1
|
Wang S, Yang H, Kang X, Yang Y. Enhanced Fenton-like reactions via interface electron reconstruction in low-crystallinity FeCo bimetallic metal-organic frameworks: Bidirectional control of Fe (III) and Co (II) sites. J Colloid Interface Sci 2025; 678:168-179. [PMID: 39293361 DOI: 10.1016/j.jcis.2024.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
In this study, the activity and stability of Fenton-like reactions are enhanced by constructing a low-crystallinity FeCo bimetallic metal-organic framework (FeCox-BDC (BDC denotes as terephthalic acid)) through interface electron reconstruction. However, the specific origins and mechanisms of their enhanced activity, particularly in Fenton-like reactions, remains unclear. Systematic analysis revealed that the isomorphic substitution of Co (II) reduces the coordination number and d-electron count at local Fe (III) sites, shifting the d-band centers (-1.59 eV) closer to the Fermi level. Additionally, Co 3d-orbitals can accept electrons, improving the occupation of antibonding orbitals. Notably, Fe (III) and Co (II) sites exhibit a synergistic effect: Fe (III) sites strongly adsorbed the Oα point of the peroxy bond (lOαOβ), while Co (II) sites efficiently activated Oβ. Within 5 min, FeCo1/3-BDC achieved a 98 % reduction in Rhodamine-B (RhB), surpassing Fe-BDC by a factor of 76 and homogeneous Fenton catalytic systems (Co (II)/peroxymonosulfate (PMS) and Fe (III)/Co (II)/PMS). This work provides a profound understanding of interface electron reconstruction, offering valuable insights into guiding Fenton-like mechanisms.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xudong Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuankun Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Zhang B, Li R, Zheng Y, Chen S, Su Y, Zhou W, Sui Q, Liang D. Biochar Composite with Enhanced Performance Prepared Through Microbial Modification for Water Pollutant Removal. Int J Mol Sci 2024; 25:11732. [PMID: 39519280 PMCID: PMC11546741 DOI: 10.3390/ijms252111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This study developed mycelial biochar composites, BQH-AN and BQH-MV, with stable physicochemical properties and significantly improved adsorption capabilities through microbial modification. The results showed that the specific surface area and porosity of BQH-AN (3547.47 m2 g-1 and 2.37 cm3 g-1) and BQH-MV (3205.59 m2 g-1 and 2.46 cm3 g-1) were significantly higher than those of biochar BQH (2641.31 m2 g-1 and 1.81 cm3 g-1), which was produced without microbial treatment. In adsorption experiments using rhodamine B (RhB), tetracycline hydrochloride (TC), and Cr (VI), BQH-AN showed maximum adsorption capacities of 1450.79 mg g-1 for RhB, 1608.43 mg g-1 for TC, and 744.15 mg g-1 for Cr(VI). BQH-MV showed similarly strong performance, with 1329.85 mg g-1 for RhB, 1526.46 mg g-1 for TC, and 752.27 mg g-1 for Cr(VI). These values were not only higher than those of BQH but also outperformed most other biochar adsorbents. Additionally, after five reuse cycles, the pollutant removal efficiency of the mycelial biochar composites remained above 69%, demonstrating excellent regenerative ability. This study not only produced biochar with superior adsorption properties but also highlighted microbial modification as an effective way to enhance lignocellulosic biochar performance, paving the way for further biomass development.
Collapse
Affiliation(s)
- Bolun Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ruqi Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yangyang Zheng
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siji Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wei Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Qi Sui
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Dadong Liang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (Y.Z.); (W.Z.); (Q.S.); (D.L.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Zou W, Ma W, Zhang S. Salt-free neutral dyeing of cotton fiber with monochlorotriazine type reactive dyes. Int J Biol Macromol 2024; 282:136992. [PMID: 39488326 DOI: 10.1016/j.ijbiomac.2024.136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
In this paper, we present the modification of cotton with glycidyltrimethylammonium chloride (GTA), demonstrating its capability not only for salt-free dye adsorption but also for achieving fixation reactions with monochlorotriazine-type reactive dyes under neutral conditions. The results of adsorption kinetics and isotherm experiments indicate that the adsorption of reactive dyes by modified cotton is chemisorption. Color-stripping experiments conducted on modified cotton dyed with different dyes revealed that GTA-modified cotton underwent fixation reactions with monochlorotriazine-type reactive dyes under neutral conditions. The reaction sites of modified cotton with reactive dyes were determined by measuring the 1H NMR of the model reaction products. Mechanism investigation using Density Functional Theory (DFT) on the fixation reaction revealed that the hydroxyl groups on the modification agent chain exhibit a lower pKa value and carry more negative charge, resulting in a lower reaction barrier with monochlorotriazine-type reactive dyes. Our research findings demonstrate that GTA-modified cotton fiber enhance the reactivity of cotton, providing significant guidance for the development of novel modifiers.
Collapse
Affiliation(s)
- Wensheng Zou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
4
|
Xue Y, Kamali M, Costa MEV, Thompson IP, Huang W, Rossi B, Appels L, Dewil R. Activation of peroxymonosulfate by Fe,N co-doped walnut shell biochar for the degradation of sulfamethoxazole: Performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124018. [PMID: 38697252 DOI: 10.1016/j.envpol.2024.124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Fe and N co-doped walnut shell biochar (Fe,N-BC) was prepared through a one-pot pyrolysis procedure by using walnut shells as feedstocks, melamine as the N source, and iron (III) chloride as the Fe source. Moreover, pristine biochar (BC), nitrogen-doped biochar (N-BC), and α-Fe2O3-BC were synthesized as controls. All the prepared materials were characterized by different techniques and were used for the activation of peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). A very high degradation rate for SMX (10 mg/L) was achieved with Fe,N-BC/PMS (0.5 min-1), which was higher than those for BC/PMS (0.026 min-1), N-BC/PMS (0.038 min-1), and α-Fe2O3-BC/PMS (0.33 min-1) under the same conditions. This is mainly due to the formation of Fe3C and iron oxides, which are very reactive for the activation of PMS. In the next step, Fe,N-BC was employed for the formation of a composite membrane structure by a liquid-induced phase inversion process. The synthesized ultrafiltration membrane not only exhibited high separation performance for humic acid sodium salt (HA, 98%) but also exhibited improved self-cleaning properties when applied for rhodamine B (RhB) filtration combined with a PMS solution cleaning procedure. Scavenging experiments revealed that 1O2 was the predominant species responsible for the degradation of SMX. The transformation products of SMX and possible degradation pathways were also identified. Furthermore, the toxicity assessment revealed that the overall toxicity of the intermediate was lower than that of SMX.
Collapse
Affiliation(s)
- Yongtao Xue
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayarita 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayarita 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Maria Elisabete V Costa
- University of Aveiro, Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, 3810-193, Aveiro, Portugal
| | - Ian P Thompson
- University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei Huang
- University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Barbara Rossi
- University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayarita 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayarita 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
5
|
Li X, Zhu Q, Pang K, Lang Z. Effective removal of Rhodamine B using the hydrothermal carbonization and citric acid modification of furfural industrial processing waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:3303-3314. [PMID: 37194688 DOI: 10.1080/09593330.2023.2215451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023]
Abstract
In this study, the removal of RhB from water by furfural residue (FR) biochar was prepared by hydrothermal carbonization (HTC) and citric acid (CA) modification and named this biochar as CHFR (C refers to citric acid, H refers to hydrothermal carbonization and FR is furfural residue). The CHFR were characterized by SEM, FT-IR and XPS, and CHFR was investigated by the effects of initial concentration, adsorbent dosage, pH, and contact time on the removal of RhB, and the experimental data were analyzed using the adsorption isotherm models, the adsorption kinetic models and thermodynamics, et al. The results showed that CHFR has strong adsorption performance, and the theoretical maximum adsorption capacity of RhB was 39.46 mg·g-1 under the reaction conditions of pH3, the dosage of 1.5 g·L-1, and 120 min contact time, with a removal efficiency close to 100%. the adsorption of RhB by CHFR is spontaneous and endothermic, which is consistent with the Freundlich adsorption, and the isotherm model fits well with the pseudo-second-order model, and the adsorption rate could still be as high as 92.74% after five regenerations, therefore, CHFR is an environmentally friendly and efficient adsorbent with excellent adsorption regeneration performance.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| | - Qi Zhu
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| | - Kai Pang
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| | - Ze Lang
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| |
Collapse
|
6
|
Hao J, Cui Z, Liang J, Ma J, Ren N, Zhou H, Xing D. Sustainable efficient utilization of magnetic porous biochar for adsorption of orange G and tetracycline: Inherent roles of adsorption and mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118834. [PMID: 38565414 DOI: 10.1016/j.envres.2024.118834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Iron-doped biochar has been widely used as an adsorbent to remove contaminants due to the high adsorption performance, but it still suffers from complicated preparation methods, unstable iron loading, unsatisfactory specific surface area, and uneven distribution of active sites. Here, a novel magnetic porous biochar (FeCS800) with nanostructure on surface was synthesized by one-pot pyrolysis method of corn straw with K2FeO4, and used in orange G (OG) and tetracycline (TC) adsorption. FeCS800 exhibited outstanding adsorption capacities for OG and TC after K2FeO4 activation and the adsorption data were fitted satisfactorily to Langmuir isotherm and Pseudo-second-order kinetic model. The maximum adsorption capacities of FeCS800 for OG and TC were around 303.03 mg/g and 322.58 mg/g, respectively, at 25 °C and pH 7.0, which were 16.27 and 24.61 times higher than that before modification. Thermodynamic studies showed that the adsorption of OG/TC by FeCS800 were thermodynamically favorable and highly spontaneous. And the adsorption capacity of OG and TC by FeCS800 remained 77% and 81% after 5 cycles, respectively, indicating that FeCS800 had good stability. The outstanding adsorption properties and remarkable reusability of FeCS800 show its great potential to be an economic and environmental adsorbent in contaminants removal.
Collapse
Affiliation(s)
- Jiayin Hao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiliang Cui
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, 210007, China
| | - Jiale Liang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huihui Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
8
|
Sorour FH, Aboeleneen NM, Abd El-Monem NM, Ammar YA, Mansour RA. Removal of malachite green from wastewater using date seeds as natural adsorbent; isotherms, kinetics, Thermodynamic, and batch adsorption process design. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1321-1335. [PMID: 38409765 DOI: 10.1080/15226514.2024.2316315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This research explores the feasibility of using date seeds (DS), an agricultural waste, for the adsorption of malachite green (MG) dye from synthesized wastewater. The characterization of the DS before and after adsorption was accomplished by FTIR, SEM, BET, and EDX measurements. Batch adsorption experiments were investigated for MG dye adsorption from aqueous solution onto the DS. The effect of different parameters such as solution pH, adsorbent dose, contact time, temperature, and the initial dye concentration were studied. The optimum pH, adsorbent dose, temperature, and contact time for the dye removal were found to be 5, 0.1 g, 25 °C, and 30 min, respectively. The equilibrium studies for the data with Langmuir, Freundlich, and Temkin isotherms showed that Freundlich isotherm is the best model to describe the adsorption of MG onto the DS particles which has a heterogeneous surface. It was found that the adsorption process follows a pseudo-second-order kinetic model which revealed that the intra-particle diffusion stage is the rate-controlling stage for the process. The thermodynamic parameters ΔG, ΔS, and ΔH suggest the possibility of chemisorption and physisorption simultaneously and indicate the exothermic and spontaneous characters of the adsorption of MG dye on DS with negative values of ΔH and ΔG.
Collapse
Affiliation(s)
- Faisal Hassan Sorour
- Chemical Engineering Department, Canal High Institute for Engineering and Technology, Suez, Egypt
| | - N M Aboeleneen
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| | - N M Abd El-Monem
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Yara A Ammar
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - R A Mansour
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| |
Collapse
|
9
|
Hashemzadeh F, Khoshmardan ME, Sanaei D, Ghalhari MR, Sharifan H, Inglezakis VJ, Arcibar-Orozco JA, Shaikh WA, Khan E, Biswas JK. Adsorptive removal of anthracene from water by biochar derived amphiphilic carbon dots decorated with chitosan. CHEMOSPHERE 2024; 352:141248. [PMID: 38280643 DOI: 10.1016/j.chemosphere.2024.141248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Anthracene belongs to the polycyclic aromatic hydrocarbon (PAH) consisting of benzene rings, unusually highly stable through more π-electrons and localized π-bond in entire rings. Aqueous-phase anthracene adsorption using carbon-based materials such as biochar is ineffective. In this paper, carbon dots (CDs) derived from the acid treatment of coconut shell biochar (CDs/MCSB) decorated with chitosan (CS) are successfully synthesized and applied for anthracene removal from aqueous solutions. The h-CDs/MCSB exhibited fast adsorption of anthracene with significant sorption capacity (Qmax = 49.26 mg g-1) with 95 % removal efficiency at 60 min. The study suggested chemisorption dominated monolayer anthracene adsorption onto h-CDs/MCSB, where a significant role was played by ion-exchange. Density Functional Theory (DFT) suggested the anthracene adsorption was dominated by the electrostatic interactions and delocalized electron, induced by higher polarizability of functional groups on the surface of hybrid CDs/MCSB assisted by chitosan (h-CDs/MCSB). In addition, the aromatic structure of CDs/MCSB and high polarizability of functional groups provided the strong interactions between benzene rings of anthracene and hybrid adsorbent-assisted multiple π-bond through delocalized π-bond and polarization-induced H-bond interactions. The presence of carboxylic and sulfonic groups on the CDs/MCSB surface also contributed to the effective adsorption of anthracene was confirmed by the fluorescence spectra. The results showed that the hybrid adsorbent was an effective material for removing PAHs, usually difficult to remove from water owing to the presence of benzene rings in their structures. Further, consistency in the DFT results suggested the outstanding binding capacity with the anthracene molecules with h-CDs/MCSB.
Collapse
Affiliation(s)
- Farzad Hashemzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran
| | - Maede Esmaeili Khoshmardan
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | | | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | | | - Javier A Arcibar-Orozco
- Research Department, CIATEC A.C. Centro de Innovación Aplicada en Tecnologías Competitivas, León, Mexico
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, India, 743368
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV 89154-4015, USA
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal - 741235, India.
| |
Collapse
|
10
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
11
|
Fan Z, Zhou X, Lu Q, Gao ZF, Deng S, Peng Z, Han W, Chen X. Synthesis of sewage sludge biochar in molten salt environment for advanced wastewater treatment: Performance enhancement, carbon footprint and environmental impact reduction. WATER RESEARCH 2024; 250:121072. [PMID: 38150858 DOI: 10.1016/j.watres.2023.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Sewage sludge (SS) pyrolysis to produce biochar is a vital approach for treating and utilizing SS, while reducing the carbon footprint of SS disposal. However, the high inorganic content in SS results in low carbon content and underdeveloped pore structure of biochar prepared under inert atmospheres. There is a significant risk of secondary pollutant emissions, including CO2, SO2, and NOx. In this study, we propose an innovative approach that utilizes excess molten salts, specifically a Li-Na-K molten carbonate (MC) and a Li-Na-K molten chloride (MCH), to create a medium-temperature liquid phase reaction environment (500 °C) for SS pyrolysis. This environment promotes the functional enhancement of biochar (SSB-MC and SSB-MCH) and in-situ absorption of secondary pollutants. The pore structure of SSB-MC and SSB-MCH are greatly optimized. Thanks to the dissolution of calcium-silicon-aluminum-based minerals by molten salt, the carbon content is also significantly increased. The increased specific surface area and surface-enriched functional groups (O, N, P, etc.) of SSB-MC result in greatly enhanced adsorption performance for Rhodamine B (27.9 to 89.1 mg g-1). SSB-MCH, due to the increased iron and phosphorus doping, also exhibits enhanced Fenton oxidation capability. Life cycle assessments demonstrate that the molten salt processes effectively reduce the carbon footprint, energy consumption, and environmental impact.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Qi Lu
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| |
Collapse
|
12
|
Wang YS, Huo TR, Wang Y, Bai JW, Huang PP, Li C, Deng SY, Mei H, Qian J, Zhang XC, Ding C, Zhang QY, Wang WK. Constructing mesoporous biochar derived from waste carton: Improving multi-site adsorption of dye wastewater and investigating mechanism. ENVIRONMENTAL RESEARCH 2024; 242:117775. [PMID: 38029815 DOI: 10.1016/j.envres.2023.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The development of cost-efficient biochar adsorbent with a simple preparation method is essential to constructing efficient wastewater treatment system. Here, a low-cost waste carton biochar (WCB) prepared by a simple two-step carbonization was applied in efficiently removing Rhodamine B (RhB) in aqueous environment. The maximum ability of WCB for RhB adsorption was 222 mg/g, 6 and 10 times higher than both of rice straw biochar (RSB) and broadbean shell biochar (BSB), respectively. It was mainly ascribed to the mesopore structure (3.0-20.4 nm) of WCB possessing more spatial sites compared to RSB (2.2 nm) and BSB (2.4 nm) for RhB (1.4 nm✕1.1 nm✕0.6 nm) adsorption. Furthermore, external mass transfer (EMT) controlled mass transfer resistance (MTR) of the RhB sorption process by WCB which was fitted with the Langmuir model well. Meanwhile, the adsorption process was dominated by physisorption through van der Waals forces and π-π interactions. A mixture of three dyes in river water was well removed by using WCB. This work provides a straightforward method of preparing mesoporous biochar derived from waste carton with high-adsorption capacity for dye wastewater treatment.
Collapse
Affiliation(s)
- Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Tong-Rong Huo
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Jia-Wen Bai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ping-Ping Huang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Chen Li
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Shi-Yu Deng
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Hong Mei
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Jun Qian
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Xiao-Chi Zhang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Chen Ding
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Qiu-Yu Zhang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Wei-Kang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Fan Q, Shao Z, Guo X, Qu Q, Yao Y, Zhang Z, Qiu L. Effects of Fe-N co-modified biochar on methanogenesis performance, microbial community, and metabolic pathway during anaerobic co-digestion of alternanthera philoxeroides and cow manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:120006. [PMID: 38176383 DOI: 10.1016/j.jenvman.2023.120006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
The performance of anaerobic digestion (AD) is susceptible to disturbances in feedstock degradation, intermediates accumulation, and methanogenic archaea activity. To improve the methanogenesis performance of the AD system, Fe-N co-modified biochar was prepared under different pyrolysis temperatures (300,500, and 700 °C). Meanwhile, pristine and Fe-modified biochar were also derived from alternanthera philoxeroides (AP). The aim was to compare the effects of Fe-N co-modification, Fe modification, and pristine biochar on the methanogenic performance and explicit the responding mechanism of the microbial community in anaerobic co-digestion (coAD) of AP and cow manure (CM). The highest cumulative methane production was obtained with the addition of Fe-N-BC500 (260.38 mL/gVS), which was 42.37 % higher than the control, while the acetic acid, propionic acid, and butyric acid concentration of Fe-N-BC were increased by 147.58 %, 44.25 %, and 194.06 % compared with the control, respectively. The co-modified biochar enhanced the abundance of Chloroflexi and Methanosarcina in the AD system. Metabolic pathway analysis revealed that the increased methane production was related to the formation and metabolism of volatile fatty acids and that Fe-N-BC500 enhanced the biosynthesis of coenzyme A and the cell activity of microorganisms, accelerating the degradation of propionic acid and enhancing the hydrogenotrophic methanogenesis pathway. Overall, Fe-N co-modified biochar was proved to be an effective promoter for accelerated methane production during AD.
Collapse
Affiliation(s)
- Qiongbo Fan
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China
| | - Zhijiang Shao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China
| | - Xiaohui Guo
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China
| | - Qiang Qu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China
| | - Yiqing Yao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- Northwest A&F University, College of Natural Resources and Environment, Yangling, Shaanxi, 712100, China
| | - Ling Qiu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Gao Z, Ju B, Tang B, Ma W, Niu W, Zhang S. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38297996 DOI: 10.1021/acs.langmuir.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Flocculants are crucial agents in wastewater treatment because they can remove oppositely charged impurities effectively and swiftly. However, flocculation also inevitably causes secondary contamination due to the residual properties, nonreusability, and nondegradability of traditional flocculant molecules. Herein, an ecofriendly starch-based flocculant, i.e., 2,4-bis(dimethylamino)-[1,3,5]-triazine-6-starch, was synthesized via a preactivation-etherification strategy. The large molecular weight property of the flocculant produced by this method enhances the intermolecular hydrophobic association, achieving complete phase separation of all flocculant molecules from water and residue-free flocculation for the first time. Importantly, a large molecular weight tertiary amine starch-based flocculant (LMTS) exhibits a remarkable flocculation capacity of over 1800 mg·g-1 for dye wastewater, which is significantly higher than that of traditional polyacrylamide and polyaluminum chloride flocculants. Furthermore, the LMTS flocculant could be recycled by pH adjustment, and its structural stability ensured sustained reusability. This high-performance residue-free biomass-based flocculant offers a green advance for wastewater treatment.
Collapse
Affiliation(s)
- Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Luo Z, Peng X, Liang W, Zhou D, Dang C, Cai W. Enhanced adsorption of roxarsone on iron-nitrogen co-doped biochar from peanut shell: Synthesis, performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 388:129762. [PMID: 37716571 DOI: 10.1016/j.biortech.2023.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Efficient removal of organic arsenic (roxarsone, ROX) from wastewater is highly demanded on the purpose of human health and environmental protection. This work aims to prepare Fe-N co-doped biochar (Fe-N-BC) via one-pot hydrothermal method using waste peanut shell, FeCl3·6H2O and urea, followed by pyrolysis. The effect of Fe-N co-doping on biochar's physicochemical properties, and adsorption performance for ROX were systematically investigated. At the pyrolysis temperature of 650 °C, Fe-N-BC-650 shows a significantly increased specific surface area of 358.53 m2/g with well-developed micro-mesoporous structure. Its adsorption capacity for ROX reaches as high as 197.32 mg/g at 25 °C, with > 90 % regeneration efficiency after multiple adsorption-desorption cycles. Correlation and spectral analysis revealed that the pore filling, π-π interactions, as well as hydrogen bonding play the dominant role in ROX adsorption. These results suggest that the Fe-N co-doped biochar shows great potential in the ROX removal from wastewater with high efficiency.
Collapse
Affiliation(s)
- Zhijia Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou, China
| | - Xiong Peng
- DeCarbon Tech. (Shenzhen) Co., Ltd, 518071 Shenzhen, China
| | - Wanwen Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou, China.
| | - Dan Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Chengxiong Dang
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China.
| |
Collapse
|
16
|
Fan Z, Zhou X, Peng Z, Fan Gao Z, Deng S, Lu Q, Chen X. Electrochemical splitting of methane in melts: Producing and tuning high-value carbon materials with controllable morphology. J Colloid Interface Sci 2023; 654:1020-1030. [PMID: 39491060 DOI: 10.1016/j.jcis.2023.10.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Catalytic decomposition of methane offers a viable solution for producing pure hydrogen and nanocarbon without emitting carbon dioxide. However, conventional thermal catalytic processes and catalysts have limitations in terms of poor carbon quality and catalyst deactivation due to carbon deposition. The newly developed electrochemical splitting of methane (ESM) in molten salt has emerged as a promising alternative that allows for the separate production of hydrogen at the anode and carbon deposition at the cathode. In this study, hydrogen produced via ESM while generating nanocarbon with diverse structures through manipulations of the cathode material and kinetics. Carbon nanotubes grown on Ni cathode, possessing high specific surface area and abundant functional groups, displayed excellent adsorptive capacity for dye adsorption. The open hollow nanocarbon grown on the Ag cathode displayed good capacitance performance. ESM technology has immense potential to enhance the utilization value of carbon by-products and the commercial production of green hydrogen.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Qi Lu
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| |
Collapse
|
17
|
Tang Z, Kong Y, Qin Y, Chen X, Liu M, Shen L, Kang Y, Gao P. Performance and degradation pathway of florfenicol antibiotic by nitrogen-doped biochar supported zero-valent iron and zero-valent copper: A combined experimental and DFT study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132172. [PMID: 37523963 DOI: 10.1016/j.jhazmat.2023.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Fluorinated compounds are a class of organic substances resistant to degradation. Although zero-valent iron (Fe0) has a promising reducing capability, it still fails to degrade fluorine-containing antibiotics (i.e., florfenicol) efficiently. In this study, we applied a simple one-pot pyrolytic approach to synthesize nitrogen-doped biochar supported Fe0 and zero-valent copper (Cu0) composite (Fe/Cu@NBC) and investigated its performance on florfenicol removal. The results clearly showed that approximately 91.4% of florfenicol in the deionized water was removed by Fe/Cu@NBC within 8 h. As the reaction time was extended to 15 d, the total degradation rate of florfenicol reached 96.6%, in which the defluorination and dechlorination rates were 73.2% and 82.1%, respectively. Both experimental results and density functional theory calculation suggested that ∙OH and ·O2- triggered β-fluorine elimination, resulting in defluorination prior to dechlorination. This new finding was distinct from previous viewpoints that defluorination was more difficult to occur than dechlorination. Fe/Cu@NBC also had a favorable performance for removal of florfenicol in surface water. This study provides a new insight into the degradation mechanism and pathway of florfenicol removal in the Fe/Cu@NBC system, which can be a promising alternative for remediation of fluorinated organic compounds in the environment.
Collapse
Affiliation(s)
- Zheng Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqian Chen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Min Liu
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Lu Shen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Yanming Kang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
18
|
Zhang Y, Tang Y, Yan R, Li J, Li C, Liang S. Removal performance and mechanisms of aqueous Cr (VI) by biochar derived from waste hazelnut shell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97310-97318. [PMID: 37587398 DOI: 10.1007/s11356-023-28603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023]
Abstract
Cr (VI) is still of great concern due to its high toxicity, solubility, and mobility. The transformation of waste biomass to biochar is favorable for sustainable development. Hazelnut shell, an agriculture waste, was utilized as precursor to prepare biochar at 700 °C and firstly conducted for Cr (VI) removal. Nearly all 50 mg L-1 of Cr (VI) was removed from aqueous media in 180 min under the optimal conditions. The best compliance with pseudo-second-order kinetic model (R2 = 0.999) and Langmuir isotherm model (R2 = 0.999) indicated Cr (VI) removal was a monolayer chemisorption process. The hazelnut shell biochar exhibited superior performance on Cr (VI) removal at low pH (2.0) and Cr (VI) concentrations (≤ 50 mg L-1). Various techniques illustrated that the predominant mechanism of Cr (VI) removal by hazelnut shell biochar involved electrostatic attraction, reduction, and complexation. This study provides a promising low-cost alternative for Cr (VI) elimination from acidic wastewater and groundwater after extraction following by pH adjustment to 2.0.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Yuwei Tang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Ruiping Yan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Jinchunzi Li
- School of Food and Pharmaceutical Engineering (Liubao Tea Modern Industry College), Wuzhou University, Wuzhou, 543002, China
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Shuang Liang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
19
|
Zheng D, Zou J, Xu H, Wu M, Wang Y, Feng C, Zheng E, Wang T, Shi Y, Chen Y, Li B. Efficiency and mechanism of the degradation of ciprofloxacin by the oxidation of peroxymonosulfate under the catalysis of a Fe 3O 4/N co-doped sludge biochar. CHEMOSPHERE 2023; 325:138387. [PMID: 36914007 DOI: 10.1016/j.chemosphere.2023.138387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
A novel and recyclable composite material, Fe3O4/N co-doped sludge biochar (FNBC), was developed from original sludge biochar (BC) and found to have excellent stability and superior catalytic capacity during the ciprofloxacin (CIP) degradation under the action of peroxymonosulfate (PMS). In the FNBC/PMS system, an approximately complete removal of CIP was achieved within 60 min under the condition of 1.0 g/L FNBC, 3.0 mM PMS, and 20 mg/L CIP, which was about 2.08 times of that in BC/PMS system (48.01%). Besides, FNBC/PMS system could effectively remove CIP under the influence of wide pH (2.0-10.0) or inorganic ions compared with BC/PMS system. Moreover, it was found that there were radical produced under the effect of Fe element, defects, functional groups, pyridinic N and pyrrolic N and non-radical caused by graphitic N, carbon atoms next to the iron atoms and better adsorption capacity in the FNBC/PMS system. It was observed that the contribution of hydroxyl radical (•OH), sulfate radical (SO4•-) and singlet oxygen (1O2), which were the main reactive oxygen species, during the CIP degradation, were 75.80%, 11.49% and 10.26%, respectively. Furthermore, total organic carbon (TOC) variation was analyzed and the degradation pathway of CIP was speculated. The application of this material could combine the recycling of sludge with the effective degradation of refractory organic pollutant, providing an environmentally friendly and economic method.
Collapse
Affiliation(s)
- Dayang Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Jiali Zou
- Department of Natural Resources of Gansu Province, Hongxinggang Road, Lanzhou, 730099, China
| | - Hao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Cang Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Eryang Zheng
- Municipal Engineering Design Institute, Hunan Provincial Communications Planning, Survey & Design Institute Co., Ltd, Yueliangdao Road, Changsha, 410219, China
| | - Teng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yuxiang Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yongjian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Binyang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| |
Collapse
|
20
|
Pei T, Shi F, Liu C, Lu Y, Lin X, Hou D, Yang S, Li J, Zheng Z, Zheng Y. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K 2FeO 4 and CaCO 3 for phenol removal: Governing factors and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121871. [PMID: 37225081 DOI: 10.1016/j.envpol.2023.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Shunxiong Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Jirong Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
21
|
Hao M, Wu W, Habibul N, Chai G, Ma X, Ma X. Fe-modified fly ash/cotton stalk biochar composites for efficient removal of phosphate in water: mechanisms and green-reuse potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27372-9. [PMID: 37155106 DOI: 10.1007/s11356-023-27372-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Excessive phosphate content input into natural water can lead to the waste of resource and eutrophication. Biochar is a kind of low-cost adsorbent. However, its adsorption capacity for phosphate is low. In order to solve this problem, Fe compound-modified fly ash/cotton stalk biochar composites (Fe-FBC) were prepared through co-pyrolyzed fly ash and cotton stalk at 800℃, followed by infiltration of FeSO4 solution. The samples were characterized by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential. After modification, the hydrophilicity and polarity of Fe-FBC increased. In addition, the pore volume, specific surface area, and surface functional groups were significantly improved. The adsorption behavior of Fe-FBC for the removal of phosphate from water can be well fitted by the pseudo-second-order kinetic and Sips isotherm adsorption model, with a maximum adsorption capacity of 47.91 mg/g. Fe-FBC maintained a high adsorption capacity in the pH range of 3-10. The coexisting anions (NO3-, SO42-, and Cl-) had negligible effects on phosphate adsorption. The adsorption mechanisms of Fe-FBC include electrostatic attraction, ligand exchange, surface complexation, ion exchange, chemical precipitation, and hydrogen bonding. Moreover, the desorption process of phosphate was investigated, indicating that the phosphate-saturated Fe-FBC could use as slow-release phosphate fertilizer. This study proposed a potentially environmental protection and recycling economy approach, which consists of recycling resources and treating wastes with wastes.
Collapse
Affiliation(s)
- Mengqi Hao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China.
| | - Nuzahat Habibul
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China
| | - Guang Chai
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoli Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoqian Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
22
|
Liu Y, Gao Z, Ji X, Wang Y, Zhang Y, Sun H, Li W, Wang L, Duan J. Efficient Adsorption of Tebuconazole in Aqueous Solution by Calcium Modified Water Hyacinth-Based Biochar: Adsorption Kinetics, Mechanism, and Feasibility. Molecules 2023; 28:molecules28083478. [PMID: 37110715 PMCID: PMC10145345 DOI: 10.3390/molecules28083478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The application of fungicides (such as tebuconazole) can impose harmful impacts on the ecosystem and humans. In this study, a new calcium modified water hyacinth-based biochar (WHCBC) was prepared and its effectiveness for removing tebuconazole (TE) via adsorption from water was tested. The results showed that Ca was loaded chemically (CaC2O4) onto the surface of WHCBC. The adsorption capacity of the modified biochar increased by 2.5 times in comparison to that of the unmodified water hyacinth biochar. The enhanced adsorption was attributed to the improved chemical adsorption capacity of the biochar through calcium modification. The adsorption data were better fitted to the pseudo-second-order kinetics and the Langmuir isotherm model, indicating that the adsorption process was dominated by monolayer adsorption. It was found that liquid film diffusion was the main rate-limiting step in the adsorption process. The maximum adsorption capacity of WHCBC was 40.5 mg/g for TE. The results indicate that the absorption mechanisms involved surface complexation, hydrogen bonding, and π-π interactions. The inhibitory rate of Cu2+ and Ca2+ on the adsorption of TE by WHCBC were at 4.05-22.8%. In contrast, the presence of other coexisting cations (Cr6+, K+, Mg2+, Pb2+), as well as natural organic matter (humic acid), could promote the adsorption of TE by 4.45-20.9%. In addition, the regeneration rate of WHCBC was able to reach up to 83.3% after five regeneration cycles by desorption stirring with 0.2 mol/L HCl (t = 360 min). The results suggest that WHCBC has a potential in application for removing TE from water.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Zhonglu Gao
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lide Wang
- Ningxia Branch of China Design Group Co., Ltd., Yinchuan 750001, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
23
|
Sun H, He J, Liu Y, Ji X, Wang G, Yang X, Zhang Y. Removal Performance and Mechanism of Emerging Pollutant Chloroquine Phosphate from Water by Iron and Magnesium Co-Modified Rape Straw Biochar. Molecules 2023; 28:molecules28083290. [PMID: 37110522 PMCID: PMC10146006 DOI: 10.3390/molecules28083290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinjin He
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Gang Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Yang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
24
|
Sun XN, Yu K, He JH, Chen Y, Guo JZ, Li B. Multiple roles of ferric chloride in preparing efficient magnetic hydrochar for sorption of methylene blue from water solutions. BIORESOURCE TECHNOLOGY 2023; 373:128715. [PMID: 36754236 DOI: 10.1016/j.biortech.2023.128715] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Highly efficient and cheap magnetic materials have application prospects in wastewater treatment. Herein, Fe3O4-loaded hydrochar (HC-Fe3O4) was obtained from hydrothermal carbonization (HTC) of bamboo with FeCl3 and then added with FeCl3 to form a magnetic sorbent via simple precipitation. The HC-Fe3O4 was characterized with various instruments. The characterizations show FeCl3 plays at least two roles as a catalyst and an oxidant in HTC. The specific surface area of hydrochar enlarged from 39.9731 to 60.9887 m2·g-1 after the addition of FeCl3 during HTC, which showed FeCl3 acted as a catalyst in HTC. XRD indicated Fe3O4 was formed by the structure of HC-Fe3O4, which indicated Fe(III) was reduced to Fe(II) during HTC. Sorption of methylene blue (MB) onto HC-Fe3O4 was better fitted by the Langmuir isotherm and pseudo-second-order kinetic models. Sorption is a spontaneous thermodynamic endothermic process and HC-Fe3O4 is easily separated by an applied magnetic field and reused.
Collapse
Affiliation(s)
- Xiao-Na Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Kun Yu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jiong-Hua He
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
25
|
Liu Y, Ji X, Wang Y, Zhang Y, Zhang Y, Li W, Yuan J, Ma D, Sun H, Duan J. A Stable Fe-Zn Modified Sludge-Derived Biochar for Diuron Removal: Kinetics, Isotherms, Mechanism, and Practical Research. Molecules 2023; 28:molecules28062868. [PMID: 36985840 PMCID: PMC10058066 DOI: 10.3390/molecules28062868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar (SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption mechanisms as well as practical applications of SDMBC600 were also investigated and examined. The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption performance (8.88-12.9 mg/g) under wide water quality conditions, in the pH of 2-10 and with the presence of humic acid and six typical metallic ions of 0-20 mg/L. The adsorption mechanisms of SDMBC600 for diuron were found to include surface complexation, π-π binding, hydrogen bonding, as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600 could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore, SDMBC600 could have a promising application for diuron removal in water treatment.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiang Yuan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dong Ma
- Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
26
|
Li X, Xu J, Yang Z. Insight on efficiently oriented oxidation of petroleum hydrocarbons by redistribution of oxidant through inactivation of soil organic matter coupled with passivation of manganese minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130192. [PMID: 36270191 DOI: 10.1016/j.jhazmat.2022.130192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
While extensive works focused on the enhancement of the activity of heterogeneous Fenton catalysts, little was paid attention to the inhibition of soil organic matter (SOM) and Mn minerals in soil remediation. Here, the oxidation of petroleum hydrocarbons in soils (S1: 4.28 % SOM, S2: 6.04 % SOM, S3: 10.33 % SOM) with inactivated SOM and passivated Mn oxides regulating by calcium superphosphate (Ca(H2PO4)2) was carried out. Oily sludge pyrolysis residue was used as precursors to prepare an oleophilic iron-supported solid catalyst (Fe-N @ PR). For regulated systems, under the optimal conditions of 1.8 mmol/g H2O2 and 0.05 g/g Fe-N @ PR, 72 ∼ 91 % of total petroleum hydrocarbons (TPHs: 15,616.58 mg/kg) were oxidized, which was 38 ∼ 45 % higher than that of control systems. The mechanism of efficient oxidation was proposed that the passivated Mn minerals stabilized H2O2 redistributing more H2O2 to sustainably produce •OH, and the inactivated SOM improved the relative reactivity of •OH to TPHs. Additionally, the passivation of Mn oxides was mainly related to the binding of H2PO4-, and the inactivation of SOM was realized by Ca2+ combing with -OH and C-O-C to form stable complexes. This study brought us a new perspective on soil remediation through passivating Mn minerals and inactivating SOM.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
27
|
Zhang C, Dong Y, Liu W, Yang D, Liu J, Lu Y, Lin H. Enhanced adsorption of phosphate from pickling wastewater by Fe-N co-pyrolysis biochar: Performance, mechanism and reusability. BIORESOURCE TECHNOLOGY 2023; 369:128263. [PMID: 36343782 DOI: 10.1016/j.biortech.2022.128263] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
A one-step method of preparation using a novel nitrogen (N)-doped Fe-rich biochar (N5-CB) resulted in a maximum adsorption capacity (314.52 mg/g) compared with Fe-rich biochar (CB, 104.044 mg/g). It can be used to adsorb phosphate (P) efficiently. Additionally, the adsorption kinetics, isotherms, and thermodynamics indicated that the adsorption of P onto N5-CB was mainly mediated via multilayer coverage, endothermic, spontaneous, and physical mechanisms. The main adsorption mechanisms include Fe-P precipitation, FeOP bonding, and electronic effect. Further, the highly active Fe-Nx sites and graphitic N induced by N doping were the dominant driving force underlying enhanced P adsorption. Active Fe-Nx sites resulted in a positively-charged carbon structure and P absorption via electrostatic effect. Based on the simple method of pyrolysis, N5-CB can be used in P removal from pickling wastewater with excellent adsorption capacity and remarkable recyclability.
Collapse
Affiliation(s)
- Conghui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongsheng Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
28
|
Diao Y, Shan R, Li M, Gu J, Yuan H, Chen Y. Efficient Adsorption of a Sulfonamide Antibiotic in Aqueous Solutions with N-doped Magnetic Biochar: Performance, Mechanism, and Reusability. ACS OMEGA 2023; 8:879-892. [PMID: 36643494 PMCID: PMC9835783 DOI: 10.1021/acsomega.2c06234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Conventional biochar has limited effectiveness in the adsorption of sulfonamide antibiotics, while modified biochar exhibits greater adsorption potential. Residues of sulfamethoxazole (SMX) in the aquatic environment can threaten the safety of microbial populations as well as humans. In this study, iron-nitrogen co-doped modified biochar (Fe-N-BC) was prepared from palm fibers and doped with Fe and urea via synthesis at 500 °C. Fe-N-BC has a richer surface functional group based on elemental content, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The Brunauer-Emmett-Teller (BET) specific surface area test exhibited Fe-N-BC, which possessed a greater surface area (318.203 m2/g) and a better developed pore structure (0.149 cm3/g). The results of the hysteresis loop and the Raman spectrum show that Fe-N-BC has a higher degree of magnetization and graphitization. Fe-N-BC showed a remarkable adsorption capacity for SMX (42.9 mg/g), which could maintain 93.4% adsorption effect after four cycles, and 82.8% adsorption capacity in simulated piggery wastewater. The adsorption mechanism involves pore filling, surface complexation, electrostatic interactions, hydrogen bonding, and π-π EDA interactions. The results of this study show that Fe-N-BC prepared from palm fibers can be a stable, excellent adsorbent for SMX removal from wastewater and has promise in terms of practical applications.
Collapse
Affiliation(s)
- Yuan Diao
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Mei Li
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
| | - Jing Gu
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Haoran Yuan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Yong Chen
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| |
Collapse
|
29
|
Elgarahy AM, Maged A, Elwakeel KZ, El-Gohary F, El-Qelish M. Tuning cationic/anionic dyes sorption from aqueous solution onto green algal biomass for biohydrogen production. ENVIRONMENTAL RESEARCH 2023; 216:114522. [PMID: 36243056 DOI: 10.1016/j.envres.2022.114522] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Global water security and energy demands associated with uncontrollable population growth and rapid industrial progress are one of the utmost serious needs dangerously confronting humanity. On account of waste as a wealth strategy; a multifunctional eco-friendly sorbent (MGAP) from green alga was prepared successfully for remediation of cationic/anionic organic dyes and biohydrogen production. The structural and morphological properties of sorbent were systematically scrutinized by a variety of spectral analyses. The loading capacity of MGAP towards rhodamine B (RhB) and methyl orange (MO) dyes was inclusivity inspected under variable experimental conditions. The adsorption kinetics of both dyes onto MGAP was in good agreement with pseudo-second-order theory, whereas adsorption isotherms could fit well with the Langmuir model, with satisfactory loading capacities of 144.92 and 196.04 mg g-1 for RhB and MO molecules, respectively. Moreover, ultra-sonication treatment admirably decreased the sorption equilibrium time from 180.0 min to 30.0 min. Furthermore, spent sorbent was managed particularly for biohydrogen production with a measured yield of 112.89, 116.59, and 128.17 mL-H2/gVS for MGAP, MGAP-MO, and MGAP-RhB, respectively. Overall, the produced MGAP can potentially be offered up as a promising dye scavenger for wastewater remediation and biohydrogen production, thereby fulfilling waste management and circular economy.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt; Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| |
Collapse
|
30
|
Effects of KMnO4 pre- and post-treatments on biochar properties and its adsorption of tetracycline. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Zeng X, Zhang G, Li X, Zhu J, Wu Z. Selective removal of aqueous Hg 2+ by magnetic composites sulfur-containing on the hyper-branched surface: Characterization, performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116621. [PMID: 36323124 DOI: 10.1016/j.jenvman.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The adsorbents with recyclable, large adsorption capacity and selective adsorption can effectively remove the pollution and harm of heavy metal ions in water. Therefore, two magnetic composites containing sulfur (MCP-S4 and MCP-S8) on the hyper-branched surface were prepared, furthermore, their structures were characterized and adsorption performance was analyzed by FTIR, XRD, TGA, BET, SEM, TEM, VSM and ICP. The results showed that both MCP-S4 and MCP-S8 had superparamagnetism with saturation susceptibility of 22.10 and 22.26 emu/g, and owned a specific surface area of 11.394 and 11.235 m2/g, respectively. MCP-S4 and MCP-S8 could selectively adsorb Hg2+ with the exist of Fe3+, Cu2+, Co2+, Ni2+, Mn2+, and Al3+ in solution. The adsorption kinetics accorded with pseudo-second-order model and Boyd film diffusion model, and the adsorption isotherm was fitted better with Langmuir isotherm model and D-R model, furthermore, the adsorption was an entropic-increasing and endothermic process. The removal rate of Hg2+ from simulated sewage by the two materials was more than 91%, and the adsorption retention rate was more than 85% after five adsorption-desorption cycles. The adsorption mechanism was analyzed by comparing the changes of FTIR, EDS and XPS spectra before and after adsorption. It was found that functional groups (C-N, CONH, CS, SH) could form stable chelates with Hg2+, which was the main reason why MCP-S4 and MCP-S8 could adsorb Hg2+ selectively, furthermore, S atoms of CS and -SH played a leading role in the process of adsorption. In addition, DFT calculation was also used as an auxiliary means to verify the adsorption mechanism.
Collapse
Affiliation(s)
- Xiangchu Zeng
- , Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China; , School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China
| | - Guanghua Zhang
- , Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Xiuling Li
- , School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China.
| | - Junfeng Zhu
- , Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China
| | - Zhe Wu
- , School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China
| |
Collapse
|
32
|
Self-templated synthesis of core-shell Fe3O4@ZnO@ZIF-8 as an efficient visible-light-driven photocatalyst. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Shaikh WA, Kumar A, Chakraborty S, Naushad M, Islam RU, Bhattacharya T, Datta S. Removal of toxic dye from dye-laden wastewater using a new nanocomposite material: Isotherm, kinetics and adsorption mechanism. CHEMOSPHERE 2022; 308:136413. [PMID: 36103924 DOI: 10.1016/j.chemosphere.2022.136413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, (hemi)cellulosic biochar-based environment-friendly non-toxic nanocomposite (nAg-AC) was fabricated for an inordinate overlook of toxic dye-laden wastewater depollution. This hybrid nanocomposite grafted with silver nanoparticles, numerous hydroxyl and π-bond containing functional groups exhibited outstanding physicochemical properties. FESEM images indicated the heterogeneous porous structure of nAg-AC, while BET analysis revealed mesoporous property with a significant increment of overall surface area (132%). Imbedding of silver nanoparticles and the presence of multiple hydroxyl groups was evident from the XRD and XPS spectrum. Further, the TGA result indicated excellent thermal stability, and FTIR analysis suggested the involvement of surface functional groups like -OH, =C = O, =NH, =C = C = , and -CH in Rhodamine B (RhB) adsorption. The adsorbent matrix provided the overall mechanical strength and facilitated recycling, while the functional matrix (biochar) provided the adsorptive locus for augmented RhB adsorption efficiency (92.77%). Experiments pertaining to adsorption isotherms and kinetics modeling suggested that RhB was removed through multilayer chemisorption on the heterogeneous nAg-AC surface. The main RhB adsorption mechanism included cumulative efforts of H-bindings, π-π stacking interaction, pore-filling, and electrostatic interactions. The nAg-AC maintained mechanical robustness with significant RhB adsorption even after three consecutive regeneration cycles signifying facile recycling. The nAg-AC displayed an outstanding efficacy for the real industrial wastewater depollution, indicating high effectiveness for practical environmental applications. Finally, the cost analysis (incorporating economic, environmental, and social dimensions) suggested a significant role of the nAg-AC in promoting and establishing sustainable development with the circular economy.
Collapse
Affiliation(s)
- Wasim Akram Shaikh
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India; Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, 743368, India.
| | - Abhishek Kumar
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India
| | - Sukalyan Chakraborty
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rafique Ul Islam
- Department of Chemistry, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Tanushree Bhattacharya
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India
| | - Saugata Datta
- Department of Geology, Kansas State University, 104 Thompson Hall, Manhattan, KS, 66506, USA
| |
Collapse
|
34
|
Study of the adsorption of methylene blue by phytoremediation-plant biomass carbon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Li J, Li X, Ma S, Zhao W, Xie W, Ma J, Yao Y, Wei W. Comparing the influence of humic/fulvic acid and tannic acid on Cr(VI) adsorption onto polystyrene microplastics: Evidence for the formation of Cr(OH) 3 colloids. CHEMOSPHERE 2022; 307:135697. [PMID: 35843429 DOI: 10.1016/j.chemosphere.2022.135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) can act as vectors for various contaminants in the aquatic environment. Although some research has investigated the adsorption characteristics and influencing factors of metals/organic molecules on MPs, the effects of dissolved organic matter (DOM) (which are ubiquitous active species in ecosystems) on metal oxyanions such as Cr(VI) capture by MPs are largely unknown. This study explored the adsorption behaviors and mechanisms of Cr(VI) oxyanions onto polystyrene (PS) MPs using batch adsorption experiments and multiple spectroscopic methods. The effects of representative DOM components (i.e., humic acid (HA), fulvic acid (FA) and tannic acid (TA)) on Cr(VI) capture by PS were particularly studied. Results revealed a significantly enhanced adsorption of Cr(VI) on PS in the presence of TA. The Cr(VI) adsorption capacity was increased from 2876 μg g-1 to 4259 μg g-1 and 5135 μg g-1 when the TA concentrations raised from 0 to 10 and 20 mg L-1, respectively. Combined microscopic and spectroscopic investigations revealed that Cr(VI) was reduced to Cr(III) by TA and formed stable Cr(OH)3 colloids on PS surfaces. Contrarily, HA and FA inhibited Cr(VI) adsorption onto PS, especially at pH > 2.0 and higher DOM concentrations, due to site competition and electrostatic repulsion. Increase in pH was found to reduce zeta potentials of MPs, resulting in inhibited Cr(VI) adsorption. The adsorbed Cr(VI) declined with increasing ionic strength, implying that outer-sphere surface complexation affected the adsorption process in the presence of DOM. These new findings improved our fundamental understanding of the fate of Cr(VI) and MPs in DOM-rich environmental matrices.
Collapse
Affiliation(s)
- Junsuo Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Xinying Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Shoucheng Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Wei Zhao
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Wenming Xie
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jianqing Ma
- School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
36
|
Li X, Xu J, Luo X, Shi J. Efficient adsorption of dyes from aqueous solution using a novel functionalized magnetic biochar: Synthesis, kinetics, isotherms, adsorption mechanism, and reusability. BIORESOURCE TECHNOLOGY 2022; 360:127526. [PMID: 35772720 DOI: 10.1016/j.biortech.2022.127526] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel adsorbent, dodecylbenzene sulfonic acid (DBSA) functionalized magnetic biochar (DBSA-Fe3O4@BC), was synthesized and used to efficiently remove dyes from aqueous solution. The results indicated that DBSA-Fe3O4@BC exhibited an excellent adsorption capacity for Rhodamine B (RhB), and the maximum adsorption capacity for RhB at 298 K was 367.67 mg/g, which was approximately 2.3-1.2 folds than that of BC, dodecylsulfonic acid functionalized biochar (DSA@BC), DBSA@BC, Fe3O4@BC, and DSA-Fe3O4@BC. The possible adsorption mechanisms for RhB adsorption by DBSA-Fe3O4@BC included pore filling, electrostatic attraction, H bond, and surface complexation. Importantly, structural control presented that the simultaneous introduction of alkyl and phenyl groups significantly enhanced RhB adsorption by DBSA-Fe3O4@BC through hydrophobic and π-π interaction. Combined ethanol (EtOH) desorption and H2O2 oxidation regeneration, DBSA-Fe3O4@BC remained high-performance for RhB adsorption after six cycles (97.44%), indicating its outstanding reusability. In summary, DBSA-Fe3O4@BC exhibited a prospective application for dyeing wastewater treatment.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
37
|
Li X, Xu J, Yang Z. Efficient catalytic degradation of alkanes in soil by a novel heterogeneous Fenton catalyst of functionalized magnetic biochar. CHEMOSPHERE 2022; 301:134693. [PMID: 35483662 DOI: 10.1016/j.chemosphere.2022.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, sodium dodecyl sulfate (SDS) functionalized magnetic biochar (SDS-Fe@BC) was successfully prepared. Compared to other traditional heterogeneous Fenton catalysts, more total petroleum hydrocarbons (TPH) (3499.40 mg kg-1) was adsorbed from soil to the surface of SDS-Fe@BC through hydrophobic interaction between alkyls in alkanes and SDS-Fe@BC, which formed an efficient interface oxidation system. In SDS-Fe@BC-mediated heterogeneous Fenton system, 10,191.41 mg kg-1 (88.10%) TPH was degraded in the presence of 400 mM H2O2, which was 1.38-5.67 folds than that of H2O2 alone, Fe2+, zero valent iron (ZVI), Fe3O4, pristine biochar (BC), and Fe@BC. Moreover, all individual alkanes were efficiently degraded (>75%), and the higher the initial amount of individual alkane, the more the degradative amount in the SDS-Fe@BC/H2O2 system. Additionally, TPH degradation was highly related to the mass ratio of SDS/Fe@BC, H2O2 concentration, SDS-Fe@BC dosage, and initial pH in the SDS-Fe@BC/H2O2 system, and the optimal values were 1:5, 400 mM, 50 mg g-1, and pH 7, respectively. Radical quenching experiments revealed that hydroxyl radicals (•OH) generated on the surface of SDS-Fe@BC was the dominated reactive oxidative species (ROS) responsible for alkanes degradation. After five cycles, SDS-Fe@BC still remained a high catalytic activity for alkanes degradation (73.21%), showing its excellent reusability. This study proved that the SDS-Fe@BC can be used as a potential heterogeneous Fenton catalyst for petroleum-contaminated soil remediation.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
38
|
A green and facile synthesis of nosean composite from coal fly ash for optimizing Rhodamine B adsorption using response surface methodology. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B. NANOMATERIALS 2022; 12:nano12132271. [PMID: 35808107 PMCID: PMC9268311 DOI: 10.3390/nano12132271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023]
Abstract
Dye adsorption by magnetic modified biochar has now received growing interest due to its excellent adsorption performance and facile separation for recycling. In this study, nano iron oxide–modified biochar was fabricated via the successive hydrothermal-pyrolyzing method using Chlorella vulgaris (Cv) and FeSO4·7H2O as raw materials, and its adsorption on Rhodamine B (RhB) in aqueous solution was studied. Multiple techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS) were employed to comprehensively characterize the structure, morphology and physicochemical properties of the adsorbent. The as-synthesized nano iron oxide–modified biochar (CBC-Fe(II)) exhibited a large surface area (527.6 m2/g) and high magnetic saturation value (13.7 emu/g) to facilitate magnetic separation. Compared with CBC and CBC-Fe(III), CBC-Fe(II) exhibited superior adsorption ability towards RhB in aqueous solution, with a maximum adsorption capacity of 286.4 mg/g. The adsorption process of RhB onto CBC-Fe(II) was well described by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating monolayer chemisorption behaviors for the adsorption system. Facile preparation, great adsorption performance and magnetic recovery properties endow CBC-Fe(II) to be a promising adsorbent for dye removal.
Collapse
|
40
|
Liu Z, Khan TA, Islam MA, Tabrez U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. BIORESOURCE TECHNOLOGY 2022; 354:127168. [PMID: 35436542 DOI: 10.1016/j.biortech.2022.127168] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Printing and dyeing wastewater (PDW) has characteristics of large amount of water, elevated content of residual dyes, poor biodegradability, high alkalinity and large change of water quality, making its treatment difficult. Development of efficient and economic PDW treatment technology has gained considerable interest in the field of environmental protection. Use of plant biomass carbon (PBC) for the adsorption of dyes is a feasible and economical technology. This review summarizes current literature discussing the preparation method and physicochemical characteristics of PBC prepared from different plant species, the effect of PBC on the removal of dyes, influencing factors affecting the removal, and relevant adsorption models. The shortcomings of current research and the direction of future research are also pointed out in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Unsha Tabrez
- Chegg India Pvt. Ltd., 401, Baani Corporate One, Jasola, New Delhi 110 025, India
| |
Collapse
|
41
|
Rahmani AR, Gilan RA, Asgari G, Leili M, Dargahi A. Enhanced degradation of Rhodamine B dye by Fenton/peracetic acid and photo-Fenton/peracetic acid processes. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this research, the efficiency of advanced oxidation processes (AOPs) including Fenton−Peracetic Acid (PAA) and photo-Fenton− PAA in the removal of the Rodamine B (RhB) dye from aqueous solutions were studied. Investigating the effect of operating parameters such as pH (3–9), contact time (2–30 min), PAA concentration (10–80 mg/L), FeCl3.7H2O concentration (10–100 mg/L), and dye concentration (25–500 mg/L) on the performance of AOPs in removal of RhB was considered. The results showed that by decreasing pH and dye concentration, RhB removal efficiency increased. The optimal conditions for removal of RhB using Fenton− PAA process were determined to be as follows: dye concentration = 50 mg/L, pH = 3, PAA concentration = 50 mg/L, contact time = 10 min, and FeCl3 = 50 mg/L; in these conditions, removal efficiency of the RhB was 99.9%. In contrast, the photo-Fenton− PAA process was able to remove this amount of dye in just 5 min. The high performance of the system in a short time is attributed to the synergistic effect of the photo-Fenton− PAA process in the presence of UV. Finally, RhB dye was completely degraded by the photo-Fenton− PAA process and converted into CO2 and H2O products. In general, the photo-Fenton− PAA process compared to other methods can be used as a suitable and reliable method for the treatment of effluents of the dyeing industry and discharge them to the environment.
Collapse
Affiliation(s)
- Ali Reza Rahmani
- Department of Environmental Health Engineering, School of Public Health , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Roya Aazami Gilan
- Department of Environmental Health Engineering, School of Public Health , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, School of Public Health , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Mostafa Leili
- Department of Environmental Health Engineering, School of Public Health , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Abdollah Dargahi
- Social Determinants of Health Research Center , Ardabil University of Medical Sciences , Ardabil , Iran
| |
Collapse
|
42
|
Li X, Shi J. Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism. CHEMOSPHERE 2022; 293:133574. [PMID: 35016962 DOI: 10.1016/j.chemosphere.2022.133574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The simultaneous removal of various pollutants in wastewater is increasingly deserved attention. In this study, an efficient adsorbent Fe/N@BC was synthesized by Fe-N co-modification. The adsorbability of Fe/N@BC was evaluated using a mixture with tetracycline (TC), NH4+-N and PO43-P. In comparison to BC, N@BC and Fe@BC, Fe/N@BC exhibited an excellent performance for simultaneously absorbing TC, NH4+-N and PO43-P. The pseudo-first-order was used to describe the adsorption process of NH4+-N and PO43-P, while the pseudo-second-order could be well fitted to TC adsorption data. The adsorption isotherms of TC, NH4+-N and PO43-P were more in line with Sips model (Adj.R2 > 0.97). The maximum adsorption capacities of Fe/N@BC towards TC, NH4+-N and PO43-P were 238.94, 111.87 and 165.02 mg g-1, respectively, which were 1.31-1.91 times than that of BC, N@BC and Fe@BC. The simultaneous adsorption mechanism mainly involved pore filling, electrostatic interaction, ion exchange, surface complexation, surface precipitation, H bond and π-π interaction. Furthermore, after six cycles, the removal efficiencies of TC, NH4+-N and PO43-P were 75.3, 66.1 and 64.5% by Fe/N@BC, highlighting its promising potential to adsorb multi-pollutants from aqueous solution.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China
| | - Jingxin Shi
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin, 150090, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
43
|
Shaheen SM, Mosa A, El-Naggar A, Faysal Hossain M, Abdelrahman H, Khan Niazi N, Shahid M, Zhang T, Fai Tsang Y, Trakal L, Wang S, Rinklebe J. Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. BIORESOURCE TECHNOLOGY 2022; 346:126581. [PMID: 34923078 DOI: 10.1016/j.biortech.2021.126581] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.g., toxic elements) and organic (e.g., antibiotics and dyes) from water have been discussed in relation to feedstock properties, pyrolysis temperature, modification ratio, and environmental conditions here. The removal mechanisms of pollutants by MnOBC and the fate of the sorbed pollutants onto MnOBC have been reviewed. The impregnation of biochar with MnOx improved its surface morphology, functional group modification, and elemental composition, and thus increased its sorption capacity. This review establishes a comprehensive understanding of synthesizing and using MnOBC as an effective biosorbent for remediation of contaminated aqueous environments.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Md Faysal Hossain
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613 Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea.
| |
Collapse
|