1
|
Graciano DE, Pontes MS, Araujo LO, Lima RG, Grillo R, Machulek A, Santiago EF, Oliveira SL, Caires ARL. CuO nanoparticles' effect on the photosynthetic performance in seed tissues of Inga laurina (Fabaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50722-50732. [PMID: 39102133 DOI: 10.1007/s11356-024-34499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Copper oxide nanoparticles (CuONPs) have been produced on a large scale because they can be applied across various fields, especially in nano-enabled healthcare and agricultural products. However, the increasing use of CuONPs leads to their release and accumulation into the environment. The CuONPs uptaken by seeds and their implications on germination behavior have been reported, but little is known or understood about their impact on photosynthesis in seed tissues. To fill knowledge gaps, this study evaluated the effects of CuONP concentrations (0-300 mg L-1) on the photosynthetic activity of Inga laurina seeds. The microscopy data showed that CuONPs had an average size distribution of 57.5 ± 0.7 nm. Copper ion release and production of reactive oxygen species (ROS) by CuONPs were also evaluated by dialysis and spectroscopy experiments, respectively. CuONPs were not able to intrinsically generate ROS and released a low content of Cu2⁺ ions (4.5%, w/w). Time evolution of chlorophyll fluorescence imaging and laser-induced fluorescence spectroscopy were used to monitor the seeds subjected to nanoparticles during 168 h. The data demonstrate that CuONPs affected the steady-state maximum chlorophyll fluorescence (F m ' ), the photochemical efficiency of photosystem II (F v / F m ), and non-photochemical quenching ( NPQ ) of Inga laurina seeds over time. Besides, the NPQ significantly increased at the seed development stage, near the root protrusion stage, probably due to energy dissipation at this germination step. Additionally, the results indicated that CuONPs can change the oscillatory rhythms of energy dissipation of the seeds, disturbing the circadian clock. In conclusion, the results indicate that CuONPs can affect the photosynthetic behavior of I. laurina seeds. These findings open opportunities for using chlorophyll fluorescence as a non-destructive tool to evaluate nanoparticle impact on photosynthetic activity in seed tissues.
Collapse
Affiliation(s)
- Daniela Espanguer Graciano
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Montcharles Silva Pontes
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
- Plant Resources Study Group, Natural Resources Program, Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Leandro Oliveira Araujo
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Regiane Godoy Lima
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Etenaldo Felipe Santiago
- Plant Resources Study Group, Natural Resources Program, Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Samuel Leite Oliveira
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil.
| |
Collapse
|
2
|
Umnajkitikorn K, Boonchuen P, Senavongse R, Tongta S, Tian Y, Hu Y, Petersen BL, Blennow A. Transcriptomics and starch biosynthesis analysis in leaves and developing seeds of mung bean provide a basis for genetic engineering of starch composition and seed quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1332150. [PMID: 38751837 PMCID: PMC11094274 DOI: 10.3389/fpls.2024.1332150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Mung bean starch is distinguished by its exceptional high amylose content and regulation of starch biosynthesis in leaves and storage tissues, such as seeds, share considerable similarities. Genetic engineering of starch composition and content, requires detailed knowledge of starch biosynthetic gene expression and enzymatic regulation. In this study we applied detailed transcriptomic analyses to unravel the global differential gene expression patterns in mung bean leaves and in seeds during various stages of development. The objective was to identify candidate genes and regulatory mechanisms that may enable generation of desirable seed qualities through the use of genetic engineering. Notable differences in gene expression, in particular low expression of the Protein Targeting to Starch (PTST), starch synthase (SS) 3, and starch branching enzyme1 (SBE1) encoding genes in developing seeds as compared to leaves were evident. These differences were related to starch molecular structures and granule morphologies. Specifically, the starch molecular size distribution at different stages of seed development correlated with the starch biosynthesis gene expression of the SBE1, SS1, granule-bound starch synthases (GBSS) and isoamylase 1 (ISA1) encoding genes. Furthermore, putative hormonal and redox controlled regulation were observed, which may be explained by abscisic acid (ABA) and indole-3-acetic acid (IAA) induced signal transduction, and redox regulation of ferredoxins and thioredoxins, respectively. The morphology of starch granules in leaves and developing seeds were clearly distinguishable and could be correlated to differential expression of SS1. Here, we present a first comprehensive transcriptomic dataset of developing mung bean seeds, and combined these findings may enable generation of genetic engineering strategies of for example starch biosynthetic genes for increasing starch levels in seeds and constitute a valuable toolkit for improving mung bean seed quality.
Collapse
Affiliation(s)
- Kamolchanok Umnajkitikorn
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rattanavalee Senavongse
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sunanta Tongta
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yu Tian
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Yaqi Hu
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| |
Collapse
|
3
|
Cho YB, Stutz SS, Jones SI, Wang Y, Pelech EA, Ort DR. Impact of pod and seed photosynthesis on seed filling and canopy carbon gain in soybean. PLANT PHYSIOLOGY 2023; 193:966-979. [PMID: 37265110 DOI: 10.1093/plphys/kiad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
There is a limited understanding of the carbon assimilation capacity of nonfoliar green tissues and its impact on yield and seed quality since most photosynthesis research focuses on leaf photosynthesis. In this study, we investigate the photosynthetic efficiency of soybean (Glycine max) pods and seeds in a field setting and evaluate its effect on mature seed weight and composition. We demonstrate that soybean pod and seed photosynthesis contributes 13% to 14% of the mature seed weight. Carbon assimilation by soybean pod and seed photosynthesis can compensate for 81% of carbon loss through the respiration of the same tissues, and our model predicts that soybean pod and seed photosynthesis contributes up to 9% of the total daily carbon gain of the canopy. Chlorophyll fluorescence (CF) shows that the operating efficiency of photosystem II in immature soybean seeds peaks at the 10 to 100 mg seed weight stage, while that of immature pods peaks at the 75 to 100 mg stage. This study provides quantitative information about the efficiency of soybean pod and seed photosynthesis during tissue development and its impact on yield.
Collapse
Affiliation(s)
- Young B Cho
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha S Stutz
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah I Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena A Pelech
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Yao Y, Xiong E, Qu X, Li J, Liu H, Quan L, Lu W, Zhu X, Chen M, Li K, Chen X, Lian Y, Lu W, Zhang D, Zhou X, Chu S, Jiao Y. WGCNA and transcriptome profiling reveal hub genes for key development stage seed size/oil content between wild and cultivated soybean. BMC Genomics 2023; 24:494. [PMID: 37641045 PMCID: PMC10463976 DOI: 10.1186/s12864-023-09617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Soybean is one of the most important oil crops in the world. The domestication of wild soybean has resulted in significant changes in the seed oil content and seed size of cultivated soybeans. To better understand the molecular mechanisms of seed formation and oil content accumulation, WDD01514 (E1), ZYD00463 (E2), and two extreme progenies (E23 and E171) derived from RILs were used for weighted gene coexpression network analysis (WGCNA) combined with transcriptome analysis. RESULTS In this study, both seed weight and oil content in E1 and E171 were significantly higher than those in E2 and E23, and 20 DAF and 30 DAF may be key stages of soybean seed oil content accumulation and weight increase. Pathways such as "Photosynthesis", "Carbon metabolism", and "Fatty acid metabolism", were involved in oil content accumulation and grain formation between wild and cultivated soybeans at 20 and 30 DAF according to RNA-seq analysis. A total of 121 oil content accumulation and 189 seed formation candidate genes were screened from differentially expressed genes. WGCNA identified six modules related to seed oil content and seed weight, and 76 candidate genes were screened from modules and network. Among them, 16 genes were used for qRT-PCR and tissue specific expression pattern analysis, and their expression-levels in 33-wild and 23-cultivated soybean varieties were subjected to correlation analysis; some key genes were verified as likely to be involved in oil content accumulation and grain formation. CONCLUSIONS Overall, these results contribute to an understanding of seed lipid metabolism and seed size during seed development, and identify potential functional genes for improving soybean yield and seed oil quantity.
Collapse
Affiliation(s)
- Yanjie Yao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Leipo Quan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenyan Lu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuling Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Meiling Chen
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ke Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoming Chen
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yun Lian
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weiguo Lu
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
5
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Magno Massuia de Almeida L, Coquemont-Guyot M, Elie N, Morvan-Bertrand A, Avice JC, Mollier A, Brunel-Muguet S. Repeated heat stress events during the reproductive phase impact the dynamic development of seeds in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111559. [PMID: 36496054 DOI: 10.1016/j.plantsci.2022.111559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Many studies pointed out the deleterious effects of high temperatures events during the crop reproductive phase on seed yield and quality. However, plant responses to repeated stressing events remain poorly understood, while the increased frequency of extreme abiotic constraints, such as spring and summer heat waves, has been proven as one feature of the on-going and future climate change. The responses of oilseed rape plants subjected to three heat stress sequences that differed in the intensity, the timing of application, the duration and the frequency of the high temperature events were investigated throughout the seed development and maturation phases under controlled conditions. Seed yield and components were measured in three different harvest dates. Biochemical and histological analyses of seeds were carried out in order to monitor the evolution of the main storage compounds (fatty acids, proteins, sugars) involved in seed nutritional quality. Although the effects of heat stress were not significant on total yield, differences in seed number and weight highlighted the strong compensation capacity in indeterminate growth species. Heat stress induced significant decreases and increases in seed oil and protein content respectively, to different extent according to the age of the pods. Soluble sugars concentrations were impacted by heat during seed development, but not when the seeds reached physiological maturity, thus indicating compensatory mechanisms that set up after the stress exposure. Our results led to conclude that the effects of repeated heat stresses on seed yield and quality were tightly related to (i) the optimal temperature of a given compound biosynthesis process, and (ii) the synchrony between the temperature event and the period of biosynthesis of the targeted storage compound. These results highlight the complexity to design thermo-sensitizing protocols to maintain or even improve the various seed quality related criteria, especially in species with indeterminate growth.
Collapse
Affiliation(s)
- Lethicia Magno Massuia de Almeida
- Normandie Univ, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, SFR Normandie Végétal (FED 4277), Esplanade de la Paix, 14032 Caen, France
| | - Maëlle Coquemont-Guyot
- Normandie Univ, UNICAEN, Federative Structure 4207 "Normandie Oncologie", Service Unit PLATON, Virtual'His platform, Caen, France
| | - Nicolas Elie
- Normandie Univ, UNICAEN, Federative Structure 4207 "Normandie Oncologie", Service Unit PLATON, Virtual'His platform, Caen, France; Normandie Univ, UNICAEN, Service Unit EMERODE, Centre de Microscopie Appliquée à la Biologie, CMABio³, Caen, France
| | - Annette Morvan-Bertrand
- Normandie Univ, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, SFR Normandie Végétal (FED 4277), Esplanade de la Paix, 14032 Caen, France
| | - Jean-Christophe Avice
- Normandie Univ, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, SFR Normandie Végétal (FED 4277), Esplanade de la Paix, 14032 Caen, France
| | - Alain Mollier
- ISPA, Bordeaux Sciences Agro, INRAE, F-33140 Villenave d'Ornon, France
| | - Sophie Brunel-Muguet
- Normandie Univ, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, SFR Normandie Végétal (FED 4277), Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
7
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
8
|
Garrido A, Conde A, De Vos RCH, Cunha A. The influence of light microclimate on the lipid profile and associated transcripts of photosynthetically active grape berry seeds. FRONTIERS IN PLANT SCIENCE 2023; 13:1022379. [PMID: 36684778 PMCID: PMC9846335 DOI: 10.3389/fpls.2022.1022379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Lipids and oils determine the quality and industrial value of grape seeds. Studies with legume seeds demonstrated the influence of light on lipid metabolism and its association with seed photosynthesis. Grape berry seeds are photosynthetically active till mature stage, but mostly during the green stage and veraison. The objective of this work was to compare the lipid profiles of seeds from white grape berries (cv. Alvarinho) growing at two contrasting light microclimates in the canopy (low and high light, LL and HL respectively), previously reported to have distinct photosynthetic competences. Berries were collected at three developmental stages (green, veraison and mature) and from both microclimates, and the seeds were analyzed for their lipid profiles in an untargeted manner using liquid chromatography coupled to high resolution mass spectrometry (LCMS). The seed lipid profiles differed greatly among berry developmental stages, and to a lesser extend between microclimates. The LL microclimate coincided with a higher relative levels of fatty acids specifically at mature stage, while the HL microclimate led to an up-regulation of ceramides at green stage and of triacylglycerols and glycerophospholipids at mature stage. The seed transcript levels of four key genes (VvACCase1, VvΔ9FAD, VvFAD6 and VvLOXO) involved in fatty acid metabolism were analyzed using real-time qPCR. The lipoxygenase gene (VvLOXO) was down- and up-regulated by HL, as compared to LL, in seeds at green and veraison stages, respectively. These results suggest that seed photosynthesis may play distinct roles during seed growth and development, possibly by fueling different lipid pathways: at green stage mainly towards the accumulation of membrane-bound lipid species that are essential for cell growth and maintenance of the photosynthetic machinery itself; and at veraison and mature stages mainly towards storage lipids that contribute to the final quality of the grape seeds.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), Wageningen, Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
9
|
Nwafor CC, Li D, Qin P, Li L, Zhang W, Zhou Y, Xu J, Yin Y, Cao J, He L, Xiang F, Liu C, Guo L, Zhou Y, Cahoon EB, Zhang C. Genetic and Biochemical Investigation of Seed Fatty Acid Accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:942054. [PMID: 35909728 PMCID: PMC9328158 DOI: 10.3389/fpls.2022.942054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As a vegetable oil, consisting principally of triacylglycerols, is the major storage form of photosynthetically-fixed carbon in oilseeds which are of significant agricultural and industrial value. Photosynthesis in chlorophyll-containing green seeds, along with photosynthesis in leaves and other green organs, generates ATP and reductant (NADPH and NADH) needed for seed fatty acid production. However, contribution of seed photosynthesis to fatty acid accumulation in seeds have not been well-defined. Here, we report the contribution of seed-photosynthesis to fatty acid production by probing segregating green (photosynthetically-competent) and non-green or yellow (photosynthetically-non-competent) seeds in siliques of an Arabidopsis chlorophyll synthase mutant. Using this mutant, we found that yellow seeds lacking photosynthetic capacity reached 80% of amounts of oil in green seeds at maturity. Combining this with studies using shaded siliques, we determined that seed-photosynthesis accounts for 20% and silique and leaf/stem photosynthesis each account for ~40% of the ATP and reductant for seed oil production. Transmission electron microscopy (TEM) and pyridine nucleotides and ATP analyses revealed that seed photosynthesis provides ATP and reductant for oil production mostly during early development, as evidenced by delayed oil accumulation in non-green seeds. Transcriptomic analyses suggests that the oxidative pentose phosphate pathway could be the source of carbon, energy and reductants required for fatty acid synthesis beyond the early stages of seed development.
Collapse
Affiliation(s)
- Chinedu Charles Nwafor
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Delin Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | - Jingjing Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Cao
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | - Limin He
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | - Fu Xiang
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and College of Biology and Agriculture Resource, Huanggang Normal University, Huanggang, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Kambhampati S, Aznar-Moreno JA, Bailey SR, Arp JJ, Chu KL, Bilyeu KD, Durrett TP, Allen DK. Temporal changes in metabolism late in seed development affect biomass composition. PLANT PHYSIOLOGY 2021; 186:874-890. [PMID: 33693938 PMCID: PMC8195533 DOI: 10.1093/plphys/kiab116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/23/2023]
Abstract
The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.
Collapse
Affiliation(s)
| | - Jose A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sally R Bailey
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Kristin D Bilyeu
- United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| |
Collapse
|
11
|
Du C, Gao H, Liu S, Ma D, Feng J, Wang C, Jiang X, Li G, Xie Y. Molecular cloning and functional characterisation of the galactolipid biosynthetic gene TaMGD in wheat grain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:66-74. [PMID: 32526612 DOI: 10.1016/j.plaphy.2020.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Monogalactosyl diacylglycerol (MGDG), the main component of the plastid membrane, is essential for chloroplast photosynthesis; however, little information is available about the function of MGDG synthases gene (TaMGD) in wheat grain. In this manuscript, three homologous genes were identified in wheat grain, and their functions were investigated by gene silencing and overexpression techniques. Three TaMGD homologous genes, TaMGD-6A, -6B, and -6D, located on chromosome 6A, 6B, and 6D, respectively, were isolated from common wheat. The transcription of TaMGD was detected in stems, roots, leaves and grains, and high levels of gene transcripts were detected in stems and leaves. Silencing of TaMGD in common wheat spikes resulted in a decrease in grain weight and starch content, and proteomic analysis showed that the differentially expressed proteins mainly included carbohydrate metabolism- and nucleic acid-related proteins. In comparison with wild-type, transgenic rice plants overexpressing TaMGD-6A and -6D showed an increase in thousand kernel weight, as well as an increase in the expression level of genes related to starch biosynthesis, whereas transgenic rice plants overexpressing TaMGD-6B showed increased grain yield and grain number per spike. The results of gene silencing and overexpression indicated that TaMGD plays an important role in wheat grain weight, which might be associated with carbohydrate metabolism. Hence, this study provides new insights regarding the role of TaMGD in wheat grain characteristics.
Collapse
Affiliation(s)
- Chenyang Du
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Honghuan Gao
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Sujun Liu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueli Jiang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Gezi Li
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
12
|
Smolikova G, Shiroglazova O, Vinogradova G, Leppyanen I, Dinastiya E, Yakovleva O, Dolgikh E, Titova G, Frolov A, Medvedev S. Comparative analysis of the plastid conversion, photochemical activity and chlorophyll degradation in developing embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:409-424. [PMID: 32209205 DOI: 10.1071/fp19270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/08/2019] [Indexed: 05/13/2023]
Abstract
Developing seeds of some higher plants are photosynthetically active and contain chlorophylls (Chl), which are typically destroyed at the late stages of seed maturation. However, in some crop plant cultivars, degradation of embryonic Chl remains incomplete, and mature seeds preserve green colour, as it is known for green-seeded cultivars of pea (Pisum sativum L.). The residual Chl compromise seed quality and represent a severe challenge for farmers. Hence, comprehensive understanding of the molecular mechanisms, underlying incomplete Chl degradation is required for maintaining sustainable agriculture. Therefore, here we address dynamics of plastid conversion and photochemical activity alterations, accompanying degradation of Chl in embryos of yellow- and green-seeded cultivars Frisson and Rondo respectively. The yellow-seeded cultivar demonstrated higher rate of Chl degradation at later maturation stage, accompanied with termination of photochemical activity, seed dehydration and conversion of green plastids into amyloplasts. In agreement with this, expression of genes encoding enzymes of Chl degradation was lower in the green seeded cultivar, with the major differences in the levels of Chl b reductase (NYC1) and pheophytinase (PPH) transcripts. Thus, the difference between yellow and green seeds can be attributed to incomplete Chl degradation in the latter at the end of maturation period.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation; and Corresponding author.
| | - Olga Shiroglazova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina Vinogradova
- Laboratory of Embryology and Reproductive Biology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Irina Leppyanen
- Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russian Federation
| | - Ekaterina Dinastiya
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation; and Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation; and Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Olga Yakovleva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Elena Dolgikh
- Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russian Federation
| | - Galina Titova
- Laboratory of Embryology and Reproductive Biology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Andrej Frolov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation; and Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
13
|
Simkin AJ, Faralli M, Ramamoorthy S, Lawson T. Photosynthesis in non-foliar tissues: implications for yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1001-1015. [PMID: 31802560 PMCID: PMC7064926 DOI: 10.1111/tpj.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis is currently a focus for crop improvement. The majority of this work has taken place and been assessed in leaves, and limited consideration has been given to the contribution that other green tissues make to whole-plant carbon assimilation. The major focus of this review is to evaluate the impact of non-foliar photosynthesis on carbon-use efficiency and total assimilation. Here we appraise and summarize past and current literature on the substantial contribution of different photosynthetically active organs and tissues to productivity in a variety of different plant types, with an emphasis on fruit and cereal crops. Previous studies provide evidence that non-leaf photosynthesis could be an unexploited potential target for crop improvement. We also briefly examine the role of stomata in non-foliar tissues, gas exchange, maintenance of optimal temperatures and thus photosynthesis. In the final section, we discuss possible opportunities to manipulate these processes and provide evidence that Triticum aestivum (wheat) plants genetically manipulated to increase leaf photosynthesis also displayed higher rates of ear assimilation, which translated to increased grain yield. By understanding these processes, we can start to provide insights into manipulating non-foliar photosynthesis and stomatal behaviour to identify novel targets for exploitation in continuing breeding programmes.
Collapse
Affiliation(s)
- Andrew J. Simkin
- Genetics, Genomics and BreedingNIAB EMRNew Road, East MallingKentME19 6BJUK
| | - Michele Faralli
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- Present address:
Department of Biodiversity and Molecular EcologyResearch and Innovation CentreFondazione Edmund Mach, via Mach 1San Michele all'Adige (TN)38010Italy
| | - Siva Ramamoorthy
- School of Bio Sciences and TechnologyVellore Institute of TechnologyVellore632014India
| | - Tracy Lawson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
| |
Collapse
|
14
|
Yang S, Miao L, He J, Zhang K, Li Y, Gai J. Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds. Int J Mol Sci 2019; 20:E2202. [PMID: 31060266 PMCID: PMC6539092 DOI: 10.3390/ijms20092202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
Soybean is one of the most important oil crops in the world. Revealing the molecular basis and exploring key candidate genes for seed oil synthesis has great significance for soybean improvement. In this study, we found that oil accumulation rates and gene expression levels changed dynamically during soybean seed development. The expression levels of genes in metabolic pathways such as carbon fixation, photosynthesis, glycolysis, and fatty acid biosynthesis were significantly up-regulated during the rapid accumulation of oil in developing soybean seeds. Through weighted correlation network analysis, we identified six co-expression modules associated with soybean seed oil content and the pink module was the most positively correlated (r = 0.83, p = 7 × 10-4) network. Through the integration of differential expression and co-expression analysis, we predicted 124 candidate genes potentially affecting soybean seed oil content, including seven genes in lipid metabolism pathway, two genes involved in glycolysis, one gene in sucrose metabolism, and 12 genes belonged to transcription factors as well as other categories. Among these, three genes (GmABI3b, GmNFYA and GmFAD2-1B) have been shown to control oil and fatty acid content in soybean seeds, and other newly identified candidate genes would broaden our knowledge to understand the molecular basis for oil accumulation in soybean seeds.
Collapse
Affiliation(s)
- Songnan Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| | - Long Miao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Basnet R, Zhang J, Hussain N, Shu Q. Characterization and Mutational Analysis of a Monogalactosyldiacylglycerol Synthase Gene OsMGD2 in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:992. [PMID: 31428115 PMCID: PMC6688468 DOI: 10.3389/fpls.2019.00992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/15/2019] [Indexed: 05/18/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the two predominant galactolipids present in the photosynthetic membrane in many photosynthetic organisms, including algae and higher plants. These galactolipids are the main constituents of thylakoid membrane and are essential for chloroplast biogenesis and photoautotrophic growth. In silico analysis revealed that rice (Oryza sativa L.) genome has three genes encoding MGDG synthase (OsMGD1, 2, and 3). Although subcellular localization analysis demonstrated that OsMGD2 is localized to chloroplast, its expression was observed mainly in anther and endosperm, suggesting that MGDG might have an important role in the development of flower and grain in rice. Knock-out mutants of OsMGD2 were generated employing the CRISPR/Cas9 system and their morphology, yield and grain quality related traits were studied. The leaf of osmgd2 mutants showed reduced MGDG (∼11.6%) and DGDG (∼9.5%) content with chlorophyll a content decreased by ∼23%, consequently affecting the photosynthesis. The mutants also exhibited poor agronomic performance with plant height and panicle length decreased by ∼12.2 and ∼7.3%, respectively. Similarly, the number of filled grains per panicle was reduced by 43.8%, while the 1000 grain weight was increased by ∼6.3% in the mutants. The milled rice of mutants also had altered pasting properties and decreased linoleic acid content (∼26.6%). Put together, the present study demonstrated that OsMGD2 is the predominantly expressed gene encoding MGDG synthase in anther and grain and plays important roles in plant growth and development, as well as in grain quality.
Collapse
Affiliation(s)
- Rasbin Basnet
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, China
| | - Jiarun Zhang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, China
| | - Nazim Hussain
- Zhejiang Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, China
- Zhejiang Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Qingyao Shu,
| |
Collapse
|
16
|
Luo F, Deng X, Liu Y, Yan Y. Identification of phosphorylation proteins in response to water deficit during wheat flag leaf and grain development. BOTANICAL STUDIES 2018; 59:28. [PMID: 30535879 PMCID: PMC6286713 DOI: 10.1186/s40529-018-0245-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) serves as important grain crop widely cultivated in the world, which is often suffered by drought stress in natural conditions. As one of the most important post translation modifications, protein phosphorylation widely participates in plant abiotic stress regulation. In this study, we performed the first comparative analysis of phosphorylated protein characterization in flag leaves and developing grains of elite Chinese bread wheat cultivar Zhongmai 175 under water deficit by combining with proteomic approach and Pro-Q Diamond gel staining. RESULTS Field experiment showed that water deficit caused significant reduction of plant height, tiller number, ear length and grain yield. 2-DE and Pro-Q Diamond gel staining analysis showed that 58 proteins were phosphorylated among 112 differentially accumulated proteins in response to water deficit, including 20 in the flag leaves and 38 in the developing grains. The phosphorylated proteins from flag leaves mainly involved in photosynthesis, carbohydrate and energy metabolism, while those from developing grains were closely related with detoxification and defense, protein, carbohydrate and energy metabolism. Particularly, water deficit resulted in significant downregulation of phosphorylated modification level in the flag leaves, which could affect photosynthesis and grain yield. However, some important phosphorylated proteins involved in stress defense, energy metabolism and starch biosynthesis were upregulated under water deficit, which could benefit drought tolerance, accelerate grain filling and shorten grain developing time. CONCLUSIONS The modification level of those identified proteins from flag leaves and grains had great changes when wheat was suffered from water deficit, indicating that phosphoproteins played a key role in response to drought stress. Our results provide new insights into the molecular mechanisms how phosphoproteins respond to drought stress and thus reduce production.
Collapse
Affiliation(s)
- Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yue Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
17
|
Lorenz C, Brandt S, Borisjuk L, Rolletschek H, Heinzel N, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1381. [PMID: 30283487 PMCID: PMC6156424 DOI: 10.3389/fpls.2018.01381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved in the degradation of L-cysteine and hydrogen sulfide. ETHE1 has an essential but as yet undefined function in early embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended darkness and participates in the use of amino acids as alternative respiratory substrates during carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an ETHE1 deficient mutant in comparison to the wild type. Since ETHE1 knock-out is embryo lethal, the knock-down line ethe1-1 with about 1% residual sulfur dioxygenase activity was used for this study. We performed phenotypic analysis, metabolite profiling and comparative proteomics in order to investigate the general effect of extended darkness on seed metabolism and further define the specific function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the siliques had no morphological effect on embryogenesis in wild type plants. However, the developmental delay that was already visible in ethe1-1 seeds under control conditions was further enhanced in the darkness. Dark conditions strongly affected seed quality parameters of both wild type and mutant plants. The effect of ETHE1 knock-down on amino acid profiles was clearly different from that found in leaves indicating that in seeds persulfide oxidation interacts with alanine and glycine rather than branched-chain amino acid metabolism. Sulfur dioxygenase deficiency led to defects in endosperm development possibly due to alterations in the cellularization process. In addition, we provide evidence for a potential role of persulfide metabolism in abscisic acid (ABA) signal transduction in seeds. We conclude that the knock-down of ETHE1 causes metabolic re-arrangements in seeds that differ from those in leaves. Putative mechanisms that cause the aberrant endosperm and embryo development are discussed.
Collapse
Affiliation(s)
- Christin Lorenz
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Saskia Brandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Tatjana M. Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
18
|
Deng X, Liu Y, Xu X, Liu D, Zhu G, Yan X, Wang Z, Yan Y. Comparative Proteome Analysis of Wheat Flag Leaves and Developing Grains Under Water Deficit. FRONTIERS IN PLANT SCIENCE 2018; 9:425. [PMID: 29692790 PMCID: PMC5902686 DOI: 10.3389/fpls.2018.00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/20/2018] [Indexed: 05/18/2023]
Abstract
In this study, we performed the first comparative proteomic analysis of wheat flag leaves and developing grains in response to drought stress. Drought stress caused a significant decrease in several important physiological and biochemical parameters and grain yield traits, particularly those related to photosynthesis and starch biosynthesis. In contrast, some key indicators related to drought stress were significantly increased, including malondialdehyde, soluble sugar, proline, glycine betaine, abscisic acid content, and peroxidase activity. Two-dimensional difference gel electrophoresis (2D-DIGE) identified 87 and 132 differentially accumulated protein (DAP) spots representing 66 and 105 unique proteins following exposure to drought stress in flag leaves and developing grains, respectively. The proteomes of the two organs varied markedly, and most DAPS were related to the oxidative stress response, photosynthesis and energy metabolism, and starch biosynthesis. In particular, DAPs in flag leaves mainly participated in photosynthesis while those in developing grains were primarily involved in carbon metabolism and the drought stress response. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) further validated some key DAPs such as rubisco large subunit (RBSCL), ADP glucose pyrophosphorylase (AGPase), chaperonin 60 subunit alpha (CPN-60 alpha) and oxalate oxidase 2 (OxO 2). The potential functions of the identified DAPs revealed that a complex network synergistically regulates drought resistance during grain development. Our results from proteome perspective provide new insight into the molecular regulatory mechanisms used by different wheat organs to respond to drought stress.
Collapse
Affiliation(s)
- Xiong Deng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yue Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuexin Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dongmiao Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Genrui Zhu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xing Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
19
|
Wang B, Zhang Y, Haque ME, Xu W, Li F, Liu A. Transcriptomic analyses reveal complex and interconnected sucrose signaling cascades in developing seeds of castor bean. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:1-10. [PMID: 29223877 DOI: 10.1016/j.jplph.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Seeds are highly specific organs that strongly sink sucrose resources from leaf and stem tissues to trigger seed metabolism and development. In particular, for heterotrophic non-green seeds, the potential molecular mechanism underlying sucrose-driven seed development remains unanswered. Castor bean (Ricinus communis L.), a typical non-green seed, has been considered as a model plant for seed biology study in dicotyledonous plants due to its heterotrophic seeds with persistent endosperms. In the present study, the fast-developing castor bean seeds were treated with exogenous sucrose and mannitol for four hours. The global transcriptomic data were obtained by high-throughput RNA-seq technique, resulting in 468 differentially expressed genes (DGEs). Further analyses revealed that sucrose functioned as both metabolic substrates and signal molecules. Specifically, 73 DGEs involved in carbohydrate and nitrogen metabolism, 42 differentially expressed transcription factors, and 35 DGEs involved in diverse signaling pathways such as auxin, brassinosteroid, ethelyene, cytokinin, gibberellin, and calcium signals, were identified, suggesting that the sucrose signaling pathway might have complex and multi-connected cross-talks with other signals to regulate castor bean seed development. Taken together, this study provides novel data to improve understanding of the potential molecular mechanisms of sucrose in regulating non-green seed development and storage reservoir accumulation during seed development.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Mohammad Enamul Haque
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fei Li
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
20
|
Smolikova G, Kreslavski V, Shiroglazova O, Bilova T, Sharova E, Frolov A, Medvedev S. Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:228-235. [PMID: 32291037 DOI: 10.1071/fp16379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/18/2017] [Indexed: 06/11/2023]
Abstract
The pea seeds are photosynthetically active until the end of the maturation phase, when the embryonic chlorophylls degrade. However, in some cultivars, the underlying mechanisms are compromised, and the mature seeds preserve green colour. The residual chlorophylls can enhance oxidative degradation of reserve biomolecules, and affect thereby the quality, shelf life and nutritive value of seeds. Despite this, the formation, degradation, and physical properties of the seed chlorophylls are still not completely characterised. So here we address the dynamics of seed photochemical activity in the yellow- and green-seeded pea cultivars by the pulse amplitude modulation (PAM) fluorometric analysis. The experiments revealed the maximal photochemical activity at the early- and mid-cotyledon stages. Thereby, the active centres of PSII were saturated at the light intensity of 15-20µmol photons m-2 s-1. Despite of their shielding from the light by the pod wall and seed coat, photochemical reactions can be registered in the seeds with green embryo. Importantly, even at the low light intensities, the photochemical activity in the coats and cotyledons could be detected. The fast transients of the chlorophyll a fluorescence revealed a higher photochemical activity in the coat of yellow-seeded cultivars in comparison to those with the green-seeded ones. However, it declined rapidly in all seeds at the late cotyledon stage, and was accompanied with the decrease of the seed water content. Thus, the termination of photosynthetic activity in seeds is triggered by their dehydration.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Vladimir Kreslavski
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Olga Shiroglazova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Elena Sharova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
21
|
Nawaz F, Naeem M, Akram A, Ashraf MY, Ahmad KS, Zulfiqar B, Sardar H, Shabbir RN, Majeed S, Shehzad MA, Anwar I. Seed priming with KNO 3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4780-4789. [PMID: 28369913 DOI: 10.1002/jsfa.8347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO3 seed priming (0 and 0.5% KNO3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg-1 Pb). RESULTS Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO3 supply to prevent Pb toxicity. CONCLUSION Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Asim Akram
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Khawaja S Ahmad
- Department of Botany, University of Poonch, Rawalakot, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sardar
- Department of Horticulture, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Rana N Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Majeed
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Irfan Anwar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
22
|
Smolikova G, Dolgikh E, Vikhnina M, Frolov A, Medvedev S. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos. Int J Mol Sci 2017; 18:E1993. [PMID: 28926960 PMCID: PMC5618642 DOI: 10.3390/ijms18091993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023] Open
Abstract
The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Elena Dolgikh
- All-Russia Institute for Agricultural Microbiology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Maria Vikhnina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| |
Collapse
|
23
|
Arena S, D'Ambrosio C, Vitale M, Mazzeo F, Mamone G, Di Stasio L, Maccaferri M, Curci PL, Sonnante G, Zambrano N, Scaloni A. Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences. J Proteomics 2017; 162:86-98. [DOI: 10.1016/j.jprot.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/21/2017] [Accepted: 05/01/2017] [Indexed: 01/03/2023]
|
24
|
Zhen S, Deng X, Zhang M, Zhu G, Lv D, Wang Y, Zhu D, Yan Y. Comparative Phosphoproteomic Analysis under High-Nitrogen Fertilizer Reveals Central Phosphoproteins Promoting Wheat Grain Starch and Protein Synthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:67. [PMID: 28194157 PMCID: PMC5277015 DOI: 10.3389/fpls.2017.00067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/12/2017] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is a macronutrient important for plant growth and development. It also strongly influences starch and protein synthesis, closely related to grain yield and quality. We performed the first comparative phosphoproteomic analysis of developing wheat grains in response to high-N fertilizer. Physiological and biochemical analyses showed that application of high-N fertilizer resulted in significant increases in leaf length and area, chlorophyll content, the activity of key enzymes in leaves such as nitrate reductase (NR), and in grains such as sucrose phosphate synthase (SPS), sucrose synthase (SuSy), and ADP glucose pyrophosphorylase (AGPase). This enhanced enzyme activity led to significant improvements in starch content, grain yield, and ultimately, bread making quality. Comparative phosphoproteomic analysis of developing grains under the application of high-N fertilizer performed 15 and 25 days post-anthesis identified 2470 phosphosites among 1372 phosphoproteins, of which 411 unique proteins displayed significant changes in phosphorylation level (>2-fold or <0.5-fold). These phosphoproteins are involved mainly in signaling transduction, starch synthesis, energy metabolism. Pro-Q diamond staining and Western blotting confirmed our phosphoproteomic results. We propose a putative pathway to elucidate the important roles of the central phosphoproteins regulating grain starch and protein synthesis. Our results provide new insights into the molecular mechanisms of protein phosphorylation modifications involved in grain development, yield and quality formation.
Collapse
Affiliation(s)
- Shoumin Zhen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Ming Zhang
- College of Life Science, Capital Normal UniversityBeijing, China
- College of Life Science, Heze UniversityShandong, China
| | - Gengrui Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Dongwen Lv
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yaping Wang
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Dong Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal UniversityBeijing, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
- *Correspondence: Yueming Yan
| |
Collapse
|
25
|
Chen L, Huang Y, Xu M, Cheng Z, Zhang D, Zheng J. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. PLoS One 2016; 11:e0159238. [PMID: 27415428 PMCID: PMC4944901 DOI: 10.1371/journal.pone.0159238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. RESULTS The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. CONCLUSIONS Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
Collapse
Affiliation(s)
- Linghua Chen
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Yining Huang
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Department of Food and Biology Engineering, Zhangzhou Institute of Technology, Zhangzhou Fujian, China
| | - Ming Xu
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Zuxin Cheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory for Plant Functional Genomics and Resources, Shanghai, China
| | - Jingui Zheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| |
Collapse
|
26
|
Sun C, Chen S, Jin Y, Song H, Ruan S, Fu Z, Asad MAU, Qian H. Effects of the Herbicide Imazethapyr on Photosynthesis in PGR5- and NDH-Deficient Arabidopsis thaliana at the Biochemical, Transcriptomic, and Proteomic Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4497-504. [PMID: 27215288 DOI: 10.1021/acs.jafc.6b01699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Photosynthesis is a very important metabolic pathway for plant growth and crop yield. This report investigated the effect of the herbicide imazethapyr on photosynthesis in the Arabidopsis thaliana pnsB3 mutant (a defect in the NDH pathway) and pgr5 mutant (a defect in the PGR5 pathway) to determine which cyclic electron transport chain (CET) of the NDH and PGR5 pathways is more important for protecting the photosynthetic system under herbicide stress. The results showed that 20 μg/L imazethapyr markedly inhibited the growth of the three ecotypes of A. thaliana and produced more anthocyanins and reactive oxygen species (ROS), particularly in the pgr5 mutant. The chlorophyll fluorescence results showed that PSII was severely damaged in the pgr5 mutant. Additionally, the CET was significantly stimulated to protect the photosynthetic system from light damage in Wt and the pnsB3 mutant but not the pgr5 mutant. The real-time PCR analysis indicated that imazethapyr treatment considerably decreased the transcript levels of most photosynthesis-related genes in the three treated groups. Several genes in the PGR5 pathway were significantly induced in the pnsB3 mutant, but no genes in the NDH pathway were induced in the pgr5 mutant. The gene transcription analysis showed that the pgr5 mutant cannot compensate for the deficit in the PGR5 pathway by stimulating the NDH pathway, whereas the pnsB3 mutant can compensate for the deficit in the CET cycle by regulating the PGR5 pathway. The iTRAQ analyses also showed that the photosynthesis system, glycolysis, and TCA cycle suffered the most severe damage in the pgr5 mutant. All of these results showed that the PGR5 pathway is more critical for electron transfer around PSI than the NDH pathway to resist herbicide stress.
Collapse
Affiliation(s)
| | | | | | | | - Songlin Ruan
- Hangzhou Academy of Agricultural Sciences , Hangzhou 310021, P. R. of China
| | | | | | - Haifeng Qian
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Chinese Academy of Sciences , Urumqi 830011, P. R. of China
| |
Collapse
|
27
|
Zhang Y, Mulpuri S, Liu A. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. PHOTOSYNTHESIS RESEARCH 2016; 128:125-140. [PMID: 26589321 DOI: 10.1007/s11120-015-0206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujatha Mulpuri
- Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, 500 030, India
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China.
| |
Collapse
|
28
|
Yang M, Dong J, Zhao W, Gao X. Characterization of proteins involved in early stage of wheat grain development by iTRAQ. J Proteomics 2016; 136:157-66. [DOI: 10.1016/j.jprot.2016.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/02/2015] [Accepted: 01/03/2016] [Indexed: 12/16/2022]
|
29
|
Gupta KJ, Igamberdiev AU. Reactive Nitrogen Species in Mitochondria and Their Implications in Plant Energy Status and Hypoxic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:369. [PMID: 27047533 PMCID: PMC4806263 DOI: 10.3389/fpls.2016.00369] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/10/2016] [Indexed: 05/19/2023]
Abstract
Hypoxic and anoxic conditions result in the energy crisis that leads to cell damage. Since mitochondria are the primary organelles for energy production, the support of these organelles in a functional state is an important task during oxygen deprivation. Plant mitochondria adapted the strategy to survive under hypoxia by keeping electron transport operative even without oxygen via the use of nitrite as a terminal electrons acceptor. The process of nitrite reduction to nitric oxide (NO) in the mitochondrial electron transport chain recycles NADH and leads to a limited rate of ATP production. The produced ATP alongside with the ATP generated by fermentation supports the processes of transcription and translation required for hypoxic survival and recovery of plants. Non-symbiotic hemoglobins (called phytoglobins in plants) scavenge NO and thus contribute to regeneration of NAD(+) and nitrate required for the operation of anaerobic energy metabolism. This overall operation represents an important strategy of biochemical adaptation that results in the improvement of energy status and thereby in protection of plants in the conditions of hypoxic stress.
Collapse
Affiliation(s)
- Kapuganti Jagadis Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Kapuganti J. Gupta,
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
| |
Collapse
|
30
|
Allen DK. Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis. Curr Opin Biotechnol 2015; 37:45-52. [PMID: 26613198 DOI: 10.1016/j.copbio.2015.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
Abstract
Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations and long metabolic steady states such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other metabolically more dynamic tissues such as leaves in greater detail using novel methods in mass spectrometry, isotope labeling strategies, and transient labeling-based flux analyses. Such studies are necessary for a systems level description of plant function that more closely represents biological reality, and provides insights into the genes that will need to be modified as natural resources become ever more limited and environments change.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| |
Collapse
|
31
|
Celdran D, Lloret J, Verduin J, van Keulen M, Marín A. Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia. PLoS One 2015; 10:e0130015. [PMID: 26066515 PMCID: PMC4466800 DOI: 10.1371/journal.pone.0130015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022] Open
Abstract
Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution.
Collapse
Affiliation(s)
- David Celdran
- Unidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apto Postal 1152, CP: 77500, Cancún, Quintana Roo, Mexico
| | - Javier Lloret
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA, United States of America
| | - Jennifer Verduin
- School of Veterinary and Life Sciences, Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Mike van Keulen
- School of Veterinary and Life Sciences, Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Arnaldo Marín
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
32
|
Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 2014; 15:1029. [PMID: 25427527 PMCID: PMC4301063 DOI: 10.1186/1471-2164-15-1029] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is an economically important grain crop. Two-dimensional gel-based approaches are limited by the low identification rate of proteins and lack of accurate protein quantitation. The recently developed isobaric tag for relative and absolute quantitation (iTRAQ) method allows sensitive and accurate protein quantification. Here, we performed the first iTRAQ-based quantitative proteome and phosphorylated proteins analyses during wheat grain development. RESULTS The proteome profiles and phosphoprotein characterization of the metabolic proteins during grain development of the elite Chinese bread wheat cultivar Yanyou 361 were studied using the iTRAQ-based quantitative proteome approach, TiO2 microcolumns, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among 1,146 non-redundant proteins identified, 421 showed at least 2-fold differences in abundance, and they were identified as differentially expressed proteins (DEPs), including 256 upregulated and 165 downregulated proteins. Of the 421 DEPs, six protein expression patterns were identified, most of which were up, down, and up-down expression patterns. The 421 DEPs were classified into nine functional categories mainly involved in different metabolic processes and located in the membrane and cytoplasm. Hierarchical clustering analysis indicated that the DEPs involved in starch biosynthesis, storage proteins, and defense/stress-related proteins significantly accumulated at the late grain development stages, while those related to protein synthesis/assembly/degradation and photosynthesis showed an opposite expression model during grain development. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 12 representative genes encoding different metabolic proteins showed certain transcriptional and translational expression differences during grain development. Phosphorylated proteins analyses demonstrated that 23 DEPs such as AGPase, sucrose synthase, Hsp90, and serpins were phosphorylated in the developing grains and were mainly involved in starch biosynthesis and stress/defense. CONCLUSIONS Our results revealed a complex quantitative proteome and phosphorylation profile during wheat grain development. Numerous DEPs are involved in grain starch and protein syntheses as well as adverse defense, which set an important basis for wheat yield and quality. Particularly, some key DEPs involved in starch biosynthesis and stress/defense were phosphorylated, suggesting their roles in wheat grain development.
Collapse
Affiliation(s)
- Chaoying Ma
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Jianwen Zhou
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Guanxing Chen
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yanwei Bian
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Dongwen Lv
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Xiaohui Li
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Zhimin Wang
- />College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100094 China
| | - Yueming Yan
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
33
|
Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR. The role of photosynthesis and amino acid metabolism in the energy status during seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:447. [PMID: 25232362 PMCID: PMC4153028 DOI: 10.3389/fpls.2014.00447] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/19/2014] [Indexed: 05/07/2023]
Abstract
Seeds are the major organs responsible for the evolutionary upkeep of angiosperm plants. Seeds accumulate significant amounts of storage compounds used as nutrients and energy reserves during the initial stages of seed germination. The accumulation of storage compounds requires significant amounts of energy, the generation of which can be limited due to reduced penetration of oxygen and light particularly into the inner parts of seeds. In this review, we discuss the adjustment of seed metabolism to limited energy production resulting from the suboptimal penetration of oxygen into the seed tissues. We also discuss the role of photosynthesis during seed development and its contribution to the energy status of developing seeds. Finally, we describe the contribution of amino acid metabolism to the seed energy status, focusing on the Asp-family pathway that leads to the synthesis and catabolism of Lys, Thr, Met, and Ile.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Sciences, The Weizmann Institute of ScienceRehovot, Israel
| | | | - Ruthie Angelovici
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
34
|
Degu A, Hochberg U, Sikron N, Venturini L, Buson G, Ghan R, Plaschkes I, Batushansky A, Chalifa-Caspi V, Mattivi F, Delledonne M, Pezzotti M, Rachmilevitch S, Cramer GR, Fait A. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC PLANT BIOLOGY 2014; 14:188. [PMID: 25064275 PMCID: PMC4222437 DOI: 10.1186/s12870-014-0188-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/11/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. RESULTS The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes. CONCLUSIONS Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.
Collapse
Affiliation(s)
- Asfaw Degu
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Uri Hochberg
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Noga Sikron
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Luca Venturini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Genny Buson
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno 9557, NV, USA
| | - Inbar Plaschkes
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Albert Batushansky
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Massimo Delledonne
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Mario Pezzotti
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno 9557, NV, USA
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| |
Collapse
|
35
|
Galata M, Sarker LS, Mahmoud SS. Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. PHYTOCHEMISTRY 2014; 102:64-73. [PMID: 24636455 DOI: 10.1016/j.phytochem.2014.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 02/18/2014] [Indexed: 05/06/2023]
Abstract
Terpenoids are a large and diverse class of specialized metabolites that are essential for the growth and development of plants, and have tremendous industrial applications. The mericarps of Coriandrum sativum L. (coriander) produce an essential oil (EO) rich in monoterpenes, volatile C10 terpenoids. To investigate EO metabolism, the transcriptome of coriander mericarps, at three developmental stages (early, mid, late) was sequenced via Illumina technology and a transcript library was produced. To validate the usability of the transcriptome sequences, two terpene synthase candidate genes, CsγTRPS and CsLINS, encoding 558 and 562 amino acid proteins were expressed in bacteria, and the recombinant proteins purified by Ni-NTA affinity chromatography. The 65.16 (CsγTRPS) and 65.91 (CsLINS)kDa recombinant proteins catalyzed the conversion of geranyl diphosphate, the precursor to monoterpenes, to γ-terpinene and (S)-linalool, respectively, with apparent Vmax and Km values of 2.24±0.16 (CsγTRPS); 19.63±1.05 (CsLINS)pkat/mg and 66.25±13 (CsγTRPS); 2.5±0.6 (CsLINS)μM, respectively. Together, CsγTRPS and CsLINS account for the majority of EO constituents in coriander mericarps. Investigation of the coriander transcriptome, and knowledge gained from these experiments will facilitate future studies concerning essential and fatty acid oil production in coriander. They also enable efforts to improve the coriander oils through metabolic engineering or plant breeding.
Collapse
Affiliation(s)
- Mariana Galata
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
36
|
Puthur JT, Shackira AM, Saradhi PP, Bartels D. Chloroembryos: a unique photosynthesis system. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1131-1138. [PMID: 23706538 DOI: 10.1016/j.jplph.2013.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
The embryos of some angiosperm taxa contain chlorophyll and this chlorophyllous stage is persisting until the embryo matures (further referred as chloroembryos). Besides being chlorophyllous, these embryos seem to have the ability to photosynthesize. This suggests that the chlorophyllous state of the embryo has an important role in seed development. The photosynthesis of chloroembryos is highly shade adaptive in nature as it is embedded within the supporting tissues (several layers of pod wall, seed coat and endosperm). Moreover, these chloroembryos are developing in a highly osmotic environment, and contain various components of the photosynthetic machinery. Detailed studies were performed in these chloroembryos in order to elucidate the structure of the chloroplasts, pigment composition, the photochemical activities, the rate of carbon assimilation and also the shade adaptive features. It has been shown that the respired CO2 within these chloroembryos is recycled by the efficient photosynthetic components of the chloroembryos and thus potentially influences the seed's carbon economy. Thus, the major role of embryonic photosynthesis is to produce both energy-rich molecules and oxygen, of which the former can be directly used for biosynthesis. During embryogenesis oxygen production is especially important, in a situation wherein the oxygen is limited within the enclosed seed. As these chloroembryos grow in an environment of a sugar rich endosperm, it requires some adaptive mechanisms in this high osmotic environment. The additional polypeptides found in the thylakoids of chloroembryo chloroplasts in comparison to the thylakoids of leaf chloroplast have been suggested to have a role in protecting the photosynthetic components in the chloroembryos in an environment of high osmotic strength. An attempt to understand osmotic stress tolerance existing in these chloroembryos may lead to a better understanding of tolerance of photosynthesis to osmotic stress.
Collapse
Affiliation(s)
- Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala 673635, India.
| | | | | | | |
Collapse
|
37
|
Verboven P, Herremans E, Borisjuk L, Helfen L, Ho QT, Tschiersch H, Fuchs J, Nicolaï BM, Rolletschek H. Void space inside the developing seed of Brassica napus and the modelling of its function. THE NEW PHYTOLOGIST 2013; 199:936-947. [PMID: 23692271 PMCID: PMC3784975 DOI: 10.1111/nph.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 05/04/2023]
Abstract
The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed.
Collapse
Affiliation(s)
- Pieter Verboven
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Els Herremans
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Lukas Helfen
- IPS/ANKA, Karlsruhe Institute of TechnologyPO Box 3640, 76021, Karlsruhe, Germany
- ESRF6 rue Jules Horowitz, BP220, 38043, Grenoble Cedex, France
| | - Quang Tri Ho
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Henning Tschiersch
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Johannes Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Bart M Nicolaï
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
38
|
Kobayashi K, Sasaki D, Noguchi K, Fujinuma D, Komatsu H, Kobayashi M, Sato M, Toyooka K, Sugimoto K, Niyogi KK, Wada H, Masuda T. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors. PLANT & CELL PHYSIOLOGY 2013; 54:1365-77. [PMID: 23749810 PMCID: PMC3730084 DOI: 10.1093/pcp/pct086] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 05/20/2023]
Abstract
In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Daichi Sasaki
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Ko Noguchi
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Daiki Fujinuma
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Hirohisa Komatsu
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Masami Kobayashi
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Hajime Wada
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
- *Corresponding author: E-mail, ; Fax, +81-3-5454-4321
| |
Collapse
|
39
|
Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay JO, Tschiersch H, Braun HP, Denolf P, Lambert B, Jakob PM, Rolletschek H. Seed architecture shapes embryo metabolism in oilseed rape. THE PLANT CELL 2013; 25:1625-40. [PMID: 23709628 PMCID: PMC3694696 DOI: 10.1105/tpc.113.111740] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant high-light conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase-bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro- versus in planta-grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Thomas Neuberger
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | - Johannes Fuchs
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany
| | - Jordan O. Hay
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Henning Tschiersch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany
| | | | | | - Peter M. Jakob
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany
- Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| |
Collapse
|
40
|
Jiang SS, Liang XN, Li X, Wang SL, Lv DW, Ma CY, Li XH, Ma WJ, Yan YM. Wheat drought-responsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. Int J Mol Sci 2012; 13:16065-83. [PMID: 23443111 PMCID: PMC3546679 DOI: 10.3390/ijms131216065] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 02/03/2023] Open
Abstract
A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress) and Janz (sensitive to drought stress) was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%), detoxification and defense (23%), and storage proteins (17%). Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Xiao-Na Liang
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Xin Li
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Shun-Li Wang
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Dong-Wen Lv
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Chao-Ying Ma
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Xiao-Hui Li
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| | - Wu-Jun Ma
- State Agriculture Biotechnology Centre, Western Australian Department of Agriculture and Food, Perth, WA 6150, Australia
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mails: (S.-S.J.); (X.-N.L.); (X.L.); (S.-L.W.); (D.-W.L.); (C.-Y.M.); (X.-H.L.)
| |
Collapse
|
41
|
Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. PLANT PHYSIOLOGY 2011; 157:1026-42. [PMID: 21921115 PMCID: PMC3252140 DOI: 10.1104/pp.111.179986] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/13/2011] [Indexed: 05/17/2023]
Abstract
In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.
Collapse
Affiliation(s)
- Aaron Fait
- French Associates Institute for Biotechnology and Agriculture of Dryland, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Midreshet Ben Gurion 84990, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M. The role of nitric oxide in the germination of plant seeds and pollen. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:560-72. [PMID: 21893253 DOI: 10.1016/j.plantsci.2011.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 05/17/2023]
Abstract
Two complex physiological processes, with opposite positions in the plant's life-cycle, seed and pollen germination, are vital to the accomplishment of successful plant growth and reproduction. This review summarizes the current state of knowledge of the intersection of NO signalling with the signalling pathways of ABA, GA, and ethylene; plant hormones that control the release of plant seeds from dormancy and germination. The cross-talk of NO and ROS is involved in the light- and hormone-specific regulation of seeds' developmental processes during the initiation of plant ontogenesis. Similarly to seed germination, the mechanisms of plant pollen hydration, germination, tube growth, as well as pollen-stigma recognition are tightly linked to the proper adjustment of NO and ROS levels. The interaction of NO with ROS and secondary messengers such as Ca(2+), cAMP and cGMP discovered in pollen represent a common mechanism of NO signalling. The involvement of NO in both breakpoints of plant physiology, as well as in the germination of spores within fungi and oomycetes, points toward NO as a component of an evolutionary conserved signalling pathway.
Collapse
Affiliation(s)
- Jana Šírová
- Department of Biochemistry, Palacký University in Olomouc, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
43
|
Rolletschek H, Melkus G, Grafahrend-Belau E, Fuchs J, Heinzel N, Schreiber F, Jakob PM, Borisjuk L. Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. THE PLANT CELL 2011; 23:3041-54. [PMID: 21856793 PMCID: PMC3180809 DOI: 10.1105/tpc.111.087015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The starchy endosperm of cereals is a priori taken as a metabolically uniform tissue. By applying a noninvasive assay based on (13)C/(1)H-magnetic resonance imaging (MRI) to barley (Hordeum vulgare) grains, we uncovered metabolic compartmentation in the endosperm. (13)C-Suc feeding during grain filling showed that the primary site of Ala synthesis was the central region of the endosperm, the part of the caryopsis experiencing the highest level of hypoxia. Region-specific metabolism in the endosperm was characterized by flux balance analysis (FBA) and metabolite profiling. FBA predicts that in the central region of the endosperm, the tricarboxylic acid cycle shifts to a noncyclic mode, accompanied by elevated glycolytic flux and the accumulation of Ala. The metabolic compartmentation within the endosperm is advantageous for the grain's carbon and energy economy, with a prominent role being played by Ala aminotransferase. An investigation of caryopses with a genetically perturbed tissue pattern demonstrated that Ala accumulation is a consequence of oxygen status, rather than being either tissue specific or dependent on the supply of Suc. Hence the (13)C-Ala gradient can be used as an in vivo marker for hypoxia. The combination of MRI and metabolic modeling offers opportunities for the noninvasive analysis of metabolic compartmentation in plants.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
| | - Gerd Melkus
- University of California–San Francisco, Radiology and Biomedical Imaging, San Francisco, California 94107
| | - Eva Grafahrend-Belau
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
| | - Johannes Fuchs
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany
| | - Nicolas Heinzel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
| | - Falk Schreiber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
| | - Peter M. Jakob
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
44
|
Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. THE PLANT CELL 2011; 23:2331-47. [PMID: 21685260 PMCID: PMC3160020 DOI: 10.1105/tpc.111.087205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) opaque5 (o5) locus was shown to encode the monogalactosyldiacylglycerol synthase MGD1. Null and point mutations of o5 that affect the vitreous nature of mature endosperm engendered an allelic series of lines with stepwise reductions in gene function. C(18:3)/C(18:2) galactolipid abundance in seedling leaves was reduced proportionally, without significant effects on total galactolipid content. This alteration in polar lipid composition disrupted the organization of thylakoid membranes into granal stacks. Total galactolipid abundance in endosperm was strongly reduced in o5(-) mutants, causing developmental defects and changes in starch production such that the normal simple granules were replaced with compound granules separated by amyloplast membrane. Complete loss of MGD1 function in a null mutant caused kernel lethality owing to failure in both endosperm and embryo development. The data demonstrate that low-abundance galactolipids with five double bonds serve functions in plastid membranes that are not replaced by the predominant species with six double bonds. Furthermore, the data identify a function of amyloplast membranes in the development of starch granules. Finally, the specific changes in lipid composition suggest that MGD1 can distinguish the constituency of acyl groups on its diacylglycerol substrate based upon the degree of desaturation.
Collapse
Affiliation(s)
- Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Qiaohui Lin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Philip S. Stinard
- U.S. Department of Agriculture/Agricultural Research Service, Maize Genetics Cooperation Stock Center, Urbana, Illinois 61801
| | | | - Philip W. Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to
| |
Collapse
|
45
|
Gupta KJ, Igamberdiev AU. The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 2011; 11:537-43. [PMID: 21406251 DOI: 10.1016/j.mito.2011.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/16/2011] [Accepted: 03/04/2011] [Indexed: 12/30/2022]
Abstract
Under the conditions of oxygen deprivation, accumulating nitrite can be reduced in the mitochondrial electron transport chain forming free radical nitric oxide (NO). By reducing nitrite to NO, plant mitochondria preserve the capacity to oxidize external NADH and NADPH and retain a limited power for ATP synthesis complementing glycolytic ATP production. NO participates in O(2) balance in mitochondria by competitively inhibiting cytochrome c oxidase which can oxidize it to nitrite when oxygen concentration increases. Some of the NO escapes to the cytosol, where the efficient scavenging system involving non-symbiotic hemoglobin oxygenates NO to nitrate and supports continuous anaerobic turnover of nitrogen species.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str. 3, D-10859, Germany.
| | | |
Collapse
|