1
|
Zhao M, Ding Y, Qin Y, Xiao Z, Xi B, Ren X, Zhao J, Wang Q. Effects of selenate on greenhouse gas release and microbial community variations during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123523. [PMID: 39632302 DOI: 10.1016/j.jenvman.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Co-composting of livestock manure and selenate is an effective means to produce selenium-rich organic fertilizer. However the effect of selenate on greenhouse gas emission during composting is still unknown. To probe the influences of selenate on greenhouse gas and microbial community changes during swine manure composting. Various dose of selenate were added to the fresh swine manure and wheat straw for 80 days aerobic composting, sequentially labeled as T1 (control) to T6 (0, 1, 2, 3, 4 and 5 mg kg-1). Results indicated that selenate generally increased the nitrous oxide (N2O) and ammonia (NH3) emissions while presented varying impacts on methane (CH4) emissions. Compared with the control, adding 2 and 5 mg kg-1 selenate reduced the CH4 emission by 39.60% and 13.75%, respectively, while other concentrations presented opposite results. Meanwhile, adding 2 mg kg-1 selenate could reduce the global warming potential and improve the compost maturity. According to the microbial results, adding 2 mg kg-1 selenate enhanced the richness and variety of the microbes and might influence Proteobacteria, Chloroflexi, Actinobacteria and Methylococcaceae_unclassified to decrease the global warming potential.
Collapse
Affiliation(s)
- Mengxiang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yilang Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ziling Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100000, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Jiarui Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
2
|
Xu Z, Li R, KuoK Ho Tang D, Zhang X, Zhang X, Liu H, Quan F. Enhancing nitrogen transformation and humification in cow manure composting through psychrophilic and thermophilic nitrifying bacterial consortium inoculation. BIORESOURCE TECHNOLOGY 2024; 413:131507. [PMID: 39303947 DOI: 10.1016/j.biortech.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China
| | - Daniel KuoK Ho Tang
- School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Hong Liu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Wang B, Zhang P, Qi X, Li G, Zhang J. Predicting ammonia emissions and global warming potential in composting by machine learning. BIORESOURCE TECHNOLOGY 2024; 411:131335. [PMID: 39181511 DOI: 10.1016/j.biortech.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The amounts of gases emitted from composting are key to evaluating global warming potential (GWP). However, few methods can accurately predict the quantities of relevant gas emissions. In this study, three developed machine-learning models were used to predict NH3 emissions and GWP. The extreme gradient boosting model provided the best predictions (R2 > 90 %) compared to random forest, making it a suitable method for calculating NH3 emissions and GWP. The k-nearest neighbor classification model was utilized to determined compost maturity achieving 92 % accuracy. Shapley Additive ExPlanation analysis was applied to identify key factors influencing gas emissions and maturity. Aeration rate, carbon-to-nitrogen ratio and moisture content showed high importance in decreasing order for predicting NH3 emissions, while NO3- was the most significant factor for predicting GWP. Practical applications of predictive models suggested that prediction of GWP was 792614 Mg CO2e year-1 close to annual calculation of 789000 Mg CO2e year-1 in California.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Peng Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xingyi Qi
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guomin Li
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
4
|
Şahin C, Aydın Temel F, Cagcag Yolcu O, Turan NG. Simulation and optimization of cheese whey additive for value-added compost production: Hyperparameter tuning approach and genetic algorithm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122796. [PMID: 39362168 DOI: 10.1016/j.jenvman.2024.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Cheese whey is a difficult and costly wastewater to treat due to its high organic matter and mineral content. Although many management strategies are conducted for whey removal, its use in composting is limited. In this study, the effect of cheese whey in the composting of sewage sludge and poultry waste on compost quality and process efficiency was investigated. Also, valid and consistent simulations were developed with Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Neural Network Regression (NNR) Machine Learning (ML) algorithms. The results of all physicochemical parameters determined that 3% of cheese whey addition for both feedstocks improved the composting process's efficiency and the final product's quality. The best results obtained through hyperparameter tuning showed that Gaussian Process Regression (GPR) was the most effective modeling tool providing realistic simulations. The reliability of these simulations was verified by running the GPR process 50 times. MdAPE demonstrated the validity and consistency of the created process simulations. Moreover, a genetic algorithm was used to optimize these dependent simulations and achieved almost 100% desirability. Optimization studies showed that the effective cheese whey ratios were 3.2724% and 3.1543% for sewage sludge and poultry waste, respectively. Optimization results were compatible with the results of experimental studies. This study provides a new strategy for the recovery of cheese whey as well as a new perspective on the effect of cheese whey on both physicochemical parameters and composting phases and the modeling and optimization processes of the results.
Collapse
Affiliation(s)
- Cem Şahin
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, 55200, Turkiye
| | - Fulya Aydın Temel
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun, 28200, Turkiye.
| | - Ozge Cagcag Yolcu
- Department of Statistics, Faculty of Sciences and Arts, Marmara University, İstanbul, 34722, Turkiye
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, 55200, Turkiye
| |
Collapse
|
5
|
Ma L, Zhang L, Feng X. Optimization of Eisenia fetida stocking density for biotransformation during green waste vermicomposting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:188-197. [PMID: 39047308 DOI: 10.1016/j.wasman.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Appropriate stocking density plays an important role in ensuring the stability and improving the overall efficiency of the vermicomposting system. Although some studies have shown that earthworms can degrade lignocellulosic materials, relatively few studies have been conducted on the effect of earthworm stocking density on the degradation of a single green waste (GW) with high lignocellulosic content. Therefore, this study investigated the degradation effect of earthworms on GW at different stocking densities, and assessed the stability and maturity of the whole vermicomposting by comprehensively analysing the changes in physicochemical and biological properties of earthworms during vermicomposting, and by combining the growth of earthworms with a multi-dimensional assessment of the stability and maturity of the whole vermicomposting. In this study, six stocking densities (CK-T5) were set up, namely, no earthworms, 10, 20, 30, 40, and 50 worms/kg. The results showed that compared with the CK (without earthworms), when there were 30 earthworms per kg of GW (i.e. T3), the total nitrogen, total phosphorus, total potassium, organic matter decomposition, bacterial and fungal numbers, and germination index of earthworm compost products increased by 14 %, 29 %, 32 %, 35 %, 42 %, 94 %, and 125 %, respectively. T3 also enhanced the activities of cellulase and alkaline phosphatase. The results were further supported by principal component analysis. Finally, we conclude that when the stocking density of earthworms is appropriate (T3), it not only favours the growth of earthworms, but also positively affects the physicochemical properties of the vermicomposting process, which in turn significantly improves the biodegradation efficiency of GW.
Collapse
Affiliation(s)
- Li Ma
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Li J, Huang W, Li Q. New insights into pathogenic performances during peroxydisulfate composting: sources, pathways, and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58093-58108. [PMID: 39306820 DOI: 10.1007/s11356-024-35040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Livestock manure treatment technology and composting and its products have been widely used in agricultural soil. However, little was known about the variations in the fate of pathogens and the factors affecting their pathogenic ability during this process, which posed threats to ecological safety and public health globally. This study used a metagenomic approach to profile the behaviors of pathogens during peroxydisulfate composting. Results showed that Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Burkholderia pseudomallei, and Mycobacterium tuberculosis were the main secretors of virulence factors (VFs) in composting system; their abundance and the virulence factor-related genes they carried were better downregulated under the role of peroxydisulfate. In addition, peroxydisulfate composting ensured the lower moisture, weakening the swimming mobility behavior of pathogens through suppressing the abundance of genes associated with flagellar formation, and impaired the communication between pathogens by regulating quorum sensing (QS)- and quorum quenching (QQ)-related genes. Moreover, reduced abundance of resistomes restricted pathogens disseminating infection. In summary, this study provided useful strategies in managing pathogen pathogenic ability during composting based on pathogenic source (pathogens), pathway (VFs), influencing factors (QS/QQ, physicochemical habitats), and resistomes.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wenyu Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Xu Q, Zhang T, Niu Y, Mukherjee S, Abou-Elwafa SF, Nguyen NSH, Al Aboud NM, Wang Y, Pu M, Zhang Y, Tran HT, Almazroui M, Hooda PS, Bolan NS, Rinklebe J, Shaheen SM. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173567. [PMID: 38848918 DOI: 10.1016/j.scitotenv.2024.173567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.
Collapse
Affiliation(s)
- Qing Xu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yingqi Niu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, Himachal Pradesh 173229, India
| | - Salah F Abou-Elwafa
- Agronomy Department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen 23000, Viet Nam
| | - Nora M Al Aboud
- Department of Biology, College of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yukai Wang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingjun Pu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Mansour Almazroui
- Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, UK
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
8
|
He W, Rong S, Wang J, Zhao Y, Liang Y, Huang J, Meng L, Feng Y, Xue L. Different crystalline manganese dioxide and biochar co-conditioning aerobic composting: Reduced ammonia volatilization and improved organic fertilizer quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133127. [PMID: 38056255 DOI: 10.1016/j.jhazmat.2023.133127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Aerobic composting is a sustainable and effective waste disposal method. However, it can generate massive amounts of ammonia (NH3) via volatilization. Effectively reducing NH3 volatilization is vital for advancing aerobic composting and protecting the ecological environment. Herein, two crystal types of MnO2 (α-MnO2 and δ-MnO2) are combined with biochar (hydrochar (WHC) and pyrochar (WPC), respectively) and used as conditioners for the aerobic composting of chicken manure. Results reveal that α-MnO2 (34.6%) can more effectively reduce NH3 accumulation than δ-MnO2 (27.1%). Moreover, the combination of WHC and MnO2 better reduces NH3 volatilization (48.5-58.9%) than the combination of WPC and MnO2 (15.8-40.1%). The highest NH3 volatilization reduction effect (58.9%) is achieved using the combination of WHC and δ-MnO2. Because the added WHC and δ-MnO2 promote the humification of the compost, the humic acid to fulvic acid ratio (HA/FA ratio) dramatically increases. The combination of WHC and δ-MnO2 doubled the HA/FA ratio and resulted in a net economic benefit of 130.0 RMB/t. Therefore, WHC and δ-MnO2 co-conditioning can promote compost decomposition, improving the quality of organic fertilizers and substantially reducing NH3 volatilization.
Collapse
Affiliation(s)
- Weijiang He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shaopeng Rong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jixiang Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yingjie Zhao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Yunyi Liang
- College of Materials Science and Engineering Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lin Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| |
Collapse
|
9
|
Zhang Z, Jin B, Zhang Y, Huang Z, Li C, Tan M, Huang J, Lei T, Qi Y, Li H. The synergistic regulation of sewage sludge biodrying and greenhouse gas reduction by additives. BIORESOURCE TECHNOLOGY 2024; 394:130180. [PMID: 38086457 DOI: 10.1016/j.biortech.2023.130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
As a dewatering method of high moisture solid waste sludge, biodrying still faces environmental problems such as material loss and greenhouse gas emission in the process of treatment. In this study, biochar and magnesium chloride were used to explore the synergistic effect of enhancing sludge biodrying and reducing greenhouse gas emissions. The highest temperature of biodrying was raised to 68.2 °C within 3 days, extending the longest high-temperature period to 5 days, which reduced the water content to 28.8 % in the single addition of biochar treatment. The complex addition increased the NH4+-N content of materials by 57.49 % and decreased the NO3--N content of materials by 40.62 %. The use of additives significantly reduced the emissions of CO2, CH4, and N2O compared to the no-addition treatment. The increase in dominant Actinomycetes and Chloroflexibacter was the main reason for the reduction in gas emissions.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Baicheng Jin
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Mengjiao Tan
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Youxiang Qi
- Zhilan Ecological Environment Construction Co., Ltd, 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
10
|
Qv M, Bao J, Wang W, Dai D, Wu Q, Li S, Zhu L. Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132655. [PMID: 37827101 DOI: 10.1016/j.jhazmat.2023.132655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Soil contamination with petroleum significantly threatens the ecological equilibrium and human health. In this context, aerobic co-composting of waste heavy oil with agricultural wastes was performed in the present study to remediate petroleum pollutants through four treatments: CK (control), T1 (petroleum pollutant), T2 (petroleum pollutant with bentonite), and T3 (petroleum pollutant with humic acid-modified bentonite). Comprehensive analyses were conducted to determine the physicochemical parameters, enzymatic activities, removal of petroleum pollutants, microbial community structure, and water-extractable organic matter in different composting systems. Structural equation modeling was employed to identify the key factors influencing the removal of petroleum pollutants. According to the results, petroleum pollutant removal percentages of 44.94%, 79.09%, and 79.67% could be achieved with T1, T2, and T3, respectively. In addition, the activities of polyphenol oxidase (51.21 U/g) and catalase (367.91 U/g), which are the enzymes related to petroleum hydrocarbon degradation, were the highest in T3. Moreover, bentonite addition to the treatment increased the nitrate nitrogen storage in the compost from 10.95 mg/kg in T1 to 18.63 and 17.41 mg/kg in T2 and T3, respectively. Humic acid-modified bentonite could enhance the degree of compost humification, thereby leading to a higher-quality compost product. Collectively, these findings established bentonite addition as an efficient approach to enhance the compost remediation of petroleum pollutants.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jianfeng Bao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Xu P, Tripathi P, Mishra S, Shu L, Li X, Zhao S, Verma S, Verma R, Wu Y, Yang Z. Brown sugar as a carbon source can make agricultural organic waste compost enter the secondary thermophilic stage and promote compost decomposition. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:113. [PMID: 38180589 DOI: 10.1007/s10661-023-12292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
To enhance the efficiency of composting agricultural organic waste (AOW), this study aimed to examine the impact of inoculating tomato straw compost with two distinct microbial agents: ZymoZone (ZZ), a composite microbial agent derived from the straw compost and Effective Microorganisms (EM), a commercial microbial agent. Furthermore, in order to reactivate the microorganisms within the compost during the initial high temperature phase, 10% brown sugar was introduced as a carbon source. The objective of this addition was to assess its influence on the composting process. The findings revealed that compared to the control (CK) group, the ZZ and EM treatments extended the first high-temperature phase by 2 and 1 day, respectively. Furthermore, with the addition of 10% brown sugar, the ZZ and EM treatments remained in the second high-temperature phase for 8 and 7 days, respectively, while the CK treatment had already entered the cooling stage by then. Notably, the inoculation of microbial agents and the addition of brown sugar substantially augmented the activity of lignocellulose-related hydrolases, thereby promoting the degradation of lignocellulose in the ZZ and EM treatment groups. This was confirmed by FTIR analysis, which demonstrated that the addition of microbial agents facilitated the degradation of specific substances, leading to reduced absorbance in the corresponding spectra. XRD analysis further indicated a notable reduction in cellulose crystallinity for both the ZZ (8.00%) and EM (7.73%) treatments. Hence, the incorporation of microbial agents and brown sugar in tomato straw compost effectively enhances the composting process and improves the quality of compost products.
Collapse
Affiliation(s)
- Peng Xu
- School of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Priyanka Tripathi
- School of Chemistry, Awadhesh Pratap Singh University, Rewa, India, 485001
| | - Sita Mishra
- School of Botany, Awadhesh Pratap Singh University, Rewa, India, 485001
| | - Luolin Shu
- School of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xue Li
- School of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shiwen Zhao
- School of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sakshi Verma
- School of Food Technology, Amicable Knowledge Solution University, Satna, India, 485001
| | - Ranjeet Verma
- School of Agriculture Engineering, Amicable Knowledge Solution University, Satna, India, 485001
| | - Yongjun Wu
- School of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhenchao Yang
- School of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Fan Z, Jiang C, Muhammad T, Ali I, Feng Y, Sun L, Geng H. Impacts and mechanism of biodegradable microplastics on lake sediment properties, bacterial dynamics, and greenhouse gasses emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165727. [PMID: 37487892 DOI: 10.1016/j.scitotenv.2023.165727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
The accumulation of microplastics (MPs) in freshwater ecosystems plays a vital role in greenhouse gases (GHGs) emissions from lake sediment by altering sediment properties and microbial communities. Thus, a short-term microcosm experiment was performed to explore the effect of conventional polyethylene (PE) and biodegradable Poly (butylene-adipate-co-terephtalate) (PBAT) MPs on carbon dioxide (CO2) and methane (CH4) emissions from lake sediment and associated microbial community. The results indicated that at 1.0 % concentration, the cumulative CO2 emissions were increased by 16.8 % and the cumulative CH4 emissions were increased more than four times following the addition of biodegradable MPs compared to conventional MPs, which was due to the more dissolved organic carbon (DOC) provided by biodegradable MPs for microbial respiration. Furthermore, the cumulative CO2 and CH4 emissions significantly (p < 0.05) increased with the increasing concentrations of biodegradable MPs. Notably, the accumulation of MPs could weaken the microbial stress from requirements of energy and substrate, and increase the microbial biomass carbon (MBC) value, thus eventually improving the respiratory capacity of microbes. In addition, the biodegradable MPs significantly increased the abundance of microbes, such as Firmicutes, Myxococcota and Actinobacteriota, which were related to the function of anaerobic respiration. Overall, we concluded that the abundant DOC provided by biodegradable MPs could promote the growth of microbes in lake sediment, and they could change the structure and diversity of the microbial community, which would eventually enhance the anaerobic respiration of microbes and aggravate the GHGs emissions.
Collapse
Affiliation(s)
- Zequn Fan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Tahir Muhammad
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- College of environment, Hohai University, Nanjing 210098, China
| | - Yakun Feng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Lei Sun
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Hui Geng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
13
|
Ren X, Jiao M, Zhang Z, Syed A, Bahkali AH. The efficient solution to decline the greenhouses emission and enrich the bacterial community during pig manure composting: Regulating the particle size of cornstalk. BIORESOURCE TECHNOLOGY 2023; 387:129596. [PMID: 37541547 DOI: 10.1016/j.biortech.2023.129596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
In present study, four lengths of chopped cornstalks were amended with pig manure respectively for 100 days aerobic fermentation, which aimed to evaluate the impact of different length of agricultural solid wastes on gaseous emission and dominating bacterial community succession and connection. The result revealed that the maximum ammonia volatilization was observed in 5 cm of straw samples attributed to the prominent mineralization, which was opposite to the emission of CH4 and N2O. As for global warming potential, the minimum value was detected in 5 cm of straw samples, which decreased by 5.03-24.75% compared with other samples. Additionally, the strongest correlation and complexity of bacterial community could be detected in 5 cm of straw treatment, representing the most vigorous bacterial metabolic ability could be recorded by optimizing the microbial habitat. Therefore, in order to decline the greenhouse effect in livestock manure composting, the 5 cm of corn straw was recommended.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Li J, Guo Z, Cui K, Chen X, Yang X, Dong D, Xi S, Wu Z, Wu F. Remediating thiacloprid-contaminated soil utilizing straw biochar-loaded iron and manganese oxides activated persulfate: Removal effects and soil environment changes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132066. [PMID: 37467608 DOI: 10.1016/j.jhazmat.2023.132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Thiacloprid (THI) has accumulated significantly in agricultural soil. Herein, a novel approach to removing THI was explored by straw biochar-loaded iron and manganese oxides (FeMn@BC) to activate the persulfate (PS). The factors influencing the removal of 5 mg kg-1 THI from the soil by FeMn@BC/PS were investigated, including FeMn@BC dosing, PS dosing, temperature, and soil microorganisms. The feasibility was demonstrated by the 75.22% removal rate of THI with 3% FeMn@BC and 2% PS at 7 days and a 92.50% removal rate within 60 days. Compared to the THI, NH4+-N and available potassium were 3.96 and 3.25 times, and urease and phosphatase activities were increased by 22.54% and 33.28% in the FeMn@BC/PS at the 15 days, respectively. THI was found to seriously alter the structure of the genus in the 15 days by 16 S rRNA analysis; however, the FeMn@BC/PS group alleviated the damage, compared to the THI with 658 more operational taxonomic units. Actinobacteriota accounted for 51.48% of the microbial community in the FeMn@BC/PS group after 60 days, possibly converting transition products of THI into smaller molecules. This article provides a novel insight into advanced oxidative remediation of soils.
Collapse
Affiliation(s)
- Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Xi
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Dümenci NA, Temel FA, Turan NG. Role of different natural materials in reducing nitrogen loss during industrial sludge composting: Modelling and optimization. BIORESOURCE TECHNOLOGY 2023; 385:129464. [PMID: 37429554 DOI: 10.1016/j.biortech.2023.129464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
In this study, the effects of pumice, expanded perlite, and expanded vermiculite on nitrogen loss were examined for industrial sludge composting using the Box-Behnken experimental design. The independent factors and their levels were selected as amendment type, amendment ratio, and aeration rate, and codded as x1, x2, and x3 at 3 levels (low, center, and high). The statistical significance of independent variables and their interactions were determined at 95% confidence limits by Analysis of Variance. The quadratic polynomial regression equation produced to predict the responses was solved and the optimum values of the variables were predicted by analyzing the three-dimensional response surfaces plots. The optimum conditions for minimum nitrogen loss by the regression model were as pumice of amendment type, 40% of amendment ratio, and 6 L/min of aeration rate. In this study, it was observed that time-consuming and laborious laboratory work can be minimized with the Box-Behnken experimental design.
Collapse
Affiliation(s)
- Nurdan Aycan Dümenci
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| | - Fulya Aydın Temel
- Department of Industrial Engineering, Faculty of Engineering, Giresun University, Giresun 28200, Turkey.
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| |
Collapse
|
16
|
Lu J, Qiu Y, Muhmood A, Zhang L, Wang P, Ren L. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162356. [PMID: 36822427 DOI: 10.1016/j.scitotenv.2023.162356] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
17
|
Jiao M, Ren X, Zhan X, Hu C, Wang J, Syed A, Bahkali AH, Zhang Z. Exploring gaseous emissions and pivotal enzymatic activity during co-composting of branch and pig manure: the effect of particle size of bulking agents. BIORESOURCE TECHNOLOGY 2023; 382:129199. [PMID: 37201868 DOI: 10.1016/j.biortech.2023.129199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The purpose of current study was to probe the effect of various length of branch on gaseous emissions and vital enzymatic activity. Four lengths (<2 cm, 2 cm, 5 cm, and 10 cm) of clipped branch were mingled with collected pig manure for 100 days aerobic fermentation. The consequence demonstrated that the amendment of 2 cm of branch showed conducive to decline the greenhouse gas emissions, which the CH4 emissions decreased by 1.62-40.10%, and the N2O emissions decreased by 21.91-34.04% contrasted with other treatments. Furthermore, the peak degree of enzymatic activities was also observed in 2 cm of branch treatment by the optimizing living condition for microbes. In view of microbiological indicators, the most abundant and complex bacterial community could be monitor in 2 cm of branch composting pile, which verified the microbial facilitation. Summing up, the strategy of 2 cm branch amendment would be recommended.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
18
|
Ji Z, Zhang L, Liu Y, Li X, Li Z. Evaluation of composting parameters, technologies and maturity indexes for aerobic manure composting: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163929. [PMID: 37156376 DOI: 10.1016/j.scitotenv.2023.163929] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Aerobic composting is an efficient method to recover nutrients from animal manure. However, there is considerable variability in the management and maturity criteria used across studies, and a systematic meta-analysis focused on compost maturity is currently lacking. This study investigated the optimal range of startup parameters and practical criteria for manure composting maturity, as well as the effectiveness of in situ technologies in enhancing composting maturity. Most maturity indexes were associated with composting GI, making it an ideal tool for evaluating the maturity of manure composts. GI increased with declined final C/N and (Final C/N)/(Initial C/N) (P < 0.01), and therefore a maturity assessment standard for animal manure composting was proposed: a mature compost has a C/N ratio ≤23 and a GI ≥70, while a highly mature compost has a GI ≥90 and preferably (Final C/N)/(Initial C/N) ≤0.8. Meta-analysis demonstrated that C/N ratio regulation, microbial inoculation and adding biochar and magnesium-phosphate salts are effective strategies for improving compost maturity. Specifically, a greater reduction in the C/N ratio during the composting process is beneficial for improving the maturity of compost product. The optimal startup parameters for composting have been determined, recommending an initial C/N ratio of 20-30 and an initial pH of 6.5-8.5. An initial C/N ratio of 26 was identified as the most suitable for promoting compost degradation and microorganism activity. The present results promoted a composting strategy for producing high-quality compost.
Collapse
Affiliation(s)
- Zhengyu Ji
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaqing Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Aydın Temel F. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. BIORESOURCE TECHNOLOGY 2023; 373:128748. [PMID: 36791979 DOI: 10.1016/j.biortech.2023.128748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to evaluate the influence of rice husk addition on compost quality and maturity in sewage sludge composting using a pilot scale aerated in-vessel reactor. During the composting process, changes in compost quality and physicochemical factors including pH, temperature, moisture content, electrical conductivity, total organic carbon (TOC), total nitrogen (TN), and carbon to nitrogen ratio (C/N) were monitored. In the pile containing 25% rice husk, the lowest losses occurred with 52.49% for TOC and 23.24% for TN, while C/N ratio in the final compost was 18.82, achieving mature and quality compost. The moisture contents of the final composts were found as 50.72% in the control group while it was 31.73% and 28.18% in the reactors containing 10% and 25% rice husk, respectively. These results suggested that rice husk addition was beneficial for reducing moisture content and balancing the C/N ratio in sewage sludge composting.
Collapse
Affiliation(s)
- Fulya Aydın Temel
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
20
|
Bao M, Cui H, Lv Y, Wang L, Ou Y, Hussain N. Greenhouse gas emission during swine manure aerobic composting: Insight from the dissolved organic matter associated microbial community succession. BIORESOURCE TECHNOLOGY 2023; 373:128729. [PMID: 36774985 DOI: 10.1016/j.biortech.2023.128729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Greenhouse gas emissions during aerobic composting is unavoidable, but good practices can minimize emission. Therefore, to explore the key factors influencing the release of greenhouse gas emissions during composting, the inaction of organic matter conversion, greenhouse gas emissions and bacterial community structure during co-composting with different ratio (pig manure and corn straw) over a 6-week period was studied. The excitation-emission matrix fluorescence spectroscopy with the parallel factor was used to identify that dissolved organic matter associated microbial community succession mainly influenced greenhouse gas emissions. Protein-like fractions of dissolved organic matter were more likely to decompose and promote CH4 and CO2 emissions, while the humic-like fractions of dissolved organic matter positively affected N2O emissions. The largest of greenhouse gas emissions was appeared in MR2 with 12.7 kg CO2-eq, and the MR3 and MR4 reduced greenhouse gas emissions by 26.8 % and 11.4 %, respectively.
Collapse
Affiliation(s)
- Meiwen Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Lv
- Soil and Fertilizer Station of Jilin Province, Changchun 130033, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Naseer Hussain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| |
Collapse
|
21
|
Xu X, Wang J, Tang Y, Cui X, Hou D, Jia H, Wang S, Guo L, Wang J, Lin A. Mitigating soil salinity stress with titanium gypsum and biochar composite materials: Improvement effects and mechanism. CHEMOSPHERE 2023; 321:138127. [PMID: 36780996 DOI: 10.1016/j.chemosphere.2023.138127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Titanium gypsum and biochar are considered effective amendments for mitigating soil salinity stress. However, the knowledge is inadequate regarding their efficiency and application as an improvement. In this study, TG-B composite was prepared by using industrial by-products titanium gypsum and biochar as raw materials and then modified by ball milling method, to characterize its microscopic characteristics and explore the improvement effect on saline-alkali soil and plant growth. Besides, we explored the mechanism of TG-B in improving saline-alkali soil and the dynamic balance of the solution reaction process. Our results showed that the CaSO4·2H2O particles in TG-B were finer, dispersed evenly, and contacted fully with soil gelatinous particles, which was more conducive to the improvement of saline-alkali soil. The results of TG-B with different ball milling ratios and different materials dosages indicated that the application rate of TG-B was 5%, and the optimum ratio of TG-B was TG: B (mass ratio) = 10:1, with the best soil improvement effect. The pot experiment proved that the indicators of indicating soil salinity such as pH, EC, SAR, and soluble Na+ decreased by 20.74%, 77.24%, 68.77%, and 44.70%, respectively, thus playing a good role in improving saline-alkali soil. In addition, pot experiments demonstrated that compared with the control group, the soil porosity and soil moisture content in the TG-B group increased by 15.95% and 38.71%, respectively, and further improve the structure and diversity of soil bacterial community when compared with titanium gypsum and biochar alone. Finally, the application of TG-B promoted the germination and growth of rice significantly through the synergistic effects of composite material components. These results all suggested that the application of TG-B was an effective strategy to improve soil salinity and promote plant growth. Therefore, it might provide new insights into the utilization of solid waste resources to improve saline-alkali lands.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiahui Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan, 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan, 030000, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan, 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
22
|
Ye P, Fang L, Song D, Zhang M, Li R, Awasthi MK, Zhang Z, Xiao R, Chen X. Insights into carbon loss reduction during aerobic composting of organic solid waste: A meta-analysis and comprehensive literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160787. [PMID: 36502991 DOI: 10.1016/j.scitotenv.2022.160787] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Carbon neutrality is now receiving global concerns for the sustainable development of human societies, of which how to reduce greenhouse gases (GHGs) emissions and enhance carbon conservation and sequestration becomes increasingly critical. Therefore, this study conducted a meta-analysis and literature review to assess carbon loss and to explore the main factors that impact carbon loss during organic solid waste (OSW) composting. The results indicated that over 40 % of carbon was lost through composting, mainly as CO2-C and merely as CH4-C. Experimental scale, feedstock varieties, composting systems, etc., all impacted the carbon loss, and there was generally higher carbon loss under optimal conditions (i.e., C/N ratio (15-25), pH (6.5-7.5), moisture content (65-75 %)). Most mitigation strategies in conventional composting (CC) systems (e.g., additive supplementary, feedstock adjustment, and optimized aeration, etc.) barely mediated the TC and CO2-C loss but dramatically reduced the emission of CH4-C through composting. Among them, feedstock adjustment by elevating the feedstock C/N ratio effectively reduced the TC loss, and chemical additives facilitated the conservation of both carbon and nitrogen. By comparison, there was generally higher carbon loss in the novel composting systems (e.g. hyperthermophilic and electric field enhanced composting, etc.). However, the impacts of different mitigation strategies and novel composting systems on carbon loss reduction through composting were probably underestimated for the inappropriate evaluation methods (composting period-dependent instead of maturity originated). Therefore, further studies are needed to explore carbon transformation through composting, to establish methods and standards for carbon loss evaluation, and to develop novel techniques and systems for enhanced carbon conservation through composting. Overall, the results of this study could provide a reference for carbon-friendly composting for future OSW management under the background of global carbon neutrality.
Collapse
Affiliation(s)
- Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Muyuan Zhang
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| |
Collapse
|
23
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
24
|
Li Y, Gupta R, Zhang Q, You S. Review of biochar production via crop residue pyrolysis: Development and perspectives. BIORESOURCE TECHNOLOGY 2023; 369:128423. [PMID: 36462767 DOI: 10.1016/j.biortech.2022.128423] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Worldwide surge in crop residue generation has necessitated developing strategies for their sustainable disposal. Pyrolysis has been widely adopted to convert crop residue into biochar with bio-oil and gas being two co-products. The review adopts a whole system philosophy and systematically summarises up-to-date knowledge of crop residue pyrolysis processes, influential factors, and biochar applications. Essential process design tools for biochar production e.g., cost-benefit analysis, life cycle assessment, and machine learning methods are also reviewed, which has often been overlooked in prior reviews. Important aspects include (a) correlating techno-economics of biochar production with crop residue compositions, (b) process operating conditions and management strategies, (c) biochar applications including soil amendment, fuel displacement, catalytic usage, etc., (d) data-driven modelling techniques, (e) properties of biochar, and (f) climate change mitigation. Overall, the review will support the development of application-oriented process pipelines for crop residue-based biochar.
Collapse
Affiliation(s)
- Yize Li
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rohit Gupta
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
25
|
Dogan H, Aydın Temel F, Cagcag Yolcu O, Turan NG. Modelling and optimization of sewage sludge composting using biomass ash via deep neural network and genetic algorithm. BIORESOURCE TECHNOLOGY 2023; 370:128541. [PMID: 36581236 DOI: 10.1016/j.biortech.2022.128541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this study, the use of Deep Cascade Forward Neural Network (DCFNN) was investigated to model both linear and non-linear chaotic relationships in co-composting of dewatered sewage sludge and biomass fly ash (BFA). Model results were evaluated in comparison with RSM, Feed Forward Neural Network (FFNN) and Feed Back Neural Network (FBNN), and Cascade Forward Neural Network (CFNN). DCFNN produced predictive results with MAPE values less than 1% for all datasets in all experimental designs except one with 1.99%. Furthermore, the decision variables were optimized by Genetic Algorithm (GA). The desirability level obtained from the optimization results was found to be 100% in a few designs and above 95% in all other designs. The results showed that DCFNN is a reliable and consistent tool for modeling composting process parameters, also GA is a satisfactory tool for determining which outputs the input parameters will produce in an experimental setup.
Collapse
Affiliation(s)
- Hale Dogan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| | - Fulya Aydın Temel
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun 28200, Turkey
| | - Ozge Cagcag Yolcu
- Department of Statistics, Faculty of Sciences and Arts, Marmara University, İstanbul 34722, Turkey
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| |
Collapse
|
26
|
Zhong L, Wu T, Ding J, Xu W, Yuan F, Liu BF, Zhao L, Li Y, Ren NQ, Yang SS. Co-composting of faecal sludge and carbon-rich wastes in the earthworm's synergistic cooperation system: Performance, global warming potential and key microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159311. [PMID: 36216047 DOI: 10.1016/j.scitotenv.2022.159311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Composting is an effective alternative for recycling faecal sludge into organic fertilisers. A microflora-earthworm (Eisenia fetida) synergistic cooperation system was constructed to enhance the composting efficiency of faecal sludge. The impact of earthworms and carbon-rich wastes (rice straw (RS) and sawdust (S)) on compost properties, greenhouse gas emissions, and key microbial species of composting were evaluated. The addition of RS or S promoted earthworm growth and reproduction. The earthworm-based system reduced the volatile solid of the final substrate by 13.19-16.24 % and faecal Escherichia coli concentrations by 1.89-3.66 log10 cfu/g dry mass compared with the earthworm-free system. The earthworm-based system increased electrical conductivity by 0.322-1.402 mS/cm and reduced C/N by 56.16-64.73 %. The NH4+:NO3- ratio of the final faecal sludge and carbon-rich waste was <0.16. The seed germination index was higher than 80 %. These results indicate that earthworms contribute to faecal sludge maturation. Earthworm addition reduced CO2 production. The simultaneous addition of earthworms and RS system (FRS2) resulted in the lowest global warming potential (GWP). The microbial diversity increased significantly over time in the RS-only system, whereas it initially increased and later decreased in the FRS2 system. Cluster analysis revealed that earthworms had a more significant impact on the microbial community than the addition of carbon-rich waste. Co-occurrence networks for earthworm-based systems were simple than those for earthworm-free systems, but the major bacterial genera were more complicated. Highly abundant key species (norank_f_Chitinophagaceae and norank_f_Gemmatimonadaceae) are closely related. Microbes may be more cooperative than competitive, facilitating the conversion of carbon and nitrogen in earthworm-based systems. This work has demonstrated that using earthworms is an effective approach for promoting the efficiency of faecal sludge composting and reducing GWP.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
27
|
Li D, Kumar R, Johnravindar D, Luo L, Zhao J, Manu MK. Effect of different-sized bulking agents on nitrification process during food waste digestate composting. ENVIRONMENTAL TECHNOLOGY 2023:1-11. [PMID: 36546563 DOI: 10.1080/09593330.2022.2161950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Food waste digestate (FWD) disposal is a serious bottleneck in anaerobic digestion plants to achieve a circular bioeconomy. FWD could be recycled into nitrogen-rich compost; however, the co-composting process optimisation along with bulking agents is required to reduce nitrogen loss and unwanted gaseous emissions. In the present study, two different-sized bulking agents, namely, wood shaving (WS) and fine sawdust (FS), were used to investigate their impact on FWD composting performance along with the nitrogen dynamics. The mixing of FWD with different bulking agents altered the physiochemical characteristics of composting matrix and the effective composting performance was observed through reduced ammonium nitrogen and increased seed germination index during 28 days of composting. The carbon loss of 19-22% through CO2 emission indicated similar carbon mineralisation with both types of sawdust; however, the nitrogen transformation pathways were different. Only WS treatment demonstrated the nitrification process, whereas the nitrogen loss was higher with FS. A total nitrogen loss of ∼15% was observed in treatments with FS, whereas WS treatments displayed a nitrogen loss of 12%. The outcome of the present study could significantly contribute to the practical aspect of the FWD composting operation with the promotion of the bio-recycling economy.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Rajat Kumar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
28
|
Feng X, Zhang L. Combined addition of biochar, lactic acid, and pond sediment improves green waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158326. [PMID: 36037887 DOI: 10.1016/j.scitotenv.2022.158326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Composting, as an eco-friendly method to recycle green waste (GW), converts the GW into humus-like compounds. However, conventional GW composting is inefficient and generates poor-quality compost. The objective of this research was to investigate the effects of the combined additions of biochar (BC; 0, 5, and 10 %), lactic acid (LA; 0, 0.5, and 1.0 %), and pond sediment (PS; 0, 20, and 30 %) on GW composting. A treatment without additives served as the control (treatment T1). The results showed that treatment R1 (with 5 % BC, 0.5 % LA, and 20 % PS) was better than the treatments with two additives or no additive and required only 32 days to generate a stable and mature product. Compared with T1, R1 improved water-holding capacity, electrical conductivity, available phosphorus, available potassium, nitrate nitrogen, OM decomposition, and germination index by 51 %, 48 %, 170 %, 93 %, 119 %, 157 %, and 119 %, respectively. R1 also increased the activities of cellulase, lignin peroxidase, and laccase. The results showed that the combined addition of BC, LA, and PS increased the gas exchange, water retention, and the microbial secretion of enzymes, thus accelerating the decomposition of GW. This study demonstrated the effects of BC, LA, and PS addition on GW composting and final compost properties, and analyzed the reasons of the effects. The study therefore increases the understanding of the sustainable disposal of an important solid waste.
Collapse
Affiliation(s)
- Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
29
|
Li H, Mu R, He Y, Deng Z, Liu X, Wu Z. Effect of microbial agents on maturity, humification, and stability and the bacterial succession of spent mushroom substrate composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87775-87789. [PMID: 35816256 DOI: 10.1007/s11356-022-21698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Two composting experiments were conducted to investigate the effects of commercial microbial agents on microbial succession and nutrient flow such as humification, maturation, and stability during the aerobic composting of the spent mushroom substrate (SMS). The cellulose degradation rate of T (added microbial agents at the initial stage) reached 41.8%, which was much significantly (p < 0.05) higher than that of CK (14.9%). The seed germination index (GI) in T (82.38%) was significantly (p < 0.05) higher than that in CK (74.74%) in the maturation phase. Moreover, the total organic carbon/total nitrogen ratio (C/N) and electrical conductivity (EC) value of T decreased to 10.5 and 2.37 mS/cm, respectively. Chemical detection and fluorescence excitation-emission region integration method (EEM-FRI) analysis showed that the microbial agents significantly accelerated the organic matter (OM) decomposition and promoted the quality of mature compost using SMS as a single raw material. The bacterial abundance of T was significantly richer than the CK due to the addition of microbial agents. The results could provide a comprehensive understanding of adding microbial agents into composting SMS and a scientific feasibility strategy to rational utilization of resources in the edible fungi industry, which was conducive to the waste management and sustainable development of the edible fungi industry.
Collapse
Affiliation(s)
- Haijie Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ruihua Mu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zihe Deng
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaocheng Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
30
|
Van Nguyen TT, Phan AN, Nguyen TA, Nguyen TK, Nguyen ST, Pugazhendhi A, Ky Phuong HH. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil. CHEMOSPHERE 2022; 307:135834. [PMID: 35963379 DOI: 10.1016/j.chemosphere.2022.135834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Each year, Asia produces an estimated 350 million tonnes of agricultural residues. According to Ministry of Power projections, numerous tonnes of such waste are discarded each year, in addition to being used as green manure. The methodology used to convert agricultural waste into the most valuable biochar, as well as its critical physical and chemical properties, were described in this review. This review also investigates the beneficial effects of bio and phytoremediation on metal(lloid)-contaminated soil. Agriculture biomass-based biochar is an intriguing organic residue material with the potential to be used as a responsible solution for metal(lloid) polluted soil remediation and soil improvement. Plants with faster growth and higher biomass can meet massive remediation demands. Recent research shows significant progress in agricultural biomass-based biomass conversion as biochar, as well as understanding the frameworks of metal(lloid) accumulation and mobility in plants used for metal(lloid) polluted soil remediation. Biochar made from various agricultural biomass can promote native plant growth and improve phytoremediation efficiency in polluted soil with metal(lloid)s. This carbon-enriched biochar promotes native microbial activity by neutralising pH and providing adequate nutrition. Thus, this review critically examines the feasibility of converting agricultural waste biomass into biochar, as well as the impact on plant and microbe remediation potential in metal(lloid)s polluted soil.
Collapse
Affiliation(s)
- Thi Thuy Van Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Viet Nam
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Tuan-Anh Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam
| | - Trung Kim Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam
| | - Son Truong Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam
| | | | - Ha Huynh Ky Phuong
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
31
|
IndraKumar Singh S, Singh WR, Bhat SA, Sohal B, Khanna N, Vig AP, Ameen F, Jones S. Vermiremediation of allopathic pharmaceutical industry sludge amended with cattle dung employing Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 214:113766. [PMID: 35780853 DOI: 10.1016/j.envres.2022.113766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study aims to vermiremediate allopathic pharmaceutical industry sludge (AS) amended with cattle dung (CD), in different feed mixtures (AS:CD) i.e (AS0) 0:100 [Positive control], (AS25) 25:75, (AS50) 50:50, (AS75) 75:25 and (AS100) 100:0 [Negative Control] for 180 days using earthworm Eisenia fetida. The earthworms could thrive and grow well up to the AS75 feed mixture. In the final vermicompost, there were significant decreases in electrical conductivity (29.18-18.70%), total organic carbon (47.48-22.39%), total organic matter (47.47-22.36%), and C: N ratio (78.15-54.59%). While, significant increases in pH (9.06-16.47%), total Kjeldahl nitrogen (69.57-139.58%), total available phosphorus (30.30-81.56%), total potassium (8.92-22.22%), and total sodium (50.56-62.12%). The heavy metals like Cr (50-18.60%), Cd (100-75%), Pb (57.14-40%), and Ni (100-50%) were decreased, whereas Zn (8.37-53.77%), Fe (199.03-254.27%), and Cu (12.90-100%) increased significantly. The toxicity of the final vermicompost was shown to be lower in the Genotoxicity analysis, with values ranging between (76-42.33%). The germination index (GI) of Mung bean (Vigna radiata) showed a value ranging between 155.02 and 175.90%. Scanning electron microscopy (SEM) analysis showed irregularities with high porosity of texture in the final vermicompost than in initial mixtures. Fourier Transform-Infrared Spectroscopy (FT-IR) spectra of final vermicompost had low peak intensities than the initial samples. The AS50 feed mixture was the most favorable for the growth and fecundity of Eisenia fetida, emphasizing the role of cattle dung in the vermicomposting process. Thus, it can be inferred that a cost-effective and eco-friendly method (vermicomposting) with the proper amendment of cattle dung and employing Eisenia fetida could transform allopathic sludge into a nutrient-rich, detoxified, stable, and mature vermicompost for agricultural purposes and further could serve as a stepping stone in the allopathic pharmaceutical industry sludge management strategies in the future.
Collapse
Affiliation(s)
- Soubam IndraKumar Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Waikhom Roshan Singh
- Manipur Pollution Control Board (MPCB), Imphal West, DC Office Complex, Imphal, 795001, Manipur, India
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Bhawana Sohal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Namita Khanna
- Department of Physiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, 151203, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Punjab Pollution Control Board (PPCB), Vatavaran Bhawan, Nabha Road, Patiala, 147001, Punjab, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai, 600100, India
| |
Collapse
|
32
|
Bao H, Chen Z, Wen Q, Wu Y, Fu Q. Effect of calcium peroxide dosage on organic matter degradation, humification during sewage sludge composting and application as amendment for Cu (II)-polluted soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129592. [PMID: 35872452 DOI: 10.1016/j.jhazmat.2022.129592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In this research, it was the first time to investigate the effect of two dosages (5% (T1) and 10% (T2), w/w) of calcium peroxide (CP) on organic matter degradation, humification during sewage sludge composting. Additionally, the complexation of Cu to humic substance (HS) derived from CP-compost compared to no CP addition-compost (CK) was also studied. Results showed that compared to CK, T1 and T2 significantly enhanced organic matter degradation and promoted the formation of HS. Two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS) and Parallel factor (PARAFAC) analysis revealed that the addition of CP accelerated the synthesis of HS with high aromatization degree and molecular weight than those in CK, owing to the oxidation of small molecules to form carboxyl. The stability constant (log KM) of Cu with CP-derived HS (log KM = 4.22-5.13) indicated a greater complexation ability than CK-derived HS (log KM = 4.05-4.45), due to the faster response of polysaccharides binding to Cu (II) and the higher humification degree of CP-derived HS. This study revealed the potential mechanisms of CP addition on the synthesis of HS and utilization of CP-compost product might provide an effective way to remedy Cu (II)-contaminated soils.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
33
|
Jiang W, Li D, Chen S, Ye Y, Kang J, Tang Q, Ren Y, Liu D, Li D. Design and operation of a fixed-bed pyrolysis-gasification-combustion pilot plant for rural solid waste disposal. BIORESOURCE TECHNOLOGY 2022; 362:127799. [PMID: 36007763 DOI: 10.1016/j.biortech.2022.127799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
This paper is to explore the use of rural solid waste (RSW) for pyrolysis-gasification-combustion in pilot plant scale aiming at sustainable management of rural waste in remote areas. Based on the experimental data obtained during pilot scale operation, the temperature in the furnace needs to be kept at least at 600 °C through analyzing the pyrolysis weight loss of the main combustibles in the RSW. Besides, the effects of the air supply method and ventilation rate on the pilot plant performance were explored. Results indicate that the active air supply method positively contributes to the performance of the pilot plant. The plant processed 10 t RSW/d, producing 12.82 g/Nm3 of tar with 1.75 % of ash. This study confirms the feasibility of the pilot plant for RSW disposal and provides theoretical support for the optimization of pilot plant operation.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Siding Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China.
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Qian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Yongzheng Ren
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Daosheng Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
34
|
Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:96-110. [PMID: 35576892 DOI: 10.1016/j.plaphy.2022.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jiaxuan Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
35
|
Nguyen MK, Lin C, Hoang HG, Sanderson P, Dang BT, Bui XT, Nguyen NSH, Vo DVN, Tran HT. Evaluate the role of biochar during the organic waste composting process: A critical review. CHEMOSPHERE 2022; 299:134488. [PMID: 35385764 DOI: 10.1016/j.chemosphere.2022.134488] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 05/21/2023]
Abstract
Composting is very robust and efficient for the biodegradation of organic waste; however secondary pollutants, namely greenhouse gases (GHGs) and odorous emissions, are environmental concerns during this process. Biochar addition to compost has attracted the interest of scientists with a lot of publication in recent years because it has addressed this matter and enhanced the quality of compost mixture. This review aims to evaluate the role of biochar during organic waste composting and identify the gaps of knowledge in this field. Moreover, the research direction to fill knowledge gaps was proposed and highlighted. Results demonstrated the commonly referenced conditions during composting mixed biochar should be reached such as pH (6.5-7.5), moisture (50-60%), initial C/N ratio (20-25:1), biochar doses (1-20% w/w), improved oxygen content availability, enhanced the performance and humification, accelerating organic matter decomposition through faster microbial growth. Biochar significantly decreased GHGs and odorous emissions by adding a 5-10% dosage range due to its larger surface area and porosity. On the other hand, with high exchange capacity and interaction with organic matters, biochar enhanced the composting performance humification (e.g., formation humic and fulvic acid). Biochar could extend the thermophilic phase of composting, reduce the pH value, NH3 emission, and prevent nitrogen losses through positive effects to nitrifying bacteria. The surfaces of the biochar particles are partly attributed to the presence of functional groups such as Si-O-Si, OH, COOH, CO, C-O, N for high cation exchange capacity and adsorption. Adding biochars could decrease NH3 emissions in the highest range up to 98%, the removal efficiency of CH4 emissions has been reported with a wide range greater than 80%. Biochar could absorb volatile organic compounds (VOCs) more than 50% in the experiment based on distribution mechanisms and surface adsorption and efficient reduction in metal bioaccessibilities for Pb, Ni, Cu, Zn, As, Cr and Cd. By applicating biochar improved the compost maturity by promoting enzymatic activity and germination index (>80%). However, physico-chemical properties of biochar such as particle size, pore size, pore volume should be clarified and its influence on the composting process evaluated in further studies.
Collapse
Affiliation(s)
- Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Bao Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
36
|
Gao Y, Zhang C, Tan L, Wei X, Li Q, Zheng X, Liu F, Wang J, Xu Y. Full-Scale of a Compost Process Using Swine Manure, Human Feces, and Rice Straw as Feedstock. Front Bioeng Biotechnol 2022; 10:928032. [PMID: 35845418 PMCID: PMC9286457 DOI: 10.3389/fbioe.2022.928032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Regarding the composting of rural waste, numerous studies either addressed the composting of a single waste component or were conducted at a laboratory/pilot scale. However, far less is known about the mixed composting effect of multi-component rural waste on a large scale. Here, we examined nutrient transformation, maturity degree of decomposition, and succession of microbial communities in large-scale (1,000 kg mixed waste) compost of multi-component wastes previously optimized by response models. The results showed that multi-component compost can achieve the requirement of maturity and exhibit a higher nutritional value in actual compost. It is worth noting that the mixed compost effectively removed pathogenic fungi, in which almost no pathogenic fungi were detected, and only two pathogenic bacteria regrown in the cooling and maturation stages. Structural equation models revealed that the maturity (germination index and the ratio of ammonium to nitrate) of the product was directly influenced by compost properties (electrical conductivity, pH, total organic carbon, moisture, temperature, and total nitrogen) compared with enzymes (cellulase, urease, and polyphenol oxidase) and microbial communities. Moreover, higher contents of total phosphorus, nitrate-nitrogen, and total potassium were conducive to improving compost maturity, whereas relatively lower values of moisture and pH were more advantageous. In addition, compost properties manifested a remarkable indirect effect on maturity by affecting the fungal community (Penicillium and Mycothermus). Collectively, this evidence implies that mixed compost of multi-component rural waste is feasible, and its efficacy can be applied in practical applications. This study provides a solution for the comprehensive treatment and utilization of rural waste.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Xu
- *Correspondence: Xiangqun Zheng, ; Yan Xu,
| |
Collapse
|
37
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
38
|
On-Farm Composting of Hop Plant Green Waste—Chemical and Biological Value of Compost. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Green agro waste can be turned into compost, which can then be used as an organic fertilizer, thus reducing the environmental impact of food and feed production. This research is focused on finding a feasible on-farm composting treatment of plant biomass to produce high-quality compost. Three different composting treatments were prepared and followed (with different additives at the start—biochar (BC) and effective microorganisms (EM), no additive (CON); covering and not covering the pile; different start particles size). Samples were analysed for nutrient concentrations, phytotoxicity and bacterial and fungal presence after seven months of composting. In 100 g of dry matter, the average compost contained 2.7 g, 0.38 g and 1.08 g of N, P and K, respectively. All investigated treatments contained more than 2% of total nitrogen in dry mass, so they could be used as a fertilizer. The highest nutrient content was observed in compost of small particle size (˂5 cm) and added biochar (11 kg/t fresh biomass). However, this compost had the least bacteria and fungi due to very high temperatures in the thermophilic phase of this pile. According to the radish germination index, the prepared composts have no phytotoxic properties and are stable and ready to use in plant production. Taking the cress germination test into consideration, they provided a nutrient-rich and biostimulative soil amendment. All three final composts were stable in terms of respiration rate, growth and germination tests. Results have shown that hop biomass after harvest has great potential for composting.
Collapse
|
39
|
Zhou S, Song Z, Li Z, Qiao R, Li M, Chen Y, Guo H. Mechanisms of nitrogen transformation driven by functional microbes during thermophilic fermentation in an ex situ fermentation system. BIORESOURCE TECHNOLOGY 2022; 350:126917. [PMID: 35231599 DOI: 10.1016/j.biortech.2022.126917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, we explored the pathways and mechanisms of nitrogen (N) transformation driven by functional microbes carrying key genes in an ex situ fermentation system (EFS). Temperature and N content were found to be the most important factors driving variation in bacterial and fungal communities, respectively; Bacillus became the most abundant bacteria and Batrachochytrium became the most abundant fungi. Co-occurrence network analysis showed that some bacteria including Halomonas, Truepera, and Gemmatimonas species carry genes that promote mineralization, nitrification, dissimilatory/assimilatory nitrate reduction, denitrification, anammox reactions, and N fixation. The maximum rate of total mineralization reached 136.60 μg N g-1 d-1. Functional microbes promoted various N conversion processes at different rates in the EFS, with levels increasing by at least 0.23 μg N g-1 d-1. These results provide a theoretical basis for feasible optimization measures to address N loss during fermentation.
Collapse
Affiliation(s)
- Sihan Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbiao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongye Qiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengjie Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yifan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; National Engineering Laboratory for Tree Breeding, Beijing, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, China.
| |
Collapse
|
40
|
Wei Z, Ahmed Mohamed T, Zhao L, Zhu Z, Zhao Y, Wu J. Microhabitat drive microbial anabolism to promote carbon sequestration during composting. BIORESOURCE TECHNOLOGY 2022; 346:126577. [PMID: 34923079 DOI: 10.1016/j.biortech.2021.126577] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Transforming organic waste into stable carbon by composting is an eco-friendly way. However, the complex environment, huge microbial community and complicated metabolic of composting have limited the directional transformation of organic carbon, which is also not conducive to the fixation of organic carbon. Therefore, this review is based on the formation of humus, a stable by-product of composting, to expound how to promote carbon fixation by increasing the yield of humus. Firstly, we have clarified the transformation regularity of organic matter during composting. Meanwhile, the microhabitat factors affecting microbial catabolism and anabolism were deeply analyzed, in order to provide a theoretical basis for the micro habitat regulation of directional transformation of organic matter during composting. Given that, a method to adjust the directional humification and stabilization of organic carbon has been proposed. Hoping the rapid reduction and efficient stabilization of organic waste can be realized according to this method.
Collapse
Affiliation(s)
- Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Li Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
Ma Q, Li Y, Xue J, Cheng D, Li Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022; 27:472. [PMID: 35056787 PMCID: PMC8777752 DOI: 10.3390/molecules27020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.
Collapse
Affiliation(s)
- Qianqian Ma
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Xue
- SCION, Private Bag 29237, Christchurch 8440, New Zealand;
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
42
|
Gao Y, Tan L, Liu F, Li Q, Wei X, Liu L, Li H, Zheng X, Xu Y. Optimization of the proportion of multi-component rural solid wastes in mixed composting using a simplex centroid design. BIORESOURCE TECHNOLOGY 2021; 341:125746. [PMID: 34438286 DOI: 10.1016/j.biortech.2021.125746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 05/22/2023]
Abstract
How to effectively dispose of rural solid waste has become one of the important issues that need to be solved urgently in China. A simplex centroid design was utilized to optimize four-component mixed composting (swine manure, human feces, rice straw and kitchen waste). 24 different runs were conducted to compost based on the mixture design. Three response models (2 special cubic and 1 quadratic) were successfully developed and validated by analysis of variance. It turns out that all models have a very high R2 value ranging from 94.76 to 98.81%. The global solution of the mixture optimization predicted the optimal value of 0.879, in a blend consisting of 41.4% swine manure, 13.7% human feces and 44.9% rice straw. That was considered to be the best combined proportion of mixed composting. This result is instructive for the efficient treatment and resource utilization of solid wastes in rural areas.
Collapse
Affiliation(s)
- Yi Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fang Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liyuan Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
43
|
Yin Z, Zhang L, Li R. Effects of additives on physical, chemical, and microbiological properties during green waste composting. BIORESOURCE TECHNOLOGY 2021; 340:125719. [PMID: 34365299 DOI: 10.1016/j.biortech.2021.125719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Composting is an environmentally friendly and sustainable way to transform Green waste (GW) into a useful product. GW, however, contains substantial quantities of lignocelluloses that extend the composting period unless substances that accelerate composting are added. The objective of this research was to assess the influence of the following additives on GW composting (w/w dry matter contents of the additives were indicated): sugarcane bagasse at 15%; bean dregs at 35%; silage at 45%; flue gas desulfurization gypsum at 5%; maifanite at 4%; and furfural residue at 20%. Based on the composting temperature, compost density, porosity, particle-size distribution, water retention, pH, cation exchange capacity, available nutrient contents, humification coefficient, organic matter loss, microbial populations, and phytotoxicity, the best additives were 45% silage and 5% flue gas desulfurization gypsum. The latter two additives produced a high-quality product in only 35 and 37 days, respectively.
Collapse
Affiliation(s)
- Zexin Yin
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Ruinan Li
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
44
|
Zhou Y, Qin S, Verma S, Sar T, Sarsaiya S, Ravindran B, Liu T, Sindhu R, Patel AK, Binod P, Varjani S, Rani Singhnia R, Zhang Z, Awasthi MK. Production and beneficial impact of biochar for environmental application: A comprehensive review. BIORESOURCE TECHNOLOGY 2021; 337:125451. [PMID: 34186328 DOI: 10.1016/j.biortech.2021.125451] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This review focuses on a holistic view of biochar, production from feedstock's, engineering production strategies, its applications and future prospects. This article reveals a systematic emphasis on the continuation and development of biochar and its production methods such as Physical engineering, chemical and bio-engineering techniques. In addition, biochar alternatives such as nutrient formations and surface area made it a promising cheap source of carbon-based products such as anaerobic digestion, gasification, and pyrolysis, commercially available wastewater treatment, carbons, energy storage, microbial fuel cell electrodes, and super-capacitors repair have been reviewed. This paper also covers the knowledge blanks of strategies and ideas for the future in the field of engineering biochar production techniques and application as well as expand the technology used in the circular bio-economy.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|
45
|
Jiang J, Wang Y, Yu D, Zhu G, Cao Z, Yan G, Li Y. Comparative evaluation of biochar, pelelith, and garbage enzyme on nitrogenase and nitrogen-fixing bacteria during the composting of sewage sludge. BIORESOURCE TECHNOLOGY 2021; 333:125165. [PMID: 33894451 DOI: 10.1016/j.biortech.2021.125165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of garbage enzyme (GE), pelelith (PL), and biochar (BC) on nitrogen (N) conservation, nitrogenase (Nase) and N-fixing bacteria during the composting of sewage sludge. Results showed that the addition of GE, PL, and BC reduced NH3 emissions by 40.9%, 29.3%, and 67.4%, and increased the NO3-N contents of the end compost by 161.4, 88.2, and 105.8% relative to control, respectively, thus increasing the TN content. Three additives improved Nase, cellulase, and fluorescein diacetate hydrolase (FDA) activities and the abundances of nifH gene, and the largest increase was BC, followed by PL and GE. In addition, the additives also markedly influenced the succession of N-fixing bacteria, and significantly increased the abundance of Proteobacteria during the whole process. The BC and PL additions strengthened the sensitivity of N-fixing bacteria to environmental variables, and FDA, TN, moisture content, and NO3-N significantly affected the N-fixing bacteria at genus level.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
46
|
Ren X, Wang Q, Chen X, Zhang Y, Sun Y, Li R, Li J, Zhang Z. Elucidating the optimum added dosage of Diatomite during co-composting of pig manure and sawdust: Carbon dynamics and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146058. [PMID: 33677282 DOI: 10.1016/j.scitotenv.2021.146058] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Six dosages of DM (0%, 2.5%, 5.0%, 10%, 15% and 20%) were added into initial mixtures for 42 days of aerobic composting to investigate the optimum added dosage of Diatomite (DM) during co-composting of pig manure and sawdust. The results showed that adding DM was beneficial for reducing CH4 emissions and greenhouse gas emission equivalent (GHGE) values by 15.63-24.25% and 14.33-69.08%, respectively. Meanwhile, the main contributor to the GHGE value was N2O (58.76-75.98%), followed by CH4 (17.22-29.16%) and NH3 (6.38-13.36%). Moreover, the maximum values in the degradation of total organic matter and the formation rate of humic acid were 20.46% and 82.19% in 10% DM added treatment (T3), respectively. Furthermore, the increase in spectral parameters, including the specific UV absorbance at 254 nm (SUVA254), the specific UV absorbance at 280 nm (SUVA280) and Fourier transform - infrared parameters were facilitated by DM amendment. Additionally, the higher values of the relative abundances of Proteobacteria (50.98%) and Bacteroidetes (12.73%), and related metabolisms such as carbohydrate metabolism and amino acid metabolism, as well as the lower value of methane metabolism reported in T3, supported the difference in CH4 and humification of the two treatments. In conclusion, DM was determined to be an eco-practical additive to improve the quality of end products and reduce potential risks, and the best treatment in this study was 10% added treatment based on dry weight.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Xing Chen
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Yue Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Yue Sun
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128 Jiangsu Province, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China.
| |
Collapse
|
47
|
Xiong J, Ma S, He X, Han L, Huang G. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. BIORESOURCE TECHNOLOGY 2021; 332:125087. [PMID: 33831791 DOI: 10.1016/j.biortech.2021.125087] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The effects of functional membrane covering (FMC) on nitrogen transformation and related functional genes during aerobic composting were investigated by performing a comparable experiment. The FMC increased the pile temperature, promoted compost maturity, and decreased nitrogen loss. The FMC reduced NH3 and N2O emissions by 7.34% and 26.27%, respectively. The water film and the micro-positive pressure environment under the membrane effectively prevented NH3 escaping. The FMC up-regulated the amoA gene copy number (promoting NH3/NH4+ oxidation). The reduction of N2O emission by the FMC was mainly related to denitrifying genes (nirK, nirS, and nosZ). The FMC down-regulated the nirK and nirS gene copy numbers, but up-regulated the nosZ gene copy number. Pearson correlation analysis indicated that the functional membrane characteristics and differences between the composting pile environments caused by the FMC significantly affected the nitrogen forms and the related functional genes. The FMC strongly decreased nitrogen emissions and therefore conserved nitrogen.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuangshuang Ma
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
48
|
Zhang B, Fan B, Hassan I, Peng Y, Ma R, Guan CY, Chen S, Cui S, Li G. Effects of bamboo biochar on nitrogen conservation during co-composting of layer manure and spent mushroom substrate. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-9. [PMID: 34044755 DOI: 10.1080/09593330.2021.1936201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Layer manure (LM) and spent mushroom substrate (SMS) are two kinds of nitrogen (N) rich solid wastes generate in the poultry breeding and agriculture production. Composting is an effective way to recycle the LM and SMS. However, a large amount of N in the LM and SMS was lost via volatilisation during composting, with negative environmental and economic consequences. This study investigated the effect of incorporating biochar at the ratio of 5%, 10%, and 15% (w/w) during co-composting of LM and SMS on ammonia (NH3) and nitrogen oxide (N2O) volatilisation and N retention. After the 35-day composting, the results showed that the pile temperature and seed germination index in biochar treatments were significantly improved in comparison with control treatment. The nitrogen in all treatments was lost in the form of N2O (0.05∼0.1%) and NH3 (13.1∼20.2%). Likewise, the total nitrogen loss was 28.9%, 20.3%, and 24.9%, respectively, of which N2O-N accounts for 0.05∼0.10%. Compared with control treatment, the total amount of NH3 volatilisation in biochar treatments of 5%BC, 10%BC and 15%BC was decreased by 21.2%, 33.1%, and 26.1%, respectively. The total amount of N2O emission was decreased by 39.0%, 13.2%, and 1.6%, respectively. Adding 10% and 15% biochar can significantly reduce NH3 volatilisation while adding 5% biochar treatment didn't significantly reduce NH3 emissions but showed the best performance in reducing N2O emission. The addition of 10% biochar in co-composting of LM and SMS is the recommended dosage that exhibited the best performance in improving composting quality and reducing nitrogen loss.
Collapse
Affiliation(s)
- Bangxi Zhang
- Institute of Agricultural Resources and Environment, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Beibei Fan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Iram Hassan
- Institute of Soil Science, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Yutao Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Ruonan Ma
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National llan University, Yilan, Taiwan
| | - Shili Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Shihao Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guoxue Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
49
|
Zhang M, Liang W, Tu Z, Li R, Zhang Z, Ali A, Xiao R. Succession of bacterial community during composting: dissimilarity between compost mixture and biochar additive. BIOCHAR 2021; 3:229-237. [DOI: 10.1007/s42773-020-00078-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/13/2020] [Indexed: 08/20/2023]
|
50
|
Dabrowska M, Debiec-Andrzejewska K, Andrunik M, Bajda T, Drewniak L. The biotransformation of arsenic by spent mushroom compost - An effective bioremediation agent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112054. [PMID: 33601170 DOI: 10.1016/j.ecoenv.2021.112054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Spent mushroom compost (SMC) is a lignocellulose-rich waste material commonly used in the passive treatment of heavy metal-contaminated environments. In this study, we investigated the bioremediation potential of SMC against an inorganic form of arsenic, examining the individual abiotic and biotic transformations carried out by SMC. We demonstrated, that key SMC physiological groups of bacteria (denitrifying, cellulolytic, sulfate-reducing, and heterotrophic) are resistant to arsenites and arsenates, while the microbial community in SMC is also able to oxidize As(III) and reduce As(V) in respiratory metabolisms, although the SMC did not contain any As. We showed, that cooperation between arsenate and sulfate-reducing bacteria led to the precipitation of AsxSy. We also found evidence of the significant role organic acids may play in arsenic complexation, and we demonstrated the occurrence of As-binding proteins in the SMC. Furthermore, we confirmed, that biofilm produced by the microbial community in SMC was able to trap As(V) ions. We postulated, that the above-mentioned transformations are responsible for the sorption efficiency of As(V) (up to 25%) and As(III) (up to 16%), as well as the excellent buffering properties of SMC observed in the sorption experiments.
Collapse
Affiliation(s)
- M Dabrowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - K Debiec-Andrzejewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - M Andrunik
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
| | - T Bajda
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
| | - L Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|