1
|
Huang D, Wang L, Li K, Liu L, Chen X, He L, Wang L, Song A. Alkali-assisted extraction, characterization and encapsulation functionality of enzymatic hydrolysis-resistant prolamin from distilled spirit spent grain. Int J Biol Macromol 2024; 271:132664. [PMID: 38801853 DOI: 10.1016/j.ijbiomac.2024.132664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Curcumin is a natural lipophilic polyphenol that exhibits significant various biological properties such as antioxidant and anti-inflammatory properties following oral administration. However, its uses have shown limitations concerning aqueous solubility, bioavailability and biodegradability that could be improved by prolamin-based nanoparticle. In this study, curcumin was encapsulated into prolamin from sorghum (SOP) and wheat (WHP) and distilled spirit spent grain (DSSGP), which was obtained after microbial proteolysis of the former two cereal grains. All the three prolamins showed clear variation of protein profiles and microstructure as confirmed by electrophoresis analysis, disulfide bond determination and Fourier-transform infrared spectroscopy (FTIR). For curcumin-loaded nanospheres (NPs) fabrication, three prolamin-based NPs shared features of spherical shape, uniform particle size, and smooth surface. The average size ranged from 122 to 193 nm depending on the prolamin variety and curcumin loading. In the experiments in vitro, curcumin showed significantly improved UV/thermal stability. Furthermore, DSSGP was more resistant to enzymatic digestion in vitro, hence achieving the controlled release of curcumin in gastrointestinal tract. Collectively, the results indicated the improved bioavailability and biodegradability of curcumin encapsulated by DSSGP, which would be an innovative potential encapsulant for effective protection and targeted delivery of hydrophobic compounds.
Collapse
Affiliation(s)
- Diandian Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lingyuan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Keting Li
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Xingyi Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Angxin Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
2
|
Yu L, An Z, Xie D, Yin D, Xie G, Gao X, Xiao Y, Liu J, Fang Z. From waste to protein: a new strategy of converting composted distilled grain wastes into animal feed. Front Microbiol 2024; 15:1405564. [PMID: 38881654 PMCID: PMC11176434 DOI: 10.3389/fmicb.2024.1405564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Distilled grain waste (DGW) is rich in nutrients and can be a potential resource as animal feed. However, DGW contains as much as 14% lignin, dramatically reducing the feeding value. White-rot fungi such as Pleurotus ostreatus could preferentially degrade lignin with high efficiency. However, lignin derivatives generated during alcohol distillation inhibit P. ostreatus growth. Thus, finding a new strategy to adjust the DGW properties to facilitate P. ostreatus growth is critical for animal feed preparation and DGW recycling. In this study, three dominant indigenous bacteria, including Sphingobacterium thermophilum X1, Pseudoxanthomonas byssovorax X3, and Bacillus velezensis 15F were chosen to generate single and compound microbial inoculums for DGW composting to prepare substrates for P. ostreatus growth. Compared with non-inoculated control or single microbial inoculation, all composite inoculations, especially the three-microbial compound, led to faster organic metabolism, shorter composting process, and improved physicochemical properties of DGW. P. ostreatus growth assays showed the fastest mycelial colonization (20.43 μg·g-1 ergosterol) and extension (9 mm/d), the highest ligninolytic enzyme activities (Lac, 152.68 U·g-1; Lip, 15.56 U·g-1; MnP, 0.34 U·g-1; Xylanase, 10.98 U·g-1; FPase, 0.71 U·g-1), and the highest lignin degradation ratio (30.77%) in the DGW sample after 12 h of composting with the three-microbial compound inoculation when compared to other groups. This sample was relatively abundant in bacteria playing critical roles in amino acid, carbohydrate, energy metabolism, and xenobiotic biodegradation, as suggested by metagenomic analysis. The feed value analysis revealed that P. ostreatus mycelia full colonization in composted DGW led to high fiber content retention and decreased lignin content (final ratio of 5% lignin) but elevated protein concentrations (about 130 g·kg-1 DM). An additional daily weight gain of 0.4 kg/d was shown in cattle feeding experiments by replacing 60% of regular feed with it. These findings demonstrate that compound inoculant consisting of three indigenous microorganisms is efficient to compost DGW and facilitate P. ostreatus growth. P. ostreatus decreased the lignin content of composted DGW during its mycelial growth, improving the quality of DGW for feeding cattle.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zichao An
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Dengdeng Xie
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Diao Yin
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Xuezhi Gao
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
3
|
Liu Z, Fan W, Xu Y. Synthesis and characterisation of K 2CO 3-activated carbon produced from distilled spent grains for the adsorption of CO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34726-34737. [PMID: 38714615 DOI: 10.1007/s11356-024-33584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
Activated carbon was prepared from distilled spent grains (DSG) using K2CO3 activation and chitosan modification. The effects of activator dosage, activation temperature, and the incorporation of chitosan as a nitrogen source on the adsorption performance were studied in this paper. The activated carbons were characterised by scanning electron microscopy, X-ray photoelectron spectroscopy, and nitrogen and carbon dioxide gas adsorption. Under the optimal conditions, the BET-specific surface area, total pore volume, and microporous volume of the activated carbon were as high as 1142 m2/g, 0.62 cm3/g, and 0.40 cm3/g, respectively. Chitosan was used as the nitrogen source, and surface modification was carried out concurrently with the K2CO3 activation process. The results revealed a carbon dioxide adsorption capacity of 5.2 mmol/g at 273.15 K and 1 bar without a nitrogen source, which increased to 5.76 mmol/g after chitosan modification. The isosteric heat of adsorption of CO2 all exceed 20 kJ/mol, hinting at the coexistence of both physisorption and chemisorption. The adsorption behaviour of the DSG-based activated carbon can be well-described by the Freundlich model.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China
| | - Wenlai Fan
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
4
|
Wang SP, Sun ZY, An MZ, Wang TT, Xia ZY, Tang YQ. Continuous thermophilic composting of distilled grain waste improved organic matter stability and succession of bacterial community. BIORESOURCE TECHNOLOGY 2024; 394:130307. [PMID: 38199442 DOI: 10.1016/j.biortech.2024.130307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Ming-Zhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644007, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zahra K, Farhan M, Kanwal A, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ. Investigating the role of bulking agents in compost maturity. Sci Rep 2023; 13:16003. [PMID: 37749113 PMCID: PMC10520060 DOI: 10.1038/s41598-023-41891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Kitchen waste is increasing globally, similarly in Pakistan bulk of municipal solid waste comprises of kitchen waste specifically, tea waste. Composting of kitchen waste is one of the promising ways to convert waste into useful product, resulting into zero waste. This study is aimed to convert waste (kitchen waste) in to a resource (compost) using bulking agents (tea waste and biochar) for reducing maturity time. Secondly, compost application on Solanum lycopersicum (tomato) was also tested. Four compost treatments were designed under aerobic composting conditions for 30 days. Tea waste and biochar have accelerated the maturity rate and produced a nutrient rich compost. Final compost had Electrical Conductivity of 2mS/cm, Carbon Nitrogen ration of 15, 54% of organic matter, 15% of moisture content, 48% of cellulose content, and 28% of Lignin content. With the use of Co-compost the Solanum lycopersicum showed 133% germination index, 100% germination, 235% Munoo-Liisa Vitality Index and 1238% seed vigor index. Co-compost also improved the soil total nitrogen by 1.4%, total phosphorous by 2%, total potassium by 2.1% and bulk density by 2.6 gcm-3. This study successfully used tea waste and biochar as bulking agents to reduce maturation time to 30 days. Tea waste and biochar enhanced the organic matter degradation, lignocellulose degradation, water holding capacity, porosity, seed's vigor, germination index. This research can be helpful in developing home composting and home gardening to combat solid waste management and food security issue in developing countries.
Collapse
Affiliation(s)
- Khadija Zahra
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Faiza Sharif
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Gul Zareen Ghafoor
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| |
Collapse
|
6
|
Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162522. [PMID: 36868270 DOI: 10.1016/j.scitotenv.2023.162522] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Despite the role of microorganisms in nitrogen biotransformation has been extensively explored, how microorganisms mitigate NH3 emissions in the transformation of nitrogen throughout the composting system is rarely addressed. The present study explored the effect of microbial inoculants (MIs) and the contribution of different composted phases (solid, leachate, and gas) on NH3 emissions by constructing a co-composting system of kitchen waste and sawdust with and without the addition of MI. The results showed that NH3 emissions increased markedly after adding MIs, in which the contribution of leachate ammonia volatilization to NH3 emissions was most prominent. The core microorganisms of NH3 emission had a clear proliferation owing to the MIs reshaping community stochastic process. Also, MIs can strengthen the co-occurrence between microorganisms and functional genes of nitrogen to promote nitrogen metabolism. In particular, the abundances of nrfA, nrfH, and nirB genes, which could augment the dissimilatory nitrate reduction process, were increased, thus enhancing NH3 emissions. This study bolsters the fundamental, community-level understanding of nitrogen reduction treatments for agricultural.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
7
|
Peng XY, Wang SP, Chu XL, Sun ZY, Xia ZY, Xie CY, Gou M, Tang YQ. Valorizing kitchen waste to produce value-added fertilizer by thermophilic semi-continuous composting followed by static stacking: Performance and bacterial community succession analysis. BIORESOURCE TECHNOLOGY 2023; 373:128732. [PMID: 36774986 DOI: 10.1016/j.biortech.2023.128732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
To explore an effective decentralized kitchen waste (KW) treatment system, the performance and bacterial community succession of thermophilic semi-continuous composting (TSC) of KW followed by static stacking (SS) was studied. A daily feeding ratio of 10% ensured stable performance of TSC using an integrated automatic reactor; the efficiencies of organic matter degradation and seed germination index (GI) reached 80.88% and 78.51%, respectively. SS for seven days further promoted the quality of the compost by improving the GI to 91.58%. Alpha- and beta-diversity analyses revealed significant differences between the bacterial communities of TSC and SS. Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Myxococcota were dominant during the TSC of KW, whereas the members of Proteobacteria and Bacteroidetes responsible for product maturity rapidly proliferated during the subsequent SS and ultimately dominated the compost with Firmicutes and Actinobacteria. These results provide new perspectives for decentralized KW treatment using TSC for practical applications.
Collapse
Affiliation(s)
- Xiang-Yu Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiu-Lin Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
8
|
Wang SP, Li XX, Sun ZY, Shuai WL, Xia ZY, Xie CY, Gou M, Tang YQ. Evaluation of physicochemical properties, bacterial community, and product fertility during rice straw composting supplemented with different nitrogen-rich wastes. BIORESOURCE TECHNOLOGY 2023; 369:128462. [PMID: 36503087 DOI: 10.1016/j.biortech.2022.128462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the compostability of rice straw as the main feedstock (75 % in dry weight), supplemented with three different nitrogen-rich wastes, namely food waste (FW), dairy manure (DM), and sewage sludge (SS). Organic matter (OM) degradation, maturity and fertility of the end-product, and bacterial community structure during the composting processes were compared. All composting processes generated mature end-product within 51 days. Notably, FW addition was more effective to accelerate rice straw OM degradation and significantly improved end-product fertility with a high yield of Chinese cabbage. The succession of the bacterial community was accelerated with FW supplementation. Genera Geobacillus, Chryseolinea, and Blastocatella were significantly enriched during the composting of rice straw with FW supplementation. Finally, temperature, total nitrogen, moisture, pH, and total carbon were the key factors affecting microorganisms. This study provides a promising alternative method to enhance the disposal of larger amounts of rice straw in a shorter time.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiao-Xing Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wen-Liang Shuai
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
9
|
Zhang S, Zhong B, An X, Han Y, Xiao X, Zhang Q. Effect of moisture content on the evolution of bacterial communities and organic matter degradation during bioaugmented biogas residues composting. World J Microbiol Biotechnol 2022; 39:1. [PMID: 36344669 DOI: 10.1007/s11274-022-03454-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Composting is an excellent way to recycle biogas residues into a stable, non-toxic agricultural end product. In this study, the dynamic changes of physical-chemical parameters and bacterial community in three groups of bioaugmentation composting systems at different moisture contents (MC) of 50% (MC50), 60% (MC60) and 70% (MC70) were monitored. The differences of bacterial communities in composts with different initial MC were compared, and the interaction between biological and non-biological parameters was also explored. The results revealed that after 30 days of composting, the biogas residues compost in MC60 reached highest temperature of 64 °C, total Kjeldahl nitrogen (TKN) of 2%, seed germination index (GI) of 110%, and the longest thermophilic period duration of 5 days (55 °C). Additionally, the result of high-throughput sequencing showed that the diversity of bacterial communities in MC60 was the highest, and the abundance of Actinobacteria (16.93-52.63%), Firmicutes (8.71-56.75%), and Proteobacteria (16.88-46.95%) in all groups were the highest at phylum level. The LEfSe analysis indicated that the abundance of Ochrobactrum and Cellulomonadaceae in MC60 was significantly (p < 0.05) higher than with other treatments. Moreover, canonical correspondence analysis (CCA) indicated thermophilic period duration is significantly (p < 0.05) positively correlated with Paenibacillus. Besides, it was found the relative abundance of Nocardiopsis and Georgenia has a significant (p < 0.01) correlation with the fertilizer efficiency of compost. These results showed that controlling the initial moisture content at 60% can improve the maturity and fertilizer efficiency of compost, and enable the bacteria beneficial to composting to gain the advantage of proliferation.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
10
|
Wang SP, Gao Y, Sun ZY, Peng XY, Xie CY, Tang YQ. Thermophilic semi-continuous composting of kitchen waste: Performance evaluation and microbial community characteristics. BIORESOURCE TECHNOLOGY 2022; 363:127952. [PMID: 36108941 DOI: 10.1016/j.biortech.2022.127952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the feasibility, system stability, and microbial community succession of thermophilic semi-continuous composting of kitchen waste (KW). The results revealed that treatment performance was stable at a 10 % feeding ratio, with an organic matter (OM) degradation efficiency of 81.5 % and seed germination index (GI) of 50.0 %. Moreover, the OM degradation efficiency and GI were improved to 83.4 % and 70.0 %, respectively, by maintaining an optimal compost moisture content (50-60 %). However, feeding ratios of ≥ 20 % caused deterioration of the composter system owing to OM overloading. Microbial community analysis revealed that Firmicutes, Actinobacteria, Chloroflexi, Proteobacteria, and Gemmatimonadetes were dominant. Additionally, moisture regulation significantly increased the Proteobacteria abundance by 57.1 % and reduced the Actinobacteria abundance by 57.8 %. Moreover, network analysis indicated that the bacterial community stability and positive interactions between genera were enhanced by moisture regulation. This information provides a useful reference for practical KW composting treatment in the semi-continuous mode.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yang Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Xiang-Yu Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|
12
|
He J, Zhu N, Xu Y, Wang L, Zheng J, Li X. The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting. BIORESOURCE TECHNOLOGY 2022; 351:126973. [PMID: 35292388 DOI: 10.1016/j.biortech.2022.126973] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
This study investigated effects of composite microbes (CMs) (Phanerochaete chrysosporium and Trichoderma longibrachiatum) on humification during co-composting of biogas residue, spent mushroom substrate and rice straw. Results showed that CMs inoculation elevated degradation ratios of cellulose, hemicellulose and lignin by 7.86%, 8.87% and 6.45%, and contents of humus and humic acid were correspondingly promoted by 15.5% and 23.6%, respectively. Relative abundances of bacteria associated with refractory macromolecules degradation (Flavobacterium, Anseongella and Actinomadura) and cellulolytic fungi (Hypocreales_Incertae_sedis, Hypocreaceae and Psathyrellaceae) were raised by CMs addition. Redundancy analysis demonstrated a positive correlation between microbial communities and temperature, fulvic acid and lignocellulose contents. Moreover, CMs inoculation promoted pathways of xenobiotics biodegradation and metabolism, and biosynthesis of other secondary metabolites, which was closely associated with lignocellulose degradation and humus formation. These results suggested that biological inoculation could enhance composting efficiency and improve compost quality, benefiting biogas residues composting.
Collapse
Affiliation(s)
- Jing He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Nengmin Zhu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yansheng Xu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Li Wang
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Jiaqiang Zheng
- Hainan Chuanfu Agricultural Development Co., Ltd, Sanya 572024, China
| | - Xia Li
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
13
|
Wang SP, Wang L, Sun ZY, Wang ST, Yuan HW, An MZ, Tang YQ, Shen CH, Kida K. Effect of distillery sewage sludge addition on performance and bacterial community dynamics during distilled grain waste composting. BIORESOURCE TECHNOLOGY 2022; 345:126486. [PMID: 34871724 DOI: 10.1016/j.biortech.2021.126486] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the dynamics of physicochemical characteristics and bacterial communities during the co-composting of distilled grain waste (DGW) and distillery sewage sludge (SS), with DGW mono-composting as a control. Results showed that co-composting with SS significantly improved DGW degradation efficiency (61.38% vs. 54.13%) and end-product quality (seed germination index: 129.82% vs. 113.61%; N + P2O5 + K2O: 9.08% vs. 5.28%), compared to DGW mono-composting. Microbial community analysis revealed that co-composting accelerated the bacterial community succession rate and enhanced the abundance of the phyla Proteobacteria, Firmicutes, Chloroflexi, and Deinococcota by 45.86%, 4.38%, 37.49%, and 15.29%, respectively. Network analysis showed that DGW-SS co-composting altered the interactions among the bacterial genera and improved bacterial community stability. Spearman correlation analysis indicated that the correlation between bacterial genera and environmental factors was more significant in DGW-SS co-composting. Therefore, co-composting of DGW and SS is a suitable strategy for the treatment of solid byproducts from spirit distilleries.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | | | - Hua-Wei Yuan
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Ming-Zhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644007, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | | | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Yu C, Li M, Zhang B, Xin Y, Tan W, Meng F, Hou J, He X. Hydrothermal pretreatment contributes to accelerate maturity during the composting of lignocellulosic solid wastes. BIORESOURCE TECHNOLOGY 2022; 346:126587. [PMID: 34933104 DOI: 10.1016/j.biortech.2021.126587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The aim of this work was to study the optimal conditions and mechanism of lignocellulose degradation in the hydrothermal pretreatment coupled with aerobic fermentation (HTPAF). The optimized process parameters in the hydrothermal pretreatment (HTP) were discussed. The response relationship between enzyme activity and microbial community in HTPAF were explored. The results showed that with the moisture content of 50%-90%, the lignin content decreased by 150 mg/g after treatment at 120 °C for 6 h, and a loose pore structure was formed on the surface of the chestnut shells after HTP. The compost maturity time was shortened to 12 days. The dominant microbial genera in HTPAF were Gallicola, Moheibacter and Atopostipes, which were significant different with that of the traditional composting. HTPAF is beneficial to increase the maximum temperature of aerobic fermentation and quickly degrade lignin to shorten the maturity time.
Collapse
Affiliation(s)
- Chengze Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
15
|
Lin C, Cheruiyot NK, Bui XT, Ngo HH. Composting and its application in bioremediation of organic contaminants. Bioengineered 2022; 13:1073-1089. [PMID: 35001798 PMCID: PMC8805880 DOI: 10.1080/21655979.2021.2017624] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This review investigates the findings of the most up-to-date literature on bioremediation via composting technology. Studies on bioremediation via composting began during the 1990s and have exponentially increased over the years. A total of 655 articles have been published since then, with 40% published in the last six years. The robustness, low cost, and easy operation of composting technology make it an attractive bioremediation strategy for organic contaminants prevalent in soils and sediment. Successful pilot-and large-scale bioremediation of organic contaminants, e.g., total petroleum hydrocarbons, plasticizers, and persistent organic pollutants (POPs) by composting, has been documented in the literature. For example, composting could remediate >90% diesel with concentrations as high as 26,315 mg kg−a of initial composting material after 24 days. Composting has unique advantages over traditional single- and multi-strain bioaugmentation approaches, including a diverse microbial community, ease of operation, and the ability to handle higher concentrations. Bioremediation via composting depends on the diverse microbial community; thus, key parameters, including nutrients (C/N ratio = 25–30), moisture (55–65%), and oxygen content (O2 > 10%) should be optimized for successful bioremediation. This review will provide bioremediation and composting researchers with the most recent finding in the field and stimulate new research ideas.
Collapse
Affiliation(s)
- Chitsan Lin
- Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.).,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Vietnam.,Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (Hcmut), Ho Chi Minh City, Vietnam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
16
|
Sohal B, Ahmad Bhat S, Vig AP. Vermiremediation and comparative exploration of physicochemical, growth parameters, nutrients and heavy metals content of biomedical waste ash via ecosystem engineers Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112891. [PMID: 34649139 DOI: 10.1016/j.ecoenv.2021.112891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Vermicomposting of Biomedical waste ash (BA) by the earthworm Eisenia fetida was studied with cow dung (CD) as nutrient medium. For 105 days, experiment was carried out in seven vermireactors containing varying ratios of BA and CD. Earthworm activity significantly reduced the pH (8.61-7.24), Electrical conductivity (EC) (4.1-1.62), Total organic carbon (TOC) (38.6-14.92), and Carbon and nitrogen (C/N ratios) (145.4-8.2) of all BA ratios. Levels of Total kjeldahl nitrogen (TKN) (0.26-1.82), Total available phosphorus (TAP) (0.22-0.64), Total potassium (TK) (2.05-12.08), and Total sodium (TNa) (47.53-92.26) were found to be increasing in the postvermicompost mixture. Although heavy metals content decreased from initial to final, it becomes below the permissible limits in the end product. The results showed that earthworm growth and fecundity were best in vermireactors containing 10-25% of BA. The best reproduction and growth of earthworms, demonstrate the vermicomposting's ability to manage hazardous solid wastes like BA. Use of vermitechnology to manage BA has not been performed yet in any kind of the research. Finally, it was determined that vermicomposting can be incorporated into overall plan for BA management. Thus nutrient-rich, detoxified, and physiochemically stable product may be used safely in agricultural processes.
Collapse
Affiliation(s)
- Bhawana Sohal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Sartaj Ahmad Bhat
- River Basin Research center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Environmental Sciences, Government Degree College Anantnag, Khanabal, Jammu and Kashmir 192101, India.
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
17
|
Wu S, Zhou R, Ma Y, Fang Y, Xie G, Gao X, Xiao Y, Liu J, Fang Z. Development of a consortium-based microbial agent beneficial to composting of distilled grain waste for Pleurotus ostreatus cultivation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:242. [PMID: 34920748 PMCID: PMC8684267 DOI: 10.1186/s13068-021-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Pleurotus ostreatus is an edible mushroom popularly cultivated worldwide. Distilled grain waste (DGW) is a potential substrate for P. ostreatus cultivation. However, components in DGW restrict P. ostreatus mycelial growth. Therefore, a cost-effective approach to facilitate rapid P. ostreatus colonization on DGW substrate will benefit P. ostreatus cultivation and DGW recycling. RESULTS Five dominant indigenous bacteria, Sphingobacterium sp. X1, Ureibacillus sp. X2, Pseudoxanthomonas sp. X3, Geobacillus sp. X4, and Aeribacillus sp. X5, were isolated from DGW and selected to develop a consortium-based microbial agent to compost DGW for P. ostreatus cultivation. Microbial agent inoculation led to faster carbohydrate metabolism, a higher temperature (73.2 vs. 71.2 °C), a longer thermophilic phase (5 vs. 3 days), and significant dynamic changes in microbial community composition and diversity in composts than those of the controls. Metagenomic analysis showed the enhanced microbial metabolisms, such as xenobiotic biodegradation and metabolism and terpenoid and polyketide metabolism, during the mesophilic phase after microbial agent inoculation, which may facilitate the fungal colonization on the substrate. In accordance with the bioinformatic analysis, a faster colonization of P. ostreatus was observed in the composts with microbial inoculation than in control after composting for 48 h, as indicated from substantially higher fungal ergosterol content, faster lignocellulose degradation, and higher lignocellulase activities in the former than in the latter. The final mushroom yield shared no significant difference between composts with microbial inoculation and control, with 0.67 ± 0.05 and 0.60 ± 0.04 kg fresh mushroom/kg DGW, respectively (p > 0.05). CONCLUSION The consortium-based microbial agent comprised indigenous microorganisms showing application potential in composting DGW for providing substrate for P. ostreatus cultivation and will provide an alternative to facilitate DGW recycling.
Collapse
Affiliation(s)
- Sibao Wu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Rongrong Zhou
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Yuting Ma
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Yong Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., LTD, Fuyang, 341200, Anhui, China
| | - Xuezhi Gao
- Livestock and Poultry Breeding Service Center of Fuyang City, Fuyang, 341200, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| |
Collapse
|
18
|
Bacterial Community Structure and Metabolic Function Succession During the Composting of Distilled Grain Waste. Appl Biochem Biotechnol 2021; 194:1479-1495. [PMID: 34748150 DOI: 10.1007/s12010-021-03731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Distilled grain waste (DGW) can be converted to organic fertilizer via aerobic composting process without inoculating exogenous microorganisms. To illustrate the material conversion mechanism, this study investigated the dynamic changes of bacterial community structure and metabolic function involved in DGW composting. Results showed that a significant increase in microbial community alpha diversity was observed during DGW composting. Moreover, unique community structures occurred at each composting stage. The dominant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Myxococcota, and Chloroflexi, whose abundance varied according to different composting stages. Keystone microbes can be selected as biomarkers for each stage, and Microbispora, Chryseolinea, Steroidobacter, Truepera, and Luteimonas indicating compost maturity. Co-occurrence network analysis revealed a significant relationship between keystone microbes and environmental factors. The carbohydrate and amino acid metabolism were confirmed as the primary metabolic pathways by metabolic function profiles. Furthermore, nitrogen metabolism pathway analysis indicated that denitrification and NH3 volatilization induced higher nitrogen loss during DGW composting. This study can provide new understanding of the microbiota for organic matter and nitrogen conversion in the composting process of DGW.
Collapse
|
19
|
Wang Y, Tang Y, Li M, Yuan Z. Aeration rate improves the compost quality of food waste and promotes the decomposition of toxic materials in leachate by changing the bacterial community. BIORESOURCE TECHNOLOGY 2021; 340:125716. [PMID: 34385125 DOI: 10.1016/j.biortech.2021.125716] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The effect of aeration rates on maturity, leachate and bacterial community succession during a pilot-scale food waste composting were evaluated. Out of the four aeration rates (0.44, 3.25, 6.50 and 11.65 L kg-1 DM initial min-1 for T1, T2, T3 and T4, respectively) that were conducted, results found T2 to be the recommended ventilation rate considering the quality of compost and the leachate utilization. Higher ventilation increased germination index of diluted leachate. The abundance of Proteobacteria in mesophilic stage (35.5%) and Actinobacteria in cooling stage (30.6%) in T4 were higher than in other groups (7.9%-17.5%), suggesting the formation of a select community categorized by the capacity of degrading the organic matter and promoting maturity. The key bacteria of aeration-shaped bacterial communities such as Sporosarcina, Pseudomonas and Thermobifida were identified and they could be manipulated by increasing NH4+, NO3- contents and pH in the initial stage of composting.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mengyao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Zhong B, An X, An W, Xiao X, Li H, Xia X, Zhang Q. Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. BIORESOURCE TECHNOLOGY 2021; 340:125742. [PMID: 34426239 DOI: 10.1016/j.biortech.2021.125742] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, six strains belonging to Alcaligenes, Enterobacter and Bacillus were employed to enhance the composting process of biogas residues and agricultural wastes. The dynamic changes of dissolved organic matter (DOM), microbial community and functional genes in composting was monitored. It was found bioaugmentation reduced the content of lignocellulose in the compost by 27.14-66.30%, and increased the seed germination index (GI) of the compost by 37.59%. Metagenomics analysis of the composting process indicated Proteobacteria (35.38%-64.19%), Actinobacteria (11.24%-28.93%) and Bacteroidetes (3.65%-9.57%) are the dominant microorganisms during the bioaugmented composting. The abundance of genes associated with glycoside hydrolase was obviously enhanced and the antibiotic resistance genes (ARGs) was significantly reduced during the bioaugmented composting. Following nursery investigation indicated the seedling substrates composed of bioaugmented compost increased the dry weight of tomato seedlings by 1.7 times, revealing obvious large-scale application potential in the resource utilization of agricultural wastes.
Collapse
Affiliation(s)
- Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Weijuan An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Hanguang Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xiang Xia
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
21
|
Wang SP, Wang L, Sun ZY, Wang ST, Shen CH, Tang YQ, Kida K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. BIORESOURCE TECHNOLOGY 2021; 337:125492. [PMID: 34320771 DOI: 10.1016/j.biortech.2021.125492] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the impact of biochar addition on nitrogen (N) loss and the process period during distilled grain waste (DGW) composting. Results from the five treatments (0, 5, 10, 15, and 20% biochar addition) indicated that 10% biochar addition (DB10) was optimal, resulting in the lowest N loss, 25.69% vs. 40.01% in the control treatment. Moreover, the DGW composting period was shortened by approximately 14 days by biochar addition. The composition of the microbial community was not significantly altered with biochar addition in each phase, however, it did accelerate the microbial succession during DGW composting. N metabolism pathway prediction revealed that biochar addition enhanced nitrification and inhibited denitrification, and the latter phenomenon was the main reason for reducing N loss during DGW composting. Based on the above results, a potential mechanism model for biochar addition to reduce N loss during the DGW composting process was established.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Li Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, China
| | - Cai-Hong Shen
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
22
|
Wang Z, Luo P, Zheng B. A Rapid and Sensitive Fluorescent Microsphere-Based Lateral Flow Immunoassay for Determination of Aflatoxin B1 in Distillers' Grains. Foods 2021; 10:foods10092109. [PMID: 34574219 PMCID: PMC8468960 DOI: 10.3390/foods10092109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a toxic compound naturally produced by the genera Aspergillus. Distillers' grains can be used as animal feed since they have high content of crude protein and other nutrients. However, they are easily contaminated by mycotoxins, and currently there are no rapid detection methods for AFB1 in distillers' grains. In this study, a lateral flow immunoassay (LFIA) based on red fluorescent microsphere (FM), is developed for quantitative detection of AFB1 in distillers' grains. The whole test can be completed within 15 min, with the cut-off value being 25.0 μg/kg, and the quantitative limit of detection (qLOD) being 3.4 μg/kg. This method represents satisfactory recoveries of 95.2-113.0%, and the coefficients of variation (CVs) are less than 7.0%. Furthermore, this technique is successfully used to analyze AFB1 in real samples, and the results indicates good consistency with that of high-performance liquid chromatography (HPLC). The correlation coefficient is found to be greater than 0.99. The proposed test strip facilitates on-site, cost-effective, and sensitive monitoring of AFB1 in distillers' grains.
Collapse
Affiliation(s)
- Zifei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Chinese Academy of Medical Science Research Unit (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Pengjie Luo
- Chinese Academy of Medical Science Research Unit (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83705076
| |
Collapse
|
23
|
Sohal B, Singh S, Singh SIK, Bhat SA, Kaur J, Singh J, Vig AP. Comparing the nutrient changes, heavy metals, and genotoxicity assessment before and after vermicomposting of thermal fly ash using Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48154-48170. [PMID: 33904127 DOI: 10.1007/s11356-021-13726-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Fly ash (FA) is available in an unstable state and can be ameliorated by vermicomposting. The different ratios of FA viz (FA10, FA15, FA20, FA25, FA50, FA75) were mixed with another organic waste, i.e., cattle dung. Supportive effects of FA were seen on the reproductive parameters of the earthworms up to FA25. Some beneficial changes have been reported in pH, EC, TOC, TKN, TAP, TNa, TK, and potentially toxic heavy metals (Zn, Cu, Cd, Co, Ni, Cr, Pb). The genotoxicity test was performed to assess the toxic effects of the fly ash which has not been done till now. Low genotoxicity potential and high onion root growth were observed in the post-vermicompost samples which were not even reported yet by any other study. These results clearly indicated that the vermicomposting process offers the best option to manage the FA by converting it into an ecofriendly, nutrient-rich, and properly detoxified manure with the help of earthworms which also indicate its economically best-fit applications for the large scale agricultural practices.
Collapse
Affiliation(s)
- Bhawana Sohal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | | | | | - Jagdeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jaswinder Singh
- Department of Zoology, Khalsa College, Amritsar, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
24
|
Xie X, Wang Y, Wei Z, Zhang Y, Zhang C, Zhang S, Yang H, Zhang X, Zhao Y. Continuous insulation strategy of organic waste composting in cold region: Based on cold-adapted consortium. BIORESOURCE TECHNOLOGY 2021; 335:125257. [PMID: 33991879 DOI: 10.1016/j.biortech.2021.125257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Compost is a self-heating process for organic waste. Microbes are the main executors in composting process. However, due to low temperature in winter and low efficiency of composting, a lot of heat is lost in composting. In this study, taking-out and feed-batch composting method (TFC) can supplement nutrition and improve composting microenvironment. Compared with NC, the amount of carbohydrates, protein and fat decomposed by TFC increase by 56.8%, 237% and 122%, respectively, in the composting start-up period (0-100 h). Structure and function of microbial community have changed due to stimulation of cold-adapted consortium. In addition, this study shows that core bacteria stimulate cooperation among different bacteria in the organic components metabolism networks. Finally, based on the important role of cold-adapted consortium, the sustainable heating strategy of composting system is put forward, which converts organic wastes into released heat for daily heating and hot water preparation, leading role of cold-adapted consortium.
Collapse
Affiliation(s)
- Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yihan Wang
- Department of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuang Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Possibilities of Using Organic Waste after Biological and Physical Processing—An Overview. Processes (Basel) 2021. [DOI: 10.3390/pr9091501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With a rapidly increasing amount of waste, waste management is an extremely important issue. Utilising processes such as combustion and biological processing significantly decreases the accumulation and volume of waste. Despite this, huge volumes of resulting waste that still need to be managed remain. This paper identifies various methods of processing organic waste, discussing both thermal and biological techniques for waste management. Additionally, this paper demonstrates that the end products remaining after processing waste are oftentimes functional for agricultural use. These materials are excellent byproducts used to produce various organic, mineral and organomineral fertilisers. For instance, it appears that the production of fertilisers is the most promising method of utilising fly ash that results from the combustion of waste. In order to minimise the environmental risk of polluting soil with heavy metals, waste, as well as ashes resulting from combustion, must meet the criteria for the limit of contaminants.
Collapse
|
26
|
Effect of Microbial Inoculation on Carbon Preservation during Goat Manure Aerobic Composting. Molecules 2021; 26:molecules26154441. [PMID: 34361594 PMCID: PMC8348721 DOI: 10.3390/molecules26154441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Carbon is the crucial source of energy during aerobic composting. There are few studies that explore carbon preservation by inoculation with microbial agents during goat manure composting. Hence, this study inoculated three proportions of microbial agents to investigate the preservation of carbon during goat manure composting. The microbial inoculums were composed of Bacillus subtilis, Bacillus licheniformis, Trichoderma viride, Aspergillus niger, and yeast, and the proportions were B1 treatment (1:1:1:1:2), B2 treatment (2:2:1:1:2), and B3 treatment (3:3:1:1:2). The results showed that the contents of total organic carbon were enriched by 12.21%, 4.87%, and 1.90% in B1 treatment, B2 treatment, and B3 treatment, respectively. The total organic carbon contents of B1 treatment, B2 treatment, and B3 treatment were 402.00 ± 2.65, 366.33 ± 1.53, and 378.33 ± 2.08 g/kg, respectively. B1 treatment significantly increased the content of total organic carbon compared with the other two treatments (p < 0.05). Moreover, the ratio of 1:1:1:1:2 significantly reduced the moisture content, pH value, EC value, hemicellulose, and lignin contents (p < 0.05), and significantly increased the GI value and the content of humic acid carbon (p < 0.05). Consequently, the preservation of carbon might be a result not only of the enrichment of the humic acid carbon and the decomposition of hemicellulose and lignin, but also the increased OTU amount and Lactobacillus abundance. This result provided a ratio of microbial agents to preserve the carbon during goat manure aerobic composting.
Collapse
|
27
|
Chang R, Li Y, Li N, Wu X, Chen Q. Effect of microbial transformation induced by metallic compound additives and temperature variations during composting on suppression of soil-borne pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111816. [PMID: 33321350 DOI: 10.1016/j.jenvman.2020.111816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Agricultural wastes can be modified by composting and reused in soil to suppress soil-borne pathogens, which was proved to be closely related with microbial parameters. However, the microbial community in compost can be directly altered by temperature variations and metallic compound additives during composting process. The present study collected samples in various stages of the 35-day composting process, in which a study control (no additives) and different metallic compound additives, including magnesium oxide (MgO), alum (AlK(SO4)3), calcium oxide (CaO) and ferrous sulfate (FeSO4), were set in the bespoke compost with cow dung and corn stalk. The results showed that the additives prolonged the composting maturity process, whereas no consistent influence on the temperature variation and microbial community was observed. Temperature variations during composting significantly varied the bacteria and fungi diversity and community, especially the bacteria phyla of Firmicutes and Proteobacteria, while the bacteria were shown similar in Day 14 and Day 35 by PCA analysis. Meanwhile the samples from Day 14 and Day 35 showed stable suppressive effects on R. solani. and F. oxysporum, especially in D14 shown as 73.12%-88.16% and 30.95-58.55%, respectively, which were significantly related with the phyla of Firmicutes and Proteobacteria. In conclusion, temperature variations during composting process had a more significant impact than metallic compound additives on the microbial community and diversity, which resulted in significantly influence on the pathogen suppression. Suitable composting duration could produce effective suppressive products on soil-borne pathogens, for which further study was needed.
Collapse
Affiliation(s)
- Ruixue Chang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Yuting Li
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Naihui Li
- College of Horticulture, Northeast Agricultural University, Harbin, 150038, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Zhang S, Wang J, Chen X, Gui J, Sun Y, Wu D. Industrial-scale food waste composting: Effects of aeration frequencies on oxygen consumption, enzymatic activities and bacterial community succession. BIORESOURCE TECHNOLOGY 2021; 320:124357. [PMID: 33166884 DOI: 10.1016/j.biortech.2020.124357] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Industrial-scale composting of food waste (FW) was performed at different aeration frequencies (C_5_25: 5 min aeration + 25 min interval, C_10_20: 10 min aeration + 20 min interval, C_15_15: 15 min aeration + 15 min interval and CK: stuffiness) to ascertain the optimal aeration frequency to accomplish polymerization and humification of compost. The tested aeration frequencies affected the oxygen uptake rate, oxygen spatial distribution, and ultimately influenced the humification of compost. Extensive aeration was not beneficial to accumulate nitrogen and phosphorus during composting. Aeration frequency influenced the succession of bacterial community primarily through affecting O2 concentration and the release of various enzymes by these bacteria. Regulating O2 concentration by adjusting aeration strategies may provide guidance for accelerating maturity of composting. Considering various factors, this paper recommends the scheme of heating period (C_5_25), thermophilic period (C_15_15) and psychrophilic period (no aeration).
Collapse
Affiliation(s)
- Shuchi Zhang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| | - Jingli Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| | - Xu Chen
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| | - Jiaxi Gui
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| | - Yue Sun
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| | - Donglei Wu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Wang W, Zhang L, Sun X. Improvement of two-stage composting of green waste by addition of eggshell waste and rice husks. BIORESOURCE TECHNOLOGY 2021; 320:124388. [PMID: 33197737 DOI: 10.1016/j.biortech.2020.124388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
With the development of urban greening and increases in the human population, the production of green waste (GW) has been increasing in China. Although GW is biodegradable, its composting is difficult because of its low degradation rate. This study focuses on how addition of eggshell waste (ESW; at 0, 10, and 20%) and/or rice husks (RH; at 0, 15, and 25%) affects the two-stage composting of GW on the basis of temperature, bulk density, particle-size distribution, pH, nitrogen changes, carbon dioxide emission, organic matter degradation, humic substances, the activities of microorganisms and enzymes, and the phytotoxicity to germinating seeds. The combined addition of 10% ESW and 25% RH produced the highest quality compost in the shortest time. To produce a stable and mature product, two-stage composting of GW required 30 days without additives but only 20 days with the combined addition of 10% ESW and 25% RH.
Collapse
Affiliation(s)
- Wei Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
30
|
Zhong XZ, Li XX, Zeng Y, Wang SP, Sun ZY, Tang YQ. Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. BIORESOURCE TECHNOLOGY 2020; 306:123091. [PMID: 32169511 DOI: 10.1016/j.biortech.2020.123091] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study the dynamic change in structure and potential function of bacterial community during dairy manure composting process using high-throughput sequencing and advanced bioinformatics tools. Alpha diversity of microbial community significantly decreased during the thermophilic phase and then recovered gradually. Beta diversity analysis showed unique community structures in different composting phases. Keystone microbes such as genus Corynebacterium, Bacillus, Luteimonas and Nonomuraea were identified for different composting phases. Six functional modules were identified for bacterial community during the composting process using co-occurrence analysis. These modules were significantly associated with temperature, pH, degradation of organic matter and maturation of compost. Predicted metagenomics analysis showed that the relative abundance of amino acid, lipid, energy and xenobiotics metabolism increased during the composting process. These results provide valuable insights into the microbiota during dairy manure composting and how the structures and metabolic functions changed in response to composting phases.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Xing Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Duan M, Zhang Y, Zhou B, Qin Z, Wu J, Wang Q, Yin Y. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure-straw composting. BIORESOURCE TECHNOLOGY 2020; 303:122868. [PMID: 32032936 DOI: 10.1016/j.biortech.2020.122868] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
This study is the first to investigate the changes in the composting process and carbon conversion in a cow manure-straw compost matrix with Bacillus subtilis added at four different levels (0, 0.5%, 1%, and 2% w/w compost), and to explain the mechanism responsible for carbon conversion through microbial functional metabolism. Inoculation with Bacillus subtilis at 2% had the best effect on fermentation among all treatments, but it inhibited the synthesis of total organic carbon and humus. Bacillus subtilis at 0.5% reduced mineralization in the cooling and maturity stages of composting, and enhanced the humification of carbon. The total organic carbon and humic sequence contents were significantly higher with Bacillus subtilis at 0.5% (12.5% and 20.2%, respectively) than Bacillus subtilis at 2% (P < 0.05). Redundancy analysis demonstrated that the pH and microbial functional metabolism were closely related to carbon sequestration during composting.
Collapse
Affiliation(s)
- Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yuhua Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Zhenlun Qin
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Junhu Wu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
32
|
Pattanaik L, Duraivadivel P, Hariprasad P, Naik SN. Utilization and re-use of solid and liquid waste generated from the natural indigo dye production process - A zero waste approach. BIORESOURCE TECHNOLOGY 2020; 301:122721. [PMID: 31986372 DOI: 10.1016/j.biortech.2019.122721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The main aim of this work is focused towards possible reuse of both solid and liquid waste generated from the natural indigo dye production process. The solid waste (C/N:15.01) was utilized to produce stable compost with possible re-use in Indigofera cultivation. Among seven compost combinations (C1-C7) using jeevamrutha (JA) and cow-dung (CD) as inoculum, C4 with 8% JA showed higher biomass degradation (51%) and plant growth potential (GI > 125%). Whereas the undiluted liquid waste was treated using algal consortia, bacteria, and indigenous microbial population, achieved a maximum removal of 90% ammonia, 82% nitrate, and 88% phosphorus for its re-use in the dye production process. Hence, incorporation of suitable waste management strategies in natural indigo dye production could help to achieve a zero waste sustainable process.
Collapse
Affiliation(s)
- Lopa Pattanaik
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - P Duraivadivel
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - P Hariprasad
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Satya Narayan Naik
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
33
|
Guo Y, Rene ER, Wang J, Ma W. Biodegradation of polyaromatic hydrocarbons and the influence of environmental factors during the co-composting of sewage sludge and green forest waste. BIORESOURCE TECHNOLOGY 2020; 297:122434. [PMID: 31787509 DOI: 10.1016/j.biortech.2019.122434] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The main aim of this research was to study the biodegradation of polycyclic aromatic hydrocarbons (PAHs) and the influence of environmental factors during composting in order to realize the utilization of PAHs contaminated sewage sludge. A production scale compost experiment was conducted with three mixtures of sewage sludge (SS): green forest waste (GFW) at quality ratios of 3:1 (T1), 3:2 (T2) and 3:3 (T3). The residual concentration of PAHs in the three treatments met the permissible limit prescribed by the Agricultural Sludge Pollutant Control Standard (GB 4284-2018). The biodegradation rates of PAHs were 0.0280, 0.0281 and 0.0218 mg/d, and removal efficiencies were 70.7%, 75.2% and 62.4% in T1, T2, T3, respectively, which followed the first-order rate kinetics. The residual concentration of PAHs in T2 was the lowest (1.81 mg/kg), while the germination index (GI) of Tall Fescues (~0.9) was the highest during 50 days of co-composting. The bacterial diversity negatively correlated with the residual PAHs content. The main genus, Bacillus, Pseudomonas and Methylotenera, with cellulose-degrading and PAHs co-metabolizing functions contributed significantly to sludge maturation and PAHs degradation. The dominant microorganisms, Pseudomonas, Sphingobacterium and Chitinophagaceae_uncultured, could support the high removal rate of PAHs in T2. Temperature, pH, total organic carbon (TOC), total nitrogen (TN) and carbon/nitrogen (C/N) ratio had significant positive effect on the compost maturity and quality, and these parameters correlated with the PAHs biodegradation efficiency during composting, especially in T2.
Collapse
Affiliation(s)
- Yating Guo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- IHE-Delft, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, the Netherlands
| | - Junjing Wang
- Beijing Drainage Group Technology Research and Development Center, Beijing 100124, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Zhong H, Liu X, Zhu L, Yang Y, Yan S, Zhang X. Bioelectrochemically-assisted vermibiofilter process enhancing stabilization of sewage sludge with synchronous electricity generation. BIORESOURCE TECHNOLOGY 2019; 289:121740. [PMID: 31323716 DOI: 10.1016/j.biortech.2019.121740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Bioelectrochemically-assisted vermifilter (VBFBE) with sewage sludge as the anode fuel was constructed to accelerate composting of sewage sludge, which could increase the quality of the compost and harvest electric energy in comparison with vermicomposting and electrochemical only. Results revealed that the sludge stabilization with a higher soluble chemical oxygen demand (SCOD) and lower NH4+-H during 40 days of composting. At the composting, pH, C/N, electrical conductivity (EC) and germination index (GI) results demonstrated that the maturity degree of VBFBE4 was higher than that of other VBFBE. The VBFBE4 yielded a voltage of 1.024 V and maximum power density of 105.28 mW/m2 on 3th day. The bacteria in VBFBE4 were richer and higher in terms of diversity than those in other VBFBE, that was demonstrated that combination vermicomposting and electrochemistry could improve the sludge stabilization degree, accelerate sludge composting process and enhance composting maturity.
Collapse
Affiliation(s)
- Huiyuan Zhong
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China.
| | - Xiao Liu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Li Zhu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Yong Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Shan Yan
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Xinyuan Zhang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| |
Collapse
|
35
|
Guo XX, Liu HT, Wu SB. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:501-510. [PMID: 30695750 DOI: 10.1016/j.scitotenv.2019.01.137] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 05/27/2023]
Abstract
Aerobic composting is a typical biochemical process of stabilization and harmlessness of organic wastes during which organic matter degrades, and then aggregates, to produce humic substances (HSs). HSs are a core product of-and a crucial indicator of-the maturation of compost that can be used in soil amendments. The formation of HSs is affected by the characteristics of the raw materials involved, the presence of compost additives, microbial activity, temperature, pH, the C/N ratio, moisture content, oxygen content and particle size, all of which can interact with each other. The formation of HSs is therefore complex. Moreover, it is difficult to identify definitive structures of humic acids (HAs) and fulvic acids (FAs), which are the two major components of HSs. However, HSs represent the same functional groups and structural arrangements, which helps to predict their structures. Functional groups represented by phenol and carboxylic acid groups of HAs and FAs can provide various agronomic functions, such as plant growth enhancement, water and nutrient retention, and disease suppression capacity. Overall, HSs can act as a soil amendment, fertilizer, and plant growth regulator. These functions of HSs enhance the reuse potential of organic waste compost products; however, this requires scientific control of various composting parameters and appropriate application of final products.
Collapse
Affiliation(s)
- Xiao-Xia Guo
- Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Liu
- Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shu-Biao Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Yang F, Li Y, Han Y, Qian W, Li G, Luo W. Performance of mature compost to control gaseous emissions in kitchen waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:262-269. [PMID: 30543975 DOI: 10.1016/j.scitotenv.2018.12.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the performance of mature compost to mitigate gaseous emissions during kitchen waste composting. Cornstalk was mixed with kitchen waste at a ratio of 3:17 (wet weight) as the bulking agent. Mature compost (10% of raw composting materials on the wet weight basis) was mixed into or covered on the composting pile. A control treatment without any addition of mature compost was conducted for comparison. Results show that mature compost did not significantly affect the composting process. Nevertheless, gaseous emissions during kitchen waste composting were considerably reduced with the addition of mature compost. In particular, mixing mature compost with raw composting materials reduced ammonia, methane, and nitrous oxide emissions by 58.0%, 44.8%, and 73.6%, respectively. As a result, nitrogen could be conserved to increase nutrient contents and germination index of the compost product. Furthermore, the total greenhouse gas emissions during kitchen waste composting were reduced by 69.2% with the mixture of mature composting. By contrast, a lower reduction in gaseous emissions was observed when the same amount of mature compost was covered on the composting pile.
Collapse
Affiliation(s)
- Fan Yang
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhua Han
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Wentao Qian
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Zhang L, Sun X. Effects of waste lime and Chinese medicinal herbal residue amendments on physical, chemical, and microbial properties during green waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31381-31395. [PMID: 30196462 DOI: 10.1007/s11356-018-3085-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Traditional composting is time-consuming and often results in a low-quality product. The objective of this study was to determine the effects of waste lime (WL; at 0, 2.5, and 3.5%) and/or Chinese medicinal herbal residues (CMHRs; at 0, 10, and 20%) as amendments on the two-stage composting of green waste (GW). The combination of WL and CMHRs improved compost particle-size distribution and pH, decreased nitrogen loss, and increased cation exchange capacity (CEC), nutrient content, and microbial numbers. The combination of WL and CMHRs also accelerated organic matter humification and lignocellulose degradation and therefore increased the germination index of the final compost. Relative to the non-amended compost, the optimal amendment (2.5% WL and 20% CMHRs) increased the percentage of particles of ideal size from 23.8 to 66.9%, the pH from 6.69 to 7.17, the CEC from 52 to 169 cmol/kg, the humic acid to fulvic acid ratio from 1.32 to 2.49, the hemicellulose degradation rate from 42 to 87%, and the cellulose degradation rate from 20 to 61%. The treatment with addition of 2.5% WL and 20% CMHRs to GW required only 21 days to generate the highest quality compost product.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, P.O. Box 111, Beijing, 100083, People's Republic of China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, P.O. Box 111, Beijing, 100083, People's Republic of China
| |
Collapse
|
38
|
Zhang L, Sun X. Effects of bean dregs and crab shell powder additives on the composting of green waste. BIORESOURCE TECHNOLOGY 2018; 260:283-293. [PMID: 29631178 DOI: 10.1016/j.biortech.2018.03.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Composting is an effective and economic technology for the recycling of organic waste. In this study, bean dregs (BD) (at 0, 35, and 45%) and crab shell powder (CSP) (at 0, 15, and 25%) were evaluated as additives during the two-stage composting of green waste (GW). The GW used in this experiment mainly consisted of branch cuttings collected during the maintenance of the urban green landscape. Combined additions of BD and CSP improved composting conditions and compost quality in terms of composting temperature, specific surface area, average pore diameter, pH and EC values, carbon dioxide release, ammonia and nitrous oxide emissions, E4/E6 ratio, elemental composition and atomic ratios, organic matter degradation, microbial numbers, enzyme activities, compost phytotoxicity, and environmental and economic benefits. The combined addition of 35% BD and 25% CSP to the two-stage composting of GW resulted in the highest quality compost product in only 22 days.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|