and the relationship between schizophrenia and T2DM. Many genetic and epidemiological studies have reliably associated the comorbidity of schizophrenia and T2DM, and it is probably safe to think that common cascades and mechanisms suspected from common genes' functions are related to the onset of both schizophrenia and T2DM. On the other hand, even when genetic analyses are performed on a relatively large number of comorbid patients, the results are sometimes inconsistent, and susceptibility genes may carry only a low or moderate risk. We anticipate future directions in this field.
Collapse
Affiliation(s)
- Yutaka Mizuki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Shimonoseki Hospital
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuji Yada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Nozomu Hashimoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
32
|
Contribution of Pro-Inflammatory Molecules Induced by Respiratory Virus Infections to Neurological Disorders. Pharmaceuticals (Basel) 2021; 14:ph14040340. [PMID: 33917837 PMCID: PMC8068239 DOI: 10.3390/ph14040340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Neurobehavioral alterations and cognitive impairment are common phenomena that represent neuropsychiatric disorders and can be triggered by an exacerbated immune response against pathogens, brain injury, or autoimmune diseases. Pro-inflammatory molecules, such as cytokines and chemokines, are produced in the brain by resident cells, mainly by microglia and astrocytes. Brain infiltrating immune cells constitutes another source of these molecules, contributing to an impaired neurological synapse function, affecting typical neurobehavioral and cognitive performance. Currently, there is increasing evidence supporting the notion that behavioral alterations and cognitive impairment can be associated with respiratory viral infections, such as human respiratory syncytial virus, influenza, and SARS-COV-2, which are responsible for endemic, epidemic, or pandemic outbreak mainly in the winter season. This article will review the brain′s pro-inflammatory response due to infection by three highly contagious respiratory viruses that are the leading cause of acute respiratory illness, morbidity, and mobility in infants, immunocompromised and elderly population. How these respiratory viral pathogens induce increased secretion of pro-inflammatory molecules and their relationship with the alterations at a behavioral and cognitive level will be discussed.
Collapse
|
33
|
Çakici N, Sutterland AL, Penninx BWJH, de Haan L, van Beveren NJM. Changes in peripheral blood compounds following psychopharmacological treatment in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Psychol Med 2021; 51:538-549. [PMID: 33653423 PMCID: PMC8020491 DOI: 10.1017/s0033291721000155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND This meta-analysis on peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder (MDD) examined which compounds change following psychopharmacological treatment. METHODS The Embase, PubMed and PsycINFO databases were systematically searched for longitudinal studies reporting measurements of blood compounds in drug-naïve first-episode schizophrenia or MDD. RESULTS For this random-effects meta-analysis, we retrieved a total of 31 studies comprising 1818 schizophrenia patients, and 14 studies comprising 469 MDD patients. Brain-derived neurotrophic factor (BDNF) increased following treatment in schizophrenia (Hedges' g (g): 0.55; 95% confidence interval (CI) 0.39-0.70; p < 0.001) and MDD (g: 0.51; CI 0.06-0.96; p = 0.027). Interleukin (IL)-6 levels decreased in schizophrenia (g: -0.48; CI -0.85 to -0.11; p = 0.011), and for MDD a trend of decreased IL-6 levels was observed (g: -0.39; CI -0.87 to 0.09; p = 0.115). Tumor necrosis factor alpha (TNFα) also decreased in schizophrenia (g: -0.34; CI -0.68 to -0.01; p = 0.047) and in MDD (g: -1.02; CI -1.79 to -0.25; p = 0.009). Fasting glucose levels increased only in schizophrenia (g: 0.26; CI 0.07-0.44; p = 0.007), but not in MDD. No changes were found for C-reactive protein, IL-1β, IL-2 and IL-4. CONCLUSIONS Psychopharmacological treatment has modulating effects on BDNF and TNFα in drug-naïve first-episode patients with either schizophrenia or MDD. These findings support efforts for further research into transdiagnostic preventive strategies and augmentation therapy for those with immune dysfunctions.
Collapse
Affiliation(s)
- Nuray Çakici
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, the Netherlands
- Parnassia Academy, Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DHThe Hague, the Netherlands
| | - Arjen L. Sutterland
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, the Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1105, 1081 HVAmsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, the Netherlands
| | - Nico J. M. van Beveren
- Parnassia Academy, Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DHThe Hague, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GDRotterdam, the Netherlands
- Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GDRotterdam, the Netherlands
| |
Collapse
|
34
|
Ketharanathan T, Pereira A, Reets U, Walker D, Sundram S. Brain changes in NF-κB1 and epidermal growth factor system markers at peri-pubescence in the spiny mouse following maternal immune activation. Psychiatry Res 2021; 295:113564. [PMID: 33229121 DOI: 10.1016/j.psychres.2020.113564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Environmental risk factors that operate at foetal or neonatal levels increase the vulnerability to schizophrenia, plausibly via stress-immune activation that perturbs the epidermal growth factor (EGF) system, a system critical for neurodevelopment. We investigated potential associations between environmental insults and immune and EGF system changes through a maternal immune activation (MIA) model, using the precocial spiny mice (Acomys cahirinus). After mid-gestation MIA prepubescent offspring showed elevated NF-κB1 protein in nucleus accumbens, decreased EGFR in caudate putamen and a trend for increased PI3K-110δ in ventral hippocampus. Thus, prenatal stress may cause a heightened NF-κB1-mediated immune attenuation of EGF system signalling.
Collapse
Affiliation(s)
- Tharini Ketharanathan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Avril Pereira
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia
| | - Udani Reets
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - David Walker
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
35
|
Involvement of NLRP3 inflammasome in schizophrenia-like behaviour in young animals after maternal immune activation. Acta Neuropsychiatr 2020; 32:321-327. [PMID: 32660670 DOI: 10.1017/neu.2020.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To evaluate the involvement of nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in schizophrenia-like behaviour in young animals exposed to maternal immune activation (MIA). METHODS To this aim, on the 15th gestational day, the females received an injection of lipopolysaccharides. When the animals completed 7, 14 and 45 postnatal days, they were killed and the whole brain was dissected for biochemical analysis. Animals with 45 postnatal days were submitted to behavioural tests of locomotor activity, social interaction and stereotyped movements. RESULTS It was observed that the animals presented schizophrenia-like behaviour at 45 postnatal days associated with the increase of NLRP3 inflammasome expression and IL-1β levels on 7, 14 and 45 postnatal days. CONCLUSION This study shows that MIA may be associated with a schizophrenia-like behaviour. This behaviour can be induced to a neuroinflammatory profile in the brain. These evidences may base future studies on the relationship between neuroinflammation and psychiatric disorders.
Collapse
|
36
|
Cyclooxygenase Inhibition Safety and Efficacy in Inflammation-Based Psychiatric Disorders. Molecules 2020; 25:molecules25225388. [PMID: 33217958 PMCID: PMC7698629 DOI: 10.3390/molecules25225388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
According to the World Health Organization, the major psychiatric and neurodevelopmental disorders include major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. The potential role of inflammation in the onset and progression of these disorders is increasingly being studied. The use of non-steroidal anti-inflammatory drugs (NSAIDs), well-known cyclooxygenase (COX) inhibitors, combined with first-choice specific drugs have been long investigated. The adjunctive administration of COX inhibitors to classic clinical treatments seems to improve the prognosis of people who suffer from psychiatric disorders. In this review, a broad overview of the use of COX inhibitors in the treatment of inflammation-based psychiatric disorders is provided. For this purpose, a critical analysis of the use of COX inhibitors in the last ten years of clinical trials of the major psychiatric disorders was carried out.
Collapse
|
37
|
Dwir D, Giangreco B, Xin L, Tenenbaum L, Cabungcal JH, Steullet P, Goupil A, Cleusix M, Jenni R, Chtarto A, Baumann PS, Klauser P, Conus P, Tirouvanziam R, Cuenod M, Do KQ. MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol Psychiatry 2020; 25:2889-2904. [PMID: 30911107 PMCID: PMC7577857 DOI: 10.1038/s41380-019-0393-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/09/2023]
Abstract
Various mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34). We aim to investigate underlying mechanisms linking oxidative stress with neuroinflammatory and their long-lasting harmful consequences. In a transgenic mouse of redox dysregulation carrying a permanent deficit of glutathione synthesis (gclm-/-), the anterior cingulate cortex presented early in the development increased oxidative stress which was prevented by the antioxidant N-acetylcysteine (Eur J Neurosci. 2000;12:3721-8). This oxidative stress induced microglia activation and redox-sensitive matrix metalloproteinase 9 (MMP9) stimulation, leading to the receptor for advanced glycation end-products (RAGE) shedding into soluble and nuclear forms, and subsequently to nuclear factor-kB (NF-kB) activation and secretion of various cytokines. Blocking MMP9 activation prevented this sequence of alterations and rescued the normal maturation of PVI/PNN, even if performed after an additional insult that exacerbated the long term PVI/PNN impairments. MMP9 inhibition thus appears to be able to interrupt the vicious circle that maintains the long-lasting deleterious effects of the reciprocal interaction between oxidative stress and neuroinflammation, impacting on PVI/PNN integrity. Translation of these experimental findings to first episode patients revealed an increase in plasma soluble RAGE relative to healthy controls. This increase was associated with low prefrontal GABA levels, potentially predicting a central inhibitory/excitatory imbalance linked to RAGE shedding. This study paves the way for mechanistically related biomarkers needed for early intervention and MMP9/RAGE pathway modulation may lead to promising drug targets.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neuroscience, CHUV, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Audrey Goupil
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles, Erasme Hospital, 22, route de Lennik, B-1070, Bruxelles, Belgium
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland.
| |
Collapse
|
38
|
Aytac HM, Ozdilli K, Tuncel FC, Pehlivan M, Pehlivan S. Tumor Necrosis Factor-alpha (TNF-α) −238 G/A Polymorphism Is Associated with the Treatment Resistance and Attempted Suicide in Schizophrenia. Immunol Invest 2020; 51:368-380. [DOI: 10.1080/08820139.2020.1832115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Kursat Ozdilli
- Department of Medical Biology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Fatima Ceren Tuncel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Gaziantep, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
39
|
Moustafa SR, Al-Rawi KF, Stoyanov D, Al-Dujaili AH, Supasitthumrong T, Al-Hakeim HK, Maes M. The Endogenous Opioid System in Schizophrenia and Treatment Resistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleukin-6. Diagnostics (Basel) 2020; 10:E633. [PMID: 32858974 PMCID: PMC7554941 DOI: 10.3390/diagnostics10090633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS) plays a key role in schizophrenia (SCZ) and treatment resistant SCZ. There are only a few data on immune and endogenous opioid system (EOS) interactions in SCZ and treatment resistant SCZ. METHODS we examined serum β-endorphin, endomorphin-2 (EM2), mu-opioid (MOR) and kappa-opioid (KOR) receptors, and interleukin (IL)-6 and IL-10 in 60 non responders to treatment (NRTT), 55 partial RTT (PRTT) and 43 normal controls. RESULTS serum EM2, KOR, MOR, IL-6 and IL-10 were significantly increased in SCZ as compared with controls. β-endorphin, EM2, MOR and IL-6 were significantly higher in NRTT than in PRTT. There were significant correlations between IL-6, on the one hand, and β-endorphin, EM2, KOR, and MOR, on the other, while IL-10 was significantly correlated with MOR only. A large part of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation and formal thought disorders was explained by the combined effects of EM2 and MOR with or without IL-6 while increased KOR was significantly associated with all symptom dimensions. Increased MOR, KOR, EM2 and IL-6 were also associated with neurocognitive impairments including in episodic, semantic and working memory and executive functions. CONCLUSION the EOS contributes to SCZ symptomatology, neurocognitive impairments and a non-response to treatment. In SCZ, EOS peptides/receptors may exert CIRS functions, whereas increased KOR levels may contribute to the pathophysiology of SCZ and EM2 and KOR to a non-response to treatment.
Collapse
Affiliation(s)
- Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil 44001, Iraq;
| | | | - Drozdstoi Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
| | | | | | | | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10110, Thailand;
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
40
|
Çakici N, Sutterland AL, Penninx BWJH, Dalm VA, de Haan L, van Beveren NJM. Altered peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav Immun 2020; 88:547-558. [PMID: 32330592 DOI: 10.1016/j.bbi.2020.04.039] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
IMPORTANCE Schizophrenia and major depressive disorder (MDD) are associated with increased risks of immunologic disease and metabolic syndrome. It is unclear to what extent growth, immune or glucose dysregulations are similarly present in these disorders without the influence of treatment or chronicity. OBJECTIVE To conduct a meta-analysis investigating whether there are altered peripheral growth, immune or glucose metabolism compounds in drug-naïve first-episode patients with schizophrenia or MDD compared with controls. DATA SOURCES AND STUDY SELECTION Case-control studies reporting compound measures in drug-naïve first-episode patients with schizophrenia or MDD compared with controls in the Embase, PubMed and PsycINFO databases. DATA EXTRACTION AND SYNTHESIS Two independent authors extracted data for a random-effects meta-analysis. MAIN OUTCOMES AND MEASURES Peripheral growth, immune or glucose metabolism compounds in schizophrenia or MDD compared with controls. Standardized mean differences were quantified with Hedges' g (g). RESULTS 74 studies were retrieved comprising 3453 drug-naïve first-episode schizophrenia patients and 4152 controls, and 29 studies were retrieved comprising 1095 drug-naïve first-episode MDD patients and 1399 controls. Growth factors: brain-derived neurotrophic factor (BDNF) (g = -0.77, P < .001) and nerve growth factor (NGF) (g = -2.51, P = .03) were decreased in schizophrenia. For MDD, we observed a trend toward decreased BDNF (g = -0.47, P = .19) and NGF (g = -0.33, P = .08) levels, and elevated vascular endothelial growth factor levels (g = 0.40, P = .03). Immune factors: interleukin (IL)-6 (g = 0.95, P < .001), IL-8 (g = 0.59, P = .001) and tumor necrosis factor alpha (TNFα) (g = 0.48, P = .002) were elevated in schizophrenia. For C-reactive protein (CRP) (g = 0.57, P = .09), IL-4 (g = 0.44, P = .10) and interferon gamma (g = 0.33, P = .11) we observed a trend toward elevated levels in schizophrenia. In MDD, IL-6 (g = 0.62, P = .007), TNFα (g = 1.21, P < .001), CRP (g = 0.53, P < .001), IL-1β (g = 1.52, P = .009) and IL-2 (g = 4.41, P = .04) were elevated, whereas IL-8 (g = -0.84, P = .01) was decreased. The fasting glucose metabolism factors glucose (g = 0.24, P = .003) and insulin (g = 0.38, P = .003) were elevated in schizophrenia. CONCLUSIONS AND RELEVANCE Both schizophrenia and MDD show alterations in growth and immune factors from disease onset. An altered glucose metabolism seems to be present from onset in schizophrenia. These findings support efforts for further research into transdiagnostic preventive strategies and augmentation therapy for those with immune or metabolic dysfunctions.
Collapse
Affiliation(s)
- Nuray Çakici
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Parnassia Academy, Parnassia Psychiatric Institute, The Hague, the Netherlands.
| | - Arjen L Sutterland
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Virgil A Dalm
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nico J M van Beveren
- Parnassia Academy, Parnassia Psychiatric Institute, The Hague, the Netherlands; Department of Psychiatry, Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
42
|
Kang K, Sun X, Wang L, Yao X, Tang S, Deng J, Wu X, Yang C, Chen G. Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Dou Y, Blaine Crowley T, Gallagher S, Bailey A, McGinn D, Zackai E, Gur RE, McGinn DM, Sullivan KE. Increased T-cell counts in patients with 22q11.2 deletion syndrome who have anxiety. Am J Med Genet A 2020; 182:1815-1818. [PMID: 32302047 DOI: 10.1002/ajmg.a.61588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Ying Dou
- Division of Allergy Immunology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Division of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - T Blaine Crowley
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sean Gallagher
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alice Bailey
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Daniel McGinn
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elaine Zackai
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Raquel E Gur
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Donna McDonald McGinn
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kathleen E Sullivan
- Division of Allergy Immunology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
44
|
Carreño F, Helfer VE, Staudt KJ, Paese K, Meyer FS, Herrmann AP, Guterres SS, Rates SMK, Dalla Costa T. Quetiapine lipid core nanocapsules restore prepulse inhibition deficits in a neurodevelopmental model of schizophrenia in male and female rats. Schizophr Res 2020; 218:173-179. [PMID: 31973996 DOI: 10.1016/j.schres.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid core nanocapsules (LNC) have been extensively studied as a new treatment strategy to improve therapeutic effects of antipsychotic drugs. We investigated the efficacy of quetiapine LNCs (QLNCs) on the poly(i:c) model of schizophrenia in both male and female rats using the pre-pulse inhibition of startle response (PPI) test paradigm after evaluating the outcomes of three different poly(i:c) doses administered to pregnant damns at GD15 on neurodevelopmental outcomes of maternal immune activation (MIA) in adult offspring. QTP solution was not capable of producing a reversal in the sensorimotor gating-disruptive effect caused by the prenatal poly(i:c) exposure. The same dose of QTP given as QLNCs significantly improved PPI-impairment. This is the first study reporting the restoration of the PPI deficits in a neurodevelopmental model of SCZ using LNCs. This is a promising delivery system strategy to improve antipsychotic effects contributing to the development of better SCZ pharmacological treatments.
Collapse
Affiliation(s)
- Fernando Carreño
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil.
| | - Victória Etges Helfer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil
| | - Keli Jaqueline Staudt
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil
| | - Karina Paese
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil
| | - Fabíola Schons Meyer
- Centro de Reprodução e Experimentação de Animais de Laboratório, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91509-900 Porto Alegre, RS, Brazil
| | - Ana Paula Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil
| | - Stela Maris Kuze Rates
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil
| | - Teresa Dalla Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2759, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Teigset CM, Mohn C, Rund BR. Perinatal complications and executive dysfunction in early-onset schizophrenia. BMC Psychiatry 2020; 20:103. [PMID: 32131788 PMCID: PMC7057649 DOI: 10.1186/s12888-020-02517-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The present study examined the association between perinatal obstetric complications and executive dysfunction in early-onset schizophrenia (EOS), compared to healthy controls. Higher incidences of obstetric complications and more severe executive dysfunctions characterize EOS. Research shows extensive brain maturation in newborns, suggesting them to be particularly vulnerable for perinatal insults. Executive function is mainly mediated by the prefrontal cortex, an area that matures last during pregnancy. Thus, exposure to perinatal complications may influence executive dysfunction in EOS. METHODS The participants were 19 EOS patients and 54 healthy controls. Executive function was assessed with the D-KEFS Color Word Interference Test and the Wisconsin Card Sorting Test. Information on perinatal obstetric complications and Apgar 5-min scores were obtained from the Norwegian Medical Birth Registry. Associations between perinatal conditions and executive function were studied using stepwise regression analyses. RESULTS Perinatal complications, and especially shorter gestational lengths, were significantly associated with significant executive dysfunctions in EOS. Perinatal complications did not affect executive function among healthy controls. A significant relationship between lower Apgar 5-min scores and executive dysfunction was found among both EOS patients and healthy controls. CONCLUSIONS Exposure to perinatal complications, and particularly a shorter gestational length, was associated with increased executive dysfunction in EOS. Exposed healthy controls did not exhibit similar executive difficulties, suggesting that the EOS patients seemed especially vulnerable for executive deficits due to perinatal insults. The findings indicate that EOS youths learn more slowly and experience more difficulty with problem-solving, which carry important implications for clinical practice. Lower Apgar 5-min scores were associated with executive dysfunction in both groups. Low Apgar score at 5 min may therefore be an important early indicator of executive difficulties among adolescents, independent of diagnosis.
Collapse
Affiliation(s)
- Charlotte M. Teigset
- grid.459157.b0000 0004 0389 7802Vestre Viken Hospital Trust, Research Department, Wergelands gate 10, 3004 Drammen, Norway
| | - Christine Mohn
- grid.459157.b0000 0004 0389 7802Vestre Viken Hospital Trust, Research Department, Wergelands gate 10, 3004 Drammen, Norway ,grid.5510.10000 0004 1936 8921NORMENT Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, Postboks 4956 Nydalen, 0424 Oslo, Norway
| | - Bjørn Rishovd Rund
- grid.459157.b0000 0004 0389 7802Vestre Viken Hospital Trust, Research Department, Wergelands gate 10, 3004 Drammen, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Postboks 1094 Blindern, 0317 Oslo, Norway
| |
Collapse
|
46
|
Ellman LM, Murphy SK, Maxwell SD, Calvo EM, Cooper T, Schaefer CA, Bresnahan MA, Susser ES, Brown AS. Maternal cortisol during pregnancy and offspring schizophrenia: Influence of fetal sex and timing of exposure. Schizophr Res 2019; 213:15-22. [PMID: 31345704 PMCID: PMC7074891 DOI: 10.1016/j.schres.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Maternal stress during pregnancy has been repeatedly linked to increased risk for schizophrenia; however, no study has examined maternal cortisol during pregnancy and risk for the disorder. Study aims were to determine whether prenatal cortisol was associated with risk for schizophrenia and risk for an intermediate phenotype-decreased fetal growth-previously linked to prenatal cortisol and schizophrenia. Timing of exposure and fetal sex also were examined given previous findings. METHODS Participants were 64 cases diagnosed with schizophrenia spectrum disorders (SSD) and 117 controls from a prospective birth cohort study. Maternal cortisol was determined from stored sera from each trimester and psychiatric diagnoses were assessed from offspring using semi-structured interviews and medical records review. RESULTS Maternal cortisol during pregnancy was not associated with risk for offspring schizophrenia. There was a significant interaction between 3rd trimester cortisol and case status on fetal growth. Specifically, cases exposed to higher 3rd trimester maternal cortisol had significantly decreased fetal growth compared to controls. In addition, these findings were restricted to male offspring. CONCLUSIONS Our results indicate that higher prenatal cortisol is associated with an intermediate phenotype linked to schizophrenia, fetal growth, but only among male offspring who developed schizophrenia. Findings were consistent with evidence that schizophrenia genes may disrupt placental functioning specifically for male fetuses, as well as findings that males are more vulnerable to maternal cortisol during pregnancy. Finally, results suggest that examining fetal sex and intermediate phenotypes may be important in understanding the mechanisms involved in prenatal contributors to schizophrenia.
Collapse
Affiliation(s)
- Lauren M Ellman
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13(th) Street, Philadelphia, PA 19106, United States of America.
| | - Shannon K Murphy
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13(th) Street, Philadelphia, PA 19106, United States of America.
| | - Seth D Maxwell
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13(th) Street, Philadelphia, PA 19106, United States of America.
| | - Evan M Calvo
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13(th) Street, Philadelphia, PA 19106, United States of America.
| | - Thomas Cooper
- Analytic Psychopharmacology, Nathan S. Kline Institute, 140 Old Orangeburg Road Orangeburg, NY 10962, United States of America; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States of America; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States of America.
| | - Catherine A Schaefer
- Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612, United States of America.
| | - Michaeline A Bresnahan
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168(th) Street, New York, NY 10032, United States of America; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States of America.
| | - Ezra S Susser
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168(th) Street, New York, NY 10032, United States of America; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States of America.
| | - Alan S Brown
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168(th) Street, New York, NY 10032, United States of America; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States of America; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States of America.
| |
Collapse
|
47
|
Xiu MH, Wang DM, Du XD, Chen N, Tan SP, Tan YL, Yang FD, Cho RY, Zhang XY. Interaction of BDNF and cytokines in executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 2019; 108:110-117. [PMID: 31255950 DOI: 10.1016/j.psyneuen.2019.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022]
Abstract
Multiple lines of evidence indicate that patients with chronic schizophrenia (SCZ) display executive dysfunction across the illness course. However, the potential molecular pathophysiologic mechanisms remain poorly elucidated. Neurodevelopmental changes caused by alterations of inflammatory mediators and neurotrophins have been shown to occur in the earliest stages of SCZ, and be associated with executive dysfunction (ED) in SCZ. Therefore, the current study was to investigate whether the interplay between BDNF and inflammatory mediators was involved in the disruption of executive function of long-term hospitalized patients with chronic SCZ. Serum cytokines and BDNF levels were measured in 112 long-term hospitalized patients with chronic SCZ and 44 healthy normal controls. Executive functions were assessed by verbal fluency tests (VFT), the Stroop word-color test (Stroop), and the Wisconsin card sorting tests (WCST).The results showed that the patients had higher IL-2, IL-6, IL-8, but lower TNF-α and BDNF compared to control subjects. In the patient group, BDNF was positively associated with IL-2 and IL-8 levels, while lower BDNF levels were correlated with ED measured by VFT and WCST tests. Multiple stepwise regression analyses confirmed that BDNF × IL-8 and BDNF × TNF-α were factors influencing the total score of VFT, while BDNF × IL-8 and BDNF × TNF-α were recognized as influencing factors for WCST scores. Our results suggest complex interactions between BDNF and cytokines were involved in the pathophysiology of executive function impairments in patients with SCZ.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Dong Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiang Dong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Nan Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu Ping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun Long Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu De Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med 2019; 49:2307-2319. [PMID: 31439071 PMCID: PMC6763537 DOI: 10.1017/s0033291719001995] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating evidence shows that a propensity towards a pro-inflammatory status in the brain plays an important role in schizophrenia. Anti-inflammatory drugs might compensate this propensity. This study provides an update regarding the efficacy of agents with some anti-inflammatory actions for schizophrenia symptoms tested in randomized controlled trials (RCTs). METHODS PubMed, Embase, the National Institutes of Health website (http://www.clinicaltrials.gov), and the Cochrane Database of Systematic Reviews were systematically searched for RCTs that investigated clinical outcomes. RESULTS Our search yielded 56 studies that provided information on the efficacy of the following components on symptom severity: aspirin, bexarotene, celecoxib, davunetide, dextromethorphan, estrogens, fatty acids, melatonin, minocycline, N-acetylcysteine (NAC), pioglitazone, piracetam, pregnenolone, statins, varenicline, and withania somnifera extract. The results of aspirin [mean weighted effect size (ES): 0.30; n = 270; 95% CI (CI) 0.06-0.54], estrogens (ES: 0.78; n = 723; CI 0.36-1.19), minocycline (ES: 0.40; n = 946; CI 0.11-0.68), and NAC (ES: 1.00; n = 442; CI 0.60-1.41) were significant in meta-analysis of at least two studies. Subgroup analysis yielded larger positive effects for first-episode psychosis (FEP) or early-phase schizophrenia studies. Bexarotene, celecoxib, davunetide, dextromethorphan, fatty acids, pregnenolone, statins, and varenicline showed no significant effect. CONCLUSIONS Some, but not all agents with anti-inflammatory properties showed efficacy. Effective agents were aspirin, estrogens, minocycline, and NAC. We observed greater beneficial results on symptom severity in FEP or early-phase schizophrenia.
Collapse
Affiliation(s)
- N. Çakici
- Department of Psychiatry and Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, the Netherlands
| | - N. J. M. van Beveren
- Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - G. Judge-Hundal
- Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, the Netherlands
- Department of Psychiatry and Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Deusinglaan 2, 9713AW Groningen, the Netherlands
| | - M. M. Koola
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, 2300I St NW, Washington, DC 20052, USA
| | - I. E. C. Sommer
- Department of Psychiatry and Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Deusinglaan 2, 9713AW Groningen, the Netherlands
| |
Collapse
|
49
|
Wu D, Lv P, Li F, Zhang W, Fu G, Dai J, Hu N, Liu J, Xiao Y, Li S, Shah C, Tao B, Zhao Y, Gong Q, Lui S. Association of peripheral cytokine levels with cerebral structural abnormalities in schizophrenia. Brain Res 2019; 1724:146463. [PMID: 31526800 DOI: 10.1016/j.brainres.2019.146463] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023]
Abstract
A large body of evidence indicates that both the altered cytokines that mediate the immune-inflammatory process and abnormal gray matter are associated with schizophrenia. Whether peripheral cytokines are related to cerebral structural abnormality remains unclear. Therefore, we aimed to investigate the association of peripheral cytokine levels with gray matter abnormalities at the whole brain level in schizophrenia. Forty-four outpatients with schizophrenia and 44 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-2, IL-6, IL-8, interferon-gamma (IFN-γ), transforming growth factor-beta (TGF-β), and IL-10 were measured using a quantitative chemiluminescence assay. High-resolution T1 weighted images were acquired from all subjects and processed using FreeSurfer software to obtain the cortical thickness, surface area, and cortical and subcortical gray matter volumes. The cytokines and cerebral structures were compared between patients and controls using analysis of covariance (ANCOVA). The association between the cytokines and whole cerebral structures was performed using stepwise linear regression. Patients had higher levels of IL-2, IL-6, IL-8, and IL-10 than controls. In patients, the IL-6 level was significantly associated with the cortical thickness in the left pars opercularis, right pars triangularis, left superior temporal gyrus, and right middle temporal gyrus, which showed structural differences between the two groups. Altered cytokine levels may be associated with particular but not all cortical abnormalities in schizophrenia, especially IL-6, which was significantly associated with the abnormal cortical thickness of the bilateral Broca's area and temporal gyrus, which provided neuroimaging evidence to support the relationship between peripheral cytokines and the cerebral cortex in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; West China Fourth Hospital of Sichuan University, Chengdu, China
| | - Peilin Lv
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Li
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| | - Wenjing Zhang
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Gui Fu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Jing Dai
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Na Hu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Jieke Liu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chandan Shah
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Lipner E, Murphy SK, Ellman LM. Prenatal Maternal Stress and the Cascade of Risk to Schizophrenia Spectrum Disorders in Offspring. Curr Psychiatry Rep 2019; 21:99. [PMID: 31522269 PMCID: PMC7043262 DOI: 10.1007/s11920-019-1085-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Disruptions in fetal development (via genetic and environmental pathways) have been consistently associated with risk for schizophrenia in a variety of studies. Although multiple obstetric complications (OCs) have been linked to schizophrenia, this review will discuss emerging evidence supporting the role of prenatal maternal stress (PNMS) in the etiology of schizophrenia spectrum disorders (SSD). In addition, findings linking PNMS to intermediate phenotypes of the disorder, such as OCs and premorbid cognitive, behavioral, and motor deficits, will be reviewed. Maternal immune and endocrine dysregulation will also be explored as potential mechanisms by which PNMS confers risk for SSD. RECENT FINDINGS PNMS has been linked to offspring SSD; however, findings are mixed due to inconsistent and retrospective assessments of PNMS and lack of specificity about SSD outcomes. PNMS is also associated with various intermediate phenotypes of SSD (e.g., prenatal infection/inflammation, decreased fetal growth, hypoxia-related OCs). Recent studies continue to elucidate the impact of PNMS while considering the moderating roles of fetal sex and stress timing, but it is still unclear which aspects of PNMS (e.g., type, timing) confer risk for SSD specifically. PNMS increases risk for SSD, but only in a small portion of fetuses exposed to PNMS. Fetal sex, genetics, and other environmental factors, as well as additional pre- and postnatal insults, likely contribute to the PNMS-SSD association. Longitudinal birth cohort studies are needed to prospectively illuminate the mechanisms that account for the variability in outcomes following PNMS.
Collapse
Affiliation(s)
- Emily Lipner
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th Street, Philadelphia, PA, 19106, USA
| | - Shannon K Murphy
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th Street, Philadelphia, PA, 19106, USA
| | - Lauren M Ellman
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th Street, Philadelphia, PA, 19106, USA.
| |
Collapse
|