1
|
Amadieu C, Ahmed H, Leclercq S, Koistinen V, Leyrolle Q, Stärkel P, Bindels LB, Layé S, Neyrinck AM, Kärkkäinen O, De Timary P, Hanhineva K, Delzenne NM. Effect of inulin supplementation on fecal and blood metabolome in alcohol use disorder patients: A randomised, controlled dietary intervention. Clin Nutr ESPEN 2025; 66:361-371. [PMID: 39864520 DOI: 10.1016/j.clnesp.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND AND AIMS Alcohol Use Disorder (AUD) is a psychiatric disorder characterized notably by gut microbial dysbiosis and insufficient dietary fiber (DF) intake. This study aims to investigate the effect of DF placebo-controlled intervention in patients suffering from AUD during a three-week period of alcohol withdrawal, in order to discover microbial-derived metabolites that could be involved in metabolic and behavioral status. METHODS A randomized, double-blind, placebo-controlled study was performed with 50 AUD patients supplemented with inulin (prebiotic DF) or maltodextrin (placebo) during 17 days. Fecal microbiota composition, plasma and fecal metabolomics (liquid chromatography coupled to mass spectrometry), blood markers of inflammation and hepatic alterations, and psychological assessment (questionnaires) were analyzed before and after the intervention. RESULTS Fecal metabolomics revealed 14 metabolites significantly modified by inulin versus placebo treatment (increased N8-acetylspermidine and decreased indole-3-butyric acid, 5-amino valeric acid betaine (5-AVAB) and bile acids). Thirteen plasma metabolites differentiated both treatments (higher levels of long-chain fatty acids, medium-chain acylcarnitines and sphingomyelin species, and reduced 3-methylhistidine by inulin versus placebo). Fecal Lachnoclostridium correlated with 6 of the identified fecal metabolites, whereas plasma lipidic moieties positively correlated with fecal Ruminococcus torques group and Flavonifractor. Interestingly, parameters reflecting liver alterations inversely correlated with sphingomyelin (SM 36:2). CONCLUSIONS Three weeks of inulin supplementation during alcohol withdrawal leads to specific and different changes in the plasma and fecal metabolome of AUD patients, some of these gut microbiota-related metabolites being correlated with liver function. TRIAL REGISTRATION NCT03803709, https://clinicaltrials.gov/ct2/show/NCT03803709.
Collapse
Affiliation(s)
- Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, F-33000 Bordeaux, France
| | - Hany Ahmed
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland; School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, F-33000 Bordeaux, France
| | - Peter Stärkel
- Department of Gastro-enterology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, F-33000 Bordeaux, France
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Philippe De Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc and Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland; School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
2
|
Pich EM, Tarnanas I, Brigidi P, Collo G. Gut Microbiome-Liver-Brain axis in Alcohol Use Disorder. The role of gut dysbiosis and stress in alcohol-related cognitive impairment progression: possible therapeutic approaches. Neurobiol Stress 2025; 35:100713. [PMID: 40092632 PMCID: PMC11909761 DOI: 10.1016/j.ynstr.2025.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
The Gut Microbiome-Liver-Brain Axis is a relatively novel construct with promising potential to enhance our understanding of Alcohol Use Disorder (AUD), and its therapeutic approaches. Significant alterations in the gut microbiome occur in AUD even before any other systemic signs or symptoms manifest. Prolonged and inappropriate alcohol consumption, by affecting the gut microbiota and gut mucosa permeability, is thought to contribute to the development of behavioral and cognitive impairments, leading to Alcohol-Related Liver Disorders and potentially progressing into alcoholic cirrhosis, which is often associated with severe cognitive impairment related to neurodegeneration, such as hepatic encephalopathy and alcoholic dementia. The critical role of the gut microbiota is further supported by the efficacy of FDA-approved treatments for hepatic encephalopathy in alcoholic cirrhosis (i.e., lactulose and rifaximin). To stimulate new research, we hypothesize that interactions between a maladaptive stress response and a constitutional predisposition to neurodegeneration underlie the progression of AUD to conditions of Alcohol-Related Clinical Concerns with severe cognitive impairment, which represent a significant and costly burden to society. Early identification of AUD individuals at risk for developing these conditions could help to prioritize integrated therapeutic interventions targeting different substrates of the Gut Microbiome-Liver-Brain axis. Specifically, addiction medications, microbiome modulators, stress-reducing interventions, and, possibly soon, novel agents that reduce hepatic steatosis/fibrosis will be discussed in the context of digitally supported integrated therapeutic approaches. The explicit goal of this AUD treatment performed on the early stage of the disorder would be to reduce the transition from AUD to those conditions of Alcohol-Related Common Clinical Concerns associated with severe cognitive impairment, a strategy recommended for most neurological neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ioannis Tarnanas
- Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
- Altoida Inc., Washington DC, USA
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Ginetta Collo
- Human Neuropharmacology Unit, Department of Molecular & Translational Medicine, University of Brescia, Italy
| |
Collapse
|
3
|
Shukla S, Hsu CL. Alcohol Use Disorder and the Gut-Brain Axis: A Narrative Review of the Role of Gut Microbiota and Implications for Treatment. Microorganisms 2025; 13:67. [PMID: 39858835 PMCID: PMC11767426 DOI: 10.3390/microorganisms13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide and can lead to deleterious physical and social consequences. Recent research has highlighted not only the effect of alcohol on the gut microbiome, but also the role of the gut microbiome and the gut-brain axis in the development and maintenance of alcohol use disorder. This review provides an overview of the reciprocal relationship between alcohol consumption and the gut microbiome, including the effects of alcohol on gut microbial composition, changes in gut microbial metabolites in response to alcohol consumption, and how gut microbial metabolites may modulate alcohol use behavior. We also discuss the gut-mediated mechanisms of neuroinflammation that contribute to and result from AUD, including disruption of the intestinal barrier, toll-like receptor signaling, and the activation of glial cells and immune cells. Finally, we review the current evidence on gut microbial-directed therapies for AUD and discuss the implications of this research for our understanding of the pathophysiology of AUD and future research directions.
Collapse
Affiliation(s)
- Shikha Shukla
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Cynthia L. Hsu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Wang D, Xiong J. Association between alcohol consumption levels and pelvic inflammatory disease: Findings from the NHANES 2013-2020. J Obstet Gynaecol Res 2025; 51:e16188. [PMID: 39676636 DOI: 10.1111/jog.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND AND AIM Pelvic inflammatory disease (PID) is a common and serious infection affecting women's reproductive health, which may result in severe consequences, such as infertility. This research is to investigate the association between alcohol consumption levels and the odds of PID prevalence, providing insights that could inform public health policies. METHODS AND RESULTS The U.S. National Health and Nutrition Examination Survey (NHANES) 2013-2020 is the data source. Multivariate logistic regression analysis, trend analysis, and curve fitting were employed to examine the associations between alcohol consumption levels and the odds of PID prevalence. Regarding subgroup analysis, we utilized the stratified analysis and interaction test to investigate the robustness of this association. Compared with participants who never consumed alcohol, alcohol consumption increased the odds of PID prevalence. The odds of PID prevalence increased with the increase in the level of alcohol consumption. In the fully adjusted model, compared to non-drinkers, the odds ratios (OR) for PID were 1.89 (95% CI: 1.23-2.92) for mild drinkers, 1.94 (95% CI: 1.24-3.04) for moderate drinkers, and 2.01 (95% CI: 1.27-3.19) for heavy drinkers, indicating an increased prevalence of PID by 89, 94, and 101%, respectively. This association was consistently observed across the study population. CONCLUSIONS Alcohol consumption levels were positively related to the odds of PID prevalence among adult females in the United States. Our results indicate that reducing alcohol consumption and cultivating good living habits will likely help prevent PID in the general population.
Collapse
Affiliation(s)
- Daji Wang
- School of First Clinical Medical, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jianbo Xiong
- School of First Clinical Medical, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Castro EM, Lotfipour S, Leslie FM. Neuroglia in substance use disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:347-369. [PMID: 40148055 DOI: 10.1016/b978-0-443-19102-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Substance use disorders (SUD) remain a major public health concern in which individuals are unable to control their use of substances despite significant harm and negative consequences. Drugs of abuse dysregulate major brain and behavioral functions. Glial cells, primarily microglia and astrocytes, play a crucial role in these drug-induced molecular and behavioral changes. This review explores preclinical and clinical studies of how neuroglia and their associated neuroinflammatory responses contribute to SUD and reward-related properties. We evaluate preclinical and clinical evidence for targeting neuroglia as therapeutic interventions. In addition, we evaluate the literature on the gut microbiome and its role in SUD. Clinical treatments are most effective for reducing drug cravings, and some have yielded promising results in other measures of drug use. N-Acetylcysteine, through modulation of cysteine-glutamate antiporter of glial cells, shows encouraging results across a variety of drug classes. Neuroglia and gut microbiome interactions are important factors to consider with regard to SUD and could lead to novel therapeutic avenues. Age- and sex-dependent properties of neuroglia, gut microbiome, and drug use behaviors are important areas in need of further investigation.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
6
|
Grodin EN, Baskerville WA, McManus KR, Irwin MR, Ray LA. Elevations in interleukin-8 levels in individuals with alcohol use disorder and clinical insomnia symptoms. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2079-2088. [PMID: 39396879 PMCID: PMC11827568 DOI: 10.1111/acer.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Insomnia commonly co-occurs with alcohol use disorder (AUD) and predicts poorer outcomes for those with AUD. Insomnia and AUD are individually associated with increases in systemic inflammation. Insomnia and inflammation both serve as risk factors for relapse in AUD. However, little is known about the relationship between insomnia and systemic inflammation in individuals with AUD. Therefore, the present study examined the relationship between the severity of insomnia symptoms and plasma levels of inflammatory cytokines in a sample of treatment-seeking individuals with an AUD. METHODS This secondary analysis included 101 (61M/40F) individuals with an AUD. Participants were categorized into groups based on their scores on the Insomnia Severity Index: no insomnia (n = 47), subthreshold insomnia (n = 37), and clinical insomnia (n = 17). Participants provided blood samples to measure plasma levels of four peripheral markers of inflammation (IL-6, IL-8, TNF-α, and CRP). Inflammatory marker levels were compared between groups. Interactive effects of sex and AUD severity were examined. RESULTS There was a significant main effect of insomnia group on log IL-8 levels (F = 6.52, p = 0.002), such that individuals with AUD and clinical insomnia had higher log IL-8 levels compared to both the no insomnia and subthreshold insomnia groups (ps ≤ 0.05). Sex and AUD severity interacted with this relationship, such that men with clinical insomnia and AUD and individuals with severe AUD had higher log IL-8 levels. There were no significant effects of insomnia on IL-6, TNF-α, or CRP levels. CONCLUSION The present study identified a specific elevation in IL-8 levels in individuals with an AUD and clinical insomnia that was not identified in other markers of peripheral inflammation (IL-6, TNF-α, CRP). Sex and AUD severity interacted with insomnia symptoms, indicating that those with clinical insomnia and severe AUD or male sex may be the most vulnerable to the inflammatory consequences associated with AUD and clinical insomnia symptoms.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA
| | | | - Kaitlin R. McManus
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Michael R. Irwin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Lara A. Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Grodin EN, McManus KR, Ray LA. Examining the moderating role of cannabis use on the relationship between alcohol consumption and inflammation in individuals with alcohol use disorder. Addict Biol 2024; 29:e13431. [PMID: 39091190 PMCID: PMC11294675 DOI: 10.1111/adb.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Inflammation appears to be a critical mechanism in the development of alcohol use disorder (AUD) and a consequence of chronic alcohol use. The potential anti-inflammatory properties of cannabis may modulate the proinflammatory effects of alcohol. This study sought to extend previous work investigating the relationship between alcohol consumption, cannabis use and circulating interleukin (IL)-6 levels in a sample with AUD. One hundred and thirty-three individuals with an AUD provided blood samples to assess IL-6 and answered questions regarding alcohol and cannabis use. An ordinary least squares multiple regression analysis was conducted to assess the effect of alcohol and cannabis use on IL-6. A moderation analysis examined cannabis use as a potential moderator of the relationship between alcohol use and circulating IL-6 levels. Alcohol use was predictive of higher log IL-6 levels (standardized β = 0.16, p = 0.03), while cannabis use was not predictive of log IL-6 levels (p = 0.36). Days of cannabis use moderated the relationship between alcohol use and IL-6 levels, such that the relationship between alcohol use and IL-6 levels was only significant in individuals with AUD without recent cannabis use. This study extends previous work to a clinical sample with an AUD and underscores the importance of considering cannabis use in studies on alcohol use and inflammation. This study also indicates the need for in-depth analyses on cannabinoids and inflammation and the interaction between cannabinoids and alcohol use on inflammation.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of PsychologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Cousins Center for PsychoneuroimmunologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kaitlin R. McManus
- Department of PsychologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Lara A. Ray
- Department of PsychologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Brain Research InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Leclercq S. Involvement of the gut microbiome-brain axis in alcohol use disorder. Alcohol Alcohol 2024; 59:agae050. [PMID: 39042929 DOI: 10.1093/alcalc/agae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The human intestine is colonized by a variety of microorganisms that influence the immune system, the metabolic response, and the nervous system, with consequences for brain function and behavior. Unbalance in this microbial ecosystem has been shown to be associated with psychiatric disorders, and altered gut microbiome composition related to bacteria, viruses, and fungi has been well established in patients with alcohol use disorder. This review describes the gut microbiome-brain communication pathways, including the ones related to the vagus nerve, the inflammatory cytokines, and the gut-derived metabolites. Finally, the potential benefits of microbiota-based therapies for the management of alcohol use disorder, such as probiotics, prebiotics, and fecal microbiota transplantation, are also discussed.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
9
|
Grodin EN, Burnette EM, Rodriguez C, Fulcher JA, Ray LA. The gut microbiome in alcohol use disorder and alcohol-associated liver disease: A systematic review of clinical studies. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1221-1242. [PMID: 38719790 PMCID: PMC11827555 DOI: 10.1111/acer.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
Evidence suggests that a relationship exists between the gut microbiome and the pathogenesis of alcohol use disorder (AUD) and alcohol-associated liver disease (AALD). This systematic review identified studies that investigated the gut microbiome in individuals with an AUD or an AALD. A search was conducted on October 27, 2022, in PubMed, Web of Science, and Embase databases. Fifty studies satisfied eligibility criteria. Most studies found evidence for gut dysbiosis in individuals with AUD and AALD. Microbiome intervention studies have mostly been conducted in AALD patients; fecal microbial transplant interventions show the most promise. Because most studies were conducted cross-sectionally, the causal relationship between the gut microbiome and alcohol use is unknown. Furthermore, almost all studies have been conducted in predominantly male populations, leaving critical questions regarding sex differences and generalizability of the findings. The study summaries and recommendations provided in this review seek to identify areas for further research and to highlight potential gut microbial interventions for treating AUD and AALD.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Elizabeth M. Burnette
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Crystal Rodriguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, David Gefen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A. Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Maki KA, Wallen GR, Bastiaanssen TF, Hsu LY, Valencia ME, Ramchandani VA, Schwandt ML, Diazgranados N, Cryan JF, Momenan R, Barb JJ. The gut-brain axis in individuals with alcohol use disorder: An exploratory study of associations among clinical symptoms, brain morphometry, and the gut microbiome. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1261-1277. [PMID: 38982564 PMCID: PMC11239122 DOI: 10.1111/acer.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is commonly associated with distressing psychological symptoms. Pathologic changes associated with AUD have been described in both the gut microbiome and brain, but the mechanisms underlying gut-brain signaling in individuals with AUD are unknown. This study examined associations among the gut microbiome, brain morphometry, and clinical symptoms in treatment-seeking individuals with AUD. METHODS We performed a secondary analysis of data collected during inpatient treatment for AUD in subjects who provided gut microbiome samples and had structural brain magnetic resonance imaging (MRI; n = 16). Shotgun metagenomics sequencing was performed, and the morphometry of brain regions of interest was calculated. Clinical symptom severity was quantified using validated instruments. Gut-brain modules (GBMs) used to infer neuroactive signaling potential from the gut microbiome were generated in addition to microbiome features (e.g., alpha diversity and bacterial taxa abundance). Bivariate correlations were performed between MRI and clinical features, microbiome and clinical features, and MRI and microbiome features. RESULTS Amygdala volume was significantly associated with alpha diversity and the abundance of several bacteria including taxa classified to Blautia, Ruminococcus, Bacteroides, and Phocaeicola. There were moderate associations between amygdala volume and GBMs, including butyrate synthesis I, glutamate synthesis I, and GABA synthesis I & II, but these relationships were not significant after false discovery rate (FDR) correction. Other bacterial taxa with shared associations to MRI features and clinical symptoms included Escherichia coli and Prevotella copri. CONCLUSIONS We identified gut microbiome features associated with MRI morphometry and AUD-associated symptom severity. Given the small sample size and bivariate associations performed, these results require confirmation in larger samples and controls to provide meaningful clinical inferences. Nevertheless, these results will inform targeted future research on the role of the gut microbiome in gut-brain communication and how signaling may be altered in patients with AUD.
Collapse
Affiliation(s)
- Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Thomaz F.S. Bastiaanssen
- APC Microbiome Ireland and Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Li-Yueh Hsu
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael E. Valencia
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A. Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melanie L. Schwandt
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - John F. Cryan
- APC Microbiome Ireland and Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Leclercq S, de Timary P. Role of the Microbiome and the Gut-Brain Axis in Alcohol Use Disorder: Potential Implication for Treatment Development. Curr Top Behav Neurosci 2024. [PMID: 38914878 DOI: 10.1007/7854_2024_478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The gut microbiota is constituted by trillions of microorganisms colonizing the human intestine. Studies conducted in patients with alcohol use disorder (AUD) have shown altered microbial composition related to bacteria, viruses, and fungi.This review describes the communication pathways between the gut and the brain, including the ones related to the bacterial metabolites, the inflammatory cytokines, and the vagus nerve. We described in more detail the gut-derived metabolites that have been shown to be implicated in AUD or that could potentially be involved in the development of AUD due to their immune and/or neuroactive properties, including tryptophan-derivatives, tyrosine-derivatives, short chain fatty acids.Finally, we discussed the potential beneficial effects of microbiome-based therapies for AUD such as probiotics, prebiotics, postbiotic, and phage therapy.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
12
|
Zaparte A, Dore E, White S, Paliarin F, Gabriel C, Copenhaver K, Basavanhalli S, Garcia E, Vaddavalli R, Luo M, Taylor CM, Welsh DA, Maiya R. Standard rodent diets differentially impact alcohol consumption, preference, and gut microbiome diversity. Front Neurosci 2024; 18:1383181. [PMID: 38803684 PMCID: PMC11129685 DOI: 10.3389/fnins.2024.1383181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Alcohol use disorder (AUD) is a complex and widespread disease with limited pharmacotherapies. Preclinical animal models of AUD use a variety of voluntary alcohol consumption procedures to recapitulate different phases of AUD, including binge alcohol consumption and dependence. However, voluntary alcohol consumption in mice is widely variable, making it difficult to reproduce results across labs. Accumulating evidence indicates that different brands of commercially available rodent chow can profoundly influence alcohol intake. In this study, we investigated the effects of three commercially available and widely used rodent diet formulations on alcohol consumption and preference in C57BL/6 J mice using the 24 h intermittent access procedure. The three brands of chow tested were LabDiet 5,001 (LD5001), LabDiet 5,053 (LD5053), and Teklad 2019S (TL2019S) from two companies (Research Diets and Envigo, respectively). Mice fed LD5001 and LD5053 displayed higher levels of alcohol consumption and preference compared to mice fed TL2019S. We also found that alcohol consumption and preference could be rapidly switched by changing the diet 48 h prior to alcohol administration. Sucrose, saccharin, and quinine preferences were not altered, suggesting that the diets did not alter sweet and bitter taste perception. We also found that mice fed LD5001 displayed increased quinine-resistant alcohol intake compared to mice fed TL2019S, suggesting that diets could influence the development of compulsive behaviors such as alcohol consumption. We profiled the gut microbiome of water- and alcohol-drinking mice that were maintained on different diets and found significant differences in bacterial alpha- and beta-diversities, which could impact the gut-brain axis signaling and alcohol consumption.
Collapse
Affiliation(s)
- Aline Zaparte
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Evan Dore
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Selby White
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Cameron Gabriel
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Katherine Copenhaver
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Samhita Basavanhalli
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Emily Garcia
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Rishith Vaddavalli
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - David Allen Welsh
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|
13
|
Bijla M, Saini SK, Pathak AK, Bharadwaj KP, Sukhavasi K, Patil A, Saini D, Yadav R, Singh S, Leeuwenburgh C, Kumar P. Microbiome interactions with different risk factors in development of myocardial infarction. Exp Gerontol 2024; 189:112409. [PMID: 38522483 DOI: 10.1016/j.exger.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Among all non-communicable diseases, Cardiovascular Diseases (CVDs) stand as the leading global cause of mortality. Within this spectrum, Myocardial Infarction (MI) strikingly accounts for over 15 % of all deaths. The intricate web of risk factors for MI, comprising family history, tobacco use, oral health, hypertension, nutritional pattern, and microbial infections, is firmly influenced by the human gut and oral microbiota, their diversity, richness, and dysbiosis, along with their respective metabolites. Host genetic factors, especially allelic variations in signaling and inflammatory markers, greatly affect the progression or severity of the disease. Despite the established significance of the human microbiome-nutrient-metabolite interplay in associations with CVDs, the unexplored terrain of the gut-heart-oral axis has risen as a critical knowledge gap. Moreover, the pivotal role of the microbiome and the complex interplay with host genetics, compounded by age-related changes, emerges as an area of vital importance in the development of MI. In addition, a distinctive disease susceptibility and severity influenced by gender-based or ancestral differences, adds a crucial insights to the association with increased mortality. Here, we aimed to provide an overview on interactions of microbiome (oral and gut) with major risk factors (tobacco use, alcohol consumption, diet, hypertension host genetics, gender, and aging) in the development of MI and therapeutic regulation.
Collapse
Affiliation(s)
- Manisha Bijla
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sunil Kumar Saini
- Department of Zoology, Swami Shraddhanand College, Delhi University, India
| | - Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital & Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Ayurshi Patil
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Diksha Saini
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Rakesh Yadav
- Department of Cardiology, AIIMS, New Delhi, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | | | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
14
|
Ming Z, Ruishi X, Linyi X, Yonggang Y, Haoming L, Xintian L. The gut-liver axis in fatty liver disease: role played by natural products. Front Pharmacol 2024; 15:1365294. [PMID: 38686320 PMCID: PMC11056694 DOI: 10.3389/fphar.2024.1365294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 05/02/2024] Open
Abstract
Fatty liver disease, a condition characterized by fatty degeneration of the liver, mainly classified as non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD), has become a leading cause of cirrhosis, liver cancer and death. The gut-liver axis is the bidirectional relationship between the gut and its microbiota and its liver. The liver can communicate with the gut through the bile ducts, while the portal vein transports the products of the gut flora to the liver. The intestinal flora and its metabolites directly and indirectly regulate hepatic gene expression, leading to an imbalance in the gut-liver axis and thus contributing to the development of liver disease. Utilizing natural products for the prevention and treatment of various metabolic diseases is a prevalent practice, and it is anticipated to represent the forthcoming trend in the development of drugs for combating NAFLD/ALD. This paper discusses the mechanism of the enterohepatic axis in fatty liver, summarizes the important role of plant metabolites in natural products in fatty liver treatment by regulating the enterohepatic axis, and provides a theoretical basis for the subsequent development of new drugs and clinical research.
Collapse
Affiliation(s)
- Zhu Ming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xie Ruishi
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xu Linyi
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | | | - Luo Haoming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lan Xintian
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
15
|
Ho MF, Zhang C, Moon I, Tuncturk M, Coombes BJ, Biernacka J, Skime M, Oesterle TS, Karpyak VM, Li H, Weinshilboum R. Molecular mechanisms involved in alcohol craving, IRF3, and endoplasmic reticulum stress: a multi-omics study. Transl Psychiatry 2024; 14:165. [PMID: 38531832 PMCID: PMC10965952 DOI: 10.1038/s41398-024-02880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder worldwide. Acamprosate and naltrexone are anti-craving drugs used in AUD pharmacotherapy. However, molecular mechanisms underlying their anti-craving effect remain unclear. This study utilized a patient-derived induced pluripotent stem cell (iPSC)-based model system and anti-craving drugs that are used to treat AUD as "molecular probes" to identify possible mechanisms associated with alcohol craving. We examined the pathophysiology of craving and anti-craving drugs by performing functional genomics studies using iPSC-derived astrocytes and next-generation sequencing. Specifically, RNA sequencing performed using peripheral blood mononuclear cells from AUD patients with extreme values for alcohol craving intensity prior to treatment showed that inflammation-related pathways were highly associated with alcohol cravings. We then performed a genome-wide assessment of chromatin accessibility and gene expression profiles of induced iPSC-derived astrocytes in response to ethanol or anti-craving drugs. Those experiments identified drug-dependent epigenomic signatures, with IRF3 as the most significantly enriched motif in chromatin accessible regions. Furthermore, the activation of IRF3 was associated with ethanol-induced endoplasmic reticulum (ER) stress which could be attenuated by anti-craving drugs, suggesting that ER stress attenuation might be a target for anti-craving agents. In conclusion, we found that craving intensity was associated with alcohol consumption and treatment outcomes. Our functional genomic studies suggest possible relationships among craving, ER stress, IRF3 and the actions of anti-craving drugs.
Collapse
Affiliation(s)
- Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Irene Moon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Brandon J Coombes
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joanna Biernacka
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tyler S Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
17
|
Zaparte A, Dore E, White S, Paliarin F, Gabriel C, Copenhaver K, Basavanhalli S, Garcia E, Vaddavalli R, Luo M, Taylor CM, Welsh D, Maiya R. Standard rodent diets differentially impact alcohol consumption and preference and gut microbiome diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579237. [PMID: 38370762 PMCID: PMC10871281 DOI: 10.1101/2024.02.06.579237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Alcohol Use Disorder (AUD) is a complex and widespread disease with limited pharmacotherapies. Preclinical animal models of AUD use a variety of voluntary alcohol consumption procedures to recapitulate different phases of AUD including binge alcohol consumption and dependence. However, voluntary alcohol consumption in mice is widely variable rendering it difficult to reproduce results across labs. Accumulating evidence indicates that different brands of commercially available rodent chow can profoundly influence alcohol intake. In this study, we investigated the effects of three commercially available and widely used rodent diet formulations on alcohol consumption and preference in C57BL/6J mice using the 24h intermittent access procedure. The three brands of chow tested were LabDiet 5001 (LD 5001), LabDiet 5053 (LD 5053), and Teklad 2019S (TL2019S) from two companies (Research Diets and Envigo respectively). Mice fed LD5001 displayed the highest levels of alcohol consumption and preference followed by LD5053 and TL2019S. We also found that alcohol consumption and preference could be rapidly switched by changing the diet 48h prior to alcohol administration. Sucrose, saccharin, and quinine preference were not altered suggesting that the diets did not alter taste perception. We also found that mice fed LD5001 displayed increased quinine-resistant alcohol intake compared to mice fed TL2019S, suggesting that diets could influence the development of "compulsive" like alcohol consumption. We profiled the gut microbiome of water and alcohol drinking mice that were maintained on different diets and found significant differences in bacterial alpha and beta diversity, which could impact gut-brain axis signaling and alcohol consumption.
Collapse
Affiliation(s)
- Aline Zaparte
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - Evan Dore
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Selby White
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Cameron Gabriel
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Katherine Copenhaver
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Samhita Basavanhalli
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Emily Garcia
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Rishith Vaddavalli
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Meng Luo
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - Christopher M Taylor
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - David Welsh
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
18
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
19
|
Sagaram M, Frimodig J, Jayanty D, Hu H, Royer AJ, Bruner R, Kong M, Schwandt ML, Vatsalya V. One-month assessment of Th-cell axis related inflammatory cytokines, IL-17 and IL-22 and their role in alcohol-associated liver disease. Front Immunol 2023; 14:1202267. [PMID: 38162671 PMCID: PMC10755956 DOI: 10.3389/fimmu.2023.1202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Changes in the expression of cyto- and chemokines due to alcohol-associated liver disease (ALD) have been reported to be both protective and pathogenic. This study examined plasma levels of two key cytokines, Il-17 and Il-22, which construct the proinflammatory vs. anti-inflammatory axes across the spectrum of alcohol use disorder (AUD) and ALD including alcohol-associated hepatitis (AH) to determine the underlying status of the inflammation. Methods Forty-two males and females aged 25-63 yrs. were grouped as healthy controls (HV[n=8]), AUD with no liver injury (AUDNLI [n=8]), AUD with liver injury (AUDLI [n=8]), non-severe alcohol-associated hepatitis (NSAH [n=9]), and severe alcohol-associated hepatitis (SAH [n=9]). Demographic, drinking, and clinical data were collected. Blood samples were collected at baseline (BL, all subjects) and during week 4 (W4, only patients) for IL-17 and IL-22; and statistically analyzed. Results IL-17 was highly elevated in the SAH group both at BL and post-SOC. LTDH and BL IL-22 in non-severe AH patients were associated significantly. LTDH significantly predicted W4 IL-22 levels, positively (increasing) in NSAH and inversely (lowering) in SAH patients. BL and W4 IL-22 levels were significantly higher (4-fold, p≤0.001) in all AH patients compared to all AUD patients (AUROC=0.988, p≤0.001). IL-22 showed significant affinity with AST, AST: ALT ratio, total bilirubin, INR, and PT both at BL and W4. IL-22 was inversely associated with IL-1β; and positively with TNF-α and IL-8 both at BL, and W4. BL IL-17 showed a positive correlation with MELD (p=0.017) in all AH patients. In SAH, > 2-fold W4 IL-17 level compared to BL showed significant within subjects' effects, p=0.006. In AUD patients without AH, the drop in IL-17 at W4 vs. BL showed a significant within subjects' effect, p=0.031. Discussion Drinking chronicity predicted opposite effects in IL-22 levels in NSAH (antiinflammatory) and SAH (pro-inflammatory) patients at post-SOC. BL IL-22 levels differentiated AH patients robustly from the AUD patients (with or without liver injury); and showed corresponding increases stepwise with the stages of ALD. IL-22 was closely associated with progression and injury markers of the liver; and response to the cytokines of pro-inflammatory nature. Pro-inflammatory indicator of IL-17 cell axis, IL-17 showed a strong positive association with MELD, a severity indicator of AH.
Collapse
Affiliation(s)
- Manasa Sagaram
- Department of Medicine, University of Louisville, Louisville, KY, United States
- Department of Medicine, Robley Rex VA Medical Center, Louisville, KY, United States
- Clinical Laboratory for Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Jane Frimodig
- Department of Medicine, University of Louisville, Louisville, KY, United States
- Department of Medicine, Robley Rex VA Medical Center, Louisville, KY, United States
| | - Danielle Jayanty
- Department of Medicine, University of Louisville, Louisville, KY, United States
- Clinical Laboratory for Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Huirong Hu
- Clinical Laboratory for Intervention Development of AUD and Organ Severity, Louisville, KY, United States
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Amor J. Royer
- Department of Medicine, University of Louisville, Louisville, KY, United States
- Clinical Laboratory for Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Ryne Bruner
- Department of Medicine, University of Louisville, Louisville, KY, United States
- Clinical Laboratory for Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Maiying Kong
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
- Department of Medicine, University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Melanie L. Schwandt
- Division of Intramural Clinical and Biological Research (DICBR) National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Vatsalya Vatsalya
- Department of Medicine, University of Louisville, Louisville, KY, United States
- Department of Medicine, Robley Rex VA Medical Center, Louisville, KY, United States
- Clinical Laboratory for Intervention Development of AUD and Organ Severity, Louisville, KY, United States
- Department of Medicine, University of Louisville Alcohol Research Center, Louisville, KY, United States
- Division of Intramural Clinical and Biological Research (DICBR) National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
20
|
Gala KS, Winrich E, Jha SK, Parthasarathy R, Vatsalya V. Alcohol Use Disorder and the Gut Microbiome. CURRENT ADDICTION REPORTS 2023; 11:105-112. [DOI: 10.1007/s40429-023-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/04/2025]
|
21
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
Stankevic E, Israelsen M, Juel HB, Madsen AL, Ängquist L, Aldiss PSJ, Torp N, Johansen S, Hansen CD, Hansen JK, Thorhauge KH, Lindvig KP, Madsen BS, Sulek K, Legido-Quigley C, Thiele MS, Krag A, Hansen T. Binge drinking episode causes acute, specific alterations in systemic and hepatic inflammation-related markers. Liver Int 2023; 43:2680-2691. [PMID: 37592403 DOI: 10.1111/liv.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Frequent binge drinking is a known contributor to alcohol-related harm, but its impact on systemic and hepatic inflammation is not fully understood. We hypothesize that changes in immune markers play a central role in adverse effects of acute alcohol intake, especially in patients with early liver disease. AIM To investigate the effects of acute alcohol intoxication on inflammation-related markers in hepatic and systemic venous plasma in people with alcohol-related liver disease (ArLD), non-alcoholic fatty liver disease (NAFLD) and healthy controls. METHODS Thirty-eight participants (13 with ArLD, 15 with NAFLD and 10 healthy controls) received 2.5 mL of 40% ethanol per kg body weight via a nasogastric tube. Seventy-two inflammation-related markers were quantified in plasma from hepatic and systemic venous blood, at baseline, 60 and 180 min after intervention. RESULTS Alcohol intervention altered the levels of 31 of 72 and 14 of 72 markers in the systemic and hepatic circulation. All changes observed in the hepatic circulation were also identified in the systemic circulation after 180 min. Only FGF21 and IL6 were increased after alcohol intervention, while the remaining 29 markers decreased. Differences in response to acute alcohol between the groups were observed for 8 markers, and FGF21 response was blunted in individuals with steatosis. CONCLUSION Acute alcohol intoxication induced changes in multiple inflammation-related markers, implicated in alcohol metabolism and hepatocellular damage. Differences identified between marker response to binge drinking in ArLD, NAFLD and healthy controls may provide important clues to disease mechanisms and potential targets for treatment. CLINICAL TRIAL NUMBER NCT03018990.
Collapse
Affiliation(s)
- Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Helene Baek Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anne Lundager Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Peter Stuart Jacob Aldiss
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Torp
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Stine Johansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Camilla Dalby Hansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Johanne Kragh Hansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Katrine Holtz Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Katrine Prier Lindvig
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Bjørn Staehr Madsen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | | | | | - Maja Sofie Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Fontana BD, Reichmann F, Tilley CA, Lavlou P, Shkumatava A, Alnassar N, Hillman C, Karlsson KÆ, Norton WHJ, Parker MO. adgrl3.1-deficient zebrafish show noradrenaline-mediated externalizing behaviors, and altered expression of externalizing disorder-candidate genes, suggesting functional targets for treatment. Transl Psychiatry 2023; 13:304. [PMID: 37783687 PMCID: PMC10545713 DOI: 10.1038/s41398-023-02601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Collapse
Affiliation(s)
- Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ceinwen A Tilley
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Perrine Lavlou
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karl Ægir Karlsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
- 3Z, Reykjavik, Iceland
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Biology, Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
24
|
Burnette EM, Grodin EN, Olmstead R, Ray LA, Irwin MR. Alcohol use disorder (AUD) is associated with enhanced sensitivity to cellular lipopolysaccharide challenge. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1859-1868. [PMID: 37864529 PMCID: PMC10830126 DOI: 10.1111/acer.15173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Inflammation has been associated with alcohol use disorder (AUD). A novel method to characterize AUD-related immune signaling involves probing Toll-like receptor (TLR)-4 stimulated monocyte production of intracellular cytokines (ICCs) via lipopolysaccharide (LPS). We evaluated relationships between AUD and ICC production at rest and after LPS stimulation. METHODS We analyzed blood samples from 36 participants (AUD N = 14; Controls N = 22), collected across time, with ICC expression assessed at rest (i.e., unstimulated) and following stimulation with LPS (i.e., a total of 5 repeated unstimulated or stimulated measures/participant). Markers assessed included tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), TNF-α and IL-6 co-expression, and interferon (IFN). For each marker, we constructed linear mixed models with AUD, LPS, and timepoint as fixed effects (BMI as covariate), allowing for random slope and intercept. AUD × LPS was included as an interaction. RESULTS For TLR4-stimulated monocyte production of TNF-α, there were effects of AUD (p < 0.01), LPS (p < 0.001), and AUD × LPS interaction (p < 0.05), indicating that individuals with AUD showed greater unstimulated- and stimulated monocyte expression of TNF-α. Similarly, for TLR4-stimulated monocyte co-expression of TNF-α and IL-6, there were effects of AUD (p < 0.01), LPS (p < 0.001), and AUD × LPS interaction (p < 0.05). No AUD or LPS effects were found for IL-6. Timepoint effects were observed on IL-6 and TNF-α/IL-6 co-expression (p < 0.001). Finally, for IFN there were also effects of AUD (p < 0.05), LPS (p < 0.001), and AUD × LPS (p < 0.001). CONCLUSIONS Individuals with AUD showed greater resting or unstimulated levels of intracellular monocyte expression of TNF-α and IL-6/TNF-α co-expression than controls. AUD was associated with increases in TLR4-stimulated monocyte production of TNF-α and co-production of IL-6 and TNF-α. This is, to our knowledge, the first study to investigate relationships between AUD and monocyte production of proinflammatory cytokines, at rest and in response to TLR4 stimulation with LPS. The study extends previous findings on the roles of proinflammatory cytokines in AUD and serves as a critical proof of concept for the use of this method to probe neuroimmune mechanisms underlying AUD.
Collapse
Affiliation(s)
- Elizabeth M. Burnette
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA
| | - Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Richard Olmstead
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
| | - Lara A. Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Michael R. Irwin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
25
|
Vatsalya V, Verster JC, Sagaram M, Royer AJ, Hu H, Parthasarathy R, Schwandt ML, Kong M, Ramchandani VA, Feng W, Agrawal R, Zhang X, McClain CJ. Novel paradigms for the gut-brain axis during alcohol withdrawal, withdrawal-associated depression, and craving in patients with alcohol use disorder. Front Psychiatry 2023; 14:1203362. [PMID: 37840804 PMCID: PMC10570744 DOI: 10.3389/fpsyt.2023.1203362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Patients with alcohol use disorder (AUD) exhibit symptoms such as alcohol withdrawal, depression, and cravings. The gut-immune response may play a significant role in manifesting these specific symptoms associated with AUD. This study examined the role of gut dysfunction, proinflammatory cytokines, and hormones in characterizing AUD symptoms. Methods Forty-eight AUD patients [men (n = 34) and women (n = 14)] aged 23-63 years were grouped using the Clinical Institute Withdrawal Assessment of Alcohol Scale (CIWA) as clinically significant (CS-CIWA [score > 10] [n = 22]) and a clinically not-significant group (NCS-CIWA [score ≤ 10] [n = 26]). Clinical data (CIWA, 90-day timeline followback [TLFB90], and lifetime drinking history [LTDH]) and blood samples (for testing proinflammatory cytokines, hormones, and markers of intestinal permeability) were analyzed. A subset of 16 AUD patients was assessed upon admission for their craving tendencies related to drug-seeking behavior using the Penn-Alcohol Craving Score (PACS). Results CS-CIWA group patients exhibited unique and significantly higher levels of adiponectin and interleukin (IL)-6 compared to NCS-CIWA. In the CS group, there were significant and high effects of association for the withdrawal score with gut-immune markers (lipopolysaccharide [LPS], adiponectin, IL-6, and IL-8) and for withdrawal-associated depression with gut-immune markers (scored using MADRS with LPS, soluble cells of differentiation type 14 [sCD14], IL-6, and IL-8). Craving (assessed by PACS, the Penn-Alcohol Craving Scale) was significantly characterized by what could be described as gut dysregulation (LBP [lipopolysaccharide binding protein] and leptin) and candidate proinflammatory (IL-1β and TNF-α) markers. Such a pathway model describes the heavy drinking phenotype, HDD90 (heavy drinking days past 90 days), with even higher effects (R2 = 0.955, p = 0.006) in the AUD patients, who had higher ratings for cravings (PACS > 5). Discussion The interaction of gut dysfunction cytokines involved in both inflammation and mediating activity constitutes a novel pathophysiological gut-brain axis for withdrawal symptoms and withdrawal-associated depression and craving symptoms in AUD. AUD patients with reported cravings show a significant characterization of the gut-brain axis response to heavy drinking. Trial registration ClinicalTrials.gov, identifier: NCT# 00106106.
Collapse
Affiliation(s)
- Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Robley Rex VA Medical Center, Louisville, KY, United States
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
- Clincial Laboratory for the Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Joris C. Verster
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Manasa Sagaram
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Clincial Laboratory for the Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Amor J. Royer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Clincial Laboratory for the Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Huirong Hu
- Clincial Laboratory for the Intervention Development of AUD and Organ Severity, Louisville, KY, United States
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States
| | - Ranganathan Parthasarathy
- Clincial Laboratory for the Intervention Development of AUD and Organ Severity, Louisville, KY, United States
| | - Melanie L. Schwandt
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
| | | | - Wenke Feng
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, United States
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, United States
| | | | - Xiang Zhang
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, United States
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, United States
- Department of Chemistry, University of Louisville, Louisville, KY, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Robley Rex VA Medical Center, Louisville, KY, United States
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| |
Collapse
|
26
|
Holloway KN, Douglas JC, Rafferty TM, Kane CJM, Drew PD. Ethanol Induces Neuroinflammation in a Chronic Plus Binge Mouse Model of Alcohol Use Disorder via TLR4 and MyD88-Dependent Signaling. Cells 2023; 12:2109. [PMID: 37626919 PMCID: PMC10453365 DOI: 10.3390/cells12162109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Ethanol induces neuroinflammation, which is believed to contribute to the pathogenesis of alcohol use disorder (AUD). Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) expressed on both immune cells, including microglia and astrocytes, and non-immune cells in the central nervous system (CNS). Studies have shown that alcohol activates TLR4 signaling, resulting in the induction of pro-inflammatory cytokines and chemokines in the CNS. However, the effect of alcohol on signaling pathways downstream of TLR4, such as MyD88 and TRIF (TICAM) signaling, has not been evaluated extensively. In the current study, we treated male wild-type, TLR4-, MyD88-, and TRIF-deficient mice using a chronic plus binge mouse model of AUD. Evaluation of mRNA expression by qRT-PCR revealed that ethanol increased IL-1β, TNF-α, CCL2, COX2, FosB, and JunB in the cerebellum in wild-type and TRIF-deficient mice, while ethanol generally did not increase the expression of these molecules in TLR4- and MyD88-deficient mice. Furthermore, IRF3, IRF7, and IFN-β1, which are associated with the TRIF-dependent signaling cascade, were largely unaffected by alcohol. Collectively, these results suggest that the TLR4 and downstream MyD88-dependent signaling pathways are essential in ethanol-induced neuroinflammation in this mouse model of AUD.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
28
|
Raval NR, Angarita G, Matuskey D, Miller R, Drake LR, Kapinos M, Nabulsi N, Huang Y, Carson RE, O'Malley SS, Cosgrove KP, Hillmer AT. Imaging the brain's immune response to alcohol with [ 11C]PBR28 TSPO Positron Emission Tomography. Mol Psychiatry 2023; 28:3384-3390. [PMID: 37532797 PMCID: PMC10743097 DOI: 10.1038/s41380-023-02198-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
In humans, the negative effects of alcohol are linked to immune dysfunction in both the periphery and the brain. Yet acute effects of alcohol on the neuroimmune system and its relationships with peripheral immune function are not fully understood. To address this gap, immune response to an alcohol challenge was measured with positron emission tomography (PET) using the radiotracer [11C]PBR28, which targets the 18-kDa translocator protein, a marker sensitive to immune challenges. Participants (n = 12; 5 F; 25-45 years) who reported consuming binge levels of alcohol (>3 drinks for females; >4 drinks for males) 1-3 months before scan day were enrolled. Imaging featured a baseline [11C]PBR28 scan followed by an oral laboratory alcohol challenge over 90 min. An hour later, a second [11C]PBR28 scan was acquired. Dynamic PET data were acquired for at least 90 min with arterial blood sampling to measure the metabolite-corrected input function. [11C]PBR28 volume of distributions (VT) was estimated in the brain using multilinear analysis 1. Subjective effects, blood alcohol levels (BAL), and plasma cytokines were measured during the paradigm. Full completion of the alcohol challenge and data acquisition occurred for n = 8 (2 F) participants. Mean peak BAL was 101 ± 15 mg/dL. Alcohol significantly increased brain [11C]PBR28 VT (n = 8; F(1,49) = 34.72, p > 0.0001; Cohen's d'=0.8-1.7) throughout brain by 9-16%. Alcohol significantly altered plasma cytokines TNF-α (F(2,22) = 17.49, p < 0.0001), IL-6 (F(2,22) = 18.00, p > 0.0001), and MCP-1 (F(2,22) = 7.02, p = 0.004). Exploratory analyses identified a negative association between the subjective degree of alcohol intoxication and changes in [11C]PBR28 VT. These findings provide, to our knowledge, the first in vivo human evidence for an acute brain immune response to alcohol.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Gustavo Angarita
- Yale PET Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University New Haven, New Haven, CT, USA
| | - Rachel Miller
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lindsey R Drake
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | | | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Yale PET Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA.
| |
Collapse
|
29
|
Hu L, Ni Z, Zhao K, Li X, Gao X, Kang Y, Yu Z, Qin Y, Zhao J, Peng W, Lu L, Sun H. The association between oral and gut microbiota in male patients with alcohol dependence. Front Microbiol 2023; 14:1203678. [PMID: 37577447 PMCID: PMC10422022 DOI: 10.3389/fmicb.2023.1203678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The relationship between oral and gut microbiota in alcohol dependence (AD) is not well understood, particularly the effects of oral microbiota on the intestinal microbiota. The current study aimed to explore the association between oral and gut microbiota in AD to clarify whether oral microbiota could ectopically colonize into the gut. Methods 16S rRNA sequence libraries were used to compare oral and gut microbial profiles in persons with AD and healthy controls (HC). Source Tracker and NetShift were used to identify bacteria responsible for ectopic colonization and indicate the driver function of ectopic colonization bacteria. Results The α-diversity of oral microbiota and intestinal microbiota was significantly decreased in persons with AD (all p < 0.05). Principal coordinate analysis indicated greater similarity between oral and gut microbiota in persons with AD than that in HC, and oral-gut overlaps in microbiota were found for 9 genera in persons with AD relative to only 3 genera in HC. The contribution ratio of oral microbiota to intestinal microbiota composition in AD is 5.26% based on Source Tracker,and the AD with ectopic colonization showed the daily maximum standard drinks, red blood cell counts, hemoglobin content, and PACS scores decreasing (all p < 0.05). Discussion Results highlight the connection between oral-gut microbiota in AD and suggest novel potential mechanistic possibilities.
Collapse
Affiliation(s)
- Lingming Hu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Kangqing Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Yulin Kang
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ying Qin
- The Second People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Jingwen Zhao
- The Second People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Wenjuan Peng
- The Second People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
- National Institute on Drug Dependence, Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-DG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| |
Collapse
|
30
|
Anand SK, Ahmad MH, Sahu MR, Subba R, Mondal AC. Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cell Mol Neurobiol 2023; 43:1885-1904. [PMID: 36436159 PMCID: PMC11412203 DOI: 10.1007/s10571-022-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Alcohol consumption is known to cause several brain anomalies. The pathophysiological changes associated with alcohol intoxication are mediated by various factors, most notable being inflammation. Alcohol intoxication may cause inflammation through several molecular mechanisms in multiple organs, including the brain, liver and gut. Alcohol-induced inflammation in the brain and gut are intricately connected. In the gut, alcohol consumption leads to the weakening of the intestinal barrier, resulting in bacteria and bacterial endotoxins permeating into the bloodstream. These bacterial endotoxins can infiltrate other organs, including the brain, where they cause cognitive dysfunction and neuroinflammation. Alcohol can also directly affect the brain by activating immune cells such as microglia, triggering the release of pro-inflammatory cytokines and neuroinflammation. Since alcohol causes the death of neural cells, it has been correlated to an increased risk of neurodegenerative diseases. Besides, alcohol intoxication has also negatively affected neural stem cells, affecting adult neurogenesis and causing hippocampal dysfunctions. This review provides an overview of alcohol-induced brain anomalies and how inflammation plays a crucial mechanistic role in alcohol-associated pathophysiology.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Rhea Subba
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
31
|
Chen K, Wüstenberg T, Stiglbauer V, El-Ahmad L, Rosenthal A, Pelz P, Gold SM, Heinz A, Sebold M. Distinct dynamic behavioural response to social exclusion in male patients with a history of alcohol dependence. Addict Biol 2023; 28:e13287. [PMID: 37369124 DOI: 10.1111/adb.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/15/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
Social exclusion contributes to alcohol consumption, whereas the development of alcohol dependence (AD) can in turn lead to the social exclusion of people with AD. Previous research observed altered neural responses to experimentally induced social exclusion (i.e., Cyberball game) in patients with AD. In addition, inflammation has been associated with both social behaviours and AD. Our study aimed to investigate the dynamic behavioural response and the inflammatory effects of social exclusion in male patients with a history of AD. To this end, we analysed dynamic changes in ball tossing during a partial exclusion Cyberball game and the cytokine interleukin (IL)-1b in saliva in 31 male patients who had a history of AD and 29 gender-matched healthy controls without AD. Participants were included in the first 2 min of the Cyberball game and then excluded by one of the two co-players in the proceeding 5 min. Saliva was collected three times: one before and two after the Cyberball game. Across groups, participants passed the ball more often to the excluder during the partial exclusion period. Analysis using piece-wise linear mixed models showed that patients rapidly increased ball tosses to the excluder upon exclusion, which lasted to the late response phase, whereas the early behavioural response to exclusion took longer for controls. There was no significant change of salivary IL-1b level to exclusion in either patients or controls. The results indicate a distinct dynamic behavioural response to social exclusion in male patients with a history of AD.
Collapse
Affiliation(s)
- Ke Chen
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Torsten Wüstenberg
- Core Facility for Neuroscience of Self-Regulation (CNSR), Research Council Field of Focus IV, Heidelberg University, Heidelberg, Germany
- Psychological Institute, Heidelberg University, Heidelberg, Germany
| | - Victoria Stiglbauer
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Linda El-Ahmad
- Medical Department, Section Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Department of Social and Preventive Medicine, University of Potsdam, Potsdam, Germany
| | - Patricia Pelz
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Medical Department, Section Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Institute of Neuroimmunology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Miriam Sebold
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Faculty of Business and Law, Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany
| |
Collapse
|
32
|
Maccioni L, Kasavuli J, Leclercq S, Pirlot B, Laloux G, Horsmans Y, Leclercq I, Schnabl B, Stärkel P. Toll-like receptor 2 activation in monocytes contributes to systemic inflammation and alcohol-associated liver disease in humans. Hepatol Commun 2023; 7:e0107. [PMID: 37058088 PMCID: PMC10109139 DOI: 10.1097/hc9.0000000000000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/24/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND AND RATIONALE In the context of gut leakiness and translocation of microbial products in alcohol-associated liver disease (ALD), it is possible that systemic and liver inflammation involve the activation of circulating monocyte through gut-derived factors. We explored the association between monocytes, microbial translocation, systemic inflammation, and ALD. METHODS Patients with alcohol use disorder following a rehabilitation program were compared with healthy controls. We determined the circulating number and proportion of monocyte subsets by FACS. The activation of signaling pathways by gut-derived microbes was analyzed by quantitative PCR in isolated monocytes. Cytokines secretion by monocytes and phagocytosis were assessed in vitro. Serum microbial translocation markers and cytokines were measured by ELISA and multiplex assay, respectively. ALD severity and liver inflammatory responses were analyzed in liver biopsies by various methods. RESULTS In patients with alcohol use disorder, the number of blood monocytes increased compared with controls. Monocytes from patients with alcohol use disorder upregulated IL-1β and IL-8 together with toll-like receptor 2 and downstream AP-1, while fungal sensor CARD9 was downregulated. IL-1β and IL-8 were actively secreted upon stimulation in vitro with the toll-like receptor 2 ligand peptidoglycan. Exposure with Escherichia coli confirmed preserved bacterial phagocytic activity. In contrast, Candida albicans stimulation leads to downregulation of IL-1β and TNFα compared with controls. Systemic cytokines and monocyte changes correlated with microbial translocation. Hepatic IL-1β and IL-8 increased with ALD severity together with liver macrophage activation and upregulation of chemokines involved in monocyte attraction. CONCLUSIONS Our results point to the contribution of activated monocytes to systemic inflammation and ALD. Monocytes likely infiltrate the liver, transform into monocyte-derived macrophages and release IL-1β and IL-8 in response to peptidoglycan and toll-like receptor 2 activation.
Collapse
Affiliation(s)
- Luca Maccioni
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Joyce Kasavuli
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Institute of Neuroscience, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Boris Pirlot
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Horsmans
- Department of Hepatogastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Peter Stärkel
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Department of Hepatogastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
33
|
Patel D, Rathaur P, Parwani K, Patel F, Sharma D, Johar K, Mandal P. In vitro, in vivo, and in silico analysis of synbiotics as preventive interventions for lipid metabolism in ethanol-induced adipose tissue injury. Lipids Health Dis 2023; 22:49. [PMID: 37055787 PMCID: PMC10103406 DOI: 10.1186/s12944-023-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
The risk of alcoholic liver disease (ALD) is increased by excessive ethanol drinking. For the prevention of ALD, the effects of ethanol on the liver, adipose tissue, and gut are crucial. Interestingly, garlic and a few probiotic strains can protect against ethanol-induced hepatotoxicity. However, the relationship between adipose tissue inflammation, Kyolic aged garlic extract (AGE), and Lactobacillus rhamnosus MTCC1423 in developing ALD is unknown. Therefore, the present study explored the effect of synbiotics (a combination of prebiotics and probiotics) on adipose tissue to prevent ALD. To investigate the efficacy of synbiotics administration on adipose tissue in preventing ALD, in vitro (3T3-L1 cells, N = 3) groups: control, control + LPS (lipopolysaccharide), ethanol, ethanol + LPS, ethanol + synbiotics, ethanol + synbiotics + LPS; in vivo (Wistar male rats, N = 6) groups: control, ethanol, pairfed, ethanol + synbiotics and in silico experiments were conducted. Lactobacillus multiplies in accordance with the growth curve when exposed to AGE. Additionally, Oil red O staining and scanning electron microscopy (SEM) demonstrated that synbiotics therapy maintained the morphology of adipocytes in the alcoholic model. In support of the morphological changes, quantitative real-time PCR demonstrated overexpression of adiponectin and downregulation of leptin, resistin, PPARγ, CYP2E1, iNOS, IL-6, and TNF-α after administration of synbiotics compared to the ethanol group. In addition, MDA estimation by high-performance liquid chromatography (HPLC) indicated that the synbiotics treatment reduced oxidative stress in rat adipose tissue. Consequently, the in-silico analysis revealed that AGE inhibited the C-D-T networks as PPARγ acting as the main target protein. The current study demonstrates that using synbiotics improves adipose tissue metabolism in ALD.
Collapse
Affiliation(s)
- Dhara Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa-388421, Gujarat, India
| | - Pooja Rathaur
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Kirti Parwani
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa-388421, Gujarat, India
| | - Farhin Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa-388421, Gujarat, India
| | - Dixa Sharma
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa-388421, Gujarat, India
| | - Kaid Johar
- Department of Zoology, Biomedical Technology, and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Palash Mandal
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa-388421, Gujarat, India.
| |
Collapse
|
34
|
Carbia C, Bastiaanssen TFS, Iannone LF, García-Cabrerizo R, Boscaini S, Berding K, Strain CR, Clarke G, Stanton C, Dinan TG, Cryan JF. The Microbiome-Gut-Brain axis regulates social cognition & craving in young binge drinkers. EBioMedicine 2023; 89:104442. [PMID: 36739238 PMCID: PMC10025767 DOI: 10.1016/j.ebiom.2023.104442] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development. Furthermore, a strong link has emerged too between microbiome composition and socio-emotional functioning across different disorders including AUD. The aim of this study was to investigate the potential link (and its predictive value) between alcohol-related altered microbial profile, social cognition, impulsivity and craving. METHODS Young people (N = 71) aged 18-25 reported their alcohol use and underwent a neuropsychological evaluation. Craving was measured at baseline and three months later. Diet was controlled for. Blood, saliva and hair samples were taken for inflammatory, kynurenine and cortisol analysis. Stool samples were provided for shotgun metagenomic sequencing and short-chain fatty acids (SCFAs) were measured. FINDINGS Binge drinking was associated with distinct microbiome alterations and emotional recognition difficulties. Associations were found for several microbiome species with emotional processing and impulsivity. Craving showed a strong link with alterations in microbiome composition and neuroactive potential over time. INTERPRETATION In conclusion, this research demonstrates alterations in the gut microbiome of young binge drinkers (BDs) and identifies early biomarkers of craving. Associations between emotional processing and microbiome composition further support the growing literature on the gut microbiome as a regulator of social cognition. These findings are of relevance for new gut-derived interventions directed at improving early alcohol-related alterations during the vulnerability period of adolescence. FUNDING C.C. and R.G-C. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754535. APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan [grant no. SFI/12/RC/2273_P2]. J.F.C has research support from Cremo, Pharmavite, DuPont and Nutricia. He has spoken at meetings sponsored by food and pharmaceutical companies. G.C. has received honoraria from Janssen, Probi, and Apsen as an invited speaker; is in receipt of research funding from Pharmavite, Fonterra, Nestle and Reckitt; and is a paid consultant for Yakult, Zentiva and Heel pharmaceuticals. All the authors declare no competing interests.
Collapse
Affiliation(s)
- Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | | | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
35
|
Mednova IA, Levchuk LA, Boiko AS, Roschina OV, Simutkin GG, Bokhan NA, Loonen AJM, Ivanova SA. Cytokine level in patients with mood disorder, alcohol use disorder and their comorbidity. World J Biol Psychiatry 2023; 24:243-253. [PMID: 35818961 DOI: 10.1080/15622975.2022.2095439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Because alcohol use disorder (AUD) is often accompanied by mood disorder (MD) and both alcoholism and depression result in activation of the immune system, this study compares serum cytokine levels in the presence of co-morbidity with those in either AUD or MD alone. METHODS In this naturalistic prospective study the levels of 15 different cytokines were measured in serum samples of patients with MD (n = 43), participants with combined AUD-MD (n = 44) and AUD without MD (n = 42). The levels were compared cross-sectionally among themselves and with those in 50 healthy volunteers. RESULTS Pro-inflammatory IFN-2α levels were consistently significantly higher and anti-inflammatory IL-1RA significantly lower in all study groups in comparison to healthy volunteers. In the MD only group we found increased IL-6 (p = 0.001), IL-7 (p = 0.001) and IL-13 (p = 0.006) levels, and decreased TNFα (p = 0.0001), IL-1RA (p = 0.012), IL-10 (p = 0.002) compared with group MD + AUD. Patients with AUD only showed elevated levels of IL-1β (p = 0.046), IL-2 (p = 0.004), IL-7 (p = 0.0001), IL-4 (p = 0.049) and IL-13 (p = 0.015) in contrast with MD + AUD group. CONCLUSIONS Because the interactions of alcohol with peripheral and cerebral immune systems are multifaceted, the pertinent connection to the mechanism how alcohol consumption contributes to the development of mood disorders cannot be properly explored.
Collapse
Affiliation(s)
- Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Lyudmila A Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Olga V Roschina
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Tomsk, Russian Federation
| | - Anton J M Loonen
- PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
36
|
Cassotta M, Cianciosi D, De Giuseppe R, Navarro-Hortal MD, Armas Diaz Y, Forbes-Hernández TY, Pifarre KT, Pascual Barrera AE, Grosso G, Xiao J, Battino M, Giampieri F. Possible role of nutrition in the prevention of inflammatory bowel disease-related colorectal cancer: A focus on human studies. Nutrition 2023; 110:111980. [PMID: 36965240 DOI: 10.1016/j.nut.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Patients with inflammatory bowel disease (IBD) are at substantially high risk for colorectal cancer (CRC). IBD-associated CRC accounts for roughly 10% to 15% of the annual mortality in patients with IBD. IBD-related CRC also affects younger patients compared with sporadic CRC, with a 5-y survival rate of 50%. Regardless of medical therapies, the persistent inflammatory state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements, including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier dysfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. Additionally, in recent years, results from broad epidemiologic and experimental studies have associated certain foods or nutritional patterns with the risk for colorectal neoplasia. The present study aimed to review the possible role of nutrition in preventing IBD-related CRC, focusing specifically on human studies. It emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, ω-3 polyunsaturated fatty acids, and a low amount of animal proteins, processed foods, and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC.
Collapse
Affiliation(s)
- Manuela Cassotta
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Maria Dolores Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Tamara Yuliett Forbes-Hernández
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Project Department, Universidade Internacional do Cuanza, Cuito, Bié, Angola
| | - Alina Eugenia Pascual Barrera
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Project Management, Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, Ourense, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
37
|
Wang X, Li L, Bian C, Bai M, Yu H, Gao H, Zhao J, Zhang C, Zhao R. Alterations and correlations of gut microbiota, fecal, and serum metabolome characteristics in a rat model of alcohol use disorder. Front Microbiol 2023; 13:1068825. [PMID: 36687619 PMCID: PMC9846065 DOI: 10.3389/fmicb.2022.1068825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023] Open
Abstract
Background Growing evidence suggests the gut microbiota and metabolites in serum or fecal may play a key role in the process of alcohol use disorder (AUD). However, the correlations of gut microbiota and metabolites in both feces and serum in AUD subjects are not well understood. Methods We established a rat model of AUD by a chronic intermittent ethanol voluntary drinking procedure, then the AUD syndromes, the gut microbiota, metabolomic profiling in feces and serum of the rats were examined, and correlations between gut microbiota and metabolites were analyzed. Results Ethanol intake preference increased and maintained at a high level in experimental rats. Anxiety-like behaviors was observed by open field test and elevated plus maze test after ethanol withdraw, indicating that the AUD rat model was successfully developed. The full length 16S rRNA gene sequencing showed AUD significantly changed the β-diversity of gut microbial communities, and significantly decreased the microbial diversity but did not distinctly impact the microbial richness. Microbiota composition significantly changed in AUD rats, such as the abundance of Romboutsia and Turicibacter were significantly increased, whereas uncultured_bacterium_o_Mollicutes_RF39 was decreased. In addition, the untargeted metabolome analysis revealed that many metabolites in both feces and serum were altered in the AUD rats, especially involved in sphingolipid metabolism and glycerophospholipid metabolism pathways. Finally, multiple correlations among AUD behavior, gut microbiota and co-changed metabolites were identified, and the metabolites were directly correlated with the gut microbiota and alcohol preference. Conclusion The altered metabolites in feces and serum are important links between the gut microbiota dysbiosis and alcohol preference in AUD rats, and the altered gut microbiota and metabolites can be potentially new targets for treating AUD.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lin Li
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Cong Bian
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Mingjian Bai
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Haitao Yu
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Han Gao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jiaxin Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, China
| | - Chunjing Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China,*Correspondence: Chunjing Zhang,
| | - Rongjie Zhao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China,Rongjie Zhao,
| |
Collapse
|
38
|
Gervasi T, Mandalari G. The Interplay Between Gut Microbiota and Central Nervous System. Curr Pharm Des 2023; 29:3274-3281. [PMID: 38062662 DOI: 10.2174/0113816128264312231101110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/14/2023] [Indexed: 01/26/2024]
Abstract
This review highlights the relationships between gastrointestinal microorganisms and the brain. The gut microbiota communicates with the central nervous system through nervous, endocrine, and immune signalling mechanisms. Our brain can modulate the gut microbiota structure and function through the autonomic nervous system, and possibly through neurotransmitters which directly act on bacterial gene expression. In this context, oxidative stress is one the main factors involved in the dysregulation of the gut-brain axis and consequently in neurodegenerative disorders. Several factors influence the susceptibility to oxidative stress by altering the antioxidant status or free oxygen radical generation. Amongst these, of interest is alcohol, a commonly used substance which can negatively influence the central nervous system and gut microbiota, with a key role in the development of neurodegenerative disorder. The role of "psychobiotics" as a novel contrast strategy for preventing and treating disorders caused due to alcohol use and abuse has been investigated.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina 98166, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina 98166, Italy
| |
Collapse
|
39
|
Li Z, Vidjro OE, Guo G, Du Y, Zhou Y, Xie Q, Li J, Gao K, Zhou L, Ma T. NLRP3 deficiency decreases alcohol intake controlling anxiety-like behavior via modification of glutamatergic transmission in corticostriatal circuits. J Neuroinflammation 2022; 19:308. [PMID: 36539796 PMCID: PMC9764485 DOI: 10.1186/s12974-022-02666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alcohol use disorders result from repeated binge and chronic alcohol consumption followed by negative effects, such as anxiety, upon cessation. This process is associated with the activation of NLRP3 inflammasome-mediated responses. However, whether and how inhibition of the NLRP3 inflammasome alters alcohol intake and anxiety behavior remains unclear. METHODS A combination of drinking-in-the-dark and gavage was established in NLRP3-knockout and control mice. Behavior was assessed by open-field and elevated plus maze tests. Binge alcohol drinking was measured at 2 h and 4 h. A 2 h/4 h/24 h voluntary drinking was determined by a two-bottle choice paradigm. Western blotting and ELISA were applied to examine the levels of the NLRP3 inflammasome and- inflammatory factors, such as IL-1β and TNF-α. Nissl staining was used to measure neuronal injury. The electrophysiological method was used to determine glutamatergic transmission in corticostriatal circuits. In vivo optogenetic LTP and LTD were applied to control the function of corticostriatal circuits on the behavior of mice. MCC950 was used to antagonize the NLRP3 inflammasome. RESULTS The binge alcohol intake was decreased in NLRP3 KO mice compared to the control mice. During alcohol withdrawal, NLRP3 deficiency attenuated anxiety-like behavior and neuronal injury in the mPFC and striatum. Moreover, we discovered that glutamatergic transmission to striatal neurons was reduced in NLRP3 KO mice. Importantly, in vivo optogenetic induction of long-term potentiation (LTP) of corticostriatal circuits reversed the effects of NLRP3 deficiency on glutamatergic transmission and anxiety behavior. We also demonstrated that optogenetic induction of LTD decreased anxiety-like behavior and caused a reduction in glutamatergic transmission. Interestingly, NLRP3 deficiency or inhibition (MCC950 injection) attenuated the anxiety-like behavior, but it did not prevent DID + gavage paradigm-induced a persistent enhancement of drinking in a two-bottle choice at 2 and 4 days into withdrawal. CONCLUSION Our results demonstrate that NLRP3 deficiency decreases binge alcohol intake and anxiety-like behavior through downregulation of glutamatergic transmission in corticostriatal circuits, which may provide an anti-inflammatory target for treating alcohol use disorders.
Collapse
Affiliation(s)
- Ziyi Li
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Olivia Ewi Vidjro
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Gengni Guo
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China ,grid.89957.3a0000 0000 9255 8984Grade 2020 in Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu China
| | - Yanfeng Du
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Yao Zhou
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Qian Xie
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Jiaxin Li
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Keqiang Gao
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| | - Li Zhou
- grid.459791.70000 0004 1757 7869Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Mochou Road, Nanjing, 210004 Jiangsu China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu China
| | - Tengfei Ma
- grid.89957.3a0000 0000 9255 8984Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, 211166 Jiangsu China
| |
Collapse
|
40
|
Attenuation of the levels of pro-inflammatory cytokines prevents depressive-like behavior during ethanol withdrawal in mice. Brain Res Bull 2022; 191:9-19. [DOI: 10.1016/j.brainresbull.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
|
41
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
42
|
Nannini DR, Zheng Y, Joyce BT, Gao T, Liu L, Jacobs DR, Schreiner P, Liu C, Horvath S, Lu AT, Yaffe K, Sidney S, Greenland P, Lloyd-Jones DM, Hou L. Marijuana use and DNA methylation-based biological age in young adults. Clin Epigenetics 2022; 14:134. [PMID: 36289503 PMCID: PMC9609285 DOI: 10.1186/s13148-022-01359-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Marijuana is the third most commonly used drug in the USA and efforts to legalize it for medical and recreational use are growing. Despite the increase in use, marijuana's effect on aging remains understudied and understanding the effects of marijuana on molecular aging may provide novel insights into the role of marijuana in the aging process. We therefore sought to investigate the association between cumulative and recent use of marijuana with epigenetic age acceleration (EAA) as estimated from blood DNA methylation. RESULTS A random subset of participants from The Coronary Artery Risk Development in Young Adults (CARDIA) Study with available whole blood at examination years (Y) 15 and Y20 underwent epigenomic profiling. Four EAA estimates (intrinsic epigenetic age acceleration, extrinsic epigenetic age acceleration, PhenoAge acceleration, and GrimAge acceleration) were calculated from DNA methylation levels measured at Y15 and Y20. Ever use and cumulative marijuana-years were calculated from the baseline visit to Y15 and Y20, and recent marijuana use (both any and number of days of use in the last 30 days) were calculated at Y15 and Y20. Ever use of marijuana and each additional marijuana-year were associated with a 6-month (P < 0.001) and a 2.5-month (P < 0.001) higher average in GrimAge acceleration (GAA) using generalized estimating equations, respectively. Recent use and each additional day of recent use were associated with a 20-month (P < 0.001) and a 1-month (P < 0.001) higher GAA, respectively. A statistical interaction between marijuana-years and alcohol consumption on GAA was observed (P = 0.011), with nondrinkers exhibiting a higher GAA (β = 0.21 [95% CI 0.05, 0.36], P = 0.008) compared to heavy drinkers (β = 0.05 [95% CI - 0.09, 0.18], P = 0.500) per each additional marijuana-year. No associations were observed for the remaining EAA estimates. CONCLUSIONS These findings suggest cumulative and recent marijuana use are associated with age-related epigenetic changes that are related to lifespan. These observed associations may be modified by alcohol consumption. Given the increase in use and legalization, these findings provide novel insight on the effect of marijuana use on the aging process as captured through blood DNA methylation.
Collapse
Affiliation(s)
- Drew R Nannini
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Brian T Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Lei Liu
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kristine Yaffe
- University of California at San Francisco School of Medicine, San Francisco, CA, USA
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| |
Collapse
|
43
|
Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022:1-7. [DOI: 10.1080/00952990.2022.2114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
44
|
Sagaram M, Royer AJ, Hu H, Rajhans A, Parthasarathy R, Krishnasamy SS, Mokshagundam SP, Kong M, Schwandt ML, Parajuli D, Cave MC, Vatsalya V. Illustration of Gut-Thyroid Axis in Alcohol Use Disorder: Interplay of Gut Dysfunction, Pro-Inflammatory Responses, and Thyroid Function. Cells 2022; 11:cells11193100. [PMID: 36231061 PMCID: PMC9563601 DOI: 10.3390/cells11193100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Heavy and chronic alcohol drinking leads to altered gut dysfunction, coupled with a pro-inflammatory state. Thyroid-associated hormones and proteins may be dysregulated by heavy and chronic alcohol intake; however, the mechanism for altered gut-derived changes in thyroid function has not been studied thus far. This study investigates the role of alcohol-induced gut dysfunction and pro-inflammatory cytokine profile in the thyroid function of patients with alcohol use disorder (AUD). (2) Methods: Male and female AUD patients (n = 44) were divided into Gr.1, patients with normal thyroid-stimulating hormone (TSH) levels (n = 28, 0.8 ≤ TSH ≤ 3 mIU/L); and Gr.2, patients with clinically elevated TSH levels (n = 16, TSH > 3 mIU/L). Demographics, drinking measures, comprehensive metabolic panels, and candidate thyroid markers (TSH, circulating triiodothyronine (T3), and free thyroxine (fT4)) were analyzed. Gut-dysfunction-associated markers (lipopolysaccharide (LPS), LPS-binding protein (LBP), and soluble LPS-induced pathogen-associated protein (sCD14)), and candidate pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MCP-1, PAI-1) were also evaluated. (3) Results: Patients in both groups presented with a borderline overweight BMI category. Gr.2 reported numerically higher indices of chronic and heavy drinking patterns than Gr.1. The fT4 levels were elevated, while T3 was within normal limits in both groups. The gut dysfunction markers LBP and sCD14 were numerically elevated in Gr.2 vs. Gr.1, suggesting subtle ongoing changes. Candidate pro-inflammatory cytokines were significantly elevated in Gr.2, including IL-1 β, MCP-1, and PAI-1. Gr.2 showed a strong and statistically significant effect on the gut–immune–thyroid response (r = 0.896, 36 p = 0.002) on TSH levels in a multivariate regression model with LBP, sCD14, and PAI-1 levels as upstream variables in the gut–thyroid pathway. In addition, AUROC analysis demonstrated that many of the cytokines strongly predicted TSH in Gr.2, including IL-6 (area = 0.774, 39 p < 0.001) and TNF-α (area = 0.708, p = 0.017), among others. This was not observed in Gr.1. Gr.2 demonstrated elevated fT4, as well as TSH, which suggests that there was subclinical thyroiditis with underlying CNS dysfunction and a lack of a negative feedback loop. (4) Conclusions: These findings reveal the toxic effects of heavy and chronic drinking that play a pathological role in thyroid gland dysregulation by employing the gut–brain axis. These results also emphasize potential directions to carefully evaluate thyroid dysregulation in the overall medical management of AUD.
Collapse
Affiliation(s)
- Manasa Sagaram
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Clinical Laboratory for the Intervention Development of AUD and Organ Severity, University of Louisville, Louisville, KY 40202, USA
| | - Amor J. Royer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Clinical Laboratory for the Intervention Development of AUD and Organ Severity, University of Louisville, Louisville, KY 40202, USA
| | - Huirong Hu
- Clinical Laboratory for the Intervention Development of AUD and Organ Severity, University of Louisville, Louisville, KY 40202, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA
| | - Abhas Rajhans
- Clinical Laboratory for the Intervention Development of AUD and Organ Severity, University of Louisville, Louisville, KY 40202, USA
- Department of Neuroscience, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ranganathan Parthasarathy
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Clinical Laboratory for the Intervention Development of AUD and Organ Severity, University of Louisville, Louisville, KY 40202, USA
| | | | - Sri Prakash Mokshagundam
- Division of Endocrinology, Metabolism & Diabetes, University of Louisville, Louisville, KY 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | | | - Dipendra Parajuli
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
| | - Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Clinical Laboratory for the Intervention Development of AUD and Organ Severity, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-502-852-8928 or +1-502-488-0466
| |
Collapse
|
45
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
46
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
47
|
Chen G, Shi F, Yin W, Guo Y, Liu A, Shuai J, Sun J. Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Front Microbiol 2022; 13:916765. [PMID: 35966709 PMCID: PMC9372561 DOI: 10.3389/fmicb.2022.916765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Alcohol use disorder (AUD) is a high-risk psychiatric disorder and a key cause of death and disability in individuals. In the development of AUD, there is a connection known as the microbiota-gut-brain axis, where alcohol use disrupts the gut barrier, resulting in changes in intestinal permeability as well as the gut microbiota composition, which in turn impairs brain function and worsens the patient’s mental status and gut activity. Potential mechanisms are explored by which alcohol alters gut and brain function through the effects of the gut microbiota and their metabolites on immune and inflammatory pathways. Alcohol and microbiota dysregulation regulating neurotransmitter release, including DA, 5-HT, and GABA, are also discussed. Thus, based on the above discussion, it is possible to speculate on the gut microbiota as an underlying target for the treatment of diseases associated with alcohol addiction. This review will focus more on how alcohol and gut microbiota affect the structure and function of the gut and brain, specific changes in the composition of the gut microbiota, and some measures to mitigate the changes caused by alcohol exposure. This leads to a potential intervention for alcohol addiction through fecal microbiota transplantation, which could normalize the disruption of gut microbiota after AUD.
Collapse
Affiliation(s)
- Ganggang Chen
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Fenglei Shi
- Department of Othopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yao Guo
- Shandong Provincial Mental Health Center, Jinan, China
| | - Anru Liu
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jiacheng Shuai
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
48
|
Amadieu C, Maccioni L, Leclercq S, Neyrinck AM, Delzenne NM, de Timary P, Stärkel P. Liver alterations are not improved by inulin supplementation in alcohol use disorder patients during alcohol withdrawal: A pilot randomized, double-blind, placebo-controlled study. EBioMedicine 2022; 80:104033. [PMID: 35490461 PMCID: PMC9062816 DOI: 10.1016/j.ebiom.2022.104033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background Emerging evidence highlights that targeting the gut microbiota could be an interesting approach to improve alcohol liver disease due to its important plasticity. This study aimed to evaluate the effects of inulin supplementation on liver parameters in alcohol use disorder (AUD) patients (whole sample) and in a subpopulation with early alcohol-associated liver disease (eALD). Methods Fifty AUD patients, hospitalized for a 3-week detoxification program, were enrolled in a randomized, double-blind, placebo-controlled study and assigned to prebiotic (inulin) versus placebo for 17 days. Liver damage, microbial translocation, inflammatory markers and 16S rDNA sequencing were measured at the beginning (T1) and at the end of the study (T2). Findings Compared to placebo, AST (β = 8.55, 95% CI [2.33:14.77]), ALT (β = 6.01, 95% CI [2.02:10.00]) and IL-18 (β = 113.86, 95% CI [23.02:204.71]) were statistically significantly higher in the inulin group in the whole sample at T2. In the eALD subgroup, inulin supplementation leads to specific changes in the gut microbiota, including an increase in Bifidobacterium and a decrease of Bacteroides. Despite those changes, AST (β = 14.63, 95% CI [0.91:28.35]) and ALT (β = 10.40, 95% CI [1.93:18.88]) at T2 were higher in the inulin group compared to placebo. Treatment was well tolerated without important adverse events or side effects. Interpretation This pilot study shows that 17 days of inulin supplementation versus placebo, even though it induces specific changes in the gut microbiota, did not alleviate liver damage in AUD patients. Further studies with a larger sample size and duration of supplementation with adequate monitoring of liver parameters are needed to confirm these results. Gut2Brain study: https://clinicaltrials.gov/ct2/show/NCT03803709 Funding Fédération Wallonie-Bruxelles, FRS-FNRS, Fondation Saint-Luc.
Collapse
|
49
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
50
|
Mundula T, Russo E, Curini L, Giudici F, Piccioni A, Franceschi F, Amedei A. Chronic systemic low-grade inflammation and modern lifestyle: the dark role of gut microbiota on related diseases with a focus on pandemic COVID-19. Curr Med Chem 2022; 29:5370-5396. [PMID: 35524667 DOI: 10.2174/0929867329666220430131018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Inflammation is a physiological, beneficial and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes organs and host tissues' damage, representing a major risk for chronic diseases. Currently, a worldwide a high incidence of inflammatory chronic diseases is observed, often linked to the lifestyle-related changes occurred in the last decade's society. The mains lifestyle-related factors are a proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and finally indoor living and working with its related consequences such as indoor pollution, artificial light exposure and low vitamin D production. Recent scientific evidences found that gut microbiota (GM) has a main role in shaping the host's health, particularly as CSLGI mediator. As a matter of facts, based on the last discoveries regarding the remarkable GM activity, in this manuscript we focused on the elements of actual lifestyle that influence the composition and function of intestinal microbial community, in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Piccioni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|