1
|
Trinh HP, Lee SH, Kim NK, Nguyen TV, Park HD. Fimbriimonadales performed dissimilatory nitrate reduction to ammonium (DNRA) in an anammox reactor. WATER RESEARCH 2024; 268:122575. [PMID: 39383805 DOI: 10.1016/j.watres.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Bacteria belonging to the order Fimbriimonadales are frequently detected in anammox reactors. However, the principal functions of these bacteria and their potential contribution to nitrogen removal remain unclear. In this study, we aimed to systematically validate the roles of Fimbriimonadales in an anammox reactor fed with synthetic wastewater. High-throughput 16S rRNA gene sequencing analysis revealed that heterotrophic denitrifying bacteria (HDB) were the most abundant bacterial group at the initial stage of reactor operation and the abundance of Fimbriimonadales members gradually increased to reach 38.8 % (day 196). At the end of reactor operation, Fimbriimonadales decreased to 0.9 % with an increase in anammox bacteria. Correlation analysis demonstrated nitrate competition between Fimbriimonadales and HDB during reactor operation. Based on the phylogenetic analysis, the Fimbriimonadales sequences acquired from the reactor were clustered into three distinct groups, which included the sequences obtained from other anammox reactors. Metagenome-assembled genome analysis of Fimbriimonadales allowed the identification of the genes narGHI and nrfAH, responsible for dissimilatory nitrate reduction to ammonium (DNRA), and nrt and nasA, responsible for nitrate and nitrite transport. In a simulation based on mass balance equations and quantified bacterial groups, the total nitrogen concentrations in the effluent were best predicted when Fimbriimonadales was assumed to perform DNRA (R2 = 0.70 and RMSE = 18.9). Moreover, mass balance analysis demonstrated the potential contribution of DNRA in enriching anammox bacteria and promoting nitrogen removal. These results prove that Fimbriimonadales compete with HDB for nitrate utilization through DNRA in the anammox reactor under non-exogenous carbon supply conditions. Overall, our findings suggest that the DNRA pathway in Fimbriimonadales could enhance anammox enrichment and nitrogen removal by providing substrates (nitrite and/or ammonium) for anammox bacteria.
Collapse
Affiliation(s)
- Hoang Phuc Trinh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Na-Kyung Kim
- Department of Animal Science, College of Agricultural, Consumer, and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thi Vinh Nguyen
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
2
|
Wang T, Wang H, Li X, Wang Y. Unveiling the mechanism underlying in-situ enhancement on anammox system by sulfide: Integration of biological and isotope analysis. WATER RESEARCH 2024; 267:122483. [PMID: 39326183 DOI: 10.1016/j.watres.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The in-situ utilization of sulfide to remove the nitrate produced during the anaerobic ammonium oxidation (anammox) process can avoid prolonged sludge acclimatization, facilitating the rapid initiation of coupled nitrogen removal processes. However, the understanding of in-situ enhancement on anammox system by sulfide remains unclear. Herein, sulfide (Na2S) was introduced as an additional electron donor to remove the nitrate derived from the anammox under varying sulfide/nitrogen (S/N, S2--S/NO3--N, molar ratio) ratios (0.004-4.375). The underlying mechanisms were elucidated by molecular biology techniques including flow cytometry, quantitative polymerase chain reaction, and 16S rRNA amplicon sequencing, alongside isotope tracer analysis. Results revealed that anammox reactors, when operated with in-situ sulfide addition, exhibited a significant enhancement in total nitrogen removal efficiency (NRE) ranging from 11.5 %-41.7 % (achieved 96 %), with the optimal S/N ratios of 0.01-0.8. Isotope tracer analysis indicated the successful coupling of the anammox, sulfur autotrophic denitrification (SADN), and dissimilatory nitrate reduction to ammonium (DNRA) processes within the system, with their contributions to nitrogen removal being 46 %-50 %, 24 %-30 %, and 20 %-22 %, respectively. Moreover, a notable increase in the abundance of sulfur-oxidizing bacteria (SOB) (20 %-40 % increase) and DNRA bacteria (10 %-20 % increase) were observed. Effective collaboration was further supported by the sustained viability of microbial communities. It is speculated that the heightened presence of SOB and DNRA bacteria created a low toxicity environment by converting sulfide to biogenic sulfur, thereby promoting the well-being of anammox bacteria. However, the excessive dosage of sulfide (S/N = 1.8) intensified the DNRA process (contribution>35 %) and weakened the anammox process, leading to an increase in effluent NH4+-N concentration and a decline in NRE. This study confirms that the in-situ adding an appropriate amount of sulfide favors achieving complete nitrogen removal in anammox system, which provides a novel avenue to resolve the issue of the residual nitrate in anammox process.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
3
|
Naufal M, Wu JH. Chemomixoautotrophy and stress adaptation of anammox bacteria: A review. WATER RESEARCH 2024; 257:121663. [PMID: 38669739 DOI: 10.1016/j.watres.2024.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria, which were first discovered nearly three decades ago, are crucial for treating ammonium-containing wastewater. Studies have reported on the biochemical nitrogen conversion process and the physiological, phylogenic, and ecological features of anammox bacteria. For a long time, anammox bacteria were assumed to have a lithoautotrophic lifestyle. However, recent studies have suggested the functional versatility of anammox bacteria. Genome-based analysis and experiments with enrichment cultures have demonstrated the association of the metabolic activities of anammox bacteria with different stress conditions, revealing the importance of utilizing specific organic substances, including organoautotrophy, for growth and adaptation to stress conditions. Our understanding regarding the utilization and metabolism of organic substances and their associations with anammox reactions in anammox bacteria is growing but still incomplete. In this review, we summarize the effect of the utilization of organic substances by anammox bacteria under environmental stress conditions, emphasizing their potential organoautotrophic activity and metabolic flexibility. Although most anammox bacteria may utilize specific organic substances, Ca. Brocadia exhibited the highest level of mixoautotrophic activity. The environmental factors that substantially affect the organoautotrophic activities of anammox bacteria were also examined. This review provides a new perspective on the organoautotrophic capacity of anammox bacteria.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan.
| |
Collapse
|
4
|
Guo M, Lu X, Qiao S. Nitrate removal by anammox bacteria utilizing photoexcited electrons via inward extracellular electron transfer channel. WATER RESEARCH 2024; 250:121059. [PMID: 38176322 DOI: 10.1016/j.watres.2023.121059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) has been found to occur in some anammox bacteria species, and the DNRA metabolites (nitrite and ammonium) can further be removed to nitrogen from water. However, the activation of DNRA pathway of anammox bacteria is usually limited by the access to electron donors. Herein, we constructed a photosensitized hybrid system combining anammox bacteria (Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia anammoxidans) with CdS nanoparticles semiconductor for energy-efficient NO3- removal. Such photosensitized anammox-CdS hybrid systems achieved NO3- removal with an average efficiency of 88% (the maximum of 91%) and a N2 selectivity of 72%, only with photoexcited electrons as donors. The DNRA-anammox metabolism of anammox bacteria was proved to responsible for NO3- removal via inward extracellular electron transfer channel. The greatly up-regulated genes encoding c-type cytochrome proteins (5 or 11 hemes) in the outer membrane, c-type cytochrome protein (4 hemes) and electron transport protein RnfA-E in the inner membrane, ferredoxin (2Fe-2S) in the cytoplasm and c-type cytochrome bc1 in anammoxosome membrane were supposed to play key roles in the inward extracellular electron transfer pathway. This work provides a novel insight into the design of the biotic-abiotic hybrid photosynthetic systems, and opens a new strategy for light-driven NO3- removal from the perspective of light energy input.
Collapse
Affiliation(s)
- Meiwei Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
5
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
6
|
Tao Y, Shi R, Li L, Xia S, Ning J, Xu W. Performance optimization and nitrogen removal mechanism of up-flow partial denitrification/anammox process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119191. [PMID: 37827074 DOI: 10.1016/j.jenvman.2023.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
This study aimed to remediate the problems of sludge floating and uneven mass transfer in up-flow partial denitrification/anammox (PDA) reactors and dissect the nitrogen removal mechanism. Two up-flow PDA reactors were operated, whereby in R1 combined biological carriers were added, while in R2 mechanical stirring was applied, the reactors were inoculated with PD sludge and anammox sludge. Results showed the TN removal rates at the end of the operation were 89% (R1) and 92% (R2). The addition of both strategies suppressed the occurrence of sludge upwelling and deterioration of settling performance, even when the granule diameter of the granular zone in R1 and R2 reached 1.921 and 2.006 mm, respectively. 16SrRNA sequencing revealed R1 had a higher abundance of anammox bacteria (AAOB, 14.53%-R1, 9.06%-R2, respectively), and R2 had a higher quantity of denitrifying bacteria (61.92%-R1, 67.11%-R2, respectively). And the nitrogen removal was contributed by anammox and denitrification in combination, with contributions of 82.17%, 17.83% (R1), and 85.07%, 14.93% (R2), respectively. In summary, both strategies prevented sludge flotation and uneven nitrogen mass transfer. However, mechanical agitation had a more substantial positive effect on the performance of PDA than the addition of biocarriers because it achieved a more adequate mass transfer.
Collapse
Affiliation(s)
- Youqi Tao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Rui Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Linjing Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Suhui Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianyong Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
7
|
Yoon S, Heo H, Han H, Song DU, Bakken LR, Frostegård Å, Yoon S. Suggested role of NosZ in preventing N 2O inhibition of dissimilatory nitrite reduction to ammonium. mBio 2023; 14:e0154023. [PMID: 37737639 PMCID: PMC10653820 DOI: 10.1128/mbio.01540-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.
Collapse
Affiliation(s)
- Sojung Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hokwan Heo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dong-Uk Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
8
|
You A, Hua L, Hu J, Tian J, Ding T, Cheng N, Hu L. Patters of reactive nitrogen removal at the waters in the semi-constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118733. [PMID: 37562250 DOI: 10.1016/j.jenvman.2023.118733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Protection and rectification patters of urban wetlands have been considered in strategies to balance services to society and negative consequences of excess reactive nitrogen (Nr) loading. However, the knowledge about strategies of semi-constructed wetlands on nitrogen (N) cycling pathways and removal Nr from the overlying water is limited. This study aimed to reveal considerable differences among rectification patterns of the typical semi-constructed wetland (Xixi wetland), comprising rational exploitation area (REA), rehabilitation and reconstruction area (RRA), and conservation area (CA) by analyzing the N distribution and N protentional pathways among them. Results pointed out that both NH4+ and NO3- concentration were prominently higher in REA, as opposed to CA and RRA. Sediments in RRA had relatively higher NH4+ content, indicating the efficiency of dissimilatory nitrate reduction (DNRA) in RRA. Moreover, there was a significant shift in the microbial community structure across different sites and sediments. Metagenomic analysis distinguished the N cycling pathways, with nitrification (M00804), denitrification (M00529), and DNRA (M00530) being the crucial pathways in the semi-constructed wetland. The relative abundance of N metabolic pathways (ko00910) varied among different types of sediments, being more abundant in shore and rhizosphere areas and less abundant in bottom sediments. Methylobacter and Nitrospira were the predominant nitrifiers in shore sediments, while Methylocystis was enriched in the bottom sediments and rhizosphere soils. Furthermore, Anaeromyxobacter, Anaerolinea, Dechloromonas, Nocardioides, and Methylocystis were identified as the primary denitrifiers with N reductase genes (nirK, nirS, or nosZ). Among these, Anaeromyxobacter, Dechloromonas, and Methylocystis were the primary contributors containing the nosZ gene in semi-constructed wetlands, driving the conversion of N2O to N2. This study provides important insights into rectification-dependent Nr removal from the overlying water in terms of N distribution and N metabolic functional microbial communities in the semi-constructed wetlands.
Collapse
Affiliation(s)
- Aiju You
- Zhejiang Institute of Hydraulics & Estuary, Zhejiang Institute of Marine Planning & Design, Hangzhou, 310020, China
| | - Lei Hua
- Zhejiang Institute of Hydraulics & Estuary, Zhejiang Institute of Marine Planning & Design, Hangzhou, 310020, China
| | - Jingwen Hu
- Zhejiang Institute of Hydraulics & Estuary, Zhejiang Institute of Marine Planning & Design, Hangzhou, 310020, China
| | - Junsong Tian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Tao Ding
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Na Cheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Wang C, Qiao S. Electron transfer mechanism of intracellular carbon-dependent DNRA inside anammox bacteria. WATER RESEARCH 2023; 244:120443. [PMID: 37572465 DOI: 10.1016/j.watres.2023.120443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Generally, anaerobic ammonium oxidation (anammox) converts nitrite (NO2-) and ammonium (NH4+) to nitrogen gas (N2) but generates some nitrate (NO3-) (equivalent to 11% of inlet total nitrogen (TN)). Although it reported that anammox bacteria could degrade NO3- via dissimilatory nitrate reduction to ammonium (DNRA) pathway using the intracellular carbon as the electron donor, it is still unclear the specific electron transfer mechanism in this intracellular carbon-dependent DNRA inside anammox bacteria, and whether the sole anammox bacteria could achieve higher TN removal efficiency more than the theoretical maximum of 89%. In this study, transcriptome analysis and metabolic inhibitor experiments demonstrated that NADH generated from the decomposition of the intracellular carbon (glycogen) supplied electrons for the NO3-conversion; the electrons were transferred from NADH to nitrate reductase (Nar) and nitrite reductase forming ammonium (NrfA) from ubiquinone (UQ) and complex III, respectively. Combining the intracellular carbon-dependent DNRA with normal anammox process, an average TN removal efficiency of 95% was achieved by the sole anammox bacteria in a sequencing batch reactor. Fluorescent in situ hybridization (FISH) images and real-time fluorescence quantitative PCR (qPCR) results illustrated anammox bacteria could survive and proliferate in the SBR. Our work improved the understanding of the electron transfer mechanism inside anammox bacteria, and further exploit its potential in nitrogen pollutants removal.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
White C, Antell E, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang W, Alvarez-Cohen L. Synergistic interactions between anammox and dissimilatory nitrate reducing bacteria sustains reactor performance across variable nitrogen loading ratios. Front Microbiol 2023; 14:1243410. [PMID: 37637134 PMCID: PMC10450351 DOI: 10.3389/fmicb.2023.1243410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. The anammox bacteria form a variety of competitive and mutualistic interactions with heterotrophic bacteria that often employ denitrification or dissimilatory nitrate reduction to ammonium (DNRA) for energy generation. These interactions can be heavily influenced by the influent ratio of ammonium to nitrite, NH4+:NO2-, where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have been demonstrated to have deleterious effects on anammox efficiency. Thus, it is important to understand how variable NH4+:NO2- ratios impact the microbial ecology of anammox reactors. We observed the response of the microbial community in a lab scale anammox membrane bioreactor (MBR) to changes in the influent NH4+:NO2- ratio using both 16S rRNA gene and shotgun metagenomic sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased to 1:1.1 (day 89-202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 (day 169-200). Over this same timespan, the overall nitrogen removal efficiency (NRE) remained relatively unchanged (85.26 ± 0.01% from day 0-89, compared to 85.49 ± 0.01% from day 89-169, and 83.04 ± 0.01% from day 169-200). When the ratio was slightly increased to 1:1.17-1:1.2 (day 202-253), the ammonium removal efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the course of the experiment. The relative abundance of Planctomycetes, the phylum to which anammox bacteria belong, decreased from 77.19% at the beginning of the experiment to 12.24% by the end of the experiment. Analysis of metagenome assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH genes used for DNRA after the introduction of lower influent NH4+:NO2- ratios. The high relative abundance of DNRA bacteria coinciding with sustained bioreactor performance indicates a mutualistic relationship between the anammox and DNRA bacteria. Understanding these interactions could support more robust bioreactor operation at variable nitrogen loading ratios.
Collapse
Affiliation(s)
- Christian White
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Edmund Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah L. Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Weiqin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Al-Hazmi HE, Maktabifard M, Grubba D, Majtacz J, Hassan GK, Lu X, Piechota G, Mannina G, Bott CB, Mąkinia J. An Advanced Synergy of Partial Denitrification-Anammox for Optimizing Nitrogen Removal from Wastewater: A Review. BIORESOURCE TECHNOLOGY 2023; 381:129168. [PMID: 37182680 DOI: 10.1016/j.biortech.2023.129168] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Environmental and Energy Engineering, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki P.O. Box 12622, Egypt
| | - Xi Lu
- Three Gorges Smart Water Technology Co., LTD, 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland.
| | - Giorgio Mannina
- Engineering Department, Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Charles B Bott
- Hampton Roads Sanitation District, 1436 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
12
|
Yang J, Yu Q, Su W, Wang S, Wang X, Han Q, Qu J, Li H. Metagenomics reveals elevated temperature causes nitrogen accumulation mainly by inhibiting nitrate reduction process in polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163631. [PMID: 37086993 DOI: 10.1016/j.scitotenv.2023.163631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Determining the response of functional genes and microbiota involved in the nitrogen (N) cycle to warming in the face of global climate change is a hotpot topic. However, whether and how elevated temperature affects the N-cycle genes in polluted water remains unclear. Based on metagenomics, we investigated the responses of the whole N-cycling genes and their microbial communities to the temperature gradients (23, 26, 29, 32, and 35 °C) using animal cadavers as an N-pollution model. We found that the abundance of gene families involved in glutamate metabolism, assimilatory nitrate reduction to nitrite (ANRN), and denitrification pathways decreased with temperature. Moreover, warming reduced the diversity of N-cycling microbial communities. Ecological network analysis indicated that elevated temperature intensified the mutual competition of N-cycle genes. The partial least squares path model (PLS-PM) showed that warming directly suppressed most N-cycle pathways, especially glutamate metabolism, denitrification, and ANRN pathways. Corpse decay also indirectly inhibited N-cycling via regulating N content and microbial communities. Our results highlight warming leads to N accumulation by inhibiting the ANRN and denitrification pathways, which may jeopardize ecological environment security. Our study is expected to provide valuable insights into the complex N-cycle process and N-pollution in warmer aquatic ecosystems.
Collapse
Affiliation(s)
- Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiapeng Qu
- Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Zhou L, Zhao B, Zhuang WQ. Double-edged sword effects of dissimilatory nitrate reduction to ammonium (DNRA) bacteria on anammox bacteria performance in an MBR reactor. WATER RESEARCH 2023; 233:119754. [PMID: 36842329 DOI: 10.1016/j.watres.2023.119754] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) bacteria imposing double-edged sword effects on anammox bacteria were investigated in an anammox-membrane bioreactor (MBR) experiencing an induced crash-recovery event. During the experiment, the anammox-MBR was loaded with NH4+-N:NO2--N ratios (RatioNH4+-N: NO2--N) of 1.20-1.60. Initially, the anammox-MBR removed over 95% of 100 mg/L NH4+-N and 132 mg/L NO2--N (RatioNH4+-N: NO2--N = 0.76, the well accepted stoichiometric RatioNH4+-N: NO2--N for anammox) in the influent (Stage 0). Then, we induced a system crash-recovery event via nitrite shock loadings to better understand responses from different guilds of bacteria in anammox-MBR, loaded with 1.60 RatioNH4+-N: NO2--N with 100 mg/L NO2--N in the influent (Stage 1). Interestingly, the nitrogen removal by anammox bacteria was maintained for about 20 days before starting to decrease significantly. In Stage 2, we further increased influent nitrite concentration to 120 mg/L (1.33 RatioNH4+-N: NO2--N) to simulate a high nitrite toxicity scenario for a short period of time. As expected, nitrogen removal efficiency dropped to only 16.8%. After the induced system crash, anammox-MBR performance recovered steadily to 93.2% nitrogen removal with a 1.25 RatioNH4+-N:NO2--N and a low nitrite influent concentration of 80 mg/L NO2--N. Metagenomics analysis revealed that a probable causality of the decreasing nitrogen removal efficiency in Stage 1 was the overgrowth of DNRA-capable bacteria. The results showed that the members within the Ignavibacteriales order (21.7%) out competed anammox bacteria (17.0%) in the anammox-MBR with elevated nitrite concentrations in the effluent. High NO2--N loading (120 mg N/L) further caused the predominant Candidatus Kuenenia spp. were replaced by Candidatus Brocadia spp. Therefore, it was evident that DNRA bacteria posed negative effects on anammox with 1.60 RatioNH4+-N: NO2--N. Also, when 120 mg/L NO2--N fed to anammox-MBR (RatioNH4+-N: NO2--N = 1.33), canonical denitrification became the primary nitrogen sink with both DNRA and anammox activities decreased. They probably fed on lysed microbial cells of anammox and DNRA. In Stage 3, a low RatioNH4+-N: NO2--N (1.25) with 80 mg/L NO2--N was used to rescue the system, which effectively promoted DNRA-capable bacteria growth. Although anammox bacteria's abundance was only 7.7% during this stage, they could be responsible for about 90% of the total nitrogen removal during this stage.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
14
|
Al-Hazmi HE, Lu X, Grubba D, Majtacz J, Badawi M, Mąkinia J. Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161633. [PMID: 36669661 DOI: 10.1016/j.scitotenv.2023.161633] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Xi Lu
- Three Gorges Smart Water Technology Co., Ltd., 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
15
|
Coupling of Anammox Activity and PAH Biodegradation: Current Insights and Future Directions. Processes (Basel) 2023. [DOI: 10.3390/pr11020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anaerobic ammonium oxidation (anammox) has shown success in past years for the treatment of municipal and industrial wastewater containing inorganic nutrients (i.e., nitrogen). However, the increase in polycyclic aromatic hydrocarbon (PAH)-contaminated matrices calls for new strategies for efficient and environmentally sustainable remediation. Therefore, the present review examined the literature on the connection between the anammox process and PAHs using VOSviewer to shed light on the mechanisms involved during PAH biodegradation and the key factors affecting anammox bacteria. The scientific literature thoroughly discussed here shows that PAHs can be involved in nitrogen removal by acting as electron donors, and their presence does not adversely affect the anammox bacteria. Anammox activity can be improved by regulating the operating parameters (e.g., organic load, dissolved oxygen, carbon-to-nitrogen ratio) and external supplementation (i.e., calcium nitrate) that promote changes in the microbial community (e.g., Candidatus Jettenia), favoring PAH degradation. The onset of a synergistic dissimilatory nitrate reduction to ammonium and partial denitrification can be beneficial for PAH and nitrogen removal.
Collapse
|
16
|
Yu L, Zhang Q, Li R, Qiao B, Wang Z, Zheng L, Peng D. Extracellular polymeric substances trigger microbial immigration from partial denitrification (PD) to anammox biofilms in a long-term operated PD/anammox process in low-strength wastewater. WATER RESEARCH 2023; 229:119382. [PMID: 36446177 DOI: 10.1016/j.watres.2022.119382] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The immigration of microbial communities in a synergistic partial denitrification/anammox (SPDA) system was investigated in a moving bed biofilm reactor (MBBR) inoculated with partial denitrification (PD) and anaerobic ammonium oxidation (anammox) biofilms. The SPDA system was operated at 25 ± 1 °C over 260 days. The total nitrogen (TN) of the effluent was only 3.71 ± 0.92 mg·L-1 in the stable phase with a TN removal efficiency of 95.23%. The anammox process was the dominant nitrogen removal pathway with an average contribution of 74.31% to TN removal. The results of the in situ activity and key enzymatic activity revealed that the nitrate-reducing bacteria tended to immigrate to anammox biofilms. Correspondingly, the abundance of the genus Thauera, the second most dominant bacteria in anammox biofilms, quickly increased from 0.78 to 10.69% on day 50 and eventually to 16.45% on day 221 according to the Illumina MiSeq sequencing data. The microbial immigration might be caused by different extracellular polymeric substance (EPS)-mediated mechanisms in PD and anammox biofilms. For fast-growing denitrifiers, PD biofilms tend to increase the ability of mass transfer by excreting more polysaccharides to form loosely-bound EPS at the expense of the ability to harbor the nitrate-reducing bacteria. However, for the slow-growing anaerobic ammonium oxidizing bacteria (AnAOB), the anammox biofilms tend to increase the retention of AnAOB by excreting more proteins to form enhanced tightly-bound EPS at the expense of the mass transfer ability, thereby causing the detached nitrate-reducing bacteria to immigrate into anammox biofilms.
Collapse
Affiliation(s)
- Lifang Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China.
| | - Qiong Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Ren Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Bingchuang Qiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Ze Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Lanxiang Zheng
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China; China Wine Industry Technology Institute, Yinchuan 750021, China
| | - Dangcong Peng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| |
Collapse
|
17
|
Ji XM, Zhang Q, Liu W, Cai S, Chen L, Cai T, Yu H. The organics-mediated microbial dynamics and mixotrophic metabolisms in anammox consortia under micro-aerobic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116262. [PMID: 36183528 DOI: 10.1016/j.jenvman.2022.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The engineering applications of mainstream anaerobic ammonium oxidation (anammox) have raised increasing attention due to its energy-efficient, however, the organics-mediated microbial dynamics and mixotrophic metabolisms in anammox consortia under micro-aerobic conditions are still elusive. Here, the response of the anammox process to sodium acetate and glucose at a C/N ratio ranging from 0 to 0.5 was investigated under micro-aerobic conditions, respectively. Results showed that the additional glucose could promote the nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of anammox processes at a low C/N ratio (0.3), representing 84.00% and 0.53 N kg·m-3·d-1. The introduced organics could regulate the diversity of the microbial community and simplify the microbial relationship in anammox consortia. Anammox could not benefit from the introduced sodium acetate, while glucose could effectively enhance the anammox activity and microbial interactions in anammox consortia. Glucose might also stimulate the mixotrophic mechanism of Ca. Kuenenia, further promotes the proliferation of anammox sludge under micro-aerobic conditions. This study reveals that glucose could positively mediate microbial interactions and mixotrophic metabolism in anammox consortia under micro-aerobic conditions, which raises a new horizon for the proliferation of anammox sludge for mainstream engineering applications.
Collapse
Affiliation(s)
- Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, United States
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hongxia Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Abu A, Carrey R, Valhondo C, Domènech C, Soler A, Martínez-Landa L, Diaz-Cruz S, Carrera J, Otero N. Pathways and efficiency of nitrogen attenuation in wastewater effluent through soil aquifer treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115927. [PMID: 35994957 DOI: 10.1016/j.jenvman.2022.115927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Soil Aquifer Treatment (SAT) is used to increase groundwater resources and enhance the water quality of wastewater treatment plant (WWTP) effluents. The resulting water quality needs to be assessed. In this study, we investigate attenuation pathways of nitrogen (N) compounds (predominantly NH4+) from a secondary treatment effluent in pilot SAT systems: both a conventional one (SAT-Control system) and one operating with a permeable reactive barrier (PRB) to provide extra dissolved organic carbon to the recharged water. The goal is to evaluate the effectiveness of the two systems regarding N compounds by means of chemical and isotopic tools. Water chemistry (NO3-, NH4+, Non-Purgeable Dissolved Organic Carbon (NPDOC), and O2) and isotopic composition of NO3- (ẟ15N-NO3- and ẟ18O-NO3-) and NH4+ (ẟ15N-NH4+) were monitored in the inflow and at three different sections and depths along the aquifer flow path. Chemical and isotopic results suggest that coupled nitrification-denitrification were the principal mechanisms responsible for the migration and distribution of inorganic N in the systems and that nitrification rate decreased with depth. At the end of the study period, 66% of the total N in the solution was removed in the SAT-PRB system and 69% in the SAT-Control system, measured at the outlet of the systems. The residual N in solution in the SAT-PRB system had an approximately equal proportion of N-NH4+ and N-NO3- while in the SAT-Control system, the residual N in solution was primarily N-NO3-. Isotopic data also confirmed complete NO3- degradation in the systems from July to September with the possibility of mixing newly generated NO3- with the residual NO3- in the substrate pool.
Collapse
Affiliation(s)
- Alex Abu
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain.
| | - Raúl Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - Cristina Valhondo
- Université de Montpellier. UMR 5243 Géosciences Montpellier. 300 Avenue Emile Jeanbrau CC MSE. 34095, Montpellier, France; Université de Montpellier. UMR 5569 HydroSciences Montpellier. 15 Avenue Charles Flahault-BP 14491. 34093, Montpellier. France; Institute of Environmental Assessment and Water Research (IDAEA). Severo Ochoa Excellence Center. Spanish National Research Council (CSIC), Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Cristina Domènech
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - Lurdes Martínez-Landa
- Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, 08034 Barcelona, Spain
| | - Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA). Severo Ochoa Excellence Center. Spanish National Research Council (CSIC), Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research (IDAEA). Severo Ochoa Excellence Center. Spanish National Research Council (CSIC), Jordi Girona 18-24, 08034 Barcelona, Spain; Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, 08034 Barcelona, Spain
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain; Serra Húnter Fellowship. Generalitat de Catalunya, Catalonia, Spain
| |
Collapse
|
19
|
Sun Z, Li J, Fan Y, Meng J. A quantified nitrogen metabolic network by reaction kinetics and mathematical model in a single-stage microaerobic system treating low COD/TN wastewater. WATER RESEARCH 2022; 225:119112. [PMID: 36166999 DOI: 10.1016/j.watres.2022.119112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
20
|
Chen X, Lai C, Wang X, Chen G, Zhang D. High-rate partial denitrification via effluent residual nitrate controlling and microbial mechanism of nitrite accumulation by carbon dosage optimization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1222-1231. [PMID: 36358057 DOI: 10.2166/wst.2022.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The high-rate partial denitrification (PD) via effluent residual nitrate controlling by carbon dosage optimization was investigated based on the analysis of microbial mechanism of nitrite accumulation in this study. When the COD/N was changed from 4.0 to 1.8 and the effluent nitrate was above 8.48 mg/L, the nitrate accumulation ratio (NAR) and nitrate removal ratio (NRR) achieved 60 and 90%, respectively. With the electron donor starvation (EDS) strategy, nitrite accumulation was increased, which is related to the reduced utilization of carbon sources. In addition, the rapid increase of Thauera (0.21% to 53.29%) and inhibition of Others and Unclassified (96.93% to 16.99%), and the significantly different expression between reductase genes contributed to nitrite production (narG, 1,727.44 copies/mg) and nitrite reduction (nirS, 208.27 copies/mg; nirK, 203.94 copies/mg) commonly involved in PD start-up and stable operation. Another reactor can be quickly started by controlling effluent residual nitrate within 19 days.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Cheng Lai
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Xinyi Wang
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Guimei Chen
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Dachao Zhang
- Jiangxi Lingzhen Ecological Environment Group Co. Ltd, Ganzhou Technology Innovation Center of Mine Ecological Restoration, Ganzhou city 341000, PR China E-mail:
| |
Collapse
|
21
|
Naufal M, Wu JH, Shao YH. Glutamate Enhances Osmoadaptation of Anammox Bacteria under High Salinity: Genomic Analysis and Experimental Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11310-11322. [PMID: 35913201 DOI: 10.1021/acs.est.2c01104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An osmoprotectant that alleviates the bacterial osmotic stress can improve the bioreactor treatment of saline wastewater. However, proposed candidates are expensive, and osmoprotectants of anammox bacteria and their ecophysiological roles are not fully understood. In this study, a comparative analysis of 34 high-quality public metagenome-assembled genomes from anammox bacteria revealed two distinct groups of osmoadaptation. Candidatus Scalindua and Kuenenia share a close phylogenomic relation and osmoadaptation gene profile and have pathways for glutamate transport and metabolisms for enhanced osmoadaptation. The batch assay results demonstrated that the reduced Ca. Kuenenia activity in saline conditions was substantially alleviated with the addition and subsequent synergistic effects of potassium and glutamate. The operational test of two reactors demonstrated that the reduced anammox performance under brine conditions rapidly recovered by 35.7-43.1% as a result of glutamate treatment. The Ca. Kuenenia 16S rRNA and hydrazine gene expressions were upregulated significantly (p < 0.05), and the abundance increased by approximately 19.9%, with a decrease in dominant heterotrophs. These data demonstrated the effectiveness of glutamate in alleviating the osmotic stress of Ca. Kuenenia. This study provides genomic insight into group-specific osmoadaptation of anammox bacteria and can facilitate the precision management of anammox reactors under high salinity.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Yung-Hsien Shao
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| |
Collapse
|
22
|
Bryson SJ, Hunt KA, Stahl DA, Winkler MKH. Metagenomic Insights Into Competition Between Denitrification and Dissimilatory Nitrate Reduction to Ammonia Within One-Stage and Two-Stage Partial-Nitritation Anammox Bioreactor Configurations. Front Microbiol 2022; 13:825104. [PMID: 35547121 PMCID: PMC9083452 DOI: 10.3389/fmicb.2022.825104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Anaerobic ammonia oxidizing bacteria (Anammox) are implemented in high-efficiency wastewater treatment systems operated in two general configurations; one-stage systems combine aerobic ammonia oxidizing bacteria (AOB) and Anammox within a single aerated reactor, whereas two-stage configurations separate these processes into discrete tanks. Within both configurations heterotrophic populations that perform denitrification or dissimilatory nitrate reduction to ammonia (DNRA) compete for carbon and nitrate or nitrite and can impact reactor performance because DNRA retains nitrogen in the system. Therefore, it is important to understand how selective pressures imposed by one-stage and two-stage reactor configurations impact the microbial community structure and associated nitrogen transforming functions. We performed 16S rRNA gene and metagenomic sequencing on different biomass fractions (granules, flocs, and suspended biomass) sampled from two facilities treating sludge dewatering centrate: a one-stage treatment facility (Chambers Creek, Tacoma, WA) and a two-stage system (Rotterdam, Netherlands). Similar microbial populations were identified across the different samples, but relative abundances differed between reactor configurations and biomass sources. Analysis of metagenome assembled genomes (MAGs) indicated different lifestyles for abundant heterotrophic populations. Acidobacteria, Bacteroidetes, and Chloroflexi MAGs had varying capacity for DNRA and denitrification. Acidobacteria MAGs possessed high numbers of glycosyl hydrolases and glycosyl transferases indicating a role in biomass degradation. Ignavibacteria and Phycosphaerae MAGs contributed to the greater relative abundance of DNRA associated nrf genes in the two-stage granules and contained genomic features suggesting a preference for an anoxic or microoxic niche. In the one-stage granules a MAG assigned to Burkholderiales accounted for much of the abundant denitrification genes and had genomic features, including the potential for autotrophic denitrification using reduced sulfur, that indicate an ability to adapt its physiology to varying redox conditions. Overall, the competition for carbon substrates between denitrifying and DNRA performing heterotrophs may be impacted by configuration specific selective pressures. In one-stage systems oxygen availability in the bulk liquid and the oxygen gradient within granules would provide a greater niche space for heterotrophic populations capable of utilizing both oxygen and nitrate or nitrite as terminal electron acceptors, compared to two-stage systems where a homogeneous anoxic environment would favor heterotrophic populations primarily adapted to anaerobic metabolism.
Collapse
Affiliation(s)
- Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Wang W, Wang T, Liu Q, Wang H, Xue H, Zhang Z, Wang Y. Biochar-mediated DNRA pathway of anammox bacteria under varying COD/N ratios. WATER RESEARCH 2022; 212:118100. [PMID: 35074671 DOI: 10.1016/j.watres.2022.118100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Coupling dissimilatory nitrate reduction to ammonium (DNRA) pathway with anammox process has a prominent advantage in enhancement of nitrogen removal. However, the anammox bacteria driven-DNRA is difficult to proceed at normal autotrophic circumstance. Herein, for the first time, biochar (prepared by bamboo) was used as a mediator to stimulate the DNRA pathway of anammox bacteria under varying chemical oxygen demand (COD) to nitrogen (COD/N) ratios (0.1-0.7), and the underlying stimulation mechanism was elucidated by metagenomics sequencing analysis. Results showed that biochar addition (10 g/L) stimulated DNRA pathway of anammox bacteria at low COD/N ratios (0.1-0.5), thus enhancing the nitrogen removal efficiency (NRE) of the anammox system by 7.2%-16.4% and 0.9%-3.0%, respectively, compared to that of tests without sodium acetate and biochar (p<0.05). This enhancement was attributed to the improved extracellular electron accepting capacity of anammox biomass by biochar. The easily obtained electrons (from sodium acetate) further increased the relative abundances of anammox-related (hzs) and complete DNRA-related (napAB and nrfAH) genes (p<0.05), which catalyze electron-consuming reactions. The stimulated anammox pathway and DNRA pathway further increased the specific anammox activity and the relative abundance of anammox bacteria (especially Ca. Jettenia) by 15.5%-23.0% and 11.3%-82.6% compared with that without biochar, respectively. Metagenomics sequencing also revealed that anammox bacteria, Ca. Jettenia caeni, was the main bacteria for DNRA metabolism in this system. Our findings reveal that biochar could selectively stimulate DNRA pathway of anammox bacteria affiliated by a low amount of carbon, which provides a novel strategy to improve the nitrogen removal of anammox-based processes.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Qinghua Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zhuoran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
24
|
Zhuang JL, Sun X, Zhao WQ, Zhang X, Zhou JJ, Ni BJ, Liu YD, Shapleigh JP, Li W. The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: Performance and community structure. WATER RESEARCH 2022; 210:117964. [PMID: 34959064 DOI: 10.1016/j.watres.2021.117964] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
This study describes an integrated granular sludge and fixed-biofilm (iGB) reactor innovatively designed to carry out the anammox/partial-denitrification (A/PD) process for nitrogen removal with mainstream municipal wastewater. The iGB-A/PD reactor consists of anammox granules inoculated in the lower region of reactor and an acclimated fixed-biofilm positioned in the upper region. Compared to the other reported A/PD systems for mainstream wastewater treatment, this iGB-A/PD reactor is notable due to its higher quality effluent with a total inorganic nitrogen (TIN) of ∼3 mg•L-1 and operation at a high nitrogen removal rate (NRR) of 0.8 ± 0.1 kg-N•m-3•d-1. Reads-based metatranscriptomic analysis found that the expression values of hzsA and hdh, key genes associated with anammox, were much higher than other functional genes on nitrogen conversion, confirming the major roles of the anammox bacteria in nitrogen bio-removal. In both regions of the reactor, the nitrate reduction genes (napA/narG) had expression values of 56-99 RPM, which were similar to that of the nitrite reduction genes (nirS/nirK). The expression reads from genes for dissimilatory nitrate reduction to ammonium (DNRA), nrfA and nirB, were unexpectedly high, and were over the half of the levels of reads from genes required for nitrate reduction. Kinetic assays confirmed that the granules had an anammox activity of 16.2 g-NH4+-N•kg-1-VSS•d-1 and a nitrate reduction activity of 4.1 g-N•kg-1-VSS•d-1. While these values were changed to be 4.9 g- NH4+-N•kg-1-VSS•d-1and 4.3 g-N•kg-1-VSS•d-1 respectively in the fixed-biofilm. Mass flux determination found that PD and DNRA was responsible for ∼50% and ∼25% of nitrate reduction, respectively, in the whole reactor, consistent with high effluent quality and treatment efficiency via a nitrite loop. Metagenomic binning analysis revealed that new and unidentified anammox species, affiliated with Candidatus Brocadia, were the dominant anammox organisms. Myxococcota and Planctomycetota were the principal organisms associated with the PD and DNRA processes, respectively.
Collapse
Affiliation(s)
- Jin-Long Zhuang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Sun
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei-Qi Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jia-Jia Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | - Yong-Di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, China.
| |
Collapse
|
25
|
Ma J, Wang K, Shi C, Liu Y, Yu C, Fang K, Fu X, Yuan Q, Zhou Y, Gong H. A novel anammox aggregate nourished sustainably internal heterotrophic nitrate removal pathway with endogenous carbon source. BIORESOURCE TECHNOLOGY 2022; 346:126525. [PMID: 34896540 DOI: 10.1016/j.biortech.2021.126525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a cost-effective nitrogen removal pathway but instinctively generated nitrate limits its application. A novel anammox aggregate reduced the production of nitrate significantly with efficient removal of ammonia and nitrite in this work. The results demonstrated that the internal heterotrophic nitrate removal (IHNAR) pathway exists stably at inner of anammox aggregates, which eliminated 42.31 ± 3.85 % nitrate generated in anammox at without consuming external carbon source. The observed volatile fatty acids (VFAs) and adequate protein, polysaccharide and humic acids in the aggregates verified that the in-situ fermentation supplied sustainably endogenous carbon sources for the IHNAR. The efficient interspecies cooperation between anammox bacteria, heterotrophic denitrifiers and fermentative bacteria was identified, as the intrinsic justification for the obtained sustainability of IHNAR pathway. The findings were expected to provide theoretical guidance for promotions and applications of the anammox process with high-efficiency total nitrogen removal capabilities.
Collapse
Affiliation(s)
- Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Cheng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kuo Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiangyun Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yuan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; China Urban Construction Design & Research Institute Co. Ltd, Beijing 100120, PR China
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; School of Environment, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
26
|
Hou Z, Zhou X, Dong W, Wang H, Liu H, Zeng Z, Xie J. Insight into correlation of advanced nitrogen removal with extracellular polymeric substances characterization in a step-feed three-stage integrated anoxic/oxic biofilter system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151418. [PMID: 34742978 DOI: 10.1016/j.scitotenv.2021.151418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
As a core component of the biomass, the important role of extracellular polymeric substances (EPS) on treatment performance has been recognized. However, the comprehensive understanding of its correlation with nitrogen removal remains limited in biofilm-based reactors. In this study, the relevance between EPS and advanced nitrogen removal in a novel step-feed three-stage integrated anoxic/oxic biofilter (SFTIAOB) was specifically investigated. The operation showed as high as 81% TN removal was achieved under optimal conditions. Among the whole reactor, 2nd anoxic (A2) zone was the largest contributor for nitrogen removal, followed by the 3rd anoxic (A3) and 2nd oxic (O2) zones. EPS composition analysis found that high content of polysaccharides in tightly bound-EPS (A2 and A3) and protein in loosely bound-EPS and tightly bound-EPS (O2). Fourier transform infrared spectroscopy, three-dimensional fluorescence spectrum further verified stratified EPS subfractions containing different secondary protein structures, while 3-turn helix and tryptophan-like protein was the main reason for nitrogen removal. High-throughput sequencing revealed the co-existence of nitrogen removal-associated genera accomplished nitrification/denitrification combined with aerobic denitrification and anammox. Moreover, the correlation of EPS and microbial composition with nitrogen removal was clarified by redundancy analysis (RDA). Finally, potential mechanism for nitrogen removal was illuminated. This research gives more insight into EPS characteristics in enhancing nitrogen removal during the operation and optimization of a step-feed multi-stage A/O biofilm process.
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
27
|
Xi H, Zhou X, Arslan M, Luo Z, Wei J, Wu Z, Gamal El-Din M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150212. [PMID: 34536867 DOI: 10.1016/j.scitotenv.2021.150212] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
The traditional biological nitrogen removal (BNR) follows the conventional scheme of sequential nitrification and denitrification. In recent years, novel processes such as anaerobic ammonia oxidation (anammox), complete oxidation of ammonia to nitrate in one organism (comammox), heterotrophic nitrification and aerobic denitrification (HN-AD), and dissimilatory nitrate reduction to ammonium (DNRA) are gaining tremendous attention after the discovery of metabolically versatile bacteria. Among them, HN-AD offers several advantages because individual bacteria could achieve one-stage nitrogen removal under aerobic conditions in the presence of organic carbon. In this review, besides classical BNR processes, we summarized the existing literature on HN-AD bacteria which have been isolated from diverse habitats. A particular focus was given on the diversity and physiology of HN-AD bacteria, influences of physiological and biochemical factors on their growth, nitrogen removal performances, as well as limitations and strategies in unraveling HN-AD metabolic pathways. We also presented case studies of HN-AD application in wastewater treatment facilities, pointed out forthcoming challenges of HN-AD in these systems, and presented modulation strategies for HN-AD application in engineering. This review may help improve the existing design of wastewater treatment plants by harnessing HN-AD bacteria for effective nitrogen removal.
Collapse
Affiliation(s)
- Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhijun Luo
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
28
|
Huang DQ, Fu JJ, Li ZY, Fan NS, Jin RC. Inhibition of wastewater pollutants on the anammox process: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150009. [PMID: 34492484 DOI: 10.1016/j.scitotenv.2021.150009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been recognized as an efficient nitrogen removal technology. However, anammox bacteria are susceptible to surrounding environments and different pollutants, which limits the extensive application of the anammox process worldwide. Numerous researchers investigate the effects of various pollutants on the anammox process or bacteria, and related findings have also been reviewed with the focused on their inhibitory effects on process performance and microbial community. This review systemically summarized the recent advances in the inhibition, mechanism and recovery process of traditional and emerging pollutants on the anammox process over a decade, such as organics, metals, antibiotics, nanoparticles, etc. Generally, low-concentration pollutants exhibited a promotion on the anammox activity, while high-concentration pollutants showed inhibitory effects. The inhibitory threshold concentration of different pollutants varied. The combined effects of multipollutant also attracts more attentions, including synergistic, antagonistic and independent effects. Additionally, remaining problems and research needs are further proposed. This review provides a foundation for future research on the inhibition in anammox process, and promotes the proper operation of anammox processes treating different types of wastewaters.
Collapse
Affiliation(s)
- Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yue Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
29
|
Peng L, Nie WB, Ding J, Xu Y, Li Q, Yu S, Ren NQ, Xie GJ. A mechanistic model for denitrifying anaerobic methane oxidation coupled to dissimilatory nitrate reduction to ammonium. CHEMOSPHERE 2022; 287:132148. [PMID: 34509756 DOI: 10.1016/j.chemosphere.2021.132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is an important process linking nitrogen and carbon cycle. It is recently demonstrated that n-DAMO archaea are able to couple n-DAMO to dissimilatory nitrate reduction to ammonium (DNRA). In this work, a mathematical model is developed to describe DNRA by n-DAMO archaea for the first time. The anabolic and catabolic processes of n-DAMO archaea, n-DAMO bacteria and anaerobic ammonium oxidation (Anammox) bacteria are involved. The different impacts of exogenous and endogenous nitrite on DNRA and n-DAMO microbes are considered. The developed model is calibrated and validated using experimental data collected from a sequencing batch reactor (SBR) and a counter-diffusion membrane biofilm bioreactor (MBfR). The model outputs fit well with the profiles of nitrogen (N) dynamics and biomass changes in both reactors, demonstrating its good predictive ability. The developed model is further used to simulate the counter-diffusion MBfR incorporating n-DAMO and Anammox process to treat sidestream wastewater. The simulated distribution profiles of N removal/production rates by different microbes along biofilm depth reveal that DNRA by n-DAMO archaea plays an important role in N transformation of the integrated n-DAMO and Anammox process. It is further suggested that the counter-diffusion MBfR under the investigated conditions should be operated at proper hydraulic retention times (HRTs) (i.e. 6h and 8h) with exogenous NO2- in the range of 0-10 mg N/L or at HRTs >3h with the absence of exogenous NO2- in order to achieve dischargeable effluent.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Wen-Bo Nie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Qi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
30
|
Hu Y, Hong Y, Ye J, Wu J, Wang Y, Ye F, Chang X, Long A. Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1689-1703. [PMID: 33411163 DOI: 10.1007/s10646-020-02321-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediments in estuaries, but studies on the deep sediments are limited, and the linkage between DNRA community structure and complex estuarine environment remains unclear. In this study, through high-throughput sequencing of nrfA gene followed by high-resolution sample inference, we examined spatially and temporally the composition and diversity of DNRA bacteria along a salinity gradient in five sediment cores of the Pearl River Estuary (PRE). We found a higher diversity and richness of DNRA bacteria in sediments with lower organic carbon, where sea water intersects fresh water. Moreover, the DNRA bacterial communities had the specific spatially distribution coupling with their metabolic difference along the salinity gradient of the Pearl River Estuary, but no obvious difference along the sediment depth. The distribution of DNRA bacteria in the PRE was largely driven by various environmental factors, including salinity, Oxidation-Reduction Potential (ORP), ammonium, nitrate and Corg/NO3-. Furthermore, dominant DNRA bacteria were found to be the key populations of DNRA communities in the PRE sediments by network analysis. Collectively, our results showed that niche difference of DNRA bacteria indeed occurs in the Pearl River Estuary.
Collapse
Affiliation(s)
- Yaohao Hu
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China.
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, PR China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, PR China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
| | - Xiangyang Chang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, PR China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
31
|
Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. CHEMOSPHERE 2021; 278:130436. [PMID: 33839386 DOI: 10.1016/j.chemosphere.2021.130436] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
To solve the bottleneck of the unstable accumulation of nitrite in the partial nitrification (PN)-anammox (AMX) in municipal wastewater treatment, a novel process called partial denitrification (PD)-AMX has been developed. PD-AMX, which is known for cost-efficiency and environmental friendliness, has currently exhibited a promising potential for the removal of biological nitrogen from municipal wastewater and has attracted much research interest regarding its process mechanisms, as well as its practical applications. Here, we review the recent advances in the PD process and its coupling to the anammox process, including the development, basic principles, main characteristics, and critical process parameters of the stable operation of the PD-AMX process. We also explore the microbial community and its characteristics in the system and summarize the knowledge of the dominant bacteria to clarify the key factors affecting PD-AMX. Then, we introduce the engineering feasibility and economic feasibility as well as the potential challenges of the process. The induction and implementation of partial denitrification and maintenance of mainstream anammox are critical issues to be urgently solved. Meanwhile, the implementation of a full mainstream anammox application remains burdensome, while the mechanism of partial denitrification coupled to anammox needs to be further studied. Additionally, stable operation performance and process control1 methods need to be optimized or developed for the PD-AMX system for better engineering practice. This review can help to accelerate the research and application of the PD-AMX process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Chunyan Du
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Bin Deng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
32
|
Wang X, Yang H, Su Y, Liu X, Wang J. Characteristics of anammox granular sludge using color differentiation, and nitrogen removal performance of its immobilized fillers based on microbial succession. BIORESOURCE TECHNOLOGY 2021; 333:125188. [PMID: 33901915 DOI: 10.1016/j.biortech.2021.125188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The characteristics of anammox granular sludge (AnGS) based on color differentiation, and the regulation mechanism of immobilized fillers in the system were investigated. The results showed that biomass content, EPS and activity of red AnGS (R1) were higher than those of brown AnGS (R2). Moreover, R1 showed nitrification, while R2 showed denitrification. Filamentous bacteria constituted the granule skeleton of R1, while R2 mainly constituted inorganic nucleation and granulation. Additionally, immobilization improved the contribution rate of Anammox, and involved different regulatory mechanisms. High-throughput sequencing analysis showed that R1 encapsulation biomass eliminated miscellaneous bacteria and established specific flora, while mixed encapsulated biomass of R1 and R2 re-formed a functional bacterial network, which strengthened interspecies cooperation. The R2 encapsulated biomass and AnAOB copy numbers were inferior and the interspecific cooperation was weak, resulting in an unsatisfactory nitrogen removal performance. These results can strengthen the understanding and optimization of AnGS and its immobilization system.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yang Su
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - JiaWei Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
33
|
Liu W, Rahaman MH, Mąkinia J, Zhai J. Coupling transformation of carbon, nitrogen and sulfur in a long-term operated full-scale constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146016. [PMID: 33689895 DOI: 10.1016/j.scitotenv.2021.146016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The coupling transformation of carbon, nitrogen and sulfur compounds has been studied in lab-scale and pilot-scale constructed wetlands (CWs), but few studies investigated full-scale CW. In this study, we used batch experiments to investigate the potentials of carbon, nitrogen and sulfur transformation in a long-term operated, full-scale horizontal subsurface flow wetland. The sediments collected from the HSFW were incubated for 48 h in the laboratory with supplying various dosages of carbon, nitrogen and sulfur compounds. The results showed that heterotrophic denitrification was the main pathway. At the same time, the sulfide (S2-)-based autotrophic denitrification was also present. Increasing TOC concentration or NO3- concentration could promote heterotrophic denitrification but did not inhibit the sulfide-based autotrophic denitrification. In our experiment, the highest NO3- removal via autotrophic denitrification was 25.23% while that via heterotrophic denitrification was 73.66%, leading to the total NO3- removal of 98.89%. The results also demonstrated that NO3- rather than NO2- was the preferable electron acceptor for both heterotrophic and sulfide-based autotrophic denitrification in the CW. Increasing S2- concentrations promote NO3- removal from 12.99% to 25.23% without organic carbon, but varying NO3- or NO2- has no effects. These results indicated that concentrations of S2-, instead of NO3- or NO2-, was the limiting factor for sulfide-based autotrophic denitrification in the studied CW. The microbial community analysis and correlation analysis between the transformation of carbon, nitrogen and sulfur compounds and relative abundance of bacteria further confirmed that in the CW, the key pathways coupling transformation were heterotrophic denitrification and sulfide-based autotrophic denitrification. Overall, the current study will enhance understanding of carbon, nitrogen, and sulfur transformation in CW and support better design and treatment efficiency.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Environment and Ecology, Chongqing University, 400045 Chongqing, PR China
| | - Md Hasibur Rahaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology,80-233Gdańsk, Poland
| | - Jun Zhai
- School of Environment and Ecology, Chongqing University, 400045 Chongqing, PR China.
| |
Collapse
|
34
|
Staicu LC, Barton LL. Selenium respiration in anaerobic bacteria: Does energy generation pay off? J Inorg Biochem 2021; 222:111509. [PMID: 34118782 DOI: 10.1016/j.jinorgbio.2021.111509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 01/03/2023]
Abstract
Selenium (Se) respiration in bacteria was revealed for the first time at the end of 1980s. Although thermodynamically-favorable, energy-dense and documented in phylogenetically-diverse bacteria, this metabolic process appears to be accompanied by a number of challenges and numerous unanswered questions. Selenium oxyanions, SeO42- and SeO32-, are reduced to elemental Se (Se0) through anaerobic respiration, the end product being solid and displaying a considerable size (up to 500 nm) at the bacterial scale. Compared to other electron acceptors used in anaerobic respiration (e.g. N, S, Fe, Mn, and As), Se is one of the few elements whose end product is solid. Furthermore, unlike other known bacterial intracellular accumulations such as volutin (inorganic polyphosphate), S0, glycogen or magnetite, Se0 has not been shown to play a nutritional or ecological role for its host. In the context of anaerobic respiration of Se oxyanions, biogenic Se0 appears to be a by-product, a waste that needs proper handling, and this raises the question of the evolutionary implications of this process. Why would bacteria use a respiratory substrate that is useful, in the first place, and then highly detrimental? Interestingly, in certain artificial ecosystems (e.g. upflow bioreactors) Se0 might help bacterial cells to increase their density and buoyancy and thus avoid biomass wash-out, ensuring survival. This review article provides an in-depth analysis of selenium respiration (model selenium respiring bacteria, thermodynamics, respiratory enzymes, and genetic determinants), complemented by an extensive discussion about the evolutionary implications and the properties of biogenic Se0 using published and original/unpublished results.
Collapse
Affiliation(s)
- Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
35
|
Faleschini M, Torres AI. Nitrogen dynamic in vitro using sludge of a sewage stabilization pond from Patagonia (Argentina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28692-28703. [PMID: 33544341 DOI: 10.1007/s11356-021-12707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
A relevant and current aspect of wastewater treatment systems is related to the processes of the nitrogen cycle that results in its elimination in gaseous forms. In the present study, we report the first measurements of nitrate-reducing rate (NRR) at lab-scale, using the flow-through reactor technique with sludge of a sewage stabilization pond system located in Patagonia (Argentina). Sludge was collected from Inlet and Outlet areas, in winter and summer. The sludge was characterized by having high moisture content (>94%) and organic matter concentration greater than 37%. The nitrate reduction experimental dates fitted significantly to the Michaelis-Menten model, allowing the estimation of the parameters that regulate the NR kinetics. The maximum potential nitrate reduction rate (Rmax) showed great variability, registering a maximum of 131.6 μmol-N·gdw-1·h-1 (Outlet-Summer) and a minimum of 4.1 μmol-N·gdw-1·h-1 (Inlet-Winter). The lowest half saturation constant (Km) was recorded in the Inlet sludge during the winter (6.1 mg N-NO3-·L-1), which indicates a greater affinity for nitrate of this bacterial consortium. An unusually high activity of NR was registered, being higher with sludge from the Outlet zone and with summer temperature. In full-scale ponds, the NR activity could explain a relevant part of the nitrogen removal that involves the escape of gaseous forms.
Collapse
Affiliation(s)
- Mauricio Faleschini
- Centro para el Estudio de Sistemas Marinos (CESIMAR, CCT CONICET-CENPAT), Boulevard Brown, 2915, Puerto Madryn, Chubut, Argentina.
| | - Américo Iadran Torres
- Centro para el Estudio de Sistemas Marinos (CESIMAR, CCT CONICET-CENPAT), Boulevard Brown, 2915, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
36
|
Trojanowicz K, Trela J, Plaza E. Possible mechanism of efficient mainstream partial nitritation/anammox (PN/A) in hybrid bioreactors (IFAS). ENVIRONMENTAL TECHNOLOGY 2021; 42:1023-1037. [PMID: 31474198 DOI: 10.1080/09593330.2019.1650834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
An explanation of possible mechanism of efficient PN/A in hybrid bioreactors was presented. The bottleneck process is nitritation. Surplus nitrite production by ammonium oxidizing bacteria (AOB) is required for assuring the activity of anammox bacteria and eliminating nitrite oxidizing bacteria (NOB). It will be possible if nitrogen removal rate by AOB (rN_AOB) is higher than NOB (rN_NOB). It was shown that in biofilm AnAOB bacteria should out-compete NOB, whereas nitrogen transformation rates by AOB are usually lower than NOB. However, the growth of r-AOB in activated sludge allows out-selecting NOB. Impact of ammonium-, nitrite-nitrogen and suspended biomass concentration in hybrid PN/A systems on nitrogen removal rates in the temperature ranges from 10°C to 25°C was presented and discussed. Because bulk liquid ammonium nitrogen concentration can be higher in SBR bioreactors (after certain period of time after aeration starts) or in the initial zones of plug-flow systems than in fully mixed systems, conditions for running efficient PN/A are more favourable in intermittently aerated 'IFAS-SBR' or 'IFAS-plug flow' bioreactors.
Collapse
Affiliation(s)
- Karol Trojanowicz
- Department of Environmental Engineering, St. Pigon Krosno State College, Krosno, Poland
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Jozef Trela
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
37
|
Xiao R, Ni BJ, Liu S, Lu H. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. WATER RESEARCH 2021; 191:116817. [PMID: 33461083 DOI: 10.1016/j.watres.2021.116817] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 05/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) represents a promising technology for wastewater nitrogen removal. Organics management is critical to achieving efficient and stable performance of anammox or integrated processes, e.g., denitratation-anammox. The aim of this systematic review is to synthesize the state-of-the-art knowledge on the multifaceted impacts of organics on wastewater anammox community structure and function. Both exogenous and endogenous organics are discussed with respect to their effects on the biofilm/granule structure and function, as well as the interactions between anammox bacteria (AnAOB) and a broad range of coexisting functional groups. A global core community consisting of 19 taxa is identified and a co-occurrence network is constructed by meta-analysis on the 16S rDNA sequences of 149 wastewater anammox samples. Correlations between core taxa, keystone taxa, and environmental factors, including COD, nitrogen loading rate (NLR) and C/N ratio are obtained. This review provides a holistic understanding of the microbial responses to different origins and types of organics in wastewater anammox reactors, which will facilitate the design and operation of more efficient anammox-based wastewater nitrogen removal process.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
38
|
Guo H, Gu J, Wang X, Song Z, Qian X, Sun W, Nasir M, Yu J. Negative effects of oxytetracycline and copper on nitrogen metabolism in an aerobic fermentation system: Characteristics and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123890. [PMID: 33264956 DOI: 10.1016/j.jhazmat.2020.123890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Aerobic fermentation is a sustainable option for livestock waste treatment, but little is known about the microbial mechanism that allows oxytetracycline (OTC) and copper (Cu) to affect nitrogen metabolism during aerobic fermentation. In this study, contamination with OTC and Cu alone or in combination reduced the total nitrogen (TN) content of the fermentation products. Metagenomic analysis demonstrated that the contribution of microorganisms to nitrogen metabolism changed significantly in different stages of fermentation. OTC and Cu affected the formation and utilization pattern of NO2--N by microorganisms, which were mainly responsible for the reduced N2O emissions. In the presence of OTC and/or Cu, Myxococcus_stipitatus, Myxococcus_xanthus, and Gimesia_maris were evidently enriched at the end of fermentation, and their increased roles in the dissimilatory reduction of nitrite to ammonium were confirmed by network analysis. Ardenticatena_maritima was the main contributor to denitrification (NO3--N to NO). Furthermore, organic matter (OM) was the most important factor responsible for driving the variation in nitrogen-transforming microorganisms and controlling denitrification. OTC affected the formation of OM, which can directly affect TN (λ = -0.37, p < 0.001), and the adverse impact of Cu on nirK- and nifH-dominant microorganisms was validated (p < 0.05).
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
39
|
Electrochemical removal of nitrate from wastewater with a Ti cathode and Pt anode for high efficiency and N2 selectivity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by Hydrazine. WATER 2021. [DOI: 10.3390/w13030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biological nutrient removal from wastewater to reach acceptable levels is needed to protect water resources and avoid eutrophication. The start-up of an anaerobic ammonium oxidation (anammox) process from scratch was investigated in a 20 L sequence batch reactor (SBR) inoculated with a mixture of aerobic and anaerobic sludge at 30 ± 0.5 °C with a hydraulic retention time (HRT) of 2–3 days. The use of NH4Cl, NaNO2, and reject water as nitrogen sources created different salinity periods, in which the anammox process performance was assessed: low (<0.2 g of Cl−/L), high (18.2 g of Cl−/L), or optimum salinity (0.5–2 g of Cl−/L). Reject water feeding gave the optimum salinity, with an average nitrogen removal efficiency of 80%, and a TNRR of 0.08 kg N/m3/d being achieved after 193 days. The main aim was to show the effect of a hydrazine addition on the specific anammox activity (SAA) and denitrification activity in the start-up process to boost the autotrophic nitrogen removal from scratch. The effect of the anammox intermediate hydrazine addition was tested to assess its concentration effect (range of 2–12.5 mg of N2H4/L) on diminishing denitrifier activity and accelerating anammox activity at the same time. Heterotrophic denitrifiers’ activity was diminished by all hydrazine additions compared to the control; 5 mg of N2H4/L added enhanced SAA compared to the control, achieving an SAA of 0.72 (±0.01) mg N/g MLSS/h, while the test with 7.5 mg of N2H4/L reached the highest overall SAA of 0.98 (±0.09) mg N g/MLSS/h. The addition of trace amounts of hydrazine for 6 h was also able to enhance SAA after inhibition by organic carbon source sodium acetate addition at a high C/N ratio of 10/1. The start-up of anammox bacteria from the aerobic–anaerobic suspended biomass was successful, with hydrazine significantly accelerating anammox activity and decreasing denitrifier activity, making the method applicable for side-stream as well as mainstream treatment.
Collapse
|
41
|
Gao D, Xiang T. Deammonification process in municipal wastewater treatment: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 320:124420. [PMID: 33232853 DOI: 10.1016/j.biortech.2020.124420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The deammonification process has been proved to be an efficient nitrogen removal process in treating high NH4+-N concentration wastewater (sidestream deammonification). It is very hopeful to bring WWTP close to energy autarky. However, the feasibility of applying mainstream deammonification to sewage treatment need to be further explored. Therefore, this review attempts to give an overview of challenges in applying mainstream deammonification and to discuss the impacts of unfavorable conditions on main functional species. In addition, some novel control strategies to maintain the dominant position of desired species were summarized. Efficient solution to the conflict between AnAOB (Anaerobic ammonium-oxidizing bacteria) biomass retention and NOB (Nitrite oxidizing bacteria) wash out was also reviewed. Ultimately, we suggested further studies including effective improved process that achieve combination of autotrophy and organotrophy species based on the metabolic diversity of AnAOB.
Collapse
Affiliation(s)
- Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
42
|
Yuan Y, Zhou Z, Jiang J, Wang K, Yu S, Qiang J, Ming Q, An Y, Ye J, Wu D. Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment. BIORESOURCE TECHNOLOGY 2021; 320:124419. [PMID: 33242685 DOI: 10.1016/j.biortech.2020.124419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Effects of salinity level and gradient on partial nitrification performance, sludge properties and microbial activities were investigated using partial nitrification membrane bioreactors (PN-MBRs). PN-MBRs obtained stable nitrite accumulation rate of 91.1% and ammonia removal of 64.8% at 10 g/L NaCl. 10 g/L NaCl obtained higher oxygen uptake rate than 5 g/L, and promoted the differentiation of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. Salinity increased sludge flocs size, stimulated secretion of extracellular polymeric substances with high carbohydrates contents, but had insignificant impact on sludge settleability and dewaterability. Salt level and gradient were both important for microbial community evolution to salt-tolerant bacteria. PN-MBRs enriched aerobic AOBs (Nitrosomonas and norank_f_Nitrosomonadaceae) and anaerobic AOBs (Candidatus_Kuenenia and Candidatus_Brocadia) for partial nitrification, while salt gradients resulted in different metabolism pathways for nitrification even at the same salinity. Increasing salinity promoted hydroxylamine oxidizer in nitrification process evolving from Candidatus_Kuenenia and Candidatus_Brocadia to aerobic AOBs.
Collapse
Affiliation(s)
- Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qiang Ming
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Deli Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
43
|
Delgado Vela J, Bristow LA, Marchant HK, Love NG, Dick GJ. Sulfide alters microbial functional potential in a methane and nitrogen cycling biofilm reactor. Environ Microbiol 2020; 23:1481-1495. [PMID: 33295079 DOI: 10.1111/1462-2920.15352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022]
Abstract
Cross-feeding of metabolites between coexisting cells leads to complex and interconnected elemental cycling and microbial interactions. These relationships influence overall community function and can be altered by changes in substrate availability. Here, we used isotopic rate measurements and metagenomic sequencing to study how cross-feeding relationships changed in response to stepwise increases of sulfide concentrations in a membrane-aerated biofilm reactor that was fed with methane and ammonium. Results showed that sulfide: (i) decreased nitrite oxidation rates but increased ammonia oxidation rates; (ii) changed the denitrifying community and increased nitrous oxide production; and (iii) induced dissimilatory nitrite reduction to ammonium (DNRA). We infer that inhibition of nitrite oxidation resulted in higher nitrite availability for DNRA, anammox, and nitrite-dependent anaerobic methane oxidation. In other words, sulfide likely disrupted microbial cross-feeding between AOB and NOB and induced cross-feeding between AOB and nitrite reducing organisms. Furthermore, these cross-feeding relationships were spatially distributed between biofilm and planktonic phases of the reactor. These results indicate that using sulfide as an electron donor will promote N2 O and ammonium production, which is generally not desirable in engineered systems.
Collapse
Affiliation(s)
- Jeseth Delgado Vela
- Department of Civil and Environmental Engineering, Howard University, Washington, DC, USA
| | - Laura A Bristow
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Li Y, Xiang T, Liang H, Gao D, Wang P. Achieving stable mainstream deammonification process by a novel combinatorial control strategy. BIORESOURCE TECHNOLOGY 2020; 318:124275. [PMID: 33132170 DOI: 10.1016/j.biortech.2020.124275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel combinatorial control strategy was developed to guarantee a stable mainstream deammonification process, with three critical steps including (a) upflow airwater washing, (b) short-term increased nitrogen loading rate (NLR), and (c) low oxygen supply. Results showed that two upflow double-blanket filter (UDBF) reactors effectively performed the mainstream deammonification process with the nitrogen removal efficiency (NRE) 84.5 ± 2.2% and 84.6 ± 1.6%, respectively and nitrogen removal rate (NRR) 123.8 ± 2.9 and 125.5 ± 6.2 g N·(m3·d)-1, respectively. Statistically, temperature and C/N were considered as two vital factors affecting the nitrogen removal pathways, which co-explained 80.9% and 78.4% of the maximum possible contribution of heterotrophic denitrification in both reactors. The deammonification process accounted for more than 59.8% of TN removal in R2 and 54.8% in R1, which cooperated well with heterotrophic denitrification for efficient performance in treating municipal sewage.
Collapse
Affiliation(s)
- Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
45
|
Wu G, Zhang T, Gu M, Chen Z, Yin Q. Review of characteristics of anammox bacteria and strategies for anammox start-up for sustainable wastewater resource management. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1742-1757. [PMID: 33201840 DOI: 10.2166/wst.2020.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wastewater management has experienced different stages, including pollutant removal, resource recovery, and water nexus. Within these stages, anaerobic ammonia oxidation-based biotechnology can be incorporated for nitrogen removal, which can help achieve sustainable wastewater management, such as reclamation and ecologization of wastewater. Here, the physiology, metabolism, reaction kinetics and microbial interactions of anammox bacteria are discussed, and strategies to start-up the anammox system are presented. Anammox bacteria are slow growers with a high doubling time and a low reaction rate. Although most anammox bacteria grow autotrophically, some types can grow mixotrophically. The reaction stoichiometric coefficients can be affected by loading rates and other biological reactions. Microbial interactions also contribute to enhanced biological nitrogen removal and promote activities of anammox bacteria. The start-up of the anammox process is the key aspect for its practical application, which can be realized through seed selection, system stimulation, and biomass concentration enhancement.
Collapse
Affiliation(s)
- Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| | - Tianqi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| | - Mengqi Gu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| | - Zhuo Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| |
Collapse
|
46
|
Wang W, Xie H, Wang H, Xue H, Wang J, Zhou M, Dai X, Wang Y. Organic compounds evolution and sludge properties variation along partial nitritation and subsequent anammox processes treating reject water. WATER RESEARCH 2020; 184:116197. [PMID: 32712508 DOI: 10.1016/j.watres.2020.116197] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Reject water contains complex components of organic compounds, which have significant influences on the nitrogen removal performance when treated using biological autotrophic nitrogen removal technology. In this study, a two-stage partial nitritation (PN)-anammox (floc-granule) system was established to treat reject water (COD/NH4+-N = 0.97 ± 0.15), and the evolution of organic compounds along PN and annamox bioreactors was investigated using gas chromatography-mass spectrometry and excitation-emission matrix. Also, the variation of PN and anammox sludge properties relating to COD reduction was examined. The PN-anammox system removed approximately 80% of total inorganic nitrogen and COD with hydraulic reaction time of 16 h. The influent organics (330-600 mg COD/L) in reject water were primarily composed of volatile, protein-like and humic acid-like organic compounds. PN process contributed 53 ± 18% of the overall COD removal, primarily including oxygen-containing organics (e.g. phenol), proteins and humic acids. Anammox process contributed 22 ± 15% of the overall COD removal, but large molecule acids (e.g. lactic acid) and small molecule alcohols (e.g. glycerol) were reoccurred, contributing to the effluent COD with recalcitrant hydrocarbons (e.g. n-Octadecane). Reject water increased the extracellular proteins/polysaccharides ratio of PN and anammox sludge, promoting the adsorption and degradation of organic compounds. High-throughput sequencing results showed that denitrifying bacteria of Ottowia increased from 0.03% to 14.4% in PN reactor, and of Denitratisoma increased from 9.6% to 15.4% in anammox reactor. The occurrence of these denitrifiers might mitigate the negative impact of organics to functional organisms. This study highlights the organics fate during PN-anammox treatment system, which is important to maintain the robust nitrogen removal when treating organics-containing and high ammonium concentration wastewater.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Hongchao Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
47
|
Li Z, Peng Y, Gao H. A novel strategy for accelerating the recovery of a Fe(II)-inhibited anammox reactor by intermittent addition of betaine: Performance, kinetics and statistical analysis. CHEMOSPHERE 2020; 251:126362. [PMID: 32151808 DOI: 10.1016/j.chemosphere.2020.126362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
In this manuscript, Fe(II) inhibition of anammox and its recovery were investigated, and the performance, kinetics and statistical features were comprehensively studied simultaneously. Anammox was suppressed and completely inhibited by the addition of 109.29 and 378.57 mg/L Fe(II), respectively, via uncompetitive inhibition. Nitrite inhibition of anammox was best fitted by the Edwards model and Aiba model. EDTA-2Na wash (0.5, 1.0, 1.5, and 2.0 mM) had a limited effect on anammox recovery, while the addition of 2.0 mM betaine accelerated anammox recovery. Prolonged betaine addition caused an unintended reduction of anammox activity, though it self-recovered after the withdrawal of betaine. The modified Boltzmann model most accurately simulated the processes of anammox recovery using the EDTA-2Na wash, betaine regulation and self-recovery, and the modified Stover-Kincannon model was able to assess the results of anammox recovery. The one-sample t-test was successfully applied to determine the effects of these three recovery strategies on inhibited anammox, which were short-term disinhibition or long-term recovery effects. The above-mentioned results demonstrate that an intermittent addition of betaine, which is a better alternative to frequently-used but poorly-degradable EDTA, may be a useful and environmentally friendly recovery strategy for Fe(II)-inhibited anammox reactor.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
48
|
Li Z, Peng Y, Gao H. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. BIORESOURCE TECHNOLOGY 2020; 305:123083. [PMID: 32145699 DOI: 10.1016/j.biortech.2020.123083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A long-term experiment in an anaerobic ammonium oxidation (anammox) reactor showed that anammox consortia could perform a stable and efficient Fe(II)-dependent dissimilatory nitrate reduction to ammonium (DNRA) coupled to the anammox (DNRA-anammox) process by controlling the EDTA-2Na/Fe(II) ratio and pH, with a total nitrogen removal rate (TNRR) of 0.23 ± 0.01 kg-N/m3/d. Anammox bacteria (Candidatus Kuenenia) were the dominant and functional microbes in such a nitrate wastewater treatment system. Visual MINTEQ analysis showed that the EDTA-2Na/Fe(II) molar ratio affected the influent composition of Fe and EDTA species and hence nitrate removal, while pH influenced both nitrate removal and the coupling degree of the Fe(II)-dependent DNRA-anammox process due to its own physiology. The kinetic simulation results showed that excess EDTA-2Na imposed a competitive inhibition on the Fe(II)-dependent DNRA-anammox process, and the Bell-shaped (A), (B), (C) and Ratkowsky models could be used to explore the pH dependency of the Fe(II)-dependent DNRA-anammox process.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
49
|
Han X, Peng S, Zhang L, Lu P, Zhang D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. CHEMOSPHERE 2020; 247:125968. [PMID: 32069733 DOI: 10.1016/j.chemosphere.2020.125968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
It was revealed that Anammox process promotes the anaerobic degradation of benzene under denitrification. This study investigates the effect of dissimilatory nitrate reduction to ammonium (DNRA) and exogenous ammonium on anaerobic ammonium oxidation bacteria (AnAOB) during the anaerobic degradation of benzene under denitrification. The results indicate that anammox occurs synergistically with organisms using the DNRA pathway, such as Draconibacterium and Ignavibacterium. Phylogenetic analysis showed 64% (16/25) and 36% (5/25) hzsB gene sequences, a specific biomarker of AnAOB, belonged to Candidatus 'Brocadia fuldiga' and Candidatus 'Kuenenia', respectively. Exogenous ammonium addition enhanced the anammox process and accelerated benzene degradation at a 1.89-fold higher average rate compared to that in the absence of exogenous ammonium and AnAOB belonged to Ca. 'Kuenenia' (84%) and Ca. 'Brocadia fuldiga' (16%). These results indicate that Ca. 'Brocadia fuldiga' could also play a role in DNRA. However, the diversity of abcA and bamA, the key anaerobic benzene metabolism biomarkers, remained unchanged. These findings suggest that anammox occurrence may be coupled with DNRA or exogenous ammonium and that anammox promotes anaerobic benzene degradation under denitrifying conditions. The results of this study contribute to understanding the co-occurrence of DNRA and Anammox and help explore their involvement in degradation of benzene, which will be crucial for directing remediation strategies of benzene-contaminated anoxic environment.
Collapse
Affiliation(s)
- Xinkuan Han
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Shuchan Peng
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| |
Collapse
|
50
|
Guo Y, Niu Q, Sugano T, Li YY. Biodegradable organic matter-containing ammonium wastewater treatment through simultaneous partial nitritation, anammox, denitrification and COD oxidization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136740. [PMID: 32018962 DOI: 10.1016/j.scitotenv.2020.136740] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
For both nitrogen and COD removal from biodegradable organic matter (BOM)-containing ammonium wastewater, the simultaneous partial nitritation, anammox, denitrification and COD oxidization (SNADCO) process is a promising solution. In this study, with the stable influent ammonium concentration of 250.0 mg/L (nitrogen loading rate of 0.5 kg/m3/d) and the variation of influent COD/NH4+-N (C/N) ratio from 0.0 to 1.6, the performance of the SNADCO process in a one-stage carrier-packing airlift reactor with continuous mode was investigated for the first time. The results showed that until the C/N ratio of 0.8, both the well nitrogen and COD removal targets could be reached. Mass balance calculations indicated that the average nitrogen removal efficiency (NRE) of 80.9% achieved at the C/N ratio of 0.8 were due to both the anammox and denitrification pathways. Correspondingly, the achieved average COD removal efficiency of 94.6% was attributed to both the denitrification and COD oxidization pathways. Based on the specific sludge activity tests and Fluorescence in Situ Hybridization observation, anammox and denitrification bacteria were mainly distributed in the biofilm sludge, while ammonium oxidizing bacteria and ordinary heterotrophic organisms were mainly in the suspended sludge. At the C/N ratio of 1.6, the washout of suspended sludge became serious while the biofilm sludge was well retained, resulting in inefficient nitritation and a subsequent decrease in NRE. The microbial interaction analysis provided a clear explanation of the performance change of the SNADCO process under different C/N ratios. This research enriches the knowledge of the SNADCO process in BOM-containing ammonium wastewater treatment.
Collapse
Affiliation(s)
- Yan Guo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Takumi Sugano
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|