1
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Hauser MA, Hayes JP, Hemmings SMJ, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: a meta-analysis of 23 military and civilian cohorts. Genome Med 2024; 16:147. [PMID: 39696436 DOI: 10.1186/s13073-024-01417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. METHODS As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using Illumina HumanMethylation450 or MethylationEPIC (850 K) BeadChips. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. RESULTS We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e - 09 < p < 5.30e - 08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Out of 9 CpGs annotated to a gene expressed in blood, methylation levels at 5 CpGs showed significant correlations with the expression levels of their respective annotated genes. CONCLUSIONS This study identifies 11 PTSD-associated CpGs and leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York, NY, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nikolaos P Daskalakis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center of Excellence in Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Anthony S Zannas
- Carolina Stress Initiative, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Genetics, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Xiang Zhao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Department of Epidemiology, Columbia University, New York, NY, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Diana Avetyan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Researcg, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, UT, NL, Netherlands
| | - Leslie A Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Evelyn Bromet
- Epidemiology Research Group, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Chia-Yen Chen
- Biogen Inc, Translational Sciences, Cambridge, MA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Division of Human Genetics, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Researcg, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| | - Sandro Galea
- School of Public Health, Boston University, Boston, MA, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Elbert Geuze
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, UT, NL, Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, UT, Netherlands
| | - Gerald Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Hauser
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jasmeet P Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Bertrand Russel Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Aarti Jajoo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Stefan Jansen
- College of Medicine and Health Sciences, University of Rwanda, Kigali, RW, Rwanda
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
- Mental Health Service Line, Durham VA Health Care System, Durham, NC, USA
| | - Anthony P King
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, USA
- Psychiatry & Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Nastassja Koen
- Department of Psychiatry & Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Neuroscience Institute, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- UNC Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jurjen J Luykx
- Amsterdam Neuroscience Research Institute Stress & Sleep Program, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
- Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
| | - Christine E Marx
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Samuel A McLean
- Department of Psychiatry, UNC Institute for Trauma Recovery, NC, Chapel Hill, USA
| | - Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
| | | | - Mark W Miller
- Biomedical Genetics & Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - Mary S Mufford
- Department of Psychiatry and Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Clarisse Musanabaganwa
- Research Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
- Center of Human Genetics, University of Rwanda, Kigali, RW, Rwanda
| | - Jean Mutabaruka
- Department of Clinical Psychology, University of Rwanda, Huye, RW, Rwanda
| | - Leon Mutesa
- College of Medicine and Health Sciences, University of Rwanda, Kigali, RW, Rwanda
- Center for Human Genetics, University of Rwanda, Kigali, RW, Rwanda
| | - Charles B Nemeroff
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Xue-Jun Qin
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Sheila A M Rauch
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht Universitair Medisch Centrum, Maastricht, Limburg, NL, Netherlands
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Extramural Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Dan J Stein
- Department of Psychiatry & Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Neuroscience Institute, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, CA, La Jolla, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Robert J Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA
| | - Annette Uwineza
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Mieke H Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, ZH, NL, Netherlands
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Christiaan H Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Holland, Netherlands
- Department of Psychiatry, Amsterdam, UMC Location Vrije Universiteit Amsterdam, Amsterdam, Holland, Netherlands
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Stress & Sleep Program, MoodPsychosisAmsterdam, Holland, AnxietyNL, Netherlands
| | - Erin B Ware
- Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Derek E Wildman
- College of Public Health, University of South Florida, Tampa, FL, USA
- Genomics Program, University of South Florida, Tampa, FL, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ross McD Young
- School of Clinical Sciences, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
- University of the Sunshine Coast, The Chancellory Sippy Downs, QLD, AU, Buderim, Australia
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Extramural Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Biomedical Genetics & Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
2
|
Wellington NJ, Boucas AP, Lagopoulos J, Kuballa AV. Clinical potential of epigenetic and microRNA biomarkers in PTSD. J Neurogenet 2024; 38:79-101. [PMID: 39470065 DOI: 10.1080/01677063.2024.2419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Molecular studies identifying alterations associated with PTSD have predominantly focused on candidate genes or conducted genome-wide analyses, often encountering issues with replicability. This review aims to identify robust bi-directional epigenetic and microRNA (miRNA) regulators focusing on their functional impacts on post-traumatic stress disorder (PTSD) and their utility in clinical diagnosis, whilst examining knowledge gaps in the existing research. A systematic search was conducted across multiple databases, including Web of Science, Scopus, Global Health (CABI), and PubMed, augmented by grey literature, yielding 3465 potential articles. Ultimately, 92 studies met the inclusion criteria and were analysed to pinpoint significant epigenetic changes with clinically relevant potential in PTSD. The selected studies explored histone modifications, CpG sites, single nucleotide polymorphisms (SNPs), and miRNA biomarkers. Specifically, nine studies examined epigenetic markers, detailing the influence of methylation on chromatin accessibility at histone positions H3K4, H3K9, and H3K36 within a PTSD context. Seventy-three studies investigated DNA methylation, identifying 20 hypermethylated and five hypomethylated CpG islands consistently observed in PTSD participants. Nineteen studies linked 88 SNPs to PTSD, with only one SNP replicated within these studies. Furthermore, sixteen studies focused on miRNAs, with findings indicating 194 downregulated and 24 upregulated miRNAs were associated with PTSD. Although there are epigenetic mechanisms that are significantly affected by PTSD, a granular deconstruction of these mechanisms elucidates the need to incorporate more nuanced approaches to identifying the factors that contribute to PTSD. Technological advances in diagnostic tools are driving the need to integrate detailed participant characteristics, trauma type, genetic susceptibilities, and best practices for robust reporting. This comprehensive approach will be crucial for enhancing the translational potential of PTSD research for clinical application.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, Australia
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | | | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| |
Collapse
|
3
|
Shalev A, Cho D, Marmar CR. Neurobiology and Treatment of Posttraumatic Stress Disorder. Am J Psychiatry 2024; 181:705-719. [PMID: 39086292 DOI: 10.1176/appi.ajp.20240536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The recent worldwide surge of warfare and hostilities exposes increasingly large numbers of individuals to traumatic events, placing them at risk of developing posttraumatic stress disorder (PTSD) and challenging both clinicians and service delivery systems. This overview summarizes and updates the core knowledge of the genetic, molecular, and neural circuit features of the neurobiology of PTSD and advances in evidence-based psychotherapy, pharmacotherapy, neuromodulation, and digital treatments. While the complexity of the neurobiology and the biological and clinical heterogeneity of PTSD have challenged clinicians and researchers, there is an emerging consensus concerning the underlying mechanisms and approaches to diagnosis, treatment, and prevention of PTSD. This update addresses PTSD diagnosis, prevalence, course, risk factors, neurobiological mechanisms, current standard of care, and innovations in next-generation treatment and prevention strategies. It provides a comprehensive summary and concludes with areas of research for integrating advances in the neurobiology of the disorder with novel treatment and prevention targets.
Collapse
Affiliation(s)
- Arieh Shalev
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Dayeon Cho
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Charles R Marmar
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| |
Collapse
|
4
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Michael A Hauser, Hayes JP, Hemmings SM, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: A meta-analysis of 23 military and civilian cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24310422. [PMID: 39072012 PMCID: PMC11275670 DOI: 10.1101/2024.07.15.24310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
| | - Agaz H Wani
- University of South Florida, Genomics Program, College of Public Health, Tampa, FL, US
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Andrew Ratanatharathorn
- Columbia University Mailmain School of Public Health, Department of Epidemiology, New York, NY, US
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, US
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Anthony S Zannas
- University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Xiang Zhao
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
| | - Allison E Aiello
- Columbia University, Robert N Butler Columbia Aging Center, Department of Epidemiology, New York, NY, US
| | | | - Diana Avetyan
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
| | - Jean C Beckham
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht, UT, NL
| | - Leslie A Brick
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Evelyn Bromet
- State University of New York at Stony Brook, Epidemiology Research Group, Stony Brook, NY, US
| | | | - Chia-Yen Chen
- Biogen Inc., Translational Sciences, Cambridge, MA, US
| | - Shareefa Dalvie
- University of Cape Town, Department of Pathology, Cape Town, Western Province, ZA
- University of Cape Town, Division of Human Genetics, Cape Town, Western Province, ZA
| | - Michelle F Dennis
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, TRACTS/GRECC, Boston, MA, US
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, US
| | - Melanie E Garrett
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, US
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, UT, NL
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, UT, NL
| | - Gerald Grant
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, US
| | - Michael A Hauser
- Duke University School of Medicine, Department of Medicine, Durham, NC, US
| | - Jasmeet P Hayes
- The Ohio State University, Department of Psychology, Columbus, OH, US
| | - Sian Mj Hemmings
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SAMRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Bertrand Russel Huber
- Boston University School of Medicine, Department of Neurology, Boston, MA, US
- VA Boston Healthcare System, Pathology and Laboratory Medicine, Boston, MA, US
| | - Aarti Jajoo
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
| | - Stefan Jansen
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
| | - Ronald C Kessler
- Harvard Medical School, Department of Health Care Policy, Boston, MA, US
| | - Nathan A Kimbrel
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, US
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, US
- The Ohio State University, College of Medicine, Psychiatry & Behavioral Health, Columbus, OH, US
| | - Joel E Kleinman
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, US
- Lieber Institute for Brain Development, Baltimore, MD, US
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, US
| | - Pei-Fen Kuan
- Stony Brook University, Department of Applied Mathematics and Statistics, Stony Brook, NY, US
| | - Israel Liberzon
- Texas A&M University College of Medicine, Department of Psychiatry and Behavioral Sciences, Bryan, TX, US
| | - Sarah D Linnstaedt
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, UNC Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Adriana Lori
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Benjamin J Luft
- Stony Brook University, Department of Medicine, Stony Brook, NY, US
| | - Jurjen J Luykx
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Department of Psychiatry, Amsterdam, NH, NL
| | - Christine E Marx
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC, US
| | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Psychiatry, Chapel Hill, NC, US
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, AU
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| | - Mary S Mufford
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, Western Province, ZA
| | - Clarisse Musanabaganwa
- Rwanda Biomedical Center, Research Innovation and Data Science Division, Kigali, RW
- University of Rwanda, Center of Human Genetics, Kigali, RW
| | - Jean Mutabaruka
- University of Rwanda, Department of Clinical Psychology, Huye, RW
| | - Leon Mutesa
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
- University of Rwanda, Center for Human Genetics, Kigali, RW
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychology, Austin, TX, US
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Austin, TX, US
| | - Nicole R Nugent
- Alpert Brown Medical School, Department of Emergency Medicine, Providence, RI, US
- Alpert Brown Medical School, Department of Pediatrics, Providence, RI, US
- Alpert Brown Medical School, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, US
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, US
| | - Sheila A M Rauch
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, US
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, US
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | | | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL
| | - Soraya Seedat
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
- University of California San Diego, School of Public Health, La Jolla, CA, US
| | - Sylvanus Toikumo
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Robert J Ursano
- Uniformed Services University, Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, Maryland, US
| | - Annette Uwineza
- University of Rwanda, College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mieke H Verfaellie
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, Memory Disorders Research Center, Boston, MA, US
| | - Eric Vermetten
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL
- New York University School of Medicine, Department of Psychiatry, New York, NY, US
| | - Christiaan H Vinkers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, Holland, NL
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Holland, NL
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, Holland, NL
| | - Erin B Ware
- University of Michigan, Survey Research Center, Ann Arbor, MI, US
| | - Derek E Wildman
- University of South Florida, College of Public Health, Tampa, FL, US
- University of South Florida, Genomics Program, Tampa, FL, US
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, US
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, AU
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, AU
| | - Ying Zhao
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
| | - Leigh L van den Heuvel
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, US
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
- Emory University, Department of Human Genetics, Atlanta, GA, US
| | - Mark W Logue
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| |
Collapse
|
5
|
Silva BA, Gräff J. Face your fears: attenuating remote fear memories by reconsolidation-updating. Trends Cogn Sci 2023; 27:404-416. [PMID: 36813591 DOI: 10.1016/j.tics.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Traumatic events generate some of the most enduring memories, yet little is known about how long-lasting fear memories can be attenuated. In this review, we collect the surprisingly sparse evidence on remote fear memory attenuation from both animal and human research. What is becoming apparent is twofold: although remote fear memories are more resistant to change compared with recent ones, they can nevertheless be attenuated when interventions are targeted toward the period of memory malleability instigated by memory recall, the reconsolidation window. We describe the physiological mechanisms underlying remote reconsolidation-updating approaches and highlight how they can be enhanced through interventions promoting synaptic plasticity. By capitalizing on an intrinsically relevant phase of memory, reconsolidation-updating harbors the potential to permanently alter remote fear memories.
Collapse
Affiliation(s)
- Bianca A Silva
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Switzerland.
| |
Collapse
|
6
|
Javanbakht A, Grasser LR. Biological Psychiatry in Displaced Populations: What We Know, and What We Need to Begin to Learn. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1242-1250. [PMID: 35580738 PMCID: PMC9678009 DOI: 10.1016/j.bpsc.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022]
Abstract
Conflict and climate change continue to displace millions of people, who experience unique trauma and stressors as they resettle in host countries. Both children and adults who are forcibly displaced, or choose to migrate, experience posttraumatic stress disorder, anxiety, depression, and other mental health conditions at higher rates than the general population. This may be attributed to severe, cumulative stress and trauma (largely interpersonal traumas); discrimination and harassment in host countries; and structural barriers to accessing and addressing mental health concerns, including clinician availability, language barriers, cultural differences, geographic accessibility, health care access, and stigma. Despite high exposure to and clinical impact of such experiences, and despite representing 1% of the world population, forcibly displaced people are underrepresented in neuroscientific research. The availability of such literature and research findings is significant in understanding the unique genetic and cultural aspects of trauma- and stress-related mental health, advocacy, reducing stigma, informing prevention, and treatment. The present work aimed to explore how the field of neuroscience can address mental health equity for individuals who have been uprooted in relation to land, with a focus on refugee populations. We offer practical suggestions on how to improve research in this area and narrow the gap in knowledge.
Collapse
Affiliation(s)
- Arash Javanbakht
- Stress, Trauma, and Anxiety Research Clinic, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.
| | - Lana Ruvolo Grasser
- Stress, Trauma, and Anxiety Research Clinic, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
7
|
Seligowski AV, Misganaw B, Duffy LA, Ressler KJ, Guffanti G. Leveraging Large-Scale Genetics of PTSD and Cardiovascular Disease to Demonstrate Robust Shared Risk and Improve Risk Prediction Accuracy. Am J Psychiatry 2022; 179:814-823. [PMID: 36069022 PMCID: PMC9633348 DOI: 10.1176/appi.ajp.21111113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Individuals with posttraumatic stress disorder (PTSD) are significantly more likely to be diagnosed with cardiovascular disease (CVD) (e.g., myocardial infarction, stroke). The evidence for this link is so compelling that the National Institutes of Health convened a working group to determine gaps in the literature, including the need for large-scale genomic studies to identify shared genetic risk. The aim of the present study was to address some of these gaps by utilizing PTSD and CVD genome-wide association study (GWAS) summary statistics in a large biobank sample to determine the shared genetic risk of PTSD and CVD. METHODS A large health care biobank data set was used (N=36,412), combined with GWAS summary statistics from publicly available large-scale PTSD and CVD studies. Disease phenotypes (e.g., PTSD) were collected from electronic health records. De-identified genetic data from the biobank were genotyped using Illumina SNP array. Summary statistics data sets were processed with the following quality-control criteria: 1) SNP heritability h2 >0.05, 2) compute z-statistics (z=beta/SE or z=log(OR)/SE), 3) filter nonvariable SNPs (0 RESULTS Significant genetic correlations were found between PTSD and CVD (rG=0.24, SE=0.06), and Mendelian randomization analyses indicated a potential causal link from PTSD to hypertension (β=0.20, SE=0.04), but not the reverse. PTSD summary statistics significantly predicted PTSD diagnostic status (R2=0.27), and this was significantly improved by incorporating summary statistics from CVD and major depressive disorder (R2=1.30). Further, pathway enrichment analyses indicated that genetic variants involved in shared PTSD-CVD risk included those involved in postsynaptic structure, synapse organization, and interleukin-7-mediated signaling pathways. CONCLUSIONS The results from this study suggest that PTSD and CVD may share genetic risk. Further, these results implicate PTSD as a risk factor leading to the development of hypertension and coronary artery disease. Additional research is needed to determine the clinical utility of these findings.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Burook Misganaw
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| |
Collapse
|
8
|
Kang HJ, Lee HY, Kim KT, Kim JW, Lee JY, Kim SW, Kim JC, Shin IS, Kim N, Kim JM. Genetic Differences between Physical Injury Patients With and Without Post-traumatic Syndrome: Focus on Secondary Findings and Potential Variants Revealed by Whole Exome Sequencing. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:683-694. [PMID: 34690123 PMCID: PMC8553524 DOI: 10.9758/cpn.2021.19.4.683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Objective Sudden traumatic physical injuries often cause psychological distress, which may be associated with chronic disability. Although considerable effort has been expended to identify genetic predictors of post-traumatic stress disorder (PTSD) after traumatic events, genetic predictors of psychological distress in response to severe physical injuries have been yet to be elucidated using whole exome sequencing (WES). Here, the genetic architecture of post-traumatic syndrome (PTS), which encompasses a broad range of psychiatric disorders after traumatic events including depression, anxiety disorder, acute stress disorder, and PTSD, was explored using WES in severely physically injured patients, focusing on secondary findings and potential PTS-related variants. Methods In total, 141 severely physically injured patients were consecutively recruited, and PTS was evaluated within 1 month of the injury. Secondary findings were analyzed according to PTS status. To identify PTS-related variants, genome-wide association analyses and the optimal sequencing kernel association test were performed. Results Of the 141 patients, 88 (62%) experienced PTS. There were 108 disease-causing variants in severely physically injured patients. As secondary findings, the stress- and inflammation-related signaling pathways were enriched in the PTS patients, while the glucose metabolism pathway was enriched in those without PTS. However, no significant PTS-related variants were identified. Conclusion Our findings suggest that genetic alterations in stress and inflammatory pathways might increase the likelihood of PTS immediately after severe physical injury. Future studies with larger samples and longitudinal designs are needed.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ho-Yeon Lee
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology (UST), Daejeon, Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Tae Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Jung-Chul Kim
- Trauma Center, Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Namshin Kim
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology (UST), Daejeon, Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
9
|
Nöthling J, Abrahams N, Toikumo S, Suderman M, Mhlongo S, Lombard C, Seedat S, Hemmings SMJ. Genome-wide differentially methylated genes associated with posttraumatic stress disorder and longitudinal change in methylation in rape survivors. Transl Psychiatry 2021; 11:594. [PMID: 34799556 PMCID: PMC8604994 DOI: 10.1038/s41398-021-01608-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Rape is associated with a high risk for posttraumatic stress disorder (PTSD). DNA methylation changes may confer risk or protection for PTSD following rape by regulating the expression of genes implicated in pathways affected by PTSD. We aimed to: (1) identify epigenome-wide differences in methylation profiles between rape-exposed women with and without PTSD at 3-months post-rape, in a demographically and ethnically similar group, drawn from a low-income setting; (2) validate and replicate the findings of the epigenome-wide analysis in selected genes (BRSK2 and ADCYAP1); and (3) investigate baseline and longitudinal changes in BRSK2 and ADCYAP1 methylation over six months in relation to change in PTSD symptom scores over 6 months, in the combined discovery/validation and replication samples (n = 96). Rape-exposed women (n = 852) were recruited from rape clinics in the Rape Impact Cohort Evaluation (RICE) umbrella study. Epigenome-wide differentially methylated CpG sites between rape-exposed women with (n = 24) and without (n = 24) PTSD at 3-months post-rape were investigated using the Illumina EPIC BeadChip in a discovery cohort (n = 48). Validation (n = 47) and replication (n = 49) of BRSK2 and ADCYAP1 methylation findings were investigated using EpiTYPER technology. Longitudinal change in BRSK2 and ADCYAP1 was also investigated using EpiTYPER technology in the combined sample (n = 96). In the discovery sample, after adjustment for multiple comparisons, one differentially methylated CpG site (chr10: 61385771/ cg01700569, p = 0.049) and thirty-four differentially methylated regions were associated with PTSD status at 3-months post-rape. Decreased BRSK2 and ADCYAP1 methylation at 3-months and 6-months post-rape were associated with increased PTSD scores at the same time points, but these findings did not remain significant in adjusted models. In conclusion, decreased methylation of BRSK2 may result in abnormal neuronal polarization, synaptic development, vesicle formation, and disrupted neurotransmission in individuals with PTSD. PTSD symptoms may also be mediated by differential methylation of the ADCYAP1 gene which is involved in stress regulation. Replication of these findings is required to determine whether ADCYAP1 and BRSK2 are biomarkers of PTSD and potential therapeutic targets.
Collapse
Affiliation(s)
- Jani Nöthling
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa.
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa.
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa.
| | - Naeemah Abrahams
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Social and Behavioural Sciences, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Shibe Mhlongo
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Carl Lombard
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder afflicting approximately 7% of the population. The diverse number of traumatic events and the wide array of symptom combinations leading to PTSD diagnosis contribute substantial heterogeneity to studies of the disorder. Genomic and complimentary-omic investigations have rapidly increased our understanding of the heritable risk for PTSD. In this review, we emphasize the contributions of genome-wide association, epigenome-wide association, transcriptomic, and neuroimaging studies to our understanding of PTSD etiology. We also discuss the shared risk between PTSD and other complex traits derived from studies of causal inference, co-expression, and brain morphological similarities. The investigations completed so far converge on stark contrasts in PTSD risk between sexes, partially attributed to sex-specific prevalence of traumatic experiences with high conditional risk of PTSD. To further understand PTSD biology, future studies should focus on detecting risk for PTSD while accounting for substantial cohort-level heterogeneity (e.g. civilian v. combat-exposed PTSD cases or PTSD risk among cases exposed to specific traumas), expanding ancestral diversity among study cohorts, and remaining cognizant of how these data influence social stigma associated with certain traumatic events among underrepresented minorities and/or high-risk populations.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
11
|
Bainomugisa CK, Sutherland HG, Parker R, Mcrae AF, Haupt LM, Griffiths LR, Heath A, Nelson EC, Wright MJ, Hickie IB, Martin NG, Nyholt DR, Mehta D. Using Monozygotic Twins to Dissect Common Genes in Posttraumatic Stress Disorder and Migraine. Front Neurosci 2021; 15:678350. [PMID: 34239411 PMCID: PMC8258453 DOI: 10.3389/fnins.2021.678350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Epigenetic mechanisms have been associated with genes involved in Posttraumatic stress disorder (PTSD). PTSD often co-occurs with other health conditions such as depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have previously been reported to be symptomatically positively correlated with each other, but little is known about the genes involved. The aim of this study was to understand the comorbidity between PTSD and migraine using a monozygotic twin disease discordant study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of monozygotic twins discordant for migraine. DNA from peripheral blood was run on Illumina EPIC arrays and analyzed. Multiple testing correction was performed using the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes whose DNA methylation was previously associated with migraine (p-value = 0.036). At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated with migraine in the migraine twin samples. Genes associated with PTSD were overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling pathways, while genes associated with both PTSD and migraine were enriched for AMPK signaling and longevity regulating pathways. In conclusion, these results suggest that common genes and pathways are likely involved in PTSD and migraine, explaining at least in part the co-morbidity between the two disorders.
Collapse
Affiliation(s)
- Charlotte K Bainomugisa
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Allan F Mcrae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Divya Mehta
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
12
|
Tamman AJF, Wendt FR, Pathak GA, Krystal JH, Montalvo-Ortiz JL, Southwick SM, Sippel LM, Gelernter J, Polimanti R, Pietrzak RH. Attachment Style Moderates Polygenic Risk for Posttraumatic Stress in United States Military Veterans: Results From the National Health and Resilience in Veterans Study. Biol Psychiatry 2021; 89:878-887. [PMID: 33276944 DOI: 10.1016/j.biopsych.2020.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND A polygenic risk score (PRS) derived from genome-wide association studies of posttraumatic stress disorder (PTSD) may inform risk for this disorder. To date, however, no known study has examined whether social environmental factors such as attachment style may moderate the relation between PRS and PTSD. METHODS We evaluated main and interactive effects of PRS and attachment style on PTSD symptoms in a nationally representative sample of trauma-exposed European-American U.S. military veterans (N = 2030). PRS was derived from a genome-wide association study of PTSD re-experiencing symptoms (N = 146,660) in the Million Veteran Program cohort. Using one-sample Mendelian randomization with data from the UK Biobank (N = 115,099), we evaluated the effects of re-experiencing PRS and attachment style on PTSD symptoms. RESULTS Higher re-experiencing PRS and secure attachment style were independently associated with PTSD symptoms. A significant PRS-by-attachment style interaction was also observed (β = -.11, p = .006), with a positive association between re-experiencing PRS and PTSD symptoms observed only among veterans with an insecure attachment style. One-sample Mendelian randomization analyses suggested that the association between PTSD symptoms and attachment style is bidirectional. PRS enrichment analyses revealed a significant interaction between attachment style and a variant mapping to the IGSF11 gene (rs151177743, p = 2.1 × 10-7), which is implicated in regulating excitatory synaptic transmission and plasticity. CONCLUSIONS Attachment style may moderate polygenic risk for PTSD symptoms, and a novel locus implicated in synaptic transmission and plasticity may serve as a possible biological mediator of this association. These findings may help inform interpersonally oriented treatments for PTSD for individuals with high polygenic risk for this disorder.
Collapse
Affiliation(s)
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - John H Krystal
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | | | - Steven M Southwick
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Lauren M Sippel
- Executive Division, National Center for PTSD, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Joel Gelernter
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H Pietrzak
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Padula CB, Hansen A, Hughes RL, McNerney MW. Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment. Brain Sci 2021; 11:62. [PMID: 33419001 PMCID: PMC7825287 DOI: 10.3390/brainsci11010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Alcohol use disorder (AUD) is associated with poor medical, psychological, and psychosocial outcomes and approximately 60% of individuals with AUD relapse six months after treatment. Craving is a core aspect of AUD and associated with high risk of relapse. One promising avenue to improve outcomes may be in understanding the relationship between COMT genotype, craving, and treatment outcomes. (2) Methods: To this end, we assessed craving, recent drinking history, and impulsivity in 70 individuals with AUD undergoing a standard course of treatment at a regional Veteran Affairs (VA) medical center. Saliva samples were collected to determine COMT genotype. In this prospective observational study, participants were followed for six months to determine who went on to relapse after treatment. (3) Results: Results revealed a significant interaction between craving and catechol-O-methyltransferse (COMT) genotype in predicting relapse. Post hoc exploratory analyses indicated that Met/Met homozygotes reported the highest levels of craving, and craving was associated with recent drinking history. Among Val/Val homozygotes, who had higher rates of relapse, craving was associated with impulsivity. (4) Conclusions: These associations highlight that specific profiles of psychological and biological factors may be important in understanding which individuals are at highest risk of relapse following treatment. Future studies that build on these findings are warranted.
Collapse
Affiliation(s)
- Claudia B. Padula
- VA Palo Alto Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94304, USA; (R.L.H.); (M.W.M.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Annika Hansen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Rachel L. Hughes
- VA Palo Alto Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94304, USA; (R.L.H.); (M.W.M.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| | - M. Windy McNerney
- VA Palo Alto Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94304, USA; (R.L.H.); (M.W.M.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
14
|
Smith AK, Ratanatharathorn A, Maihofer AX, Naviaux RK, Aiello AE, Amstadter AB, Ashley-Koch AE, Baker DG, Beckham JC, Boks MP, Bromet E, Dennis M, Galea S, Garrett ME, Geuze E, Guffanti G, Hauser MA, Katrinli S, Kilaru V, Kessler RC, Kimbrel NA, Koenen KC, Kuan PF, Li K, Logue MW, Lori A, Luft BJ, Miller MW, Naviaux JC, Nugent NR, Qin X, Ressler KJ, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Vinkers CH, Wang L, Youssef NA, Uddin M, Nievergelt CM. Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nat Commun 2020; 11:5965. [PMID: 33235198 PMCID: PMC7686485 DOI: 10.1038/s41467-020-19615-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD.
Collapse
Affiliation(s)
- Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA.
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, USA.
| | | | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Robert K Naviaux
- University of California, The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, San Diego, CA, USA
| | - Allison E Aiello
- University of North Carolina, Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC, USA
| | - Ananda B Amstadter
- Virginia Commonwealth University, Department of Psychiatry, Richmond, VA, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Jean C Beckham
- VA Mid-Atlantic, Mental Illness Research, Education, and Clinical Center, Durham, NC, USA
- Veterans Affairs Durham Healthcare System, Durham, NC, USA
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Marco P Boks
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Evelyn Bromet
- State University of New York at Stony Brook, Epidemiology Research Group, Stony Brook, NY, USA
| | - Michelle Dennis
- VA Mid-Atlantic, Mental Illness Research, Education, and Clinical Center, Durham, NC, USA
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Sandro Galea
- Boston University, School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Elbert Geuze
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, The Netherlands
| | - Guia Guffanti
- McLean Hospital, Division of Depression and Anxiety, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael A Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Duke University, Department of Medicine, Durham, NC, USA
| | - Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Varun Kilaru
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | | | - Nathan A Kimbrel
- VA Mid-Atlantic, Mental Illness Research, Education, and Clinical Center, Durham, NC, USA
- Veterans Affairs Durham Healthcare System, Durham, NC, USA
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, and Department of Psychiatry, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Pei-Fen Kuan
- State University of New York at Stony Brook, Department of Applied Mathematics and Statistics, Stony Brook, NY, USA
| | - Kefeng Li
- University of California, The Mitochondrial and Metabolic Disease Center, Department of Medicine, San Diego, CA, USA
| | - Mark W Logue
- National Center for PTSD, Behavioral Science Division at VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, USA
- Boston University School of Medicine, Department of Medicine (Biomedical Genetics), Boston, MA, USA
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Adriana Lori
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, USA
| | - Benjamin J Luft
- State University of New York at Stony Brook, Department of Medicine, Stony Brook, NY, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division at VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Jane C Naviaux
- University of California, The Mitochondrial and Metabolic Disease Center, Department of Neuroscience, San Diego, CA, USA
| | - Nicole R Nugent
- Brown University, Psychiatry and Human Behavior, Department of Pediatric Research, Providence, RI, USA
| | - Xuejun Qin
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Kerry J Ressler
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, USA
- McLean Hospital, Division of Depression and Anxiety, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bart P F Rutten
- Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, The Netherlands
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- University of California San Diego, Department of Family Medicine and Public Health, La Jolla, CA, USA
| | - Robert J Ursano
- Uniformed Services University School of Medicine, Center for the Study of Traumatic Stress, Bethesda, MD, USA
| | - Eric Vermetten
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Uniformed Services University School of Medicine, Center for the Study of Traumatic Stress, Bethesda, MD, USA
- Leiden University Medical Center, Department of Psychiatry, Leiden, The Netherlands
- Netherlands Defense Department, Research Center, Utrecht, UT, The Netherlands
- Arq Psychotrauma Expert Group, Diemen, The Netherlands
| | - Christiaan H Vinkers
- Amsterdam UMC (location VUmc), Department of Psychiatry, Amsterdam, The Netherlands
- Amsterdam UMC (location VUmc), Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Lin Wang
- University of California, The Mitochondrial and Metabolic Disease Center, Department of Medicine, San Diego, CA, USA
| | - Nagy A Youssef
- Medical College of Georgia at Augusta University, Department of Psychiatry and Human Behavior and Office of Academic Affairs, Augusta, GA, USA
| | - Monica Uddin
- University of South Florida, College of Public Health, Tampa, FL, USA
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| |
Collapse
|
15
|
Linnstaedt SD, Zannas AS, McLean SA, Koenen KC, Ressler KJ. Literature review and methodological considerations for understanding circulating risk biomarkers following trauma exposure. Mol Psychiatry 2020; 25:1986-1999. [PMID: 31863020 PMCID: PMC7305050 DOI: 10.1038/s41380-019-0636-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022]
Abstract
Exposure to traumatic events is common. While many individuals recover following trauma exposure, a substantial subset develop adverse posttraumatic neuropsychiatric sequelae (APNS) such as posttraumatic stress, major depression, and regional or widespread chronic musculoskeletal pain. APNS cause substantial burden to the individual and to society, causing functional impairment and physical disability, risk for suicide, lost workdays, and increased health care costs. Contemporary treatment is limited by an inability to identify individuals at high risk of APNS in the immediate aftermath of trauma, and an inability to identify optimal treatments for individual patients. Our purpose is to provide a comprehensive review describing candidate blood-based biomarkers that may help to identify those at high risk of APNS and/or guide individual intervention decision-making. Such blood-based biomarkers include circulating biological factors such as hormones, proteins, immune molecules, neuropeptides, neurotransmitters, mRNA, and noncoding RNA expression signatures, while we do not review genetic and epigenetic biomarkers due to other recent reviews of this topic. The current state of the literature on circulating risk biomarkers of APNS is summarized, and key considerations and challenges for their discovery and translation are discussed. We also describe the AURORA study, a specific example of current scientific efforts to identify such circulating risk biomarkers and the largest study to date focused on identifying risk and prognostic factors in the aftermath of trauma exposure.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, USA
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA
| | - Anthony S Zannas
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, USA
- Departments of Psychiatry and Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, USA
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
16
|
Morey RA, Garrett ME, Stevens JS, Clarke EK, Haswell CC, van Rooij SJ, Fani N, Lori A, Mirecc Workgroup VMA, Kimbrel NA, Dennis MF, Marx CE, Beckham JC, McCarthy G, Hauser MA, Ashley-Koch AE. Genetic predictors of hippocampal subfield volume in PTSD cases and trauma-exposed controls. Eur J Psychotraumatol 2020; 11:1785994. [PMID: 33029326 PMCID: PMC7473168 DOI: 10.1080/20008198.2020.1785994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Behavioural, structural, and functional neuroimaging have implicated the hippocampus as a critical brain region in posttraumatic stress disorder (PTSD) pathogenesis. Recent work in a normative, primarily European, sample identified 15 unique genetic loci contributing to structural variability in six hippocampal subfield volumes. We explored the relevance of these loci in two samples (Mental Illness Research Education and Clinical Centre [MIRECC] and Grady; n = 290) of trauma-exposed individuals enriched for PTSD and of diverse ancestry. Four of the previous loci demonstrated nominal evidence of replication in the MIRECC dataset, primarily within non-Hispanic whites (NHW). One locus replicated in the Grady cohort, which was composed exclusively of non-Hispanic blacks (NHB). Our data supported genetic interactions with diagnosis of lifetime PTSD and genetic interactions with childhood trauma in the MIRECC sample, but not the Grady sample. Given the racial, diagnostic, and trauma-exposure differences with the original genome-wide association study (GWAS) report, we conducted a full GWAS in the MIRECC and Grady datasets. Interactions between genetic variants and lifetime PTSD or childhood trauma were interrogated for single nucleotide polymorphisms (SNPs) with evidence of main effects. Genetic associations surpassed false discovery rate (FDR)-correction within hippocampal subfields in fimbria, subiculum, cornu ammonis-1 (CA1), and hippocampal amygdala transition area (HATA). One association was replicated in the Grady cohort (rs12880795 in TUNAR with left (L)-HATA volume). The most significant association in the MIRECC dataset was between rs6906714 in LINC02571 and right (R)-fimbria volume (p = 5.99×10-8, q = 0.0056). Interestingly, the effect of rs6906714 on R-fimbria volume increased with exposure to childhood trauma (gene*environment [G*E] interaction p = 0.022). These preliminary results argue for G*E interactions between genetic loci with PTSD and childhood trauma on hippocampal phenotypes. Our results underscore the need for larger neuroimaging-genetic studies in PTSD, trauma, and ancestrally diverse populations.
Collapse
Affiliation(s)
- Rajendra A. Morey
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Melanie E. Garrett
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily K. Clarke
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Courtney C. Haswell
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Sanne J.H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Nathan A. Kimbrel
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
| | - Michelle F. Dennis
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Jean C. Beckham
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
| | | | - Michael A. Hauser
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Allison E. Ashley-Koch
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
Huckins LM, Chatzinakos C, Breen MS, Hartmann J, Klengel T, da Silva Almeida AC, Dobbyn A, Girdhar K, Hoffman GE, Klengel C, Logue MW, Lori A, Maihofer AX, Morrison FG, Nguyen HT, Park Y, Ruderfer D, Sloofman LG, van Rooij SJH, Baker DG, Chen CY, Cox N, Duncan LE, Geyer MA, Glatt SJ, Im HK, Risbrough VB, Smoller JW, Stein DJ, Yehuda R, Liberzon I, Koenen KC, Jovanovic T, Kellis M, Miller MW, Bacanu SA, Nievergelt CM, Buxbaum JD, Sklar P, Ressler KJ, Stahl EA, Daskalakis NP. Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Rep 2020; 31:107716. [PMID: 32492425 PMCID: PMC7359754 DOI: 10.1016/j.celrep.2020.107716] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/07/2019] [Accepted: 05/09/2020] [Indexed: 02/06/2023] Open
Abstract
To reveal post-traumatic stress disorder (PTSD) genetic risk influences on tissue-specific gene expression, we use brain and non-brain transcriptomic imputation. We impute genetically regulated gene expression (GReX) in 29,539 PTSD cases and 166,145 controls from 70 ancestry-specific cohorts and identify 18 significant GReX-PTSD associations corresponding to specific tissue-gene pairs. The results suggest substantial genetic heterogeneity based on ancestry, cohort type (military versus civilian), and sex. Two study-wide significant PTSD associations are identified in European and military European cohorts; ZNF140 is predicted to be upregulated in whole blood, and SNRNP35 is predicted to be downregulated in dorsolateral prefrontal cortex, respectively. In peripheral leukocytes from 175 marines, the observed PTSD differential gene expression correlates with the predicted differences for these individuals, and deployment stress produces glucocorticoid-regulated expression changes that include downregulation of both ZNF140 and SNRNP35. SNRNP35 knockdown in cells validates its functional role in U12-intron splicing. Finally, exogenous glucocorticoids in mice downregulate prefrontal Snrnp35 expression.
Collapse
Affiliation(s)
- Laura M Huckins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | - Chris Chatzinakos
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jakob Hartmann
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Torsten Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen 37075, Germany
| | | | - Amanda Dobbyn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriel E Hoffman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claudia Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Mark W Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA; Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Filomene G Morrison
- National Center for PTSD at VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hoang T Nguyen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongjin Park
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Chia-Yen Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Analytic and Translational Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nancy Cox
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, State University of New York - Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hae Kyung Im
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA; Center for Translational Data Science, The University of Chicago, Chicago, IL 60616, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Analytic and Translational Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town 7700, South Africa
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Health Care Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Karestan C Koenen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, MI, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark W Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Eli A Stahl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Kassam-Adams N, Olff M. Embracing data preservation, sharing, and re-use in traumatic stress research. Eur J Psychotraumatol 2020; 11:1739885. [PMID: 32341765 PMCID: PMC7170380 DOI: 10.1080/20008198.2020.1739885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
This editorial argues that it is time for the traumatic stress field to join the growing international movement towards Findable, Accessible, Interoperable, and Re-usable (FAIR) research data, and that we are well-positioned to do so. The field has a huge, largely untapped resource in the enormous number of rich potentially re-usable datasets that are not currently shared or preserved. We have several promising shared data resources created via international collaborative efforts by traumatic stress researchers, but we do not yet have common standards for data description, sharing, or preservation. And, despite the promise of novel findings from data sharing and re-use, there are a number of barriers to researchers' adoption of FAIR data practices. We present a vision for the future of FAIR traumatic stress data, and a call to action for the traumatic stress research community and individual researchers and research teams to help achieve this vision.
Collapse
Affiliation(s)
- Nancy Kassam-Adams
- Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Miranda Olff
- Psychiatry, University of Amsterdam (Universiteit Van Amsterdam), Amsterdam, Netherlands
| |
Collapse
|
19
|
Effects of COMT rs4680 and BDNF rs6265 polymorphisms on brain degree centrality in Han Chinese adults who lost their only child. Transl Psychiatry 2020; 10:46. [PMID: 32066722 PMCID: PMC7026113 DOI: 10.1038/s41398-020-0728-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
Losing one's only child is a major traumatic life event that may lead to posttraumatic stress disorder (PTSD); however, not all parents who experience this trauma develop PTSD. Genetic variants are associated with the risk of developing PTSD. Catechol-O-methyltransferase (COMT) rs4680 and brain-derived neurotrophic factor (BDNF) rs6265 are two most well-described single-nucleotide polymorphisms that relate to stress response; however, the neural mechanism underlying their effects on adults who lost an only child remains poorly understood. Two hundred and ten Han Chinese adults who had lost their only child (55 with PTSD and 155 without PTSD) were included in this imaging genetics study. Participants were divided into subgroups according to their COMT rs4680 and BDNF rs6265 genotypes. Degree Centrality (DC)-a resting-state fMRI index reflecting the brain network communication-was compared with a three-way (PTSD diagnosis, COMT, and BDNF polymorphisms) analysis of covariance. Diagnosis state had a significant effect on DC in bilateral inferior parietal lobules and right middle frontal gyrus (MFG), where PTSD adults showed weaker DC. BDNF × diagnosis interaction effect was found in the right MFG and hippocampus, and these two regions were reversely modulated. Also, there was a significant COMT × BDNF interaction effect in left cuneus, middle temporal gyrus, right inferior occipital gyrus, and bilateral putamen, independent of PTSD diagnosis. These findings suggest that the modulatory effect of BDNF polymorphism on the MFG and hippocampus may contribute to PTSD development in bereaved adults. Interactions of COMT × BDNF polymorphisms modulate some cortices and basal ganglia, irrespective of PTSD development.
Collapse
|
20
|
Snijders C, Maihofer AX, Ratanatharathorn A, Baker DG, Boks MP, Geuze E, Jain S, Kessler RC, Pishva E, Risbrough VB, Stein MB, Ursano RJ, Vermetten E, Vinkers CH, Smith AK, Uddin M, Rutten BPF, Nievergelt CM. Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clin Epigenetics 2020; 12:11. [PMID: 31931860 PMCID: PMC6958602 DOI: 10.1186/s13148-019-0798-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms have been suggested to play a role in the development of post-traumatic stress disorder (PTSD). Here, blood-derived DNA methylation data (HumanMethylation450 BeadChip) collected prior to and following combat exposure in three cohorts of male military members were analyzed to assess whether DNA methylation profiles are associated with the development of PTSD. A total of 123 PTSD cases and 143 trauma-exposed controls were included in the analyses. The Psychiatric Genomics Consortium (PGC) PTSD EWAS QC pipeline was used on all cohorts, and results were combined using a sample size weighted meta-analysis in a two-stage design. In stage one, we jointly analyzed data of two new cohorts (N = 126 and 78) for gene discovery, and sought to replicate significant findings in a third, previously published cohort (N = 62) to assess the robustness of our results. In stage 2, we aimed at maximizing power for gene discovery by combining all three cohorts in a meta-analysis. RESULTS Stage 1 analyses identified four CpG sites in which, conditional on pre-deployment DNA methylation, post-deployment DNA methylation was significantly associated with PTSD status after epigenome-wide adjustment for multiple comparisons. The most significant (intergenic) CpG cg05656210 (p = 1.0 × 10-08) was located on 5q31 and significantly replicated in the third cohort. In addition, 19 differentially methylated regions (DMRs) were identified, but failed replication. Stage 2 analyses identified three epigenome-wide significant CpGs, the intergenic CpG cg05656210 and two additional CpGs located in MAD1L1 (cg12169700) and HEXDC (cg20756026). Interestingly, cg12169700 had an underlying single nucleotide polymorphism (SNP) which was located within the same LD block as a recently identified PTSD-associated SNP in MAD1L1. Stage 2 analyses further identified 12 significant differential methylated regions (DMRs), 1 of which was located in MAD1L1 and 4 were situated in the human leukocyte antigen (HLA) region. CONCLUSIONS This study suggests that the development of combat-related PTSD is associated with distinct methylation patterns in several genomic positions and regions. Our most prominent findings suggest the involvement of the immune system through the HLA region and HEXDC, and MAD1L1 which was previously associated with PTSD.
Collapse
Affiliation(s)
- Clara Snijders
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht, Netherlands
| | - Elbert Geuze
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht, Netherlands
- Brain Research & Innovation Centre, Netherlands Ministry of Defense, Utrecht, Utrecht, Netherlands
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Million Veteran Program, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Eric Vermetten
- Arq, Psychotrauma Research Expert Group, Diemen, North Holland, Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, South Holland, Netherlands
- Military Mental Healthcare, Netherlands Ministry of Defense, Utrecht, Utrecht, Netherlands
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Christiaan H Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, Holland, Netherlands
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, Holland, Netherlands
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Monica Uddin
- Genomics Program, University of South Florida College of Public Health, Tampa, FL, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
| | - Caroline M Nievergelt
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
21
|
Hu Y, Chu X, Urosevich TG, Hoffman SN, Kirchner HL, Adams RE, Dugan RJ, Boscarino JJ, Shi W, Withey CA, Figley CR, Boscarino JA. Predictors of Current DSM-5 PTSD Diagnosis and Symptom Severity Among Deployed Veterans: Significance of Predisposition, Stress Exposure, and Genetics. Neuropsychiatr Dis Treat 2020; 16:43-54. [PMID: 32021198 PMCID: PMC6956712 DOI: 10.2147/ndt.s228802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previously we reported a genetic risk score significantly improved PTSD prediction among a trauma-exposed civilian population. In the current study, we sought to assess this prediction among a trauma-exposed military population. METHODS We examined current PTSD diagnosis and PTSD symptom severity among a random sample of 1042 community-based US military veterans. Main effects and interaction effects were assessed for PTSD genetic risk by trauma exposure using cross-product terms for PTSD x trauma exposures, including combat, lifetime trauma, and adverse childhood exposures. The PTSD risk variants studied were within genetic loci previously associated with PTSD, including CRHR1, CHRNA5, RORA, and FKBP5 genetic variants, which were used to calculate a total PTSD genetic risk score (range=0-8, mean=3.6, SD=1.4). RESULTS Based on DSM-5 PTSD criteria, 7.1% of veterans (95% CI=5.6-8.8) met criteria for current PTSD. The PTSD genetic risk count was significantly higher among PTSD cases vs non-cases (3.92 vs 3.55, p=0.027). Since the PTSD genetic risk score was not significant in the PTSD diagnosis model, we assessed this association using PTSD symptom severity. Because these symptom data were skewed (mean=9.54, SD=12.71, range=0-76), we used negative binomial regression to assess this outcome. This symptom model included a PTSD genetic risk score, demographic factors, trauma exposures, current insomnia, current depression, concussion history, and attention-deficit disorder, expressed as incident rate ratios (IRR), which is an estimate of one-unit increase in PTSD severity, given other variables are held constant. Variables in the final model included age and sex (both p<0.001), PTSD genetic risk (IRR=1.02, p=0.028), warzone tours (IRR=0.94, p=0.003), childhood abuse (IRR=1.50, p<0.0001), current depression (IRR=1.89, p<0.0001), current insomnia (IRR=2.58, p<0.0001), low social support (IRR=1.19, p<0.0001), attention-deficit disorder (IRR=1.51, p<0.0001), agreeable personality (IRR=0.77, p<0.0001), and concussion (IRR=1.38, p<0.0001). Significant interactions were detected for combat and lifetime trauma exposure by PTSD genetic risk (both p<0.0001), suggesting that the impact of trauma exposures on PTSD severity was lower when the PTSD genetic risk was higher. CONCLUSION Both warzone and non-warzone factors predicted current PTSD symptoms among veterans, including a PTSD genetic risk score. Interaction effects were detected for combat exposure and lifetime trauma by genetic risk score for PTSD symptoms, suggesting that PTSD symptom manifestation was more dependent on PTSD risk variants than the level of trauma or combat exposure. This suggests that controlling for other factors, the absence of genetic risk variants may confer PTSD resilience. Further research is planned.
Collapse
Affiliation(s)
- Yirui Hu
- Biomedical and Translational Informatics, Geisinger Clinic, Danville, PA, USA
| | - Xin Chu
- Obesity Institute, Geisinger Clinic, Danville, PA, USA
| | | | | | - H Lester Kirchner
- Biomedical and Translational Informatics, Geisinger Clinic, Danville, PA, USA
| | - Richard E Adams
- Department of Sociology, Kent State University, Kent, OH, USA
| | - Ryan J Dugan
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA, USA
| | - Joseph J Boscarino
- Department of Clinical Psychology, William James College, Newton, MA, USA
| | - Weixing Shi
- Obesity Institute, Geisinger Clinic, Danville, PA, USA
| | - Carrie A Withey
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA, USA
| | - Charles R Figley
- Department of Social Work, Tulane University, New Orleans, LA, USA
| | - Joseph A Boscarino
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA, USA
| |
Collapse
|
22
|
Luo Y, Chua CR, Xiong Z, Ho RC, Ho CSH. A Systematic Review of the Impact of Viral Respiratory Epidemics on Mental Health: An Implication on the Coronavirus Disease 2019 Pandemic. Front Psychiatry 2020; 11:565098. [PMID: 33329106 PMCID: PMC7719673 DOI: 10.3389/fpsyt.2020.565098] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The twenty-first century viral respiratory epidemics have taught us valuable lessons. Our systematic review examined the impact of these epidemics, including coronavirus disease 2019 (COVID-19), on mental health among different population groups, drawing on their insights for recommendations for the current COVID-19 pandemic. Methods: Searches were performed on PubMed, Embase, PsycINFO, Web of Science, Scopus, CINAHL, and Cochrane on April 4, 2020. Studies that had undefined mental health outcomes or did not use a validated scale for measure were excluded. Quality assessment was carried out via the Newcastle-Ottawa Scale. Results: We included 95 studies, most of which were conducted in Hong Kong (31.6%) and China (21.4%). A total of 30 (30.9%) studies are on the general public, 41 (42.2%) on healthcare workers, and 26 (26.6%) on patients and quarantined individuals. Furthermore, 36 (37.1%) of the studies are of high quality, 48 (49.5%) are of moderate quality, and 13 (13.4%) are of low quality. The most significant mental health outcomes reported include anxiety, depression, and post-traumatic stress disorder symptoms. The subgroups identified to have a higher risk of psychiatric symptoms among the general public include females, the elderly, individuals with chronic illness, migrant workers, and students. Long-term mental health impact was reported in some healthcare workers and epidemic patients, even up to 3 years in the former. Interestingly, when compared to non-quarantined groups, quarantine was not significantly associated with worse mental health outcomes. Conclusion: Important implications for the COVID-19 pandemic were highlighted. Respiratory epidemics pose a significant psychological morbidity onto many population groups. Psychological support for vulnerable groups, including healthcare workers and patients, should be implemented to prevent them from spiraling into clinical psychiatric conditions.
Collapse
Affiliation(s)
- Yang Luo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cher Rui Chua
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhonghui Xiong
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger C Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Psychological Medicine, National University Health System, Singapore, Singapore
| |
Collapse
|
23
|
Schijven D, Geuze E, Vinkers CH, Pulit SL, Schür RR, Malgaz M, Bekema E, Medic J, van der Kust KE, Veldink JH, Boks MP, Vermetten E, Luykx JJ. Multivariate genome-wide analysis of stress-related quantitative phenotypes. Eur Neuropsychopharmacol 2019; 29:1354-1364. [PMID: 31606302 DOI: 10.1016/j.euroneuro.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/11/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Exposure to traumatic stress increases the odds of developing a broad range of psychiatric conditions. Genetic studies targeting multiple stress-related quantitative phenotypes may shed light on mechanisms underlying vulnerability to psychopathology in the aftermath of stressful events. We applied a multivariate genome-wide association study (GWAS) to a unique military cohort (N = 583) in which we measured biochemical and behavioral phenotypes. The availability of pre- and post-deployment measurements allowed to capture changes in these phenotypes in response to stress. For genome-wide significant loci, we performed functional annotation, phenome-wide analysis and quasi-replication in PTSD case-control GWASs. We discovered one genetic variant reaching genome-wide significant association, surviving permutation and sensitivity analyses (rs10100651, p = 9.9 × 10-9). Functional annotation prioritized the genes INTS8 and TP53INP1. A phenome-wide scan revealed a significant association of these same genes with sleeping problems, hypertension and subjective well-being. Finally, a targeted lookup revealed nominally significant association of rs10100651 in a PTSD case-control GWAS in the UK Biobank (p = 0.02). We provide comprehensive evidence from multiple resources hinting at a role of the highlighted genetic variant in the human stress response, marking the power of multivariate genome-wide analysis of quantitative measures in stress research. Future genetic and functional studies can target this locus to further assess its effects on stress mediation and its possible role in psychopathology or resilience.
Collapse
Affiliation(s)
- Dick Schijven
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Elbert Geuze
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Research Centre, Military Mental Healthcare, Ministry of Defense, Utrecht, the Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc) / GGZ InGeest, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
| | - Sara L Pulit
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Remmelt R Schür
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marie Malgaz
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Erwin Bekema
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Jelena Medic
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Kendrick E van der Kust
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Eric Vermetten
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Research Centre, Military Mental Healthcare, Ministry of Defense, Utrecht, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Arq Psychotrauma Expert Group, Diemen, the Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands; GGNet, Apeldoorn, the Netherlands.
| |
Collapse
|
24
|
Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Dalvie S, Duncan LE, Gelernter J, Levey DF, Logue MW, Polimanti R, Provost AC, Ratanatharathorn A, Stein MB, Torres K, Aiello AE, Almli LM, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegovic E, Babić D, Bækvad-Hansen M, Baker DG, Beckham JC, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Børglum AD, Bradley B, Brashear M, Breen G, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Calabrese JR, Caldas-de-Almeida JM, Dale AM, Daly MJ, Daskalakis NP, Deckert J, Delahanty DL, Dennis MF, Disner SG, Domschke K, Dzubur-Kulenovic A, Erbes CR, Evans A, Farrer LA, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Geuze E, Gillespie C, Uka AG, Gordon SD, Guffanti G, Hammamieh R, Harnal S, Hauser MA, Heath AC, Hemmings SMJ, Hougaard DM, Jakovljevic M, Jett M, Johnson EO, Jones I, Jovanovic T, Qin XJ, Junglen AG, Karstoft KI, Kaufman ML, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kranzler HR, Kremen WS, Lawford BR, Lebois LAM, Lewis CE, Linnstaedt SD, Lori A, Lugonja B, Luykx JJ, Lyons MJ, Maples-Keller J, Marmar C, Martin AR, Martin NG, Maurer D, Mavissakalian MR, McFarlane A, McGlinchey RE, McLaughlin KA, McLean SA, McLeay S, Mehta D, Milberg WP, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Neale BM, Nelson EC, Nordentoft M, Norman SB, O'Donnell M, Orcutt HK, Panizzon MS, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Rice JP, Ripke S, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero K, Rung A, Rutten BPF, Saccone NL, Sanchez SE, Schijven D, Seedat S, Seligowski AV, Seng JS, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Trapido E, Uddin M, Ursano RJ, van den Heuvel LL, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Werge T, Williams MA, Williamson DE, Winternitz S, Wolf C, Wolf EJ, Wolff JD, Yehuda R, Young RM, Young KA, Zhao H, Zoellner LA, Liberzon I, Ressler KJ, Haas M, Koenen KC. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun 2019; 10:4558. [PMID: 31594949 PMCID: PMC6783435 DOI: 10.1038/s41467-019-12576-w] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Torsten Klengel
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- University Medical Center Goettingen, Department of Psychiatry, Göttingen, DE, Germany
| | - Elizabeth G Atkinson
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Chia-Yen Chen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Karmel W Choi
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, GB, USA
- King's College London, NIHR BRC at the Maudsley, London, GB, USA
| | - Shareefa Dalvie
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Cape Town, Western Cape, ZA, USA
| | - Laramie E Duncan
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Joel Gelernter
- US Department of Veterans Affairs, Department of Psychiatry, West Haven, CT, USA
- Yale University School of Medicine, Department of Genetics and Neuroscience, New Haven, CT, USA
- VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mark W Logue
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | | | | | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Million Veteran Program, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Katy Torres
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Allison E Aiello
- Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC, USA
| | - Lynn M Almli
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Søren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Sjaelland, Denmark
| | - Ole A Andreassen
- University of Oslo, Institute of Clinical Medicine, Oslo, NO, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, USA
- Harvard School of Public Health, Department of Social and Behavioral Sciences, Boston, MA, USA
| | - Esmina Avdibegovic
- University Clinical Center of Tuzla, Department of Psychiatry, Tuzla, BA, Bosnia and Herzegovina
| | - Dragan Babić
- University Clinical Center of Mostar, Department of Psychiatry, Mostar, BA, Bosnia and Herzegovina
| | - Marie Bækvad-Hansen
- Statens Serum Institut, Department for Congenital Disorders, Copenhagen, DK, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Jean C Beckham
- Durham VA Medical Center, Research, Durham, NC, USA
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Laura J Bierut
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- UMC Utrecht Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, Utrecht, NL, Netherlands
| | - Elizabeth A Bolger
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, DK, Denmark
- Aarhus University, Department of Biomedicine - Human Genetics, Aarhus, DK, Denmark
| | - Bekh Bradley
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
- Atlanta VA Health Care System, Mental Health Service Line, Decatur, GA, USA
| | - Megan Brashear
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, GB, USA
- King's College London, NIHR BRC at the Maudsley, London, GB, USA
| | - Richard A Bryant
- University of New South Wales, Department of Psychology, Sydney, NSW, Australia
| | - Angela C Bustamante
- University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Statens Serum Institut, Department for Congenital Disorders, Copenhagen, DK, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
| | | | - José M Caldas-de-Almeida
- CEDOC -Chronic Diseases Research Centre, Lisbon Institute of Global Mental Health, Lisbon, PT, Portugal
| | - Anders M Dale
- University of California San Diego, Department of Radiology, Department of Neurosciences, La Jolla, CA, USA
| | - Mark J Daly
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Nikolaos P Daskalakis
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Cohen Veterans Bioscience, Cambridge, MA, USA
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, DE, Germany
| | - Douglas L Delahanty
- Kent State University, Department of Psychological Sciences, Kent, OH, USA
- Kent State University, Research and Sponsored Programs, Kent, OH, USA
| | - Michelle F Dennis
- Durham VA Medical Center, Research, Durham, NC, USA
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
| | - Katharina Domschke
- Medical Center-University of Freiburg, Faculty of Medicine, Department of Psychiatry and Psychotherapy, Freiburg, DE, Germany
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, DE, Germany
| | - Alma Dzubur-Kulenovic
- University Clinical Center of Sarajevo, Department of Psychiatry, Sarajevo, BA, Bosnia and Herzegovina
| | - Christopher R Erbes
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Lindsay A Farrer
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Norah C Feeny
- Case Western Reserve University, Department of Psychological Sciences, Cleveland, OH, USA
| | - Janine D Flory
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Forbes
- University of Melbourne, Department of Psychiatry, Melbourne, VIC, AU, USA
| | - Carol E Franz
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Sandro Galea
- Boston University, Department of Psychological and Brain Sciences, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Bizu Gelaye
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, Utrecht, NL, Netherlands
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, Utrecht, NL, Netherlands
| | - Charles Gillespie
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Aferdita Goci Uka
- University Clinical Centre of Kosovo, Department of Psychiatry, Prishtina, Kosovo, XK, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | - Guia Guffanti
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Rasha Hammamieh
- US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, MD, USA
| | - Supriya Harnal
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Michael A Hauser
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Andrew C Heath
- Washington University in Saint Louis School of Medicine, Department of Genetics, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Stellenbosch University Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA, South Africa
| | - David Michael Hougaard
- Statens Serum Institut, Department for Congenital Disorders, Copenhagen, DK, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
| | - Miro Jakovljevic
- University Hospital Center of Zagreb, Department of Psychiatry, Zagreb, HR, USA
| | - Marti Jett
- US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, MD, USA
| | - Eric Otto Johnson
- RTI International, Behavioral Health and Criminal Justice Division, Research Triangle Park, NC, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Tanja Jovanovic
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Angela G Junglen
- Kent State University, Department of Psychological Sciences, Kent, OH, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Sjaelland, Denmark
- University of Copenhagen, Department of Psychology, Copenhagen, DK, Denmark
| | - Milissa L Kaufman
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Ronald C Kessler
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Alaptagin Khan
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Department of Health Care Policy, Boston, MA, USA
| | - Nathan A Kimbrel
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
- Durham VA Medical Center, Research, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Anthony P King
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA
| | - Nastassja Koen
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Cape Town, Western Cape, ZA, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - William S Kremen
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bruce R Lawford
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU, Australia
| | - Lauren A M Lebois
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Catrin E Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Sarah D Linnstaedt
- UNC Institute for Trauma Recovery, Department of Anesthesiology, Chapel Hill, NC, USA
| | - Adriana Lori
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Bozo Lugonja
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, South Glamorgan, GB, USA
| | - Jurjen J Luykx
- UMC Utrecht Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, Utrecht, NL, Netherlands
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, Utrecht, NL, Netherlands
| | | | - Jessica Maples-Keller
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Charles Marmar
- New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Alicia R Martin
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | | | | | - Alexander McFarlane
- University of Adelaide, Department of Psychiatry, Adelaide, South Australia, AU, Australia
| | | | | | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Anesthesiology, Chapel Hill, NC, USA
- UNC Institute for Trauma Recovery, Department of Emergency Medicine, Chapel Hill, NC, USA
| | - Sarah McLeay
- Gallipoli Medical Research Institute, PTSD Initiative, Greenslopes, Queensland, AU, Australia
| | - Divya Mehta
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Psychology and Counseling, Faculty of Health, Kelvin Grove, QLD, AU, Australia
| | | | - Mark W Miller
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Aarhus University Hospital, Psychosis Research Unit, Risskov, DK, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, DK, Denmark
- Aarhus University, Centre for Integrated Register-based Research, Aarhus, DK, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, DK, Denmark
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Elliot C Nelson
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, Copenhagen, DK, Denmark
| | - Sonya B Norman
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Department of Research and Psychiatry, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, San Diego, VT, USA
| | - Meaghan O'Donnell
- University of Melbourne, Department of Psychiatry, Melbourne, VIC, AU, USA
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, USA
| | - Matthew S Panizzon
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Edward S Peters
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Alan L Peterson
- University of Texas Health Science Center at San Antonio, Department of Psychiatry, San Antonio, TX, USA
| | - Matthew Peverill
- University of Washington, Department of Psychology, Seattle, WA, USA
| | - Robert H Pietrzak
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Department of Mental Health, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Department of Psychology, Minneapolis, MN, USA
| | - John P Rice
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Stephan Ripke
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
- Charité - Universitätsmedizin, Department of Psychiatry and Psychotherapy, Berlin, GE, Germany
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA
| | - Alex O Rothbaum
- Case Western Reserve University, Department of Psychological Sciences, Cleveland, OH, USA
| | - Barbara O Rothbaum
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Peter Roy-Byrne
- University of Washington, Department of Psychology, Seattle, WA, USA
| | - Ken Ruggiero
- Medical University of South Carolina, Department of Nursing and Department of Psychiatry, Charleston, SC, USA
| | - Ariane Rung
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL, Netherlands
| | - Nancy L Saccone
- Washington University in Saint Louis School of Medicine, Department of Psychiatry, Saint Louis, MO, USA
| | - Sixto E Sanchez
- Universidad Peruana de Ciencias Aplicadas Facultad de Ciencias de la Salud, Department of Medicine, Lima, Lima, PE, USA
| | - Dick Schijven
- UMC Utrecht Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, Utrecht, NL, Netherlands
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, Utrecht, NL, Netherlands
| | - Soraya Seedat
- Stellenbosch University Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA, South Africa
| | - Antonia V Seligowski
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Julia S Seng
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Christina M Sheerin
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Derrick Silove
- University of New South Wales, Department of Psychiatry, Sydney, NSW, AU, USA
| | - Alicia K Smith
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Jordan W Smoller
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Cape Town, Western Cape, ZA, USA
| | - Jennifer S Stevens
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jennifer A Sumner
- Columbia University Medical Center, Department of Medicine, New York, NY, USA
| | - Martin H Teicher
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Wesley K Thompson
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, DK, Denmark
- Oslo University Hospital, KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo, NO, USA
| | - Edward Trapido
- Louisiana State University Health Sciences Center, School of Public Health and Department of Epidemiology, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Uniformed Services University, Department of Psychiatry, Bethesda, Maryland, USA
| | - Leigh Luella van den Heuvel
- Stellenbosch University Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA, South Africa
| | - Miranda Van Hooff
- University of Adelaide, Department of Psychiatry, Adelaide, South Australia, AU, Australia
| | - Eric Vermetten
- New York University School of Medicine, Department of Psychiatry, New York, NY, USA
- Arq, Psychotrauma Reseach Expert Group, Diemen, NH, Netherlands
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL, Netherlands
- Netherlands Defense Department, Research Center, Utrecht, UT, Netherlands
| | - Christiaan H Vinkers
- Amsterdam UMC (location VUmc), Department of Anatomy and Neurosciences, Amsterdam, Holland, NL, Netherlands
- Amsterdam UMC (location VUmc), Department of Psychiatry, Amsterdam, Holland, NL, Netherlands
| | - Joanne Voisey
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU, Australia
| | - Yunpeng Wang
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, DK, Denmark
- Oslo University Hospital, KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo, NO, USA
| | - Zhewu Wang
- Ralph H Johnson VA Medical Center, Department of Mental Health, Charleston, SC, USA
- Medical University of South Carolina, Department of Psychiatry and Behavioral Sciences, Charleston, SC, USA
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK, Denmark
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, DK, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Michelle A Williams
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Douglas E Williamson
- Durham VA Medical Center, Research, Durham, NC, USA
- Duke University, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Sherry Winternitz
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, DE, Germany
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | | | - Rachel Yehuda
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
- James J Peters VA Medical Center, Department of Mental Health, Bronx, NY, USA
| | - Ross McD Young
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, AU, Australia
- Queensland University of Technology, School of Psychology and Counseling, Faculty of Health, Kelvin Grove, QLD, AU, Australia
| | - Keith A Young
- Baylor Scott and White Central Texas, Department of Psychiatry, Temple, TX, USA
- CTVHCS, COE for Research on Returning War Veterans, Waco, TX, USA
| | - Hongyu Zhao
- Yale University, Department of Biostatistics, New Haven, CT, USA
| | - Lori A Zoellner
- University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
| | - Israel Liberzon
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Magali Haas
- Cohen Veterans Bioscience, Cambridge, MA, USA
| | - Karestan C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
- Harvard School of Public Health, Department of Epidemiology, Boston, MA, USA
| |
Collapse
|
25
|
Sharma S, Ressler KJ. Genomic updates in understanding PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:197-203. [PMID: 30452941 PMCID: PMC6431237 DOI: 10.1016/j.pnpbp.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Twin studies as well as more recent genetics-based heritability analyses demonstrate that up to 40 to 50% of the variance in predicting PTSD following trauma is heritable. However, most of the specific gene pathways and mechanism that mediate risk vs. resilience for PTSD following trauma exposure have yet to be elucidated. This review will examine the latest results from large scale Genome-wide association studies as well as other approaches aimed at understanding mechanisms of development of and recovery from PTSD.
Collapse
Affiliation(s)
- Sumeet Sharma
- Neuroscience Program, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States; McLean Hospital, Division of Depression and Anxiety, Belmont, MA, United States
| | - Kerry J Ressler
- McLean Hospital, Division of Depression and Anxiety, Belmont, MA, United States; Harvard Medical School, Boston, MA, United States; Neuroscience Program, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States.
| |
Collapse
|
26
|
Radhakrishnan K, Aslan M, Harrington KM, Pietrzak RH, Huang G, Muralidhar S, Cho K, Quaden R, Gagnon D, Pyarajan S, Sun N, Zhao H, Gaziano M, Concato J, Stein MB, Gelernter J. Genomics of posttraumatic stress disorder in veterans: Methods and rationale for Veterans Affairs Cooperative Study #575B. Int J Methods Psychiatr Res 2019; 28:e1767. [PMID: 30767326 PMCID: PMC6877159 DOI: 10.1002/mpr.1767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Heritability in the risk for developing posttraumatic stress disorder (PTSD) has been established, but most genome-wide association studies (GWASs) of PTSD involve relatively small sample sizes and limited identification of associated genetic loci. This report describes the methodology of a Veterans Affairs (VA) Cooperative Studies Program GWAS of PTSD among combat-exposed U.S. veterans. METHODS Probable cases (with PTSD) and probable controls (without PTSD) were identified from among veterans enrolled in the VA Million Veteran Program (MVP) with an algorithm developed using questionnaire responses and electronic health record information. This algorithm, based on a statistical model, relied on medical chart reviews as a reference standard and was refined using telephone interviews. Subsequently, to evaluate the impact of probabilistic phenotyping on statistical power, the threshold probability for case-control selection was varied in simulations. RESULTS As of September 2018, >695,000 veterans have enrolled in MVP. For current analyses, genotyping data were available for >353,000 participants, including >83,000 combat-exposed veterans. A threshold probability of 0.7 for case and control designation yielded an interim >16,000 cases and >33,000 controls. CONCLUSIONS A formal methodological approach was used to identify cases and controls for subsequent GWAS analyses to identify genetic risk loci for PTSD.
Collapse
Affiliation(s)
- Krishnan Radhakrishnan
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Mihaela Aslan
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Kelly M. Harrington
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
- School of MedicineBoston UniversityBostonMassachusettsUSA
| | - Robert H. Pietrzak
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences DivisionVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Grant Huang
- Office of Research and DevelopmentVeterans Health AdministrationWashingtonDCUSA
| | - Sumitra Muralidhar
- Office of Research and DevelopmentVeterans Health AdministrationWashingtonDCUSA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Rachel Quaden
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
| | - David Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
- School of Public HealthBoston UniversityBostonMassachusettsUSA
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Ning Sun
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Hongyu Zhao
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - John Concato
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Murray B. Stein
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
- School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Joel Gelernter
- School of MedicineYale UniversityNew HavenConnecticutUSA
- Psychiatry ServiceVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
27
|
The effect of genetic vulnerability and military deployment on the development of post-traumatic stress disorder and depressive symptoms. Eur Neuropsychopharmacol 2019; 29:405-415. [PMID: 30773389 DOI: 10.1016/j.euroneuro.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 11/22/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023]
Abstract
Exposure to trauma strongly increases the risk to develop stress-related psychopathology, such as post-traumatic stress disorder (PTSD) or major depressive disorder (MDD). In addition, liability to develop these moderately heritable disorders is partly determined by common genetic variance, which is starting to be uncovered by genome-wide association studies (GWASs). However, it is currently unknown to what extent genetic vulnerability and trauma interact. We investigated whether genetic risk based on summary statistics of large GWASs for PTSD and MDD predisposed individuals to report an increase in MDD and PTSD symptoms in a prospective military cohort (N = 516) at five time points after deployment to Afghanistan: one month, six months and one, two and five years. Linear regression was used to analyze the contribution of polygenic risk scores (PRSs, at multiple p-value thresholds) and their interaction with deployment-related trauma to the development of PTSD- and depression-related symptoms. We found no main effects of PRSs nor evidence for interactions with trauma on the development of PTSD or depressive symptoms at any of the time points in the five years after military deployment. Our results based on a unique long-term follow-up of a deployed military cohort suggest limited validity of current PTSD and MDD polygenic risk scores, albeit in the presence of minimal severe psychopathology in the target cohort. Even though the predictive value of PRSs will likely benefit from larger sample sizes in discovery and target datasets, progress will probably also depend on (endo)phenotype refinement that in turn will reduce etiological heterogeneity.
Collapse
|
28
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
29
|
Nedic Erjavec G, Svob Strac D, Tudor L, Konjevod M, Sagud M, Pivac N. Genetic Markers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:53-93. [PMID: 31705490 DOI: 10.1007/978-981-32-9721-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders such as addiction (substance use and addictive disorders), depression, eating disorders, schizophrenia, and post-traumatic stress disorder (PTSD) are severe, complex, multifactorial mental disorders that carry a high social impact, enormous public health costs, and various comorbidities as well as premature morbidity. Their neurobiological foundation is still not clear. Therefore, it is difficult to uncover new set of genes and possible genetic markers of these disorders since the understanding of the molecular imbalance leading to these disorders is not complete. The integrative approach is needed which will combine genomics and epigenomics; evaluate epigenetic influence on genes and their influence on neuropeptides, neurotransmitters, and hormones; examine gene × gene and gene × environment interplay; and identify abnormalities contributing to development of these disorders. Therefore, novel genetic approaches based on systems biology focused on improvement of the identification of the biological underpinnings might offer genetic markers of addiction, depression, eating disorders, schizophrenia, and PTSD. These markers might be used for early prediction, detection of the risk to develop these disorders, novel subtypes of the diseases and tailored, personalized approach to therapy.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marina Sagud
- School of Medicine, University of Zagreb, Salata 2, HR-10000, Zagreb, Croatia
- Department of Psychiatry, University Hospital Centre Zagreb, Kispaticeva 12, HR-10000, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
30
|
Amorim IS, Lach G, Gkogkas CG. The Role of the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Neuropsychiatric Disorders. Front Genet 2018; 9:561. [PMID: 30532767 PMCID: PMC6265315 DOI: 10.3389/fgene.2018.00561] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis in eukaryotic cells is a complex, multi-step and tightly regulated process. Translation initiation, the rate limiting step in protein synthesis, is dependent on the activity of eukaryotic translation Initiation Factor 4E (eIF4E). eIF4E is the cap-binding protein which, in synergy with proteins such as the helicase eIF4A and the scaffolding protein eIF4G, binds to mRNA, allowing the recruitment of ribosomes and translation initiation. The function of eIF4E is tightly regulated in cells under normal physiological conditions and can be controlled by post-translational modifications, such as phosphorylation, and by the binding of inhibitory proteins, including eIF4E binding proteins (4E-BPs) and CYFIP1. Recent studies have highlighted the importance of eIF4E in normal or aberrant function of the nervous system. In this mini-review, we will highlight the role of eIF4E function and regulation in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gilliard Lach
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,The Patrick Wild Centre, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Wilker S, Schneider A, Conrad D, Pfeiffer A, Boeck C, Lingenfelder B, Freytag V, Vukojevic V, Vogler C, Milnik A, Papassotiropoulos A, J.-F. de Quervain D, Elbert T, Kolassa S, Kolassa IT. Genetic variation is associated with PTSD risk and aversive memory: Evidence from two trauma-Exposed African samples and one healthy European sample. Transl Psychiatry 2018; 8:251. [PMID: 30467376 PMCID: PMC6250662 DOI: 10.1038/s41398-018-0297-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 11/11/2022] Open
Abstract
The probability to develop posttraumatic stress disorder (PTSD), characterized by vivid, intrusive emotional memories of the encountered traumatic events, depends - among other factors - on the number of previous traumatic experiences (traumatic load) and individual genetic vulnerability. So far, our knowledge regarding the biological underpinnings of PTSD is relatively sparse. Genome-wide association studies (GWAS) followed by independent replication might help to discover novel, so far unknown biological mechanisms associated with the development of traumatic memories. Here, a GWAS was conducted in N = 924 Northern Ugandan rebel war survivors and identified seven suggestively significant single nucleotide polymorphisms (SNPs; p ≤ 1 × 10-5) for lifetime PTSD risk. Of these seven SNPs, the association of rs3852144 on chromosome 5 was replicated in an independent sample of Rwandan genocide survivors (N = 370, p < .01). While PTSD risk increased with accumulating traumatic experiences, the vulnerability was reduced in carriers of the minor G-allele in an additive manner. Correspondingly, memory for aversive pictures decreased with higher number of the minor G-allele in a sample of N = 2698 healthy Swiss individuals. Finally, investigations on N = 90 PTSD patients treated with Narrative Exposure Therapy indicated an additive effect of genotype on PTSD symptom change from pre-treatment to four months after treatment, but not between pre-treatment and the 10-months follow-up. In conclusion, emotional memory formation seems to decline with increasing number of rs3852144 G-alleles, rendering individuals more resilient to PTSD development. However, the impact on therapy outcome remains preliminary and further research is needed to determine how this intronic marker may affect memory processes in detail.
Collapse
Affiliation(s)
- Sarah Wilker
- Clinical & Biological Psychology, Ulm University, Ulm, Germany.
| | - Anna Schneider
- Clinical & Biological Psychology, Ulm University, Ulm, Germany.
| | - Daniela Conrad
- Clinical & Biological Psychology, Ulm University, Ulm, Germany. .,Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany.
| | - Anett Pfeiffer
- 0000 0001 0658 7699grid.9811.1Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Christina Boeck
- 0000 0004 1936 9748grid.6582.9Clinical & Biological Psychology, Ulm University, Ulm, Germany
| | - Birke Lingenfelder
- 0000 0001 0658 7699grid.9811.1Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Virginie Freytag
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Vanja Vukojevic
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Christian Vogler
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Annette Milnik
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Dominique J.-F. de Quervain
- 0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Division of Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Thomas Elbert
- 0000 0001 0658 7699grid.9811.1Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review highlights recent research on sex- and gender-related factors in the prevalence, symptom expression, and treatment of PTSD. Further discoveries about the underlying mechanisms of sex and gender effects have the potential to shape innovative directions for research. RECENT FINDINGS The prevalence of PTSD is substantially higher among women, but women show a modest advantage with respect to treatment response. There is evidence of greater heritability among females. Women are more likely to experience sexual and intimate violence, childhood trauma exposure, and repeated trauma exposures. Specific characteristics of social contexts act as gender-linked risks for PTSD. Among individuals diagnosed with PTSD, men and women are similar in phenotypic expression. Though research has yet to fully account for the factors that explain sex- and gender- related effects on PTSD, emerging research suggests these effects occur across multiple levels. Shared risk factors for trauma exposure and PTSD merit further investigation. Both social and biological contexts merit investigation to understand sex-linked differences in heritability.
Collapse
Affiliation(s)
- Rachel Kimerling
- National Center for PTSD, VA Palo Alto Health Care System, Menlo Park, CA, USA.
- Center for Innovation to Implementation, VA Palo Alto Health Care System, Menlo Park, CA, USA.
| | - Monica C Allen
- National Center for PTSD, VA Palo Alto Health Care System, Menlo Park, CA, USA
- Pacific Graduate School of Psychology-Stanford Psy.D. Consortium, Palo Alto, CA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Ressler KJ. Molecular Signatures of Stress and Posttraumatic Stress Disorder: An Overview. Biol Psychiatry 2018; 83:792-794. [PMID: 29685184 DOI: 10.1016/j.biopsych.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|