1
|
Hernández-Frausto M, Galván EJ, López-Rubalcava C. Dopamine D1 receptors activation rescues hippocampal synaptic plasticity and cognitive impairments in the MK-801 neonatal schizophrenia model. Behav Brain Res 2025; 476:115250. [PMID: 39277140 DOI: 10.1016/j.bbr.2024.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
2
|
Hu J, Li J, Guo Q, Du G, Li C, Li R, Zhou R, He H. Visual Detection of Dopamine with CdS/ZnS Quantum Dots Bearing by ZIF-8 and Nanofiber Membranes. Int J Mol Sci 2024; 25:10346. [PMID: 39408675 PMCID: PMC11476674 DOI: 10.3390/ijms251910346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dopamine (DA) is a widely present, calcium cholinergic neurotransmitter in the body, playing important roles in the central nervous system and cardiovascular system. Developing fast and sensitive DA detection methods is of great significance. Fluorescence-based methods have attracted much attention due to their advantages of easy operation, a fast response speed, and high sensitivity. This study prepared hydrophilic and high-performance CdS/ZnS quantum dots (QDs) for DA detection. The waterborne CdS/ZnS QDs were synthesized in one step using the amphiphilic polymer PEI-g-C14, obtained by grafting tetradecane (C14) to polyethyleneimine (PEI), as a template. The polyacrylonitrile nanofiber membrane (PAN-NFM) was prepared by electrospinning (e-spinning), and a metal organic frame (ZIF-8) was deposited in situ on the surface of the PAN-NFM. The CdS/ZnS QDs were loaded onto this substrate (ZIF-8@PAN-NFM). The results showed that after the deposition of ZIF-8, the water contact angle of the hydrophobic PAN-NFM decreased to within 40°. The nanofiber membrane loaded with QDs also exhibited significant changes in fluorescence in the presence of DA at different concentrations, which could be applied as a fast detection method of DA with high sensitivity. Meanwhile, the fluorescence on this PAN-NFM could be visually observed as it transitioned from a blue-green color to colorless, making it suitable for the real-time detection of DA.
Collapse
Affiliation(s)
- Jiadong Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Jiaxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Changming Li
- Schneider Institute of Industrial Technology, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Rong Zhou
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| |
Collapse
|
3
|
Ye N, Wang Q, Li Y, Zhen X. Current emerging therapeutic targets and clinical investigational agents for schizophrenia: Challenges and opportunities. Med Res Rev 2024. [PMID: 39300769 DOI: 10.1002/med.22086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Since the first discovery of antipsychotics in the 1950s, targeting dopaminergic drugs has manifested to well manage the positive symptoms of schizophrenia with limited efficacy for the negative and cognitive symptoms. In past decades, extensive efforts have been undertaken towards the development of innovative agents that can effectively stabilize the dopamine and serotonin systems or target to nondopaminergic pathways, leading to various promising drug candidates entering into clinical trials. Notably, the sigma-2, 5-HT2A, and α1A receptor antagonist roluperidone, as well as a fixed-dose combination of the M1/4 receptor agonist KarXT, have been submitted for NDA applications. The dual agonist ulotaront, which targets TAAR1 and 5-HT1A receptors, and the GlyT1 inhibitor iclepertin have advanced into phase 3 clinical trials. Nevertheless, satisfactory therapeutic strategies for schizophrenia remain elusive. This review highlights current clinical endeavors in developing novel chemical small-molecule entities and fixed-dose combinations for the treatment of schizophrenia since 2017, thus facilitating the efficient development of the next generation of antipsychotics.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Qi Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Kang H, Wang J, Liu Y, Huang F, Zhou H, Xie X, Xu Q, Liang X, Xue X. Integrating UPLC-MS/MS with in Silico and in Vitro Screening Accelerates the Discovery of Active Compounds in Stephania epigaea. J Pharm Biomed Anal 2024; 248:116289. [PMID: 38901158 DOI: 10.1016/j.jpba.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Traditional Chinese medicines (TCMs) are popular in clinic because of their safety and efficacy. They contain abundant natural active compounds, which are important sources of new drug discovery. However, how to efficiently identify active compounds from complex ingredients remains a challenge. In this study, a method combining UHPLC-MS/MS characterization and in silico screening was developed to discover compounds with dopamine D2 receptor (D2R) activity in Stephania epigaea (S. epigaea). By combining the compounds identified in S. epigaea by UHPLC-MS/MS with reported compounds, a virtual library of 80 compounds was constructed for in silico screening. Potentially active compounds were chosen based on screening scores and subsequently tested for in vitro activity on a transfected cell line CHO-K1-D2 model using label-free cellular phenotypic assay. Three D2R agonists and five D2R antagonists were identified. (-)-Asimilobine, N-nornuciferine and (-)-roemerine were reported for the first time as D2R agonists, with EC50 values of 0.35 ± 0.04 μM, 1.37 ± 0.10 μM and 0.82 ± 0.22 μM, respectively. Their target specificity was validated by desensitization and antagonism assay. (-)-Isocorypalmine, (-)-tetrahydropalmatine, (-)-discretine, (+)-corydaline and (-)-roemeroline showed strong antagonistic activity on D2R with IC50 values of 92 ± 9.9 nM, 1.73 ± 0.13 μM, 0.34 ± 0.02 μM, 2.09 ± 0.22 μM and 0.85 ± 0.08 μM, respectively. Their kinetic binding profiles were characterized using co-stimulation assay and they were both D2R competitive antagonists. We docked these ligands with human D2R crystal structure and analyzed the structure-activity relationship of aporphine-type D2R agonists and protoberberine-type D2R antagonists. These results would help to elucidate the mechanism of action of S. epigaea for its analgesic and sedative efficacy and benefit for D2R drug design. This study demonstrated the potential of integrating UHPLC-MS/MS with in silico and in vitro screening for accelerating the discovery of active compounds from TCMs.
Collapse
Affiliation(s)
- Hongjian Kang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Feifei Huang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Han Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xiaomin Xie
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Qing Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xingya Xue
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
5
|
Bransom L, Bassett AP, Zhou M, Cimino JX, Mailman RB, Yang Y. Dopamine D 1 Receptor Agonists Rescue Age-related Decline in Temporal Order Memory. Neuroscience 2024; 551:177-184. [PMID: 38823551 PMCID: PMC11246218 DOI: 10.1016/j.neuroscience.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dopamine D1 receptor agonists improve spatial working memory, but their effects on temporal order memory, particularly prone to the effects of aging, have not been studied. Two D1 agonists, PF6256142 (PF) and 2-methyldihydrexidine (2MDHX), were examined for their effects in a rodent temporal order recognition task. Our results are consistent with the hypothesis that there is an age-related decline in rodent temporal order memory. The data also show that either agonist rescues the poor memory performance with a large effective size. Interestingly, the optimal effective dose varied among individual rats of different age groups. PF showed greater potency for older rats, whereas 2MDHX showed better overall population effectiveness. Both PF and 2MDHX have high intrinsic activity at rodent D1-mediated cAMP synthesis. Conversely, at D1-mediated β-arrestin recruitment, PF has essentially no intrinsic activity, whereas 2MDHX is a super-agonist. These findings suggest that D1 agonists have potential to treat age-related cognitive decline, and the pattern of functional selectivity may be useful for developing drugs with an improved therapeutic index.
Collapse
Affiliation(s)
- Luke Bransom
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States
| | - Ava P Bassett
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States
| | - Mi Zhou
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States; Department of Neurology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Jack X Cimino
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States
| | - Richard B Mailman
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States; Department of Neurology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States.
| |
Collapse
|
6
|
Sun M, Zhang Y, Zhang XQ, Zhang Y, Wang XD, Li JT, Si TM, Su YA. Dopamine D1 receptor in medial prefrontal cortex mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits. Neuropsychopharmacology 2024; 49:1341-1351. [PMID: 38658737 PMCID: PMC11224251 DOI: 10.1038/s41386-024-01866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is an intracellular expressed G-protein-coupled receptor that is widely expressed in major dopaminergic areas and plays a crucial role in modulation of central dopaminergic neurotransmission and function. Pharmacological studies have clarified the roles of dopamine D1 receptor (D1R) in the medial prefrontal cortex (mPFC) in cognitive function and social behaviors, and chronic stress can inhibit D1R expression due to its susceptibility. Recently, we identified TAAR1 in the mPFC as a potential target for treating chronic stress-induced cognitive and social dysfunction, but whether D1R is involved in mediating the effects of TAAR1 agonist remains unclear. Combined genomics and transcriptomic studies revealed downregulation of D1R in the mPFC of TAAR1-/- mice. Molecular dynamics simulation showed that hydrogen bond, salt bridge, and Pi-Pi stacking interactions were formed between TAAR1 and D1R indicating a stable TAAR1-D1R complex structure. Using pharmacological interventions, we found that D1R antagonist disrupted therapeutic effect of TAAR1 partial agonist RO5263397 on stress-related cognitive and social dysfunction. Knockout TAAR1 in D1-type dopamine receptor-expressing neurons reproduced adverse effects of chronic stress, and TAAR1 conditional knockout in the mPFC led to similar deficits, along with downregulation of D1R expression, all of these effects were ameliorated by viral overexpression of D1R in the mPFC, suggesting the functional interaction between TAAR1 and D1R. Collectively, our data elucidate the possible molecular mechanism that D1R in the mPFC mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits.
Collapse
Affiliation(s)
- Meng Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yue Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
7
|
Chen J, Song Y, Ma L, Jin Y, Yu J, Guo Y, Huang Y, Pu X. Computational insights into diverse binding modes of the allosteric modulator and their regulation on dopamine D1 receptor. Comput Biol Med 2024; 173:108283. [PMID: 38552278 DOI: 10.1016/j.compbiomed.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Allosteric drugs hold the promise of addressing many challenges in the current drug development of GPCRs. However, the molecular mechanism underlying their allosteric modulations remain largely elusive. The dopamine D1 receptor (DRD1), a member of Class A GPCRs, is critical for treating psychiatric disorders, and LY3154207 serves as its promising positive allosteric modulator (PAM). In the work, we utilized extensive Gaussian-accelerated molecular dynamics simulations (a total of 41μs) for the first time probe the diverse binding modes of the allosteric modulator and their regulation effects, based on the DRD1 and LY3154207 as representative. Our simulations identify four binding modes of LY3154207 (one boat mode, two metastable vertical modes and a novel cleft-anchored mode), in which the boat mode is the most stable while there three modes are similar in the stability. However, it is interesting to observed that the most stable boat mode inversely exhibits the weakest positive allosteric effect on influencing the orthosteric ligand binding and maintaining the activity of the transducer binding site. It should result from its induced weaker correlation between the allosteric site and the orthosteric site, and between the orthosteric site and the transducer binding site than the other three binding modes, as well as its weakened interaction between a crucial activation-related residue (S2025.46) and the orthosteric ligand (dopamine). Overall, the work offers atomic-level information to advance our understanding of the complex allosteric regulation on GPCRs, which is beneficial to the allosteric modulator design and development.
Collapse
Affiliation(s)
- Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yuanpeng Song
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Luhan Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yizhou Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Nesbit MO, Ahn S, Zou H, Floresco SB, Phillips AG. Potentiation of prefrontal cortex dopamine function by the novel cognitive enhancer d-govadine. Neuropharmacology 2024; 246:109849. [PMID: 38244888 DOI: 10.1016/j.neuropharm.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Cognitive impairment is a debilitating feature of psychiatric disorders including schizophrenia, mood disorders and substance use disorders for which there is a substantial lack of effective therapies. d-Govadine (d-GOV) is a tetrahydroprotoberberine recently shown to significantly enhance working memory and behavioural flexibility in several prefrontal cortex (PFC)-dependent rodent tasks. d-GOV potentiates dopamine (DA) efflux in the mPFC and not the nucleus accumbens, a unique pharmacology that sets it apart from many dopaminergic drugs and likely contributes to its effects on cognitive function. However, specific mechanisms involved in the preferential effects of d-GOV on mPFC DA function remain to be determined. The present study employs brain dialysis in male rats to deliver d-GOV into the mPFC or ventral tegmental area (VTA), while simultaneously sampling DA and norepinephrine (NE) efflux in the mPFC. Intra-PFC delivery or systemic administration of d-GOV preferentially potentiated medial prefrontal DA vs NE efflux. This differential effect of d-GOV on the primary catecholamines known to affect mPFC function further underscores its specificity for the mPFC DA system. Importantly, the potentiating effect of d-GOV on mPFC DA was disrupted when glutamatergic transmission was blocked in either the mPFC or the VTA. We hypothesize that d-GOV acts in the mPFC to engage the mesocortical feedback loop through which prefrontal glutamatergic projections activate a population of VTA DA neurons that specifically project back to the PFC. The activation of a PFC-VTA feedback loop to elevate PFC DA efflux without affecting mesolimbic DA release represents a novel approach to developing pro-cognitive drugs.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Soyon Ahn
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Haiyan Zou
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Stan B Floresco
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
10
|
Sotoyama H. Putative neural mechanisms underlying release-mode-specific abnormalities in dopamine neural activity in a schizophrenia-like model: The distinct roles of glutamate and serotonin in the impaired regulation of dopamine neurons. Eur J Neurosci 2024; 59:1194-1212. [PMID: 37611917 DOI: 10.1111/ejn.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Abnormalities in dopamine function might be related to psychiatric disorders such as schizophrenia. Even at the same concentration, dopamine exerts opposite effects on information processing in the prefrontal cortex depending on independent dopamine release modes known as tonic and phasic releases. This duality of dopamine prevents a blanket interpretation of the implications of dopamine abnormalities for diseases on the basis of absolute dopamine levels. Moreover, the mechanisms underlying the mode-specific dopamine abnormalities are not clearly understood. Here, I show that the two modes of dopamine release in the prefrontal cortex of a schizophrenia-like model are disrupted by different mechanisms. In the schizophrenia-like model established by perinatal exposure to inflammatory cytokine, epidermal growth factor, tonic release was enhanced and phasic release was decreased in the prefrontal cortex. I examined the activity of dopamine neurons in the ventral tegmental area (VTA), which sends dopamine projections to the prefrontal cortex, under anaesthesia. The activation of VTA dopamine neurons during excitatory stimulation (local application of glutamate or N-methyl-d-aspartic acid [NMDA]), which is associated with phasic activity, was blunt in this model. Dopaminergic neuronal activity in the resting state related to tonic release was increased by disinhibition of the dopamine neurons due to the impairment of 5HT2 (5HT2A) receptor-regulated GABAergic inputs. Moreover, chronic administration of risperidone ameliorated this disinhibition of dopaminergic neurons. These results provide an idea about the mechanism of dopamine disturbance in schizophrenia and may be informative in explaining the effects of atypical antipsychotics as distinct from those of typical drugs.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Physiology, School of Medicine, Niigata University, Niigata, Japan
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
11
|
Rajagopal L, Huang M, Mahjour S, Ryan C, Elzokaky A, Svensson KA, Meltzer HY. The dopamine D1 receptor positive allosteric modulator, DETQ, improves cognition and social interaction in aged mice and enhances cortical and hippocampal acetylcholine efflux. Behav Brain Res 2024; 459:114766. [PMID: 38048913 DOI: 10.1016/j.bbr.2023.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Dopamine (DA) D1 and D2 receptors (Rs) are critical for cognitive functioning. D1 positive allosteric modulators (D1PAMs) activate D1Rs without desensitization or an inverted U-shaped dose response curve. DETQ, [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one] is highly selective for the human D1Rs as shown in humanized D1R knock-in (hD1Ki) mice. Here, we have ascertained the efficacy of DETQ in aged [13-23-month-old (mo)] hD1Ki mice and their corresponding age-matched wild-type (WT; C57BL/6NTac) controls. We found that in aged mice, DETQ, given acutely, subchronically, and chronically, rescued both novel object recognition memory and social behaviors, using novel object recognition (NOR) and social interaction (SI) tasks, respectively without any adverse effect on body weight or mortality. We have also shown, using in vivo microdialysis, a significant decrease in basal DA and norepinephrine, increase in glutamate (Glu) and gamma-amino butyric acid (GABA) efflux with no significant changes in acetylcholine (ACh) levels in aged vs young mice. In young and aged hD1Ki mice, DETQ, acutely and subchronically increased ACh in the medial prefrontal cortex and hippocampal regions in aged hD1Ki mice without affecting Glu. These results suggest that the D1PAM mechanism is of interest as potential treatment for cognitive and social behavioral deficits in neuropsychiatric disorders including but not restricted to neurodegenerative disorders, such as Parkinson's disease.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kjell A Svensson
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:476-487. [PMID: 36999711 PMCID: PMC10909821 DOI: 10.2174/1871527322666230331121028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.
Collapse
Affiliation(s)
- Erwan Bezard
- Université de Bordeaux, CNRS Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Motac Neuroscience, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
van der Westhuizen C, Botha TL, Finger-Baier K, Brouwer GD, Wolmarans DW. Contingency learning in zebrafish exposed to apomorphine- and levetiracetam. Behav Pharmacol 2023; 34:424-436. [PMID: 37578419 DOI: 10.1097/fbp.0000000000000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cognitive rigidity (CR) refers to inadequate executive adaptation in the face of changing circumstances. Increased CR is associated with a number of psychiatric disorders, for example, obsessive-compulsive disorder, and improving cognitive functioning by targeting CR in these conditions, may be fruitful. Levetiracetam (LEV), clinically used to treat epilepsy, may have pro-cognitive effects by restoring balance to neuronal signalling. To explore this possibility, we applied apomorphine (APO) exposure in an attempt to induce rigid cue-directed responses following a cue (visual pattern)-reward (social conspecifics) contingency learning phase and to assess the effects of LEV on such behaviours. Briefly, zebrafish were divided into four different 39-day-long exposure groups ( n = 9-10) as follows: control (CTRL), APO (100 µg/L), LEV (750 µg/L) and APO + LEV (100 µg/L + 750 µg/L). The main findings of this experiment were that 1) all four exposure groups performed similarly with respect to reward- and cue-directed learning over the first two study phases, 2) compared to the CTRL group, all drug interventions, but notably the APO + LEV combination, lowered the degree of reward-directed behaviour during a dissociated presentation of the cue and reward, and 3) temporal and spatial factors influenced the manner in which zebrafish responded to the presentation of the reward. Future studies are needed to explore the relevance of these findings for our understanding of the potential cognitive effects of LEV.
Collapse
Affiliation(s)
| | - Tarryn L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Karin Finger-Baier
- Max Planck Institute of Neurobiology, now: Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Geoffrey de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health, North-West University
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health, North-West University
| |
Collapse
|
14
|
Cimino JX, Zhou M, Waxmonsky J, Mailman RB, Yang Y. Characterization of behavioral changes in T-maze alternation from dopamine D 1 agonists with different receptor coupling mechanisms. Psychopharmacology (Berl) 2023; 240:2187-2199. [PMID: 37578525 PMCID: PMC10693963 DOI: 10.1007/s00213-023-06440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
RATIONALE Dopamine D1 receptor agonists have been shown to improve working memory, but often have a non-monotonic (inverted-U) dose-response curve. One hypothesis is that this may reflect dose-dependent differential engagement of D1 signaling pathways, a mechanism termed functional selectivity or signaling bias. OBJECTIVES AND METHODS To test this hypothesis, we compared two D1 ligands with different signaling biases in a rodent T-maze alternation task. Both tested ligands (2-methyldihydrexidine and CY208243) have high intrinsic activity at cAMP signaling, but the former also has markedly higher intrinsic activity at D1-mediated recruitment of β-arrestin. The spatial working memory was assessed via the alternation behavior in the T-maze where the alternate choice rate quantified the quality of the memory and the duration prior to making a choice represented the decision latency. RESULTS Both D1 drugs changed the alternate rate and the choice latency in a dose-dependent manner, albeit with important differences. 2-Methyldihydrexidine was somewhat less potent but caused a more homogeneous improvement than CY208243 in spatial working memory. The maximum changes in the alternate rate and the choice latency tended to occur at different doses for both drugs. CONCLUSIONS These data suggest that D1 signaling bias in these two pathways (cAMP vs β-arrestin) has complex effects on cognitive processes as assessed by T-maze alternation. Understanding these mechanisms should allow the identification or discovery of D1 agonists that can provide superior cognitive enhancement.
Collapse
Affiliation(s)
- Jack X Cimino
- Neuroscience Program, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Mi Zhou
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - James Waxmonsky
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Richard B Mailman
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
15
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
16
|
Goldberg A, Xie B, Shi L. The Molecular Mechanism of Positive Allosteric Modulation at the Dopamine D1 Receptor. Int J Mol Sci 2023; 24:12848. [PMID: 37629030 PMCID: PMC10454769 DOI: 10.3390/ijms241612848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na+-binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R paves the way for the rational design of more potent and effective allosteric modulators.
Collapse
Affiliation(s)
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Goldberg A, Xie B, Shi L. The molecular mechanism of positive allosteric modulation at the dopamine D1 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550907. [PMID: 37546785 PMCID: PMC10402154 DOI: 10.1101/2023.07.27.550907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na + binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R pave the way for the rational design of more potent and effective allosteric modulators.
Collapse
Affiliation(s)
- Alexander Goldberg
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
18
|
Zheng Y, Li Y. Past, present, and future of tools for dopamine detection. Neuroscience 2023:S0306-4522(23)00295-6. [PMID: 37419404 DOI: 10.1016/j.neuroscience.2023.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Dopamine (DA) is a critical neuromodulator involved in various brain functions. To understand how DA regulates neural circuits and behaviors in the physiological and pathological conditions, it is essential to have tools that enable the direct detection of DA dynamics in vivo. Recently, genetically encoded DA sensors based on G protein-coupled receptors revolutionized this field, as it allows us to track in vivo DA dynamic with unprecedented spatial-temporal resolution, high molecular specificity, and sub-second kinetics. In this review, we first summarize traditional DA detection methods. Then we focus on the development of genetically encoded DA sensors and feature its significance to understanding dopaminergic neuromodulation across diverse behaviors and species. Finally, we present our perspectives about the future direction of the next-generation DA sensors and extend their potential applications. Overall, this review offers a comprehensive perspective on the past, present, and future of DA detection tools, with important implications for the study of DA functions in health and disease.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; National Biomedical Imaging Center, Peking University, 100871 Beijing, China.
| |
Collapse
|
19
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
20
|
Lewis MM, Van Scoy LJ, De Jesus S, Hakun JG, Eslinger PJ, Fernandez-Mendoza J, Kong L, Yang Y, Snyder BL, Loktionova N, Duvvuri S, Gray DL, Huang X, Mailman RB. Dopamine D 1 Agonists: First Potential Treatment for Late-Stage Parkinson's Disease. Biomolecules 2023; 13:829. [PMID: 37238699 PMCID: PMC10216182 DOI: 10.3390/biom13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Current pharmacotherapy has limited efficacy and/or intolerable side effects in late-stage Parkinson's disease (LsPD) patients whose daily life depends primarily on caregivers and palliative care. Clinical metrics inadequately gauge efficacy in LsPD patients. We explored if a D1/5 dopamine agonist would have efficacy in LsPD using a double-blind placebo-controlled crossover phase Ia/b study comparing the D1/5 agonist PF-06412562 to levodopa/carbidopa in six LsPD patients. Caregiver assessment was the primary efficacy measure because caregivers were with patients throughout the study, and standard clinical metrics inadequately gauge efficacy in LsPD. Assessments included standard quantitative scales of motor function (MDS-UPDRS-III), alertness (Glasgow Coma and Stanford Sleepiness Scales), and cognition (Severe Impairment and Frontal Assessment Batteries) at baseline (Day 1) and thrice daily during drug testing (Days 2-3). Clinicians and caregivers completed the clinical impression of change questionnaires, and caregivers participated in a qualitative exit interview. Blinded triangulation of quantitative and qualitative data was used to integrate findings. Neither traditional scales nor clinician impression of change detected consistent differences between treatments in the five participants who completed the study. Conversely, the overall caregiver data strongly favored PF-06412562 over levodopa in four of five patients. The most meaningful improvements converged on motor, alertness, and functional engagement. These data suggest for the first time that there can be useful pharmacological intervention in LsPD patients using D1/5 agonists and also that caregiver perspectives with mixed method analyses may overcome limitations using methods common in early-stage patients. The results encourage future clinical studies and understanding of the most efficacious signaling properties of a D1 agonist for this population.
Collapse
Affiliation(s)
- Mechelle M. Lewis
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Lauren J. Van Scoy
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Humanities, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sol De Jesus
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jonathan G. Hakun
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Paul J. Eslinger
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Julio Fernandez-Mendoza
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lan Kong
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yang Yang
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Bethany L. Snyder
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Natalia Loktionova
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | - Xuemei Huang
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Richard B. Mailman
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
21
|
McCarthy CI, Mustafá ER, Cornejo MP, Yaneff A, Rodríguez SS, Perello M, Raingo J. Chlorpromazine, an Inverse Agonist of D1R-Like, Differentially Targets Voltage-Gated Calcium Channel (Ca V) Subtypes in mPFC Neurons. Mol Neurobiol 2023; 60:2644-2660. [PMID: 36694048 DOI: 10.1007/s12035-023-03221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity. On the other hand, D1R is highly expressed in the medial prefrontal cortex (mPFC), a brain area with important functions such as working memory. Here, we studied the impact of D1R-like constitutive activity and chlorpromazine (CPZ), an antipsychotic drug and D1R-like inverse agonist, on various neuronal CaV conductances, and we explored its effect on calcium-dependent neuronal functions in the mouse medial mPFC. Using ex vivo brain slices containing the mPFC and transfected HEK293T cells, we found that CPZ reduces CaV2.2 currents by occluding D1R-like constitutive activity, in agreement with a mechanism previously reported by our lab, whereas CPZ directly inhibits CaV1 currents in a D1R-like activity independent manner. In contrast, CPZ and D1R constitutive activity did not affect CaV2.1, CaV2.3, or CaV3 currents. Finally, we found that CPZ reduces excitatory postsynaptic responses in mPFC neurons. Our results contribute to understanding CPZ molecular targets in neurons and describe a novel physiological consequence of CPZ non-canonical action as a D1R-like inverse agonist in the mouse brain.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - María Paula Cornejo
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Huang LC, Lin SH, Tseng HH, Chen KC, Abdullah M, Yang YK. Altered glutamate level and its association with working memory among patients with treatment-resistant schizophrenia (TRS): a proton magnetic resonance spectroscopy study. Psychol Med 2023; 53:3220-3227. [PMID: 35197141 PMCID: PMC10244010 DOI: 10.1017/s003329172100533x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/08/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Treatment-resistant schizophrenia (TRS) and non-TRS may be associated with different dopaminergic and glutamatergic regulations. The concept of dysregulated glutamatergic concentrations in specific brain regions remains controversial. Herein, we aimed to assess (i) the distribution of the glutamatergic concentration in the brain, (ii) the association between working memory (WM) differences in TRS and non-TRS patients, and (iii) whether an alteration in the glutamate (Glu) level is associated with WM. METHODS The participants included 38 TRS patients, 35 non-TRS patients, and 19 healthy controls (HCs), all of whom underwent 1.5-Tesla proton magnetic resonance spectroscopy of anterior cingulate cortex (ACC) and medial prefrontal cortex (MPFC). The ratios of glutamatergic neurometabolites to N-acetylaspartate + N-acetyl aspartylglutamate (NAAx) were calculated. Cognitive function was assessed using the Wechsler Adult Intelligence Scales, 4th Edition, which included the working memory index (WMI). RESULT The TRS patients had a higher glutamate + glutamine (Glx)/NAAx ratio compared to the non-TRS patients and HCs in the ACC, but this was not significantly different in the MPFC. WM was negatively correlated with Glx/NAAx in the ACC among the non-TRS patients, but not in the TRS patients or HCs. CONCLUSIONS Our findings were consistent with most studies indicating that the glutamatergic concentration in the ACC plays important roles in the classification of TRS and cognition. Our results may provide potential evidence for predictors and treatment response biomarkers in TRS patients. Further research is needed to probe the value using the relationship between Glu and WM as a potential prognostic predictor of schizophrenia.
Collapse
Affiliation(s)
- Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, Chia-Yi Branch, Taichung Veteran General Hospital, Chia-Yi, Taiwan
- Department of Counseling, National Chia-Yi University, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
23
|
Wang X, Hembre EJ, Goldsmith PJ, Beck JP, Svensson KA, Willard FS, Bruns RF. Mutual Cooperativity of Three Allosteric Sites on the Dopamine D1 Receptor. Mol Pharmacol 2023; 103:176-187. [PMID: 36804203 DOI: 10.1124/molpharm.122.000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
An amine-containing molecule called Compound A has been reported by a group from Bristol-Myers Squibb to act as a positive allosteric modulator (PAM) at the dopamine D1 receptor. We synthesized the more active enantiomer of Compound A (BMS-A1) and compared it with the D1 PAMs DETQ and MLS6585, which are known to bind to intracellular loop 2 and the extracellular portion of transmembrane helix 7, respectively. Results from D1/D5 chimeras indicated that PAM activity of BMS-A1 tracked with the presence of D1 sequence in the N-terminal/extracellular region of the D1 receptor, a unique location compared with either of the other PAMs. In pairwise combinations, BMS-A1 potentiated the small allo-agonist activity of each of the other PAMs, while the triple PAM combination (in the absence of dopamine) produced a cAMP response about 64% of the maximum produced by dopamine. Each of the pairwise PAM combinations produced a much larger leftward shift of the dopamine EC50 than either single PAM alone. All three PAMs in combination produced a 1000-fold leftward shift of the dopamine curve. These results demonstrate the presence of three non-overlapping allosteric sites that cooperatively stabilize the same activated state of the human D1 receptor. SIGNIFICANCE STATEMENT: Deficiencies in dopamine D1 receptor activation are seen in Parkinson disease and other neuropsychiatric disorders. In this study, three positive allosteric modulators of the dopamine D1 receptor were found to bind to distinct and separate sites, interacting synergistically with each other and dopamine, with the triple combination causing a 1000-fold leftward shift of the response to dopamine. These results showcase multiple opportunities to modulate D1 tone and highlight new pharmacological approaches for allosteric modulation of G-protein-coupled receptors.
Collapse
Affiliation(s)
- Xushan Wang
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Erik J Hembre
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Paul J Goldsmith
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - James P Beck
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Kjell A Svensson
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Francis S Willard
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| | - Robert F Bruns
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
24
|
Yan H, Lau WKW, Eickhoff SB, Long J, Song X, Wang C, Zhao J, Feng X, Huang R, Wang M, Zhang X, Zhang R. Charting the neural circuits disruption in inhibitory control and its subcomponents across psychiatric disorders: A neuroimaging meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110618. [PMID: 36002101 DOI: 10.1016/j.pnpbp.2022.110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Inhibitory control, comprising cognitive inhibition and response inhibition, showed consistent deficits among several major psychiatric disorders. We aim to identify the trans-diagnostic convergence of neuroimaging abnormalities underlying inhibitory control across psychiatric disorders. METHODS Inhibitory control tasks neuroimaging, including functional magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography articles published in PubMed and Web of Science before April 2020 comparing healthy controls with patients with several psychiatric disorders were searched. RESULTS 146 experiments on 2653 patients with different disorders and 2764 control participants were included. Coordinates of case-control differences coded by diagnosis and inhibitory control components were analyzed using activation likelihood estimation. A robust trans-diagnostic pattern of aberrant brain activation in the bilateral cingulate gyri extending to medial frontal gyri, right insula, bilateral lentiform nuclei, right inferior frontal gyrus, right precuneus extending to inferior parietal lobule, and right supplementary motor area were detected. Frontostriatal pathways are the commonly disrupted neural circuits in the inhibitory control across psychiatric disorders. Furthermore, Patients showed aberrant activation in the dorsal frontal inhibitory system in cognitive inhibition, while in the frontostriatal system in response inhibition across disorders. CONCLUSION Consistent with the Research Domain Criteria initiative, current findings show that psychiatric disorders may be productively formulated as a phenotype of trans-diagnostic neurocircuit disruption. Our results provide new insights for future research into mental disorders with inhibition-related dysfunctions.
Collapse
Affiliation(s)
- Haifeng Yan
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Science and Education, The People's Hospital of Gaozhou, Gaozhou, PR China
| | - Way K W Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, PR China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jüelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Jiubo Zhao
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China
| | - Xiangang Feng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, PR China
| | - Maosheng Wang
- Department of Science and Education, The People's Hospital of Gaozhou, Gaozhou, PR China
| | - Xiaoyuan Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
25
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
26
|
Better Approaches to Derisking Psychiatric Drug Development are Needed, Not New Funding Mechanisms. J Clin Psychopharmacol 2022; 42:523-525. [PMID: 36251380 DOI: 10.1097/jcp.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND The pulling back of large pharma from psychiatric drug development over the last 15 years has been a cause of concern. The uncertainty of success with any novel mechanism raises questions concerning whether current funding mechanisms for the various components of drug development need to be revisited. Alternatively, advances in neuroscience and translational methods may provide a sufficient incentive for continued private sector investment. METHOD Narrative commentary drawing on personal positions in both NIH and Industry devoted to translation of CNS compounds from bench to bedside coupled with specific examples of efforts to improve the selection of compounds to take into large clinical trials. RESULTS Strategies for increasing R&D productivity in the field of CNS drugs articulated over a decade ago have been implemented over the same period with pre-competitive consortia involved in developing the tools needed to show that before being taken into large trials adequate evidence of postulated brain effects are required. In parallel, the field and the FDA have focused much more on the search for domain specific treatments rather than those depending on traditional measures of efficacy in DSM disorders. NIMH programs such as RDoC and the "Fast-Fail" initiative are provided as efforts which influence and involve partnerships with industry. CONCLUSIONS The evolution of the field over the last decade is such that there is a shared focus across sources of funding in the public sector, especially NIH brain institutes, on the tools needed to de-risk psychiatric drug development to the degree needed to encourage private sector investment in the clinical trials needed to advance potential new treatments for areas of greatest need. Expansion of funding for translational tool development will have the highest impact on delivering novel treatments.
Collapse
|
27
|
Anastasiades PG, de Vivo L, Bellesi M, Jones MW. Adolescent sleep and the foundations of prefrontal cortical development and dysfunction. Prog Neurobiol 2022; 218:102338. [PMID: 35963360 PMCID: PMC7616212 DOI: 10.1016/j.pneurobio.2022.102338] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Modern life poses many threats to good-quality sleep, challenging brain health across the lifespan. Curtailed or fragmented sleep may be particularly damaging during adolescence, when sleep disruption by delayed chronotypes and societal pressures coincides with our brains preparing for adult life via intense refinement of neural connectivity. These vulnerabilities converge on the prefrontal cortex, one of the last brain regions to mature and a central hub of the limbic-cortical circuits underpinning decision-making, reward processing, social interactions and emotion. Even subtle disruption of prefrontal cortical development during adolescence may therefore have enduring impact. In this review, we integrate synaptic and circuit mechanisms, glial biology, sleep neurophysiology and epidemiology, to frame a hypothesis highlighting the implications of adolescent sleep disruption for the neural circuitry of the prefrontal cortex. Convergent evidence underscores the importance of acknowledging, quantifying and optimizing adolescent sleep's contributions to normative brain development and to lifelong mental health.
Collapse
Affiliation(s)
- Paul G Anastasiades
- University of Bristol, Translational Health Sciences, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Luisa de Vivo
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Pharmacy, via Gentile III Da Varano, Camerino 62032, Italy
| | - Michele Bellesi
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Bioscience and Veterinary Medicine, via Gentile III Da Varano, Camerino 62032, Italy
| | - Matt W Jones
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
28
|
Uncariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg Chem 2022; 130:106257. [DOI: 10.1016/j.bioorg.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
29
|
Noor A, Khalid H, Aslam M, Hayat A, Khan AF, Nasir M, Chaudhry AA, Nawaz MH. Graphene oxide reinforced silk fibroin nanocomposite as an electroactive interface for the estimation of dopamine. RSC Adv 2022; 12:29319-29328. [PMID: 36320782 PMCID: PMC9557168 DOI: 10.1039/d2ra05585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The fabrication of 2D materials and polymer-based nanocomposites deposited on flexible conductive interfaces has unblocked new horizons to expedite reaction kinetics for developing highly selective and sensitive electrochemical biosensors. Herein, we developed a novel biosensing platform, comprising graphene oxide and a silk fibroin-based nanocomposite, drop-cast on a carbon cloth electrode. The fabricated interface was expected to be a robust and miniaturized sensing platform for precise detection of dopamine (DA). Characterization was performed by SEM, EDX, FTIR, XRD, UV-visible spectroscopy, contact angle measurement, fluorescence spectroscopy, particle size, and zeta potential analysis. CV, EIS, DPV, and chronoamperometry demonstrated the superior electrochemical properties of the working interface and revealed its enhanced active surface area, increased conductivity, and accelerated electron transfer rate. The designed interface exhibited low LoD (0.41 μM), admirable stability, good sensitivity (2.46 μA μM-1 cm-2), wide linearity ranging from 100-900 μM, excellent reproducibility, and superb selectivity against dopamine even in the presence of possible interfering analytes. These findings endorse the feasibility of the practical execution of such an integrated system in real sample analysis.
Collapse
Affiliation(s)
- Afifa Noor
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan,Department of Chemistry, Division of Science and Technology, University of EducationLahore54000Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of EducationLahore54000Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore Campus54000Pakistan
| |
Collapse
|
30
|
García-Cárceles J, Vázquez-Villa H, Brea J, Ladron de Guevara-Miranda D, Cincilla G, Sánchez-Martínez M, Sánchez-Merino A, Algar S, Teresa de Los Frailes M, Roberts RS, Ballesteros JA, Rodríguez de Fonseca F, Benhamú B, Loza MI, López-Rodríguez ML. 2-(Fluoromethoxy)-4'-( S-methanesulfonimidoyl)-1,1'-biphenyl (UCM-1306), an Orally Bioavailable Positive Allosteric Modulator of the Human Dopamine D 1 Receptor for Parkinson's Disease. J Med Chem 2022; 65:12256-12272. [PMID: 36044544 PMCID: PMC9511493 DOI: 10.1021/acs.jmedchem.2c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
Tolerance development caused by dopamine replacement
with l-DOPA and therapeutic drawbacks upon activation of
dopaminergic receptors
with orthosteric agonists reveal a significant unmet need for safe
and effective treatment of Parkinson’s disease. In search for
selective modulators of the D1 receptor, the screening
of a chemical library and subsequent medicinal chemistry program around
an identified hit resulted in new synthetic compound 26 [UCM-1306, 2-(fluoromethoxy)-4′-(S-methanesulfonimidoyl)-1,1′-biphenyl]
that increases the dopamine maximal effect in a dose-dependent manner
in human and mouse D1 receptors, is inactive in the absence
of dopamine, modulates dopamine affinity for the receptor, exhibits
subtype selectivity, and displays low binding competition with orthosteric
ligands. The new allosteric modulator potentiates cocaine-induced
locomotion and enhances l-DOPA recovery of decreased locomotor
activity in reserpinized mice after oral administration. The behavior
of compound 26 supports the interest of a positive allosteric
modulator of the D1 receptor as a promising therapeutic
approach for Parkinson’s disease.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José Brea
- Biofarma Research Group, USEF Screening Platform, CIMUS, USC, E-15782 Santiago de Compostela, Spain
| | | | - Giovanni Cincilla
- Molomics S.L., Parc Científic de Barcelona, Baldiri Reixac 4-8, E-08028 Barcelona, Spain
| | | | - Anabel Sánchez-Merino
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Sergio Algar
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Teresa de Los Frailes
- Fundación Kærtor, Edificio EMPRENDIA, Planta 2, Oficina 4. Campus Vida, E-15706 Santiago de Compostela, Spain
| | - Richard S Roberts
- Fundación Kærtor, Edificio EMPRENDIA, Planta 2, Oficina 4. Campus Vida, E-15706 Santiago de Compostela, Spain
| | | | | | - Bellinda Benhamú
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María I Loza
- Biofarma Research Group, USEF Screening Platform, CIMUS, USC, E-15782 Santiago de Compostela, Spain.,Fundación Kærtor, Edificio EMPRENDIA, Planta 2, Oficina 4. Campus Vida, E-15706 Santiago de Compostela, Spain
| | | |
Collapse
|
31
|
Han Y, Hou T, Zhang ZH, Zhu YH, Cheng JX, Zhou H, Wang JX, Feng JT, Liu YF, Guo ZM, Liang XM. Corybungines A-K: Isoquinoline alkaloids from Corydalis bungeana with dopamine D2 receptor activity. PHYTOCHEMISTRY 2022; 199:113209. [PMID: 35430251 DOI: 10.1016/j.phytochem.2022.113209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Eleven undescribed isoquinoline alkaloids corybungines A-K including a protoberberine-type alkaloid, an isoquinoline alkaloid with a unique 6-norprotoberberine skeleton, one 13,14-seco-protoberberine-type alkaloid, two 1a,14-seco-protoberberine-type alkaloids with a 4-(hydroxymethyl)phenoxy moiety and six aporphine alkaloids, together with seven known alkaloids, have been isolated from the whole herb extract of Corydalis bungeana Turcz. Their structures and absolute configurations were elucidated based on an analysis of spectroscopic data and electronic circular dichroism (ECD) spectra. (R)-stephanine displayed high antagonistic activity against the dopamine D2 receptor with an IC50 value of 0.85 ± 0.09 μM in CHO-D2 cells. Additionally, corybungines D, F, H, (R)-roemerine, (R)-vireakine and (R)-tuduranine showed moderate D2 antagonism (IC50 5.20-26.07 μM). The preliminary structure-activity relationships (SARs) of aporphine alkaloids were discussed.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Zi-Hui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yun-Hui Zhu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China
| | - Jun-Xiang Cheng
- DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, People's Republic of China
| | - Han Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ji-Xia Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Jia-Tao Feng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China.
| | - Zhi-Mou Guo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China.
| | - Xin-Miao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China
| |
Collapse
|
32
|
Yang Y, Kocher SD, Lewis MM, Mailman RB. Dose-Dependent Regulation on Prefrontal Neuronal Working Memory by Dopamine D1 Agonists: Evidence of Receptor Functional Selectivity-Related Mechanisms. Front Neurosci 2022; 16:898051. [PMID: 35784852 PMCID: PMC9244699 DOI: 10.3389/fnins.2022.898051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Low doses of dopamine D1 agonists improve working memory-related behavior, but high doses eliminate the improvement, thus yielding an ‘inverted-U’ dose-response curve. This dose-dependency also occurs at the single neuron level in the prefrontal cortex where the cellular basis of working memory is represented. Because signaling mechanisms are unclear, we examined this process at the neuron population level. Two D1 agonists (2-methyldihydrexidine and CY208,243) having different signaling bias were tested in rats performing a spatial working memory-related T-maze task. 2-Methyldihydrexidine is slightly bias toward D1-mediated β-arrestin-related signaling as it is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 is slightly bias toward D1-mediated cAMP signaling as it has relatively high intrinsic activity at adenylate cyclase, but is a partial agonist at β-arrestin recruitment. Both compounds had the expected inverted U dose-dependency in modulating prefrontal neuronal activities, albeit with important differences. Although CY208,243 was superior in improving the strength of neuronal outcome sensitivity to the working memory-related choice behavior in the T-maze, 2-methyldihydrexidine better reduced neuron-to-neuron variation. Interestingly, at the neuron population level, both drugs affected the percentage, uniformity, and ensemble strength of neuronal sensitivity in a complicated dose-dependent fashion, but the overall effect suggested higher efficiency and potency of 2-methyldihydrexidine compared to CY208,243. The differences between 2-methyldihydrexidine and CY208,243 may be related to their specific D1 signaling. These results suggest that D1-related dose-dependent regulation of working memory can be modified differentially by functionally selective ligands, theoretically increasing the balance between desired and undesired effects.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- *Correspondence: Yang Yang,
| | - Susan D. Kocher
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Mechelle M. Lewis
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Richard B. Mailman
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Richard B. Mailman,
| |
Collapse
|
33
|
Yang Y, Lewis MM, Kong L, Mailman RB. A dopamine D 1 agonist vs. methylphenidate in modulating prefrontal cortical working memory. J Pharmacol Exp Ther 2022; 382:88-99. [PMID: 35661631 PMCID: PMC9341252 DOI: 10.1124/jpet.122.001215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Methylphenidate is used widely to treat symptoms of attention-deficit/hyperactivity disorder (ADHD), but like other stimulants has significant side effects. This study utilized a rodent model (spontaneously hypertensive rat) of spatial working memory (sWM) to compare the effects of methylphenidate with the novel dopamine D1-like receptor agonist 2-methyldihydrexidine. Acute oral administration of methylphenidate (1.5 mg/kg) caused sWM improvement in half of the tested rats, but impairment in the others. Both improvement or impairment were eliminated by administration of the D1 antagonist SCH39266 directly into the prefrontal cortex (PFC). Conversely, 2-methyldihydrexidine showed greater sWM improvement compared to methylphenidate without significant impairment in any subject. Its effects correlated negatively with vehicle-treated baseline performance (i.e., rats with lower baseline performance improved more than rats with higher baseline performance). These behavioral effects were associated with neural activities in the PFC. Single neuron firing rate was changed, leading to the alteration in neuronal preference to correct or error behavioral responses. Overall, 2-methyldihydrexidine was superior to methylphenidate in decreasing the neuronal preference, prospectively, in the animals whose behavior was improved. In contrast, methylphenidate, but not 2-methyldihydrexidine, significantly decreased neuronal preference, retrospectively, in those animals who had impaired performance. These results suggest that a D1 agonist may be more effective than methylphenidate in regulating sWM-related behavior through neural modulation of the PFC, and thus may be superior to methylphenidate or other stimulants as ADHD pharmacotherapy. Significance Statement Methylphenidate is effective in ADHD by its indirect agonist stimulation of dopamine and/or adrenergic receptors, but the precise effects on specific targets are unclear. We compared methylphenidate to a dopamine D1 receptor-selective agonist by investigating effects on working memory occurring via neural modulation in the prefrontal cortex. The data suggest that pharmacological treatment selectively targeting the dopamine D1 may offer a superior approach to ADHD pharmacotherapy.
Collapse
Affiliation(s)
- Yang Yang
- Pharmacology, Penn State College of Medicine, United States
| | | | - Lan Kong
- Penn State College of Medicine, United States
| | | |
Collapse
|
34
|
Iwamura Y, Nakayama T, Matsumoto A, Ogi Y, Yamaguchi M, Kobayashi A, Matsumoto K, Katsura Y, Konoike N, Nakamura K, Ikeda K. Effect of dopamine receptor-related compounds on naive common marmosets for auditory steady state response. J Neurophysiol 2022; 128:229-238. [PMID: 35583977 DOI: 10.1152/jn.00147.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormalities of auditory steady state responses (ASSR) and the effects of antipsychotic drugs on ASSR have been investigated in patients with schizophrenia. It is presumed that effects of drugs do not directly reflect on ASSR, because of ASSR abnormalities associated with schizophrenia. Therefore, to investigate the direct effect of drugs on ASSR, we established an ASSR evaluation system for common marmosets in a naïve state. Dopamine D1 receptor stimulation (SKF-81297, 2 mg/kg, intraperitoneal) significantly increased evoked power (EP) at 40 Hz. The phase locking factor (PLF) was increased significantly at 20, 30, 40, and 80 Hz. However, the administration of a dopamine D1 receptor antagonist (SCH-39166, 0.3 mg/kg intraperitoneal) resulted in a significant decrease in EP and PLF at 30 Hz. Dopamine D2 receptor stimulation (quinpirole, 1 mg/kg, intramuscular) tended to increase EP and induced power (IP) at all frequencies, and a significant difference was observed at 30 Hz IP. There was no change in PLF at all frequencies. In addition, dopamine D2 receptor blockade (raclopride, 3 mg/kg, intraperitoneal) reduced EP and PLF at 30 Hz. Subcutaneous administration of the serotonin dopamine antagonist, risperidone (0.3 mg/kg), tended to increase IP and decrease PLF, but not significantly. Taken together, it is possible to compare the differences in the mode of action of drugs on ASSR using naïve non-human primates.
Collapse
Affiliation(s)
- Yoshihiro Iwamura
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Tatsuo Nakayama
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Atsushi Matsumoto
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Yuji Ogi
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Masataka Yamaguchi
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Atsushi Kobayashi
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Kenji Matsumoto
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Yasunori Katsura
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Naho Konoike
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Katsuki Nakamura
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Kazuhito Ikeda
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| |
Collapse
|
35
|
Han Y, Hou T, Zhang ZH, Wang YD, Cheng JX, Zhou H, Wang JX, Feng JT, Liu YF, Guo ZM, Liang XM. Structurally diverse isoquinoline and amide alkaloids with dopamine D2 receptor antagonism from Corydalis bungeana. Fitoterapia 2022; 159:105175. [DOI: 10.1016/j.fitote.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
|
36
|
Hao J, Beck J, Zhou X, Lackner GL, Johnston R, Reinhard M, Goldsmith P, Hollinshead S, Dehlinger V, Filla SA, Wang XS, Richardson J, Posada M, Mohutsky M, Schober D, Katner JS, Chen Q, Hu B, Remick DM, Coates DA, Mathes BM, Hawk MK, Svensson KA, Hembre E. Synthesis and Preclinical Characterization of LY3154885, a Human Dopamine D1 Receptor Positive Allosteric Modulator with an Improved Nonclinical Drug-Drug Interaction Risk Profile. J Med Chem 2022; 65:3786-3797. [PMID: 35175768 DOI: 10.1021/acs.jmedchem.1c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.
Collapse
|
37
|
Sotoyama H, Inaba H, Iwakura Y, Namba H, Takei N, Sasaoka T, Nawa H. The dual role of dopamine in the modulation of information processing in the prefrontal cortex underlying social behavior. FASEB J 2022; 36:e22160. [DOI: 10.1096/fj.202101637r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology Brain Research Institute, Niigata University Niigata Japan
| | - Hiroyoshi Inaba
- Department of Molecular Neurobiology Brain Research Institute, Niigata University Niigata Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology Brain Research Institute, Niigata University Niigata Japan
- Department of Brain Tumor Biology Brain Research Institute, Niigata University Niigata Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology Brain Research Institute, Niigata University Niigata Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences Wakayama Medical University Wakayama Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology Brain Research Institute, Niigata University Niigata Japan
- Department of Brain Tumor Biology Brain Research Institute, Niigata University Niigata Japan
| | - Toshikuni Sasaoka
- Department of Comparative & Experimental Medicine Brain Research Institute, Niigata University Niigata Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology Brain Research Institute, Niigata University Niigata Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences Wakayama Medical University Wakayama Japan
| |
Collapse
|
38
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
39
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
40
|
Boberg E, Iacobaeus E, Greenfield MS, Wang Y, Msghina M, Le Blanc K. Reduced prefrontal cortex and sympathetic nervous system activity correlate with fatigue after aHSCT. Bone Marrow Transplant 2022; 57:360-369. [PMID: 34864824 PMCID: PMC8907068 DOI: 10.1038/s41409-021-01539-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Long-term fatigue and cognitive dysfunction affects 35% of allogeneic haematopoietic stem cell transplantation (aHSCT) survivors, suggesting a dysfunctional prefrontal cortex. In this study, we assessed prefrontal cortex and sympathetic nervous system activity in aHSCT patients with fatigue (n = 12), non-fatigued patients (n = 12) and healthy controls (n = 27). Measurement of near-infrared spectroscopy and electrodermal activity was carried out at rest and during cognitive performance (Stroop, verbal fluency and emotion regulation tasks). Prefrontal cortex and sympathetic nervous system activity were also analyzed in response to dopamine and noradrenaline increase after a single dose of methylphenidate. Baseline cognitive performance was similar in the two patient groups. However, after methylphenidate, only non-fatigued patients improved in Stroop accuracy and had better verbal fluency task performance compared to the fatigued group. Task-related activation of prefrontal cortex in fatigued patients was lower compared to non-fatigued patients during all cognitive tests, both before and after methylphenidate administration. During the Stroop task, reaction time, prefrontal cortex activation, and sympathetic nervous system activity were all lower in fatigued patients compared to healthy controls, but similar in non-fatigued patients and healthy controls.Reduced prefrontal cortex activity and sympathetic arousal suggests novel treatment targets to improve fatigue after aHSCT.
Collapse
Affiliation(s)
- Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Department of Haematology, Karolinska University Hospital, Stockholm, Sweden.
| | - Ellen Iacobaeus
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Yanlu Wang
- grid.24381.3c0000 0000 9241 5705Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Radiology, Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mussie Msghina
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Katarina Le Blanc
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Cellular therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Riedel P, Domachowska IM, Lee Y, Neukam PT, Tönges L, Li SC, Goschke T, Smolka MN. L-DOPA administration shifts the stability-flexibility balance towards attentional capture by distractors during a visual search task. Psychopharmacology (Berl) 2022; 239:867-885. [PMID: 35147724 PMCID: PMC8891202 DOI: 10.1007/s00213-022-06077-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
RATIONALE The cognitive control dilemma describes the necessity to balance two antagonistic modes of attention: stability and flexibility. Stability refers to goal-directed thought, feeling, or action and flexibility refers to the complementary ability to adapt to an ever-changing environment. Their balance is thought to be maintained by neurotransmitters such as dopamine, most likely in a U-shaped rather than linear manner. However, in humans, studies on the stability-flexibility balance using a dopaminergic agent and/or measurement of brain dopamine are scarce. OBJECTIVE The study aimed to investigate the causal involvement of dopamine in the stability-flexibility balance and the nature of this relationship in humans. METHODS Distractibility was assessed as the difference in reaction time (RT) between distractor and non-distractor trials in a visual search task. In a randomized, placebo-controlled, double-blind, crossover study, 65 healthy participants performed the task under placebo and a dopamine precursor (L-DOPA). Using 18F-DOPA-PET, dopamine availability in the striatum was examined at baseline to investigate its relationship to the RT distractor effect and to the L-DOPA-induced change of the RT distractor effect. RESULTS There was a pronounced RT distractor effect in the placebo session that increased under L-DOPA. Neither the RT distractor effect in the placebo session nor the magnitude of its L-DOPA-induced increase were related to baseline striatal dopamine. CONCLUSIONS L-DOPA administration shifted the stability-flexibility balance towards attentional capture by distractors, suggesting causal involvement of dopamine. This finding is consistent with current theories of prefrontal cortex dopamine function. Current data can neither confirm nor falsify the inverted U-shaped function hypothesis with regard to cognitive control.
Collapse
Affiliation(s)
- P. Riedel
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - I. M. Domachowska
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Y. Lee
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - P. T. Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - L. Tönges
- Department of Neurology, Ruhr University Bochum, St. Josef-Hospital, Gudrunstraße 56, 44791 Bochum, Germany
| | - S. C. Li
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany ,Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Georg-Schumman-Str. 9, 01187 Dresden, Germany
| | - T. Goschke
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - M. N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
42
|
McCarthy AP, Svensson KA, Shanks E, Brittain C, Eastwood BJ, Kielbasa W, Biglan KM, Wafford KA. The dopamine D1 receptor positive allosteric modulator mevidalen (LY3154207) enhances wakefulness in the humanized D1 mouse and in sleep deprived healthy volunteers.. J Pharmacol Exp Ther 2021; 380:143-152. [PMID: 34893551 DOI: 10.1124/jpet.121.000719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) plays a key role in several central functions including cognition, motor activity and wakefulness. While efforts to develop D1 agonists have been challenging, a positive allosteric modulator (PAM), represents an attractive approach with potential better drug-like properties. Our previous study demonstrated an acceptable safety and tolerability profile of the D1 PAM mevidalen (LY3154207) in single and multiple ascending dose studies in healthy volunteers (Wilbraham et al., 2020). Herein, we describe the effects of mevidalen on sleep and wakefulness in the humanized dopamine D1 mice (hD1) and in sleep deprived healthy volunteers. Mevidalen enhanced wakefulness (latency to fall asleep) in the hD1 mouse in a dose dependent (3-100 mg/kg, PO) fashion when measured during the light (ZT-5) and predominantly inactive phase. Mevidalen promoted wakefulness in mice following prior sleep deprivation and delayed sleep onset by 5.5 and 15.2-fold compared to vehicle treated animals, after the 20 and 60 mg/kg PO doses respectively, when compared to vehicle treated animals. In humans, mevidalen demonstrated a dose-dependent increase in latency to sleep onset as measured by the multiple sleep latency test and all doses (15, 30, 75 mg) separated from placebo at the first 2-hour post dose time point. with a circadian effect at the 6-hour post-dose time point. Sleep-wakefulness should be considered as a translational biomarker for the D1PAM mechanism. Significance Statement This is the first translational study describing the effects of a selective D1PAM on sleep wakefulness in the hD1 mouse and in sleep deprived healthy volunteers. In both the human and mouse, drug exposure was correlated to sleep latency supporting the use of sleep-wake activity as a translational central biomarker for the mechanism. Overall, the wake promoting effects of D1PAMs including mevidalen may offer therapeutic opportunities in several conditions including sleep disorders and excessive daytime sleepiness related to neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Elaine Shanks
- Exploratory Medicine and Pharmacology, Eli Lilly and Company, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Biglan K, Munsie L, Svensson KA, Ardayfio P, Pugh M, Sims J, Brys M. Safety and Efficacy of Mevidalen in Lewy Body Dementia: A Phase 2, Randomized, Placebo-Controlled Trial. Mov Disord 2021; 37:513-524. [PMID: 34859493 PMCID: PMC9300146 DOI: 10.1002/mds.28879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mevidalen is a selective positive allosteric modulator (PAM) of the dopamine D1 receptor subtype. OBJECTIVE To assess the safety and efficacy of mevidalen for treatment of cognition in patients with Lewy body dementia (LBD). METHODS PRESENCE was a phase 2, 12-week study in participants with LBD (N = 344) randomly assigned (1:1:1:1) to daily doses of mevidalen (10, 30, or 75 mg) or placebo. The primary outcome measure was change from baseline on Cognitive Drug Research Continuity of Attention (CoA) composite score. Secondary outcomes included Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-cog13 ), Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), and Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change (ADCS-CGIC). Numerous safety measures were collected. RESULTS Mevidalen failed to meet primary or secondary cognition endpoints. Mevidalen resulted in significant, dose-dependent improvements of MDS-UPDRS total score (sum of Parts I-III, 10 mg P < 0.05, 30 mg P < 0.05, 75 mg P < 0.01, compared to placebo). The 30 mg and 75 mg mevidalen doses significantly improved ADCS-CGIC scores compared to placebo (minimal or better improvement: 30 mg P < 0.01, 75 mg P < 0.01; moderate or better improvement: 30 mg P < 0.05, 75 mg P < 0.001). Increases in blood pressure, adverse events, and cardiovascular serious adverse events were most pronounced at the 75 mg dose. CONCLUSIONS Mevidalen harnesses a novel mechanism of action that improves motor symptoms associated with LBD on top of standard of care while improving or not worsening non-motor symptoms associated with traditional dopaminergic therapy. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kevin Biglan
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | | | - Melissa Pugh
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - John Sims
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
44
|
Griego E, Hernández-Frausto M, Márquez LA, Lara-Valderrabano L, López Rubalcava C, Galván EJ. Activation of D1/D5 Receptors Ameliorates Decreased Intrinsic Excitability of Hippocampal Neurons Induced by Neonatal Blockade of NMDA Receptors. Br J Pharmacol 2021; 179:1695-1715. [PMID: 34791647 DOI: 10.1111/bph.15735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-D-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801 or with saline solution. KEY RESULTS Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including upregulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Upregulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38, 393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic in addition to dopaminergic transmission that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Melissa Hernández-Frausto
- Current address: Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Luis A Márquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Leonardo Lara-Valderrabano
- Current address: A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Carolina López Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
45
|
Wilbraham D, Biglan KM, Svensson KA, Tsai M, Pugh M, Ardayfio P, Kielbasa W. Safety, Tolerability, and Pharmacokinetics of Mevidalen (LY3154207), a Centrally Acting Dopamine D1 Receptor-Positive Allosteric Modulator, in Patients With Parkinson Disease. Clin Pharmacol Drug Dev 2021; 11:324-332. [PMID: 34664427 PMCID: PMC9298003 DOI: 10.1002/cpdd.1039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022]
Abstract
Mevidalen (LY3154207) is a positive allosteric modulator of the dopamine D1 receptor that enhances the affinity of dopamine for the D1 receptor. The safety, tolerability, motor effects, and pharmacokinetics of mevidalen were studied in patients with Parkinson disease. Mevidalen or placebo was given once daily for 14 days to 2 cohorts of patients (cohort 1, 75 mg; cohort 2, titration from 15 to 75 mg). For both cohorts, the median time to maximum concentration for mevidalen plasma concentration was about 2 hours, the apparent steady-state clearance was 20-25 L/h, and mevidalen plasma concentrations were similar between the 1st and 14th administration in cohort 1, indicating minimal accumulation upon repeated dosing. Mevidalen was well tolerated, and most treatment-emergent adverse events were mild. Blood pressure and pulse rate increased when taking mevidalen, but there was considerable overlap with patients taking placebo, and vital signs normalized with repeated dosing. In the Movement Disorder Society-United Parkinson's Disease Rating Scale, all patients taking mevidalen showed a better motor examination sub-score on day 6 compared to only some patients in the placebo group. These data support examining mevidalen for symptomatic treatment of patients with Parkinson disease and Lewy body dementia.
Collapse
Affiliation(s)
| | | | | | - Max Tsai
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Melissa Pugh
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
46
|
Meltzer HY, Gadaleta E. Contrasting Typical and Atypical Antipsychotic Drugs. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:3-13. [PMID: 34483761 DOI: 10.1176/appi.focus.20200051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The beliefs that antipsychotic drugs (APDs) are 1) effective only to treat delusions and hallucinations (positive symptoms), 2) that typical and atypical APDs differ only in ability to cause extrapyramidal side effects, and 3) that their efficacy as antipsychotics is due solely to their dopamine D2 receptor blockade are outmoded concepts that prevent clinicians from achieving optimal clinical results when prescribing an APD. Atypical APDs are often more effective than typical APDs in treating negative symptoms, cognitive impairment, and mood symptoms as well as reducing the risk for suicide and decreasing aggression. This applies not only to those diagnosed with schizophrenia or schizoaffective disorder but also to bipolar disorder, major depression, and other psychiatric diagnoses. The greater advantage of an atypical APD is not evident in all patients for every atypical APD due, in part, to individual differences in genetic and epigenetic endowment and differences in the pharmacology of the atypical APDs, their mode of action being far more complex than that of the typical APDs. A common misconception is that among the atypical APDs, only clozapine is effective for reducing psychosis in treatment-resistant schizophrenia. Aripiprazole, lurasidone, olanzapine, and risperidone also can be more effective than typical APDs for treatment-resistant schizophrenia; clozapine is uniquely indicated for reducing the risk for suicide. The ability of the atypical APDs to improve cognition and negative symptoms in some patients together with lower propensity to cause tardive dyskinesia (an underappreciated advantage) leads to better overall outcomes. These advantages of the atypical APDs in efficacy and safety are due, in part, to initiation of synaptic plasticity via direct and indirect effects of the atypical APDs on a variety of proteins, especially G proteins, and release of neurotrophins (e.g., brain-derived neurotrophic factor). The typical APDs beneficial effects on psychosis are mainly the result of D2 receptor blockade, which can be associated with serious side effects and lack of tolerability.
Collapse
|
47
|
Interaction of clozapine with metformin in a schizophrenia rat model. Sci Rep 2021; 11:16862. [PMID: 34413440 PMCID: PMC8376983 DOI: 10.1038/s41598-021-96478-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
The low efficacy of antipsychotic drugs (e.g., clozapine) for negative symptoms and cognitive impairment has led to the introduction of adjuvant therapies. Because previous data suggest the procognitive potential of the antidiabetic drug metformin, this study aimed to assess the effects of chronic clozapine and metformin oral administration (alone and in combination) on locomotor and exploratory activities and cognitive function in a reward-based test in control and a schizophrenia-like animal model (Wisket rats). As impaired dopamine D1 receptor (D1R) function might play a role in the cognitive dysfunctions observed in patients with schizophrenia, the second goal of this study was to determine the brain-region-specific D1R-mediated signaling, ligand binding, and mRNA expression. None of the treatments affected the behavior of the control animals significantly; however, the combination treatment enhanced D1R binding and activation in the cerebral cortex. The Wisket rats exhibited impaired motivation, attention, and cognitive function, as well as a lower level of cortical D1R binding, signaling, and gene expression. Clozapine caused further deterioration of the behavioral parameters, without a significant effect on the D1R system. Metformin blunted the clozapine-induced impairments, and, similarly to that observed in the control animals, increased the functional activity of D1R. This study highlights the beneficial effects of metformin (at the behavioral and cellular levels) in blunting clozapine-induced adverse effects.
Collapse
|
48
|
Sanford N, Woodward TS. Functional Delineation of Prefrontal Networks Underlying Working Memory in Schizophrenia: A Cross-data-set Examination. J Cogn Neurosci 2021; 33:1880-1908. [PMID: 34375420 DOI: 10.1162/jocn_a_01726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Working memory (WM) impairment in schizophrenia substantially impacts functional outcome. Although the dorsolateral pFC has been implicated in such impairment, a more comprehensive examination of brain networks comprising pFC is warranted. The present research used a whole-brain, multi-experiment analysis to delineate task-related networks comprising pFC. Activity was examined in schizophrenia patients across a variety of cognitive demands. METHODS One hundred schizophrenia patients and 102 healthy controls completed one of four fMRI tasks: a Sternberg verbal WM task, a visuospatial WM task, a Stroop set-switching task, and a thought generation task (TGT). Task-related networks were identified using multi-experiment constrained PCA for fMRI. Effects of task conditions and group differences were examined using mixed-model ANOVA on the task-related time series. Correlations between task performance and network engagement were also performed. RESULTS Four spatially and temporally distinct networks with pFC activation emerged and were postulated to subserve (1) internal attention, (2) auditory-motor attention, (3) motor responses, and (4) task energizing. The "energizing" network-engaged during WM encoding and diminished in patients-exhibited consistent trend relationships with WM capacity across different data sets. The dorsolateral-prefrontal-cortex-dominated "internal attention" network exhibited some evidence of hypoactivity in patients, but was not correlated with WM performance. CONCLUSIONS Multi-experiment analysis allowed delineation of task-related, pFC-anchored networks across different cognitive constructs. Given the results with respect to the early-responding "energizing" network, WM deficits in schizophrenia may arise from disruption in the "energization" process described by Donald Stuss' model of pFC functions.
Collapse
Affiliation(s)
| | - Todd S Woodward
- University of British Columbia, Vancouver, Canada.,BC Mental Health and Substance Use Services Research Institute, Vancouver, Canada
| |
Collapse
|
49
|
Amara U, Riaz S, Mahmood K, Akhtar N, Nasir M, Hayat A, Khalid M, Yaqub M, Nawaz MH. Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv 2021; 11:25084-25095. [PMID: 35481009 PMCID: PMC9036951 DOI: 10.1039/d1ra03908c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023] Open
Abstract
Exploring a robust, extremely sensitive, cost-effective and reliable assay platform for the precise analysis of dopamine (DA) has become a big challenge predominantly at the clinical level. To participate in this quest, herein, we fabricated a perylene diimide (PDI) self-assembled graphitic surface of the graphitic pencil electrode (GPE) anchored copper oxide (CuO). The self-assembled N-rich PDI led to the fast movement of ions by decreasing the bandgap and improved the electron transport kinetics with more exposed catalytic active sites, thus resulting in the robust electrochemical sensing of DA. The designed sensor exhibited good sensitivity (4 μM-1 cm-2), high structural stability, repeatability and excellent reproducibility with an RSD value of 2.9%. Moreover, the developed system showed a wide linear range (5 μM to 500 μM) and reliable selectivity even in the presence of co-existing interferants, such as ascorbic acid and uric acid. The fabricated nanohybrid was eventually employed to analyze DA in spiked physiological fluids and provided satisfactory recoveries. The designed PDI-CuO based interface also showed a very low detection limit of 6 nM (S/N = 3), consequently confirming its suitability for clinical and biological applications.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| |
Collapse
|
50
|
Fyfe TJ, Scammells PJ, Lane JR, Capuano B. Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D 1 Receptor. Molecules 2021; 26:molecules26133799. [PMID: 34206465 PMCID: PMC8270344 DOI: 10.3390/molecules26133799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (d- and l-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with superior allosteric properties.
Collapse
Affiliation(s)
- Tim J. Fyfe
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
| | - J. Robert Lane
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence: (J.R.L.); (B.C.)
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
- Correspondence: (J.R.L.); (B.C.)
| |
Collapse
|