1
|
Zhang X, Zhang Y, Ye Z, Wu Y, Cai B, Yang J. Temperature-regulated cascade reaction for homogeneous oligo-dextran synthesis using a fusion enzyme. Int J Biol Macromol 2024; 278:135195. [PMID: 39256121 DOI: 10.1016/j.ijbiomac.2024.135195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Based on the principle of cascade reaction, a fusion enzyme of dextransucrase and dextranase was designed without linker to catalyze the production of oligo-dextran with homogeneous molecular weight from sucrose in one catalytic step. Due to the different effects of temperature on the two components of the fusion enzyme, temperature served as the "toggle switch" for the catalytic efficiency of the two-level fusion enzyme, regulating the catalytic products of the fusion enzyme. Under optimal conditions, the fusion enzyme efficiently utilized 100 % of the sucrose, and the yield of oligo-dextran with a homogeneous molecular weight reached 70 %. The product has been purified and characterized. The probiotic potential of the product was evaluated by analyzing the growth of 10 probiotic species. Its cytotoxic and anti-inflammatory activities were also determined. The results showed that the long-chain oligo-dextran in this study had significantly better probiotic potential and anti-inflammatory activity compared to other oligosaccharides. This study provides a strategy for the application of oligo-dextran in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuxin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zifan Ye
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanyuan Wu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baohong Cai
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
2
|
Zhang L, Jiang J, Liu W, Wang L, Yao Z, Li H, Gong J, Kang C, Liu L, Xu Z, Shi J. Identification and Characterization of a Highly Active Hyaluronan Lyase from Enterobacter asburiae. Mar Drugs 2024; 22:399. [PMID: 39330280 PMCID: PMC11432990 DOI: 10.3390/md22090399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Hyaluronic acid (HA) is a well-known functional marine polysaccharide. The utilization and derivative development of HA are of great interest. Hyaluronan lyase has wide application prospects in the production of HA oligosaccharides and lower molecular weight HA. In this study, a strain of Enterobacter asburiae CGJ001 with high hyaluronan lyase activity was screened from industrial wastewater. This strain exhibited an impressive enzyme activity of 40,576 U/mL after being incubated for 14 h. Whole genome sequencing analysis revealed that E. asburiae CGJ001 contained a cluster of genes involved in HA degradation, transport, and metabolism. A newly identified enzyme responsible for glycosaminoglycan degradation was designated as HylEP0006. A strain of E. coli BL21(DE3)/pET-22b(+)-hylEP0006 was successfully constructed. HylEP0006 exhibited optimal degradation at 40 °C and pH 7.0, showing a high activity of 950,168.3 U/mg. HylEP0006 showed specific activity against HA. The minimum degradation fragment of HylEP0006 was hyaluronan tetrasaccharides, and HylEP0006 could efficiently degrade HA into unsaturated disaccharides (HA2), with HA2 as the final product. These characteristics indicate that HylEP0006 has a potential application prospect for the extraction and utilization of hyaluronic acid.
Collapse
Affiliation(s)
- Linjing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiayu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lianlong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuanli Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd., Qufu 273165, China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd., Qufu 273165, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
4
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Liu CC, Ye J, Cao H. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Acc Chem Res 2024. [PMID: 38286791 DOI: 10.1021/acs.accounts.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel. In contrast, glycosyltransferase-catalyzed enzymatic synthesis provides a more efficient, convenient, low-cost, and sustainable alternative to affording diverse and complex glycans. However, the existing methods are still insufficient to fulfill the increasing demand for specific synthetic glycan libraries necessary for functional glycomics research. This is mainly attributed to the inherent character of the glycan biosynthetic pathway. In nature, there are too many glycosyltransferases involved in the in vivo glycan synthesis, but only a small number of them are available for in vitro enzymatic synthesis. For instance, humans have over 200 glycosyltransferases, but only a few of them could be produced from the conventional bacterial expression system, and most of these membrane-associated enzymes could be overexpressed only in eukaryotic cells. Moreover, the glycan biosynthetic pathway is a nontemplate-driven process, which eventually ends up with heterogeneous glycan product mixtures. Therefore, it is not a practical solution for the in vitro enzymatic synthesis of complex glycans by simply copying the glycan biosynthetic pathway.In the past decade, we have tried to develop a simplified and transformable approach to the enzymatic modular assembly of a human glycan library. Despite the structural complexity of human glycans, the glycoinformatic analysis based on the known glycan structure database and the human glycosyltransferase database indicates that there are approximately 56 disaccharide patterns present in the human glycome and only 16 disaccharide linkages are required to account for over 80% of the total disaccharide fragments, while 35 disaccharide linkages are sufficient to cover over 95% of all disaccharide fragments of human glycome. Regardless of the substrate specificity, if one glycosyltransferase could be used for the synthesis of all of the same glycosidic linkages in human glycome, it will require only a few dozen glycosyltransferases for the assembly of entire human glycans. According to the glycobioinformatics analysis results, we rationally designed about two dozen enzyme modules for the synthesis of over 20 common glycosidic linkages in human glycome, in which each enzyme module contains a glycosyltransferase and a group of enzymes for the in situ generation of a nucleotide-activated sugar donor. By sequential glycosylation using orchestrated enzyme modules, we have completed the synthesis of over 200 structurally well-defined complex human glycans including blood group antigens, O-mannosyl glycans, human milk oligosaccharides, and others. To overcome the product microheterogeneity problem of enzymatic synthesis in the nontemplate-driven glycan biosynthetic pathway, we developed several substrate engineering strategies to control or manipulate the outcome of glycosyltransferase-catalyzed reactions for the precise synthesis of structurally well-defined isomeric complex glycans.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
6
|
Chen X, Guo Q, Li YY, Song TY, Ge JQ. Metagenomic analysis fecal microbiota of dysentery-like diarrhoea in a pig farm using next-generation sequencing. Front Vet Sci 2023; 10:1257573. [PMID: 37915946 PMCID: PMC10616309 DOI: 10.3389/fvets.2023.1257573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Porcine enteric diseases including swine dysentery involves a wide range of possible aetiologies and seriously damages the intestine of pigs of all ages. Metagenomic next-generation sequencing is commonly used in research for detecting and analyzing pathogens. In this study, the feces of pigs from a commercial swine farm with dysentery-like diarrhea was collected and used for microbiota analysis by next-generation sequencing. While Brachyspira spp. was not detected in diarrheal pig fecal samples, indicating that the disease was not swine dysentery. The quantity of microbial population was extremely lowered, and the bacterial composition was altered with a reduction in the relative abundance of the probiotics organisms, Firmicutes and Bacteroidetes, with an increase in pathogens like Fusobacterium and Proteobacteria, in which the specific bacteria were identified at species-level. Viral pathogens, porcine circovirus type 2, porcine lymphotropic herpesviruses 1, and porcine mastadenovirus A were also detected at pretty low levels. Carbohydrate-active enzymes (CAZy) analysis indicated that the constitute of Firmicutes and Bacteroidete were also changed. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) alignment analysis indicated that the microbiota of diarrheal pigs had a lower ability in utilizing energy sources but were enriched in multi-drug resistance pathways. Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factors of Pathogenic Bacteria (VFDB) analysis indicated that genes for elfamycin and sulfonamide resistance and the iron uptake system were enriched in diarrheal pigs. This revealed potential bacterial infection and can guide antibiotic selection for treating dysentery. Overall, our data suggested that alterations in both the population and functional attributes of microbiota in diarrheal pigs with decreased probiotic and increased pathogenic microorganisms. These results will help elucidate the mechanism of dysentery-like diarrhea and the development of approaches to control the disease.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Qing Guo
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ying-Ying Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Hussnaetter KP, Palm P, Pich A, Franzreb M, Rapp E, Elling L. Strategies for Automated Enzymatic Glycan Synthesis (AEGS). Biotechnol Adv 2023; 67:108208. [PMID: 37437855 DOI: 10.1016/j.biotechadv.2023.108208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Glycans are the most abundant biopolymers on earth and are constituents of glycoproteins, glycolipids, and proteoglycans with multiple biological functions. The availability of different complex glycan structures is of major interest in biotechnology and basic research of biological systems. High complexity, establishment of general and ubiquitous synthesis techniques, as well as sophisticated analytics, are major challenges in the development of glycan synthesis strategies. Enzymatic glycan synthesis with Leloir-glycosyltransferases is an attractive alternative to chemical synthesis as it can achieve quantitative regio- and stereoselective glycosylation in a single step. Various strategies for synthesis of a wide variety of different glycan structures has already be established and will exemplarily be discussed in the scope of this review. However, the application of enzymatic glycan synthesis in an automated system has high demands on the equipment, techniques, and methods. Different automation approaches have already been shown. However, while these techniques have been applied for several glycans, only a few strategies are able to conserve the full potential of enzymatic glycan synthesis during the process - economical and enzyme technological recycling of enzymes is still rare. In this review, we show the major challenges towards Automated Enzymatic Glycan Synthesis (AEGS). First, we discuss examples for immobilization of glycans or glycosyltransferases as an important prerequisite for the embedment and implementation in an enzyme reactor. Next, improvement of bioreactors towards automation will be described. Finally, analysis and monitoring of the synthesis process are discussed. Furthermore, automation processes and cycle design are highlighted. Accordingly, the transition of recent approaches towards a universal automated glycan synthesis platform will be projected. To this end, this review aims to describe essential key features for AEGS, evaluate the current state-of-the-art and give thought- encouraging impulses towards future full automated enzymatic glycan synthesis.
Collapse
Affiliation(s)
- Kai Philip Hussnaetter
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry and DWI Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Matthias Franzreb
- Karlsruher Institute of Technology (KIT), Institute of Functional Interfaces, Hermann v. Helmholtz, Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestrasse 20 * ZENIT, 39120 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical System, Bioprocess Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| |
Collapse
|
8
|
Tsigoriyna L, Arsov A, Gergov E, Petrova P, Petrov K. Influence of pH on Inulin Conversion to 2,3-Butanediol by Bacillus licheniformis 24: A Gene Expression Assay. Int J Mol Sci 2023; 24:14065. [PMID: 37762368 PMCID: PMC10531509 DOI: 10.3390/ijms241814065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
2,3-Butanediol (2,3-BD) is an alcohol highly demanded in the chemical, pharmaceutical, and food industries. Its microbial production, safe non-pathogenic producer strains, and suitable substrates have been avidly sought in recent years. The present study investigated 2,3-BD synthesis by the GRAS Bacillus licheniformis 24 using chicory inulin as a cheap and renewable substrate. The process appears to be pH-dependent. At pH 5.25, the synthesis of 2,3-BD was barely detectable due to the lack of inulin hydrolysis. At pH 6.25, 2,3-BD concentration reached 67.5 g/L with rapid hydrolysis of the substrate but was accompanied by exopolysaccharide (EPS) synthesis. Since inulin conversion by bacteria is a complex process and begins with its hydrolysis, the question of the acting enzymes arose. Genome mining revealed that several glycoside hydrolase (GH) enzymes from different CAZy families are involved. Five genes encoding such enzymes in B. licheniformis 24 were amplified and sequenced: sacA, sacB, sacC, levB, and fruA. Real-time RT-PCR experiments showed that the process of inulin hydrolysis is regulated at the level of gene expression, as four genes were significantly overexpressed at pH 6.25. In contrast, the expression of levB remained at the same level at the different pH values at all-time points. It was concluded that the sacC and sacA/fruA genes are crucial for inulin hydrolysis. They encode exoinulinase (EC 3.2.1.80) and sucrases (EC 3.2.1.26), respectively. The striking overexpression of sacB under these conditions led to increased synthesis of EPS; therefore, the simultaneous production of 2,3-BD and EPS cannot be avoided.
Collapse
Affiliation(s)
- Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (P.P.)
| | - Emanoel Gergov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (P.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (P.P.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Kumar M, Bandi CK, Chundawat SPS. High-throughput screening of glycosynthases using azido sugars for oligosaccharides synthesis. Methods Enzymol 2023; 682:211-245. [PMID: 36948703 DOI: 10.1016/bs.mie.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glycosynthases are mutant glycosyl hydrolases that can synthesize glycosidic bonds between acceptor glycone/aglycone groups and activated donor sugars with suitable leaving groups (e.g., azido, fluoro). However, it has been challenging to rapidly detect glycosynthase reaction products involving azido sugars as donor sugars. This has limited our ability to apply rational engineering and directed evolution methods to rapidly screen for improved glycosynthases that are capable of synthesizing bespoke glycans. Here, we outline our recently developed screening methodologies for rapidly detecting glycosynthase activity using a model fucosynthase enzyme engineered to be active on fucosyl azide as donor sugar. We created a diverse library of fucosynthase mutants using semi-random and random error prone mutagenesis and then identified improved fucosynthase mutants with desired activity using two distinct screening methods developed by our group to detect glycosynthase activity (i.e., by detecting azide formed upon completion of fucosynthase reaction); (a) pCyn-GFP regulon method, and (b) Click chemistry method. Finally, we provide some proof-of-concept results illustrating the utility of both these screening methods to rapidly detect products of glycosynthase reactions involving azido sugars as donor groups.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Chandra Kanth Bandi
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
11
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
12
|
Mei Z, Yuan J, Li D. Biological activity of galacto-oligosaccharides: A review. Front Microbiol 2022; 13:993052. [PMID: 36147858 PMCID: PMC9485631 DOI: 10.3389/fmicb.2022.993052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Galacto-oligosaccharides (GOS) are oligosaccharides formed by β-galactosidase transgalactosylation. GOS is an indigestible food component that can pass through the upper gastrointestinal tract relatively intact and ferment in the colon to produce short-chain fatty acids (SCFAs) that further regulate the body’s intestinal flora. GOS and other prebiotics are increasingly recognized as useful food tools for regulating the balance of colonic microbiota-human health. GOS performed well compared to other oligosaccharides in regulating gut microbiota, body immunity, and food function. This review summarizes the sources, classification, preparation methods, and biological activities of GOS, focusing on the introduction and summary of the effects of GOS on ulcerative colitis (UC), to gain a comprehensive understanding of the application of GOS.
Collapse
Affiliation(s)
- Zhaojun Mei
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People’s Hospital, Luzhou, China
| | - Jiaqin Yuan
- Department of Orthopedics, The Second People’s Hospital of Yibin, Yibin, China
| | - Dandan Li
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dandan Li,
| |
Collapse
|
13
|
Oliveira IMFD, Ng DYK, van Baarlen P, Stegger M, Andersen PS, Wells JM. Comparative genomics of Rothia species reveals diversity in novel biosynthetic gene clusters and ecological adaptation to different eukaryotic hosts and host niches. Microb Genom 2022; 8. [PMID: 36165601 DOI: 10.1099/mgen.0.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rothia species are understudied members of the phylum Actinobacteria and prevalent colonizers of the human and animal upper respiratory tract and oral cavity. The oral cavity, including the palatine tonsils, is colonized by a complex microbial community, which compete for resources, actively suppress competitors and influence host physiology. We analysed genomic data from 43 new porcine Rothia isolates, together with 112 publicly available draft genome sequences of Rothia isolates from humans, animals and the environment. In all Rothia genomes, we identified biosynthetic gene clusters predicted to produce antibiotic non-ribosomal peptides, iron scavenging siderophores and other secondary metabolites that modulate microbe-microbe and potentially microbe-host interactions. In vitro overlay inhibition assays corroborated the hypothesis that specific strains produce natural antibiotics. Rothia genomes encode a large number of carbohydrate-active enzymes (CAZy), with varying CAZy activities among the species found in different hosts, host niches and environments. These findings reveal competition mechanisms and metabolic specializations linked to ecological adaptation of Rothia species in different hosts.
Collapse
Affiliation(s)
| | - Duncan Y K Ng
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research, Wageningen, Netherlands
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
15
|
Guo Z, Wang L, Su L, Chen S, Xia W, André I, Rovira C, Wang B, Wu J. A Single Hydrogen Bond Controls the Selectivity of Transglycosylation vs Hydrolysis in Family 13 Glycoside Hydrolases. J Phys Chem Lett 2022; 13:5626-5632. [PMID: 35704841 DOI: 10.1021/acs.jpclett.2c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting glycoside hydrolases (GHs) from hydrolytic to synthetic enzymes via transglycosylation is a long-standing goal for the biosynthesis of complex carbohydrates. However, the molecular determinants for the selectivity of transglycosylation (T) vs hydrolysis (H) are still not fully unraveled. Herein, we show experimentally that mutation of one active site residue can switch the enzyme activity between hydrolysis and transglycosylation in two highly homologous GHs. Further QM/MM simulations reveal that the mutation modulates the T vs H reaction barriers via the presence/absence of a single H-bond with the nucleophile Asp. Such a H-bond controls the product selectivity via a dual effect: on one hand, it facilitates the breaking of the glycosyl-enzyme intermediate. On the other, it displaces the sugar acceptor, resulting in a reduced affinity and significant steric repulsion for transglycosylation. These findings expand our understanding of the molecular mechanisms that modulate the T/H balance in GHs.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31400, France
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| |
Collapse
|
16
|
Chen S, Tong Q, Guo X, Cong H, Zhao Z, Liang W, Li J, Zhu P, Yang H. Complete secretion of recombinant Bacillus subtilis levansucrase in Pichia pastoris for production of high molecular weight levan. Int J Biol Macromol 2022; 214:203-211. [PMID: 35714864 DOI: 10.1016/j.ijbiomac.2022.06.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Three signal peptides from α-mating factor (α-MF), inulinase (INU) and native levansucrase (LS) were compared for secretion efficiency of Bacillus subtilis levansucrase SacB-T305A in Pichia pastoris GS115. The first complete secretion of bacterial levansucrase in yeasts under methanol induction was achieved while using α-MF signal. The secreted recombinant Lev(α-MF) proved to be glycosylated by combination of NanoLC-MS/MS and Endo H digestion. Interestingly, glycosylation not only improved significantly the polymerase thermostability, but also reversed the products profiles to favor synthesis of high molecular weight (HMW) levan which accounted for approximately 73 % to total levan-type polysaccharides. It indicated for the first time that the glycosylation of recombinant B. subtilis levansucrase affected significantly the products molecular weight distribution. It also provided a promising enzymatic way to effectively product HMW levan from sucrose resources.
Collapse
Affiliation(s)
- Shuochang Chen
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiuping Tong
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Xiaolei Guo
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Hao Cong
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zi Zhao
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Wenfeng Liang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jiemin Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, Nanning, Guangxi 530007, China
| | - Ping Zhu
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Hui Yang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China.
| |
Collapse
|
17
|
Lansky S, Salama R, Biarnés X, Shwartstein O, Schneidman-Duhovny D, Planas A, Shoham Y, Shoham G. Integrative structure determination reveals functional global flexibility for an ultra-multimodular arabinanase. Commun Biol 2022; 5:465. [PMID: 35577850 PMCID: PMC9110388 DOI: 10.1038/s42003-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Omer Shwartstein
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel.
| | - Gil Shoham
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
18
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
19
|
Barattucci A, Gangemi CMA, Santoro A, Campagna S, Puntoriero F, Bonaccorsi P. Bodipy-carbohydrate systems: synthesis and bio-applications. Org Biomol Chem 2022; 20:2742-2763. [PMID: 35137764 DOI: 10.1039/d1ob02459k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent BODIPY-sugar probes have stimulated the attention of researchers for the potential applications of such molecular systems in bio-imaging. The presence of carbohydrate units confers unique structural and biological features, beside enhancement of water solubility and polarity. On the other hand, BODIPY (BOronDiPYrromethene) derivatives represent eclectic and functional luminescent molecules because of their outstanding photophysical properties. This article provides a review on the synthesis and applications of BODIPY-linked glycosyl probes in which the labelling of complex carbohydrates with BODIPY allowed the disclosing of their in vivo behaviour or where the sugar constitutes a recognition element for specific targeting probes, or, finally, in which the stereochemical characteristics of the carbohydrate hydroxyl groups play as structural elements for assembling more than one photoactive subunit, resulting in functional supramolecular molecules with modulable properties. We describe the methods we have used to construct various multiBODIPY molecular systems capable of functioning as artificial antennas exhibiting extremely efficient and fast photo-induced energy transfer. Some of these systems have been designed to allow the modulation of energy transfer efficiency and emission color, and intensity dependent on their position within a biological matrix. Finally, future perspectives for such BODIPY-based functional supramolecular sugar systems are also highlighted.
Collapse
Affiliation(s)
- Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Chiara M A Gangemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Paola Bonaccorsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
20
|
Qian L, Ye X, Xiao J, Lin S, Wang H, Liu Z, Ma Y, Yang L, Zhang Z, Wu L. Nitrogen concentration acting as an environmental signal regulates cyanobacterial EPS excretion. CHEMOSPHERE 2022; 291:132878. [PMID: 34780741 DOI: 10.1016/j.chemosphere.2021.132878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
As an important carbon (C) storage in biological soil crusts (BSCs), exopolysaccharides (EPSs) are not only a part of the desert C cycle, but also the key materials for cyanobacteria to resist desert stress. In this study, the influence of initial N concentrations (10, 25 and 50 mg L-1 designated as N10, N25 and N50 respectively) on Microcoleus vaginatusis growth and the excretion of EPSs including RPS (released exopolysaccharides) and CPS (capsule exopolysaccharides) were evaluated at different growth periods. In logarithmic period, higher ratio of biomass to EPSs indicated by (DW-CPS)/EPSs was observed in the N50 group with the highest N concentration (about 40 mg L-1) in the medium, while no difference was observed among the three groups in stationary period when the N concentrations of medium were lower than 25 mg L-1. The CPS/RPS showed similar results with (DW-CPS)/EPSs, and stayed higher than 1 in each group. Notably, obvious difference displayed in the monosaccharidic composition and morphologies between CPS and RPS, but not the N levels. The changes of C/N in cells at different growth period indicate that the excretion of EPSs, a mechanism that maintains the balance of cell C/N ratio, only works when the N in the environment is sufficient. Our results showed that, as the raw material and environmental signal, environmental N concentration regulates the elements (C and N) percentage of cyanobacterial cells and its EPSs excretion pattern, but not the monosaccharidic composition or the morphologies. These results also implied that, as the essential self-protecting materials, more EPSs with higher proportion of CPS would be excreted to response the low N environment.
Collapse
Affiliation(s)
- Long Qian
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Xingwang Ye
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Jingshang Xiao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Simeng Lin
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Hongyu Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Zhe Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Yongfei Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Lie Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Zulin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China; The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China.
| |
Collapse
|
21
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
22
|
Directed Evolution of Glycosyltransferases by a Single-Cell Ultrahigh-Throughput FACS-Based Screening Method. Methods Mol Biol 2022; 2461:211-224. [PMID: 35727453 DOI: 10.1007/978-1-0716-2152-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Engineering of glycosyltransferases (GTs) with desired substrate specificity for the synthesis of complex oligosaccharides has been of great scientific and industrial interest. Here we describe an ultra-high-throughput fluorescence activated cell sorting (FACS) method for the directed evolution of GTs, at the single cell level. This assay relies on the exquisite substrate specificity of lactose permeases (LacY) that are located in the cell membrane, which distinguish selectively the fluorescent glycosylated products from the unreacted substrates. The method described here allows facile screening 106-107 mutants per hour. We demonstrate the application of this technique in the screening of libraries of α1,3-fucosyltransferase.
Collapse
|
23
|
Utility of Bioluminescent Homogeneous Nucleotide Detection Assays in Measuring Activities of Nucleotide-Sugar Dependent Glycosyltransferases and Studying Their Inhibitors. Molecules 2021; 26:molecules26206230. [PMID: 34684811 PMCID: PMC8539010 DOI: 10.3390/molecules26206230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
Traditional glycosyltransferase (GT) activity assays are not easily configured for rapid detection nor for high throughput screening because they rely on radioactive product isolation, the use of heterogeneous immunoassays or mass spectrometry. In a typical glycosyltransferase biochemical reaction, two products are generated, a glycosylated product and a nucleotide released from the sugar donor substrate. Therefore, an assay that detects the nucleotide could be universal to monitor the activity of diverse glycosyltransferases in vitro. Here we describe three homogeneous and bioluminescent glycosyltransferase activity assays based on UDP, GDP, CMP, and UMP detection. Each of these assays are performed in a one-step detection that relies on converting the nucleotide product to ATP, then to bioluminescence using firefly luciferase. These assays are highly sensitive, robust and resistant to chemical interference. Various applications of these assays are presented, including studies on the specificity of sugar transfer by diverse GTs and the characterization of acceptor substrate-dependent and independent nucleotide-sugar hydrolysis. Furthermore, their utility in screening for specific GT inhibitors and the study of their mode of action are described. We believe that the broad utility of these nucleotide assays will enable the investigation of a large number of GTs and may have a significant impact on diverse areas of Glycobiology research.
Collapse
|
24
|
Liu M, Yang L, Cai M, Feng C, Zhao Z, Yang D, Ding P. Transcriptome analysis reveals important candidate gene families related to oligosaccharides biosynthesis in Morindaofficinalis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1061-1071. [PMID: 34601436 DOI: 10.1016/j.plaphy.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Morinda officinalis How (MO) is one of the best-known traditional herbs and is widely cultivated in subtropical and tropical areas for many years, especially in southern China. Oligosaccharides are the major constituents in the roots of MO, which is well known for its therapeutic effects with anti-depression, anti-osteoporosis, memory-enhancing, ect. To date, the main gene families that regulate the biosynthetic pathway of MO oligosaccharides metabolism yet have been published. In our study, six cDNA libraries generated from six plants of MO were sequenced utilizing an Illumina HiSeq 4000 platform. Corresponding totals of more than 132.60 million clean reads were obtained from the six libraries and assembled into 25,812 unigenes with an average length of 1288 bp. Moreover, 6036 unigenes were found to be allocated to 26 pathways maps using several public databases, and 2538 differential expression genes (DEGs) were screened. Among them, 25 genes from three families were selected as the mainly candidate genes related to MO oligosaccharides biosynthesis. Then, the expression patterns of six DEGs closely related to MO oligosaccharides biosynthesis were verified by quantitative real-time PCR (qRT-PCR). Besides, the MO was clustered more closely to Coffea arabica of Rubiaceae. In summary, the transcriptomic analysis was used to investigate the differences in expression genes of oligosaccharides biosynthesis, with the notable outcome that several key gene families were closely linked to oligosaccharides biosynthesis.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chong Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhimin Zhao
- School of Pharmacy, Sun Yat-sen University, Guangzhou, 510006, China
| | - Depo Yang
- School of Pharmacy, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
26
|
Yu S, Wang S, Sun X, Wu Y, Zhao J, Liu J, Yang D, Jiang Y. ST8SIA1 inhibits the proliferation, migration and invasion of bladder cancer cells by blocking the JAK/STAT signaling pathway. Oncol Lett 2021; 22:736. [PMID: 34429775 PMCID: PMC8371960 DOI: 10.3892/ol.2021.12997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BLCA) is the most common malignant tumor of the urinary system, with distant metastasis of the tumor being the main cause of death. The identification of an effective biomarker may provide a novel direction for BLCA diagnosis and treatment. The aim of the present study was to screen the BLCA-related genes involved in sialyl transferase (ST) dysregulation and to investigate the functional mechanisms of α-2,8-ST1 (ST8SIA1) in BLCA cells. Data from The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases suggested that the mRNA expression levels of ST8SIA1 were decreased in BLCA tissues compared with normal tissues, which was also demonstrated using immunohistochemistry and western blot analysis. The expression levels of ST8SIA1 were negatively associated with the pathological grade and invasiveness of BLCA. Western blot analysis revealed that the expression levels of ST8SIA1 were lower in BLCA cell lines than in a normal urothelial cell line. CCK-8, flow cytometry, wound healing, colony formation and Transwell assays indicated that ST8SIA1 overexpression attenuated the proliferation, migration and invasion of T24 and 5637 BLCA cells. Further experiments revealed that ST8SIA1 could inhibit the phosphorylation of Janus kinase (JAK)2 and STAT3, as well as decrease the expression levels of JAK/STAT pathway-targeting signal molecules, including MMP2, proliferating cell nuclear antigen, cyclin D1 and Bcl2 in two BLCA cell lines. In conclusion, to the best of our knowledge, the present study was the first to indicate that the antitumor effect of ST8SIA1 in BLCA cells was mediated by the JAK/STAT signaling pathway, and the results provided a novel target for the diagnosis and treatment of BLCA.
Collapse
Affiliation(s)
- Shengjin Yu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian, Liaoning 116044, P.R. China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian, Liaoning 116044, P.R. China.,College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yinshuang Wu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian, Liaoning 116044, P.R. China
| | - Jun Zhao
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Junqiang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| |
Collapse
|
27
|
Schelch S, Eibinger M, Gross Belduma S, Petschacher B, Kuballa J, Nidetzky B. Engineering analysis of multienzyme cascade reactions for 3'-sialyllactose synthesis. Biotechnol Bioeng 2021; 118:4290-4304. [PMID: 34289079 PMCID: PMC9290085 DOI: 10.1002/bit.27898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/18/2021] [Indexed: 11/06/2022]
Abstract
Sialo‐oligosaccharides are important products of emerging biotechnology for complex carbohydrates as nutritional ingredients. Cascade bio‐catalysis is central to the development of sialo‐oligosaccharide production systems, based on isolated enzymes or whole cells. Multienzyme transformations have been established for sialo‐oligosaccharide synthesis from expedient substrates, but systematic engineering analysis for the optimization of such transformations is lacking. Here, we show a mathematical modeling‐guided approach to 3ʹ‐sialyllactose (3SL) synthesis from N‐acetyl‐
d‐neuraminic acid (Neu5Ac) and lactose in the presence of cytidine 5ʹ‐triphosphate, via the reactions of cytidine 5ʹ‐monophosphate‐Neu5Ac synthetase and α2,3‐sialyltransferase. The Neu5Ac was synthesized in situ from N‐acetyl‐
d‐mannosamine using the reversible reaction with pyruvate by Neu5Ac lyase or the effectively irreversible reaction with phosphoenolpyruvate by Neu5Ac synthase. We show through comprehensive time‐course study by experiment and modeling that, due to kinetic rather than thermodynamic advantages of the synthase reaction, the 3SL yield was increased (up to 75%; 10.4 g/L) and the initial productivity doubled (15 g/L/h), compared with synthesis based on the lyase reaction. We further show model‐based optimization to minimize the total loading of protein (saving: up to 43%) while maintaining a suitable ratio of the individual enzyme activities to achieve 3SL target yield (61%–75%; 7–10 g/L) and overall productivity (3–5 g/L/h). Collectively, our results reveal the principal factors of enzyme cascade efficiency for 3SL synthesis and highlight the important role of engineering analysis to make multienzyme‐catalyzed transformations fit for oligosaccharide production.
Collapse
Affiliation(s)
- Sabine Schelch
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Stefanie Gross Belduma
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Barbara Petschacher
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | | | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| |
Collapse
|
28
|
Klimacek M, Zhong C, Nidetzky B. Kinetic modeling of phosphorylase-catalyzed iterative β-1,4-glycosylation for degree of polymerization-controlled synthesis of soluble cello-oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:134. [PMID: 34112242 PMCID: PMC8194188 DOI: 10.1186/s13068-021-01982-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes the iterative β-1,4-glycosylation of cellobiose using α-D-glucose 1-phosphate as the donor substrate. Cello-oligosaccharides (COS) with a degree of polymerization (DP) of up to 6 are soluble while those of larger DP self-assemble into solid cellulose material. The soluble COS have attracted considerable attention for their use as dietary fibers that offer a selective prebiotic function. An efficient synthesis of soluble COS requires good control over the DP of the products formed. A mathematical model of the iterative enzymatic glycosylation would be important to facilitate target-oriented process development. RESULTS A detailed time-course analysis of the formation of COS products from cellobiose (25 mM, 50 mM) and α-D-glucose 1-phosphate (10-100 mM) was performed using the CdP from Clostridium cellulosi. A mechanism-based, Michaelis-Menten type mathematical model was developed to describe the kinetics of the iterative enzymatic glycosylation of cellobiose. The mechanistic model was combined with an empirical description of the DP-dependent self-assembly of the COS into insoluble cellulose. The hybrid model thus obtained was used for kinetic parameter determination from time-course fits performed with constraints derived from initial rate data. The fitted hybrid model provided excellent description of the experimental dynamics of the COS in the DP range 3-6 and also accounted for the insoluble product formation. The hybrid model was suitable to disentangle the complex relationship between the process conditions used (i.e., substrate concentration, donor/acceptor ratio, reaction time) and the reaction output obtained (i.e., yield and composition of soluble COS). Model application to a window-of-operation analysis for the synthesis of soluble COS was demonstrated on the example of a COS mixture enriched in DP 4. CONCLUSIONS The hybrid model of CdP-catalyzed iterative glycosylation is an important engineering tool to study and optimize the biocatalytic synthesis of soluble COS. The kinetic modeling approach used here can be of a general interest to be applied to other iteratively catalyzed enzymatic reactions of synthetic importance.
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (Acib), Graz, Austria.
| |
Collapse
|
29
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
30
|
Norberg T, Kallin E, Blixt O. Reversible derivatization of sugars with carbobenzyloxy groups and use of the derivatives in solution-phase enzymatic oligosaccharide synthesis. Carbohydr Res 2021; 502:108272. [PMID: 33711724 DOI: 10.1016/j.carres.2021.108272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
Simple protocols for attaching and detaching carbobenzyloxy (Cbz) groups at the reducing end of sugars was developed. Briefly, lactose was converted into its glycosylamine, which was then acylated with carbobenzyloxy chloride in high overall yield. The obtained lactose Cbz derivative was used in sequential glycosylations using glycosyltransferases and nucleotide sugars in aqueous buffers. Isolation of the reaction products after each step was by simple C-18 solid-phase extraction. The Cbz group was removed by catalytic hydrogenolysis or catalytic transfer hydrogenation followed by in situ glycosylamine hydrolysis. In this way, a trisaccharide (GlcNAc-lactose), a human milk tetrasaccharide (LNnT), and a human milk pentasaccharide (LNFPIII) were prepared in a simple and efficient way.
Collapse
Affiliation(s)
- Thomas Norberg
- Department of Chemistry (BMC), Uppsala University, PO Box 576, SE-751 23, Uppsala, Sweden.
| | | | - Ola Blixt
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads, Bygning 225, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Lim CH, Rasti B, Sulistyo J, Hamid MA. Comprehensive study on transglycosylation of CGTase from various sources. Heliyon 2021; 7:e06305. [PMID: 33665455 PMCID: PMC7907775 DOI: 10.1016/j.heliyon.2021.e06305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Transglycosylation is the in-vivo or in-vitro process of transferring glycosyl groups from a donor to an acceptor, which is usually performed by enzymatic reactions because of their simplicity, low steric hindrance, high region-specificity, low production cost, and mild processing conditions. One of the enzymes commonly used in the transglycosylation reaction is cyclodextrin glucanotransferase (CGTase). The transglycosylated products, catalyzed by CGTase, are widely used in food additives, supplements, and personal care and cosmetic products. This is due to improvements in the solubility, stability, bioactivity and length of the synthesized products. This paper's focus is on the importance of enzymes used in the transglycosylation reaction, their characteristics and mechanism of action, sources and production yield, and donor and acceptor specificities. Moreover, the influence of intrinsic and extrinsic factors on the enzymatic reaction, catalysis of glycosidic linkages, and advantages of CGTase transglycosylation reactions are discussed in detail.
Collapse
Affiliation(s)
- Chin Hui Lim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Babak Rasti
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Joko Sulistyo
- Faculty of Biotechnology, University of Surabaya, Jalan Ngagel Jaya Selatan, Surabaya, 60294, Indonesia
| | - Mansoor Abdul Hamid
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
32
|
Xu C, Wang S, Wu Y, Sun X, Yang D, Wang S. Recent advances in understanding the roles of sialyltransferases in tumor angiogenesis and metastasis. Glycoconj J 2021; 38:119-127. [PMID: 33411077 DOI: 10.1007/s10719-020-09967-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Abnormal glycosylation is a common characteristic of cancer cells and there is a lot of evidence that glycans can regulate the biological behavior of tumor cells. Sialylation modification, a form of glycosylation modification, plays an important role in cell recognition, cell adhesion and cell signal transduction. Abnormal sialylation on the surface of tumor cells is related to tumor migration and invasion, with abnormal expression of sialyltransferases being one of the main causes of abnormal sialylation. Recent studies provide a better understanding of the importance of the sialyltransferases, and how they influences cancer cell angiogenesis, adhesion and Epithelial-Mesenchymal Transition (EMT). The present review will provide a direction for future studies in determining the roles of sialyltransferases in cancer metastasis, and abnormal sialyltransferases are likely to be potential biomarkers for cancer.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Yinshuang Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, People's Republic of China.
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
33
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
34
|
Amylase-Producing Maltooligosaccharide Provides Potential Relief in Rats with Loperamide-Induced Constipation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5470268. [PMID: 32908561 PMCID: PMC7474349 DOI: 10.1155/2020/5470268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Constipation is a chronic disease caused by infrequent, inadequate, and difficult bowel movements. The present study aimed to evaluate the potential laxative effect of maltooligosaccharide (MOS) on loperamide-induced constipation in a rat model. In vitro experiments were conducted to evaluate the effect of MOS on the growth of lactic acid bacteria. Moreover, to examine the effect of MOS administration on Sprague-Dawley (SD) rats with loperamide-induced constipation, the drinking water for the rats was supplemented with 10% or 15% of MOS for 14 days, and, thereafter, the improvement in constipation was assessed. For this, the rats were divided into five groups: normal (Nor), loperamide-induced constipated (Con), positive control (15% of dual-oligosaccharide (DuO-15)), 10% MOS treated (MOS-10), and 15% MOS-treated (MOS-15). In an in vitro test, MOS treatment promoted the growth of lactic acid bacteria except Lactobacillus bulgaricus. Treatment with higher MOS dose relieved constipation in rats by improving the fecal pellet and water content. Furthermore, in the high MOS dose group, the cecal short-chain fatty acid levels significantly increased compared to those in the control group (P < 0.001). MOS treatment also improved the mucosal thickness as well as mucin secretion and increased the area of intestinal Cajal cells compared to that in the control group (P < 0.001). These findings suggest that MOS relieves constipation and has beneficial effect on the gastrointestinal tract, and, therefore, it can be used as an ingredient in functional foods for treating constipation or improving intestinal health.
Collapse
|
35
|
Liu P, Zhang H, Wang Y, Chen X, Jin L, Xu L, Xiao M. Screening and characterization of an α-L-fucosidase from Bacteroides fragilis NCTC9343 for synthesis of fucosyl-N-acetylglucosamine disaccharides. Appl Microbiol Biotechnol 2020; 104:7827-7840. [PMID: 32715363 DOI: 10.1007/s00253-020-10759-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Fucosyl-N-acetylglucosamine disaccharides are present in many biologically important oligosaccharides, such as human milk oligosaccharides, Lewis carbohydrate antigens, and glycans on cell-surface glycoconjugate receptors, and thus have vast potential for infant formulas, prebiotics, and pharmaceutical applications. In this work, in order to screen biocatalysts for enzymatic synthesis of fucosyl-N-acetylglucosamine disaccharides, we performed sequence analysis of 12 putative and one known α-L-fucosidases of Bacteroides fragilis NCTC9343 and constructed a phylogenetic tree of the nine GH29 α-L-fucosidases. After that, five GH29A α-L-fucosidases were cloned, and four of them were successfully heterogeneous expressed and screened for transglycosylation activity, and a GH29A α-L-fucosidase (BF3242) that synthesized a mix of Fuc-α-1,3/1,6-GlcNAc disaccharides using pNPαFuc as donor and GlcNAc as acceptor was characterized. The effects of initial substrate concentration, pH, temperature, and reaction time on its transglycosylation activity were studied in detail. Under the optimum conditions of 0.05 U/mL enzyme, 20 mM pNPαFuc, and 500 mM GlcNAc in sodium buffer (pH 7.5) at 37 °C for 45 min, BF3242 efficiently synthesized Fuc-α-1,3/1,6-GlcNAc at a maximum yield of 79.0% with the ratio of 0.48 for 1,3/1,6. The molecular dynamics simulation analysis revealed that Loop-4 (His220-Ser245) in the putative 3D model of BF3242 displayed significant changes throughout the thermal simulations, might being responsible for the changes in the ratio of two regioisomeric products at different temperatures. This work provided not only a potential synthetic tool for enzymatic synthesis of fucosyl-N-acetylglucosamine disaccharides but also a possibility for the formation of regioisomeric products in glycosidase-catalyzed transglycosylation. KEY POINTS: • Sequence analysis of α-L-fucosidases of Bacteroides fragilis NCTC9343 • Obtainment of an α-L-fucosidase with high transglycosylation activity • Explanation why temperature affected the ratio of two regioisomeric products.
Collapse
Affiliation(s)
- Peng Liu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Huaqin Zhang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yuying Wang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,Department of Clinical Laboratory Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, 250001, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
36
|
Mayfield AB, Metternich JB, Trotta AH, Jacobsen EN. Stereospecific Furanosylations Catalyzed by Bis-thiourea Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:4061-4069. [PMID: 32013410 DOI: 10.1021/jacs.0c00335] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a new method for stereoselective O-furanosylation reactions promoted by a precisely tailored bis-thiourea hydrogen-bond-donor catalyst. Furanosyl donors outfitted with an anomeric dialkylphosphate leaving group undergo substitution with high anomeric selectivity, providing access to the challenging 1,2-cis substitution pattern with a range of alcohol acceptors. A variety of stereochemically distinct, benzyl-protected glycosyl donors were engaged successfully as substrates. Mechanistic studies support a stereospecific mechanism in which rate-determining substitution occurs from a catalyst-donor resting-state complex.
Collapse
Affiliation(s)
- Andrew B Mayfield
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jan B Metternich
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Adam H Trotta
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
37
|
|
38
|
Chen X, Jin L, Jiang X, Guo L, Gu G, Xu L, Lu L, Wang F, Xiao M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl Microbiol Biotechnol 2019; 104:661-673. [PMID: 31822984 DOI: 10.1007/s00253-019-10253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
We have recently derived a β-N-acetylhexosaminidase, BbhI, from Bifidobacterium bifidum JCM 1254, which could regioselectively synthesize GlcNAcβ1-3Galβ1-4Glc with a yield of 44.9%. Here, directed evolution of BbhI by domain-targeted mutagenesis was carried out. Firstly, the GH20 domain was selected for random mutagenesis using MEGAWHOP method and a small library of 1300 clones was created. A total of 734 colonies with reduced hydrolytic activity were isolated, and three mutants with elevated transglycosylation yields, GlcNAcβ1-3Galβ1-4Glc yields of 68.5%, 74.7%, and 81.1%, respectively, were obtained. Subsequently, nineteen independent mutants were constructed according to all the mutation sites in these three mutants. After transglycosylation analysis, Asp714 and Trp773 were identified as key residues for improvement in transglycosylation ability and were chosen for the second round of directed evolution by site-saturation mutagenesis. Two most efficient mutants D714T and W773R that acted as trans-β-N-acetylhexosaminidase were finally achieved. D714T with the substitution at the putative nucleophile assistant residue Asp714 by threonine showed high yield of 84.7% with unobserved hydrolysis towards transglycosylation product. W773R with arginine substitution at Trp773 residue locating at the entrance of catalytic cavity led to the yield up to 81.8%. The kcat/Km values of D714T and W773R for hydrolysis of pNP-β-GlcNAc displayed drastic decreases. NMR investigation of protein-substrate interaction revealed an invariable mode of the catalytic cavity of D714T, W773R, and WT BbhI. The collective motions of protein model showed the mutations Thr714 and Arg773 exerted little effect on the dynamics of the inside but a large effect on the dynamics of the outside of catalytic cavity.
Collapse
Affiliation(s)
- Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xukai Jiang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Longcheng Guo
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Guofeng Gu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
39
|
Darwesh OM, Ali SS, Matter IA, Elsamahy T, Mahmoud YA. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods Enzymol 2019; 630:481-502. [PMID: 31931999 DOI: 10.1016/bs.mie.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enzymes as specific natural biocatalysts are present in all living organisms and they play a key role in the biochemical reactions inside, as outside the cell. Despite the wide range of environmental, medical, agricultural, and food applications, the high cost, non-reusability, and limited stability of soluble (non-immobilized) enzymes are considered barriers to their commercial application. Immobilization techniques are an effective strategy for solving problems associated with free enzymes in terms of improving the efficiency and stability of catalytic enzymes, as well as enhancing their separation and reusability in continuous industrial applications. Out of different supporting materials, magnetic nanoparticles are considered as the future trend for enzyme immobilization due to their exceptional properties regarding stabilization, easy recovery and reuse. Some recent techniques of enzyme immobilization on magnetic nanoparticles will be detailed hereafter in the chapter.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agriculture Microbiology Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ibrahim A Matter
- Agriculture Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yehia A Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
40
|
Krawczyk M, Pastuch-Gawołek G, Pluta A, Erfurt K, Domiński A, Kurcok P. 8-Hydroxyquinoline Glycoconjugates: Modifications in the Linker Structure and Their Effect on the Cytotoxicity of the Obtained Compounds. Molecules 2019; 24:E4181. [PMID: 31752188 PMCID: PMC6891455 DOI: 10.3390/molecules24224181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Small molecule nitrogen heterocycles are very important structures, widely used in the design of potential pharmaceuticals. Particularly, derivatives of 8-hydroxyquinoline (8-HQ) are successfully used to design promising anti-cancer agents. Conjugating 8-HQ derivatives with sugar derivatives, molecules with better bioavailability, selectivity, and solubility are obtained. In this study, 8-HQ derivatives were functionalized at the 8-OH position and connected with sugar derivatives (D-glucose or D-galactose) substituted with different groups at the anomeric position, using copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC). Glycoconjugates were tested for inhibition of the proliferation of cancer cell lines (HCT 116 and MCF-7) and inhibition of β-1,4-galactosyltransferase activity, which overexpression is associated with cancer progression. All glycoconjugates in protected form have a cytotoxic effect on cancer cells in the tested concentration range. The presence of additional amide groups in the linker structure improves the activity of glycoconjugates, probably due to the ability to chelate metal ions present in many types of cancers. The study of metal complexing properties confirmed that the obtained glycoconjugates are capable of chelating copper ions, which increases their anti-cancer potential.
Collapse
Affiliation(s)
- Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Aleksandra Pluta
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (A.D.); (P.K.)
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (A.D.); (P.K.)
| |
Collapse
|
41
|
Insight into the glycosylation and hydrolysis kinetics of alpha-glucosidase in the synthesis of glycosides. Appl Microbiol Biotechnol 2019; 103:9423-9432. [DOI: 10.1007/s00253-019-10205-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
42
|
Toward Automated Enzymatic Glycan Synthesis in a Compartmented Flow Microreactor System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
44
|
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019; 8:E92. [PMID: 30857316 PMCID: PMC6463098 DOI: 10.3390/foods8030092] [Citation(s) in RCA: 619] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Pharmaceutical Biotechnology Incubator, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Mostafa Seifan
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Milad Mohkam
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Aydin Berenjian
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| |
Collapse
|
45
|
Synthesis of 8-hydroxyquinoline glycoconjugates and preliminary assay of their β1,4-GalT inhibitory and anti-cancer properties. Bioorg Chem 2019; 84:326-338. [DOI: 10.1016/j.bioorg.2018.11.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
|
46
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
47
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential. Biotechnol Appl Biochem 2018; 66:172-191. [PMID: 30508310 DOI: 10.1002/bab.1714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023]
Abstract
Fucosylated oligosaccharides play important physiological roles in humans, including in the immune response, transduction of signals, early embryogenesis and development, growth regulation, apoptosis, pathogen adhesion, and so on. Efforts have been made to synthesize fucosylated oligosaccharides, as it is difficult to purify them from their natural sources, such as human milk, epithelial tissue, blood, and so on. Within the strategies for its in vitro synthesis, it is remarkable the employment of fucosidases, enzymes that normally cleave the fucosyl residue from the non-reducing end of fucosylated compounds, as these enzymes are also capable of synthesizing them by means of a transfucosylation reaction. This review summarizes the progress in the use of fucosidases for the synthesis of compounds that have potential for industrial and commercial applications.
Collapse
Affiliation(s)
| | | | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | | | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Edo. de México, México
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
48
|
Jamek SB, Muschiol J, Holck J, Zeuner B, Busk PK, Mikkelsen JD, Meyer AS. Loop Protein Engineering for Improved Transglycosylation Activity of a β‐
N
‐Acetylhexosaminidase. Chembiochem 2018; 19:1858-1865. [DOI: 10.1002/cbic.201800181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Shariza B. Jamek
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
- Faculty of Chemical and Natural Resources EngineeringUniversity Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang, Kuantan, Pahang Malaysia
| | - Jan Muschiol
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Jesper Holck
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Birgitte Zeuner
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Peter K. Busk
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Jørn D. Mikkelsen
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Anne S. Meyer
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| |
Collapse
|
49
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
50
|
He C, Yang Y, Zhao R, Qu J, Jin L, Lu L, Xu L, Xiao M. Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study. Appl Microbiol Biotechnol 2018; 102:3217-3228. [DOI: 10.1007/s00253-018-8854-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
|