1
|
Jaeger-Honz S, Hackett R, Fotler R, Dietrich DR, Schreiber F. Conformation and binding of 12 Microcystin (MC) congeners to PPP1 using molecular dynamics simulations: A potential approach in support of an improved MC risk assessment. Chem Biol Interact 2025; 407:111372. [PMID: 39788475 DOI: 10.1016/j.cbi.2025.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Microcystins (MCs) occur frequently during cyanobacterial blooms worldwide, representing a group of currently about 300 known MC congeners, which are structurally highly similar. Human exposure to MCs via contaminated water, food or dietary supplements can lead to severe intoxications with ensuing high morbidity and in some cases mortality. Currently, one MC congener (MC-LR) is almost exclusively considered for risk assessment (RA) by the WHO. Many MC congeners co-occur during bloom events, of which MC-LR is not the most toxic. Indeed, MC congeners differ dramatically in their inherent toxicity, consequently raising question about the reliability of the WHO RA and the derived guidance values. Molecular dynamics (MD) simulation can aid in understanding differences in toxicity, as experimental validation for all known MC congeners is not feasible. Therefore, we present MD simulations of a total of twelve MC congeners, of which eight MC congeners were simulated for the first time. We show that depending on their structure and toxicity class, MCs adapt to different backbone conformations. These backbone conformations are specific to certain MC congeners and can change or shift to other conformations upon binding to PPP1, affecting the stability of the binding. Analysis of the interactions with PPP1 demonstrated that there are frequently occurring patterns for individual MC congeners, and that published PPP interactions could be reproduced. In addition, common but also unique patterns were found for individual MC congeners, suggesting differences in binding behaviour. The MD simulations presented here therefore enhance our understanding of MC congener-specific differences and demonstrated that congener-specific investigations are prerequisite for allowing characterisation of yet untested or even unknown MC congeners, thereby allowing for a novel potential approach in support of an improved RA of microcystins in humans.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Informatics and Information Science, University of Konstanz, Germany
| | - Raymund Hackett
- Department of Informatics and Information Science, University of Konstanz, Germany
| | - Regina Fotler
- Department of Biology, University of Konstanz, Germany
| | | | - Falk Schreiber
- Department of Informatics and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia.
| |
Collapse
|
2
|
Sallandt LL, Wolf CA, Schuster S, Enke H, Enke D, Wolber G, Niedermeyer THJ. Derivatization of Microcystins Can Increase Target Inhibition while Reducing Cellular Uptake. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39427253 DOI: 10.1021/acs.jnatprod.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Microcystins, a large family of nonribosomal cyclic heptapeptides known for their hepatotoxicity, are among the best-studied cyanobacterial toxins. Recently, they have been discussed as leads for the development of anticancer drug substances. Their main mode-of-action is inhibition of the eukaryotic serine/threonine protein phosphatases 1 and 2A. Unlike many cytotoxins that can cross cell membranes by passive diffusion, microcystins depend on active uptake via organic anion transporting polypeptides 1B1 or 1B3. Both phosphatase inhibition and transportability strongly depend on the structure of the individual microcystin. Here, we present how chemical modification of positions 2 and 4 of the microcystin core structure can alter these two properties. Aiming to reduce transportability and increase phosphatase inhibition, we used pharmacophore modeling to investigate the phosphatase inhibition potential of microcystins derivatized with small molecules containing a variety of functional groups. The respective derivatives were synthesized using click chemistry. We discovered that some derivatized microcystins can address a yet undescribed subpocket of the protein phosphatase 1. The derivatized microcystins were tested for phosphatase 1 inhibition and cytotoxicity on transporter-expressing cell lines, revealing that target inhibition and transportability of microcystins can independently be influenced by the physicochemical properties, especially of the residue located in position 2 of the microcystin. Derivatization with small acids or amino acids resulted in microcystins with a favorable ratio of inhibition to transportability, making these derivatives potentially suitable for drug development.
Collapse
Affiliation(s)
- Laura L Sallandt
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Clemens A Wolf
- Department of Pharmaceutical Chemistry (Molecular Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Heike Enke
- Simris Biologics GmbH, 12489 Berlin, Germany
| | - Dan Enke
- Simris Biologics GmbH, 12489 Berlin, Germany
| | - Gerhard Wolber
- Department of Pharmaceutical Chemistry (Molecular Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Ren Y, Wang J, Guo WW, Chen JW, Xu LZ, Wu ZW, Wang YP. PKM2/Hif-1α signal suppression involved in therapeutics of pulmonary fibrosis with microcystin-RR but not with pirfenidone. Toxicon 2024; 247:107822. [PMID: 38908528 DOI: 10.1016/j.toxicon.2024.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
To date there are only pirfenidone (PFD) and nintedanib to be given conditional recommendation in idiopathic pulmonary fibrosis (IPF) therapies with slowing disease progression, but neither has prospectively shown a reduced mortality. It is one of the urgent topics to find effective drugs for pulmonary fibrosis in medicine. Previous studies have demonstrated that microcystin-RR (MC-RR) effectively alleviates bleomycin-induced pulmonary fibrosis, but the mechanism has not been fully elucidated yet. We further conducted a comparison of therapeutic effect on the model animals of pulmonary fibrosis between MC-RR and PFD with histopathology and the expression of the molecular markers involved in differentiation, proliferation and metabolism of myofibroblasts, a major effector cell of tissue fibrosis. The levels of the enzyme molecules for maintaining the stability of interstitial structure were also evaluated. Our results showed that MC-RR and PFD effectively alleviated pulmonary fibrosis in model mice with a decreased signaling and marker molecules associated with myofibroblast differentiation and lung fibrotic lesion. In the meantime, both MC-RR and PFD treatment are beneficial to restore molecular dynamics of interstitial tissue and maintain the stability of interstitial architecture. Unexpectedly, MC-RR, rather than PFD, showed a significant effect on inhibiting PKM2-HIF-1α signaling and reducing the level of p-STAT3. Additionally, MC-RR showed a better inhibition effect on FGFR1 expression. Given that PKM2-HIF-1α and activated STAT3 molecular present a critical role in promoting the proliferation of myofibroblasts, MC-RR as a new strategy for IPF treatment has potential advantage over PFD.
Collapse
Affiliation(s)
- Yan Ren
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China
| | - Jie Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Wen-Wen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-Wen Chen
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China
| | - Li-Zhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China
| | - Zhi-Wei Wu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Center for Public Health Research, Nanjing University School of Medicine, Nanjing, China.
| | - Ya-Ping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China.
| |
Collapse
|
5
|
O'Brien S, Alvariño R, Kennedy B, Botana LM, Thomas OP. Antioxidant micropeptins from a Microcoleus autumnalis-dominated benthic cyanobacterial mat from Western Ireland. PHYTOCHEMISTRY 2024; 223:114137. [PMID: 38734043 DOI: 10.1016/j.phytochem.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Exploring the chemical diversity present in cyanobacterial mats increasingly frequent in fresh and marine waters is imperative for both evaluating risks associated with these diverse biofilms and their potential for biodiscovery. During a project aimed at the study of the (eco)toxicity of benthic cyanobacteria blooming in some lakes of the West of Ireland, three previously undescribed ahp-cyclodepsipeptides micropeptin LOF941 (1), micropeptin LOF925 (2) and micropeptin LOF953 (3) were isolated from the Microcoleus autumnalis-dominated benthic cyanobacterial biofilm collected from the shore of Lough O'Flynn, Co. Roscommon, Ireland. Their structures remain consistent in their amino acid sequence with the presence of an unusual methionine, and differ by their exocyclic side chains. The planar structures of the previously undescribed micropeptins were elucidated by 1D and 2D NMR and HRESIMS analyses, and their 3D configurations assessed by ROESY NMR and Marfey's analyses. The three isolated compounds showed no cytotoxic effects and all three compounds were shown to exhibit antioxidant properties, with 1 showing the highest bioactivity. Additionally, several micropeptin analogues are proposed from the methanolic fraction of the biofilm extract by UHPLC-HRESIMS/MS analysis and molecular networking. Notably, the known cyanotoxins anatoxin-a and dihydroanatoxin-a were annotated in the molecular network therefore raising issues about the toxicity of this cyanobacterial mat.
Collapse
Affiliation(s)
- Shauna O'Brien
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Rebeca Alvariño
- Physiology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, Avenida Carballo Calero s/n, 27002 Lugo, Spain
| | - Bryan Kennedy
- Environmental Protection Agency, John Moore Road, F23 KT91 Castlebar, Co. Mayo, Ireland
| | - Luis M Botana
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, Avenida Carballo Calero s/n, 27002 Lugo, Spain
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland.
| |
Collapse
|
6
|
Wang Q, Jiang D, Du X, Shan X, Wang W, Shiigi H, Chen Z. A zinc-air battery assisted self-powered electrochemical sensor for sensitive detection of microcystin-RR. Analyst 2024; 149:2291-2298. [PMID: 38511612 DOI: 10.1039/d4an00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Building a high-performance sensing platform is the key to developing sensitive sensors. Herein, a highly sensitive self-powered electrochemical sensor (SPES) was constructed using a WO3·H2O film as the cathode prepared by a hydrothermal method and Zn as the anode, and it could be applied to sensitive detection of microcystin (MC-RR). The WO3·H2O film with a larger specific surface area could boost the oxygen reduction reaction (ORR), which could achieve signal amplification and significantly increase the sensitivity of the sensors. Under the optimal conditions, there was a good linear relationship between the increased electrical power density and the logarithm of MC-RR concentration with a detection limit of 1.31 × 10-15 M (S/N = 3). This method had good anti-interference ability and stability when applied to the determination of MC-RR content in actual samples, which could boost the potential application of electrochemical sensors in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qianjun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, PR China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| |
Collapse
|
7
|
Yu H, Fu C, Li M, Zong W. Non-negligible inhibition effect of microcystin-LR biodegradation products target to protein phosphatase 2A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123491. [PMID: 38346637 DOI: 10.1016/j.envpol.2024.123491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Though biodegradation is an important regulation pathway for microcystins (MCs) pollution, more consideration needs to be given to the potential risk associated with related biodegradation products (MC-BDPs). In this work, typical MCLR-BDPs were prepared and their toxicity was evaluated by protein phosphatases (PPs) inhibition assay. Results showed the initial ring opening of MCLR played a crucial role in detoxification. However, partial MCLR-BDPs still retained the critical structures and thus exhibited certain toxicity (2.8-43.5% of MCLR). With the aid of molecular simulation, the mechanism for the potential toxicity of BDPs targeting PP2A was elucidated. The initial ring opening made the loss of hydrogen bond Leu2←Arg89, and pi-H bond Adda5-His191, which was responsible for the significant reduction in the toxicity of MCLR-BDP. However, the key hydrogen bonds MeAsp3←Arg89, Glu6←Arg89, Adda5←Asn117, Adda5←His118, Arg4→Pro213, Arg4←Arg214, Ala1←Arg268, and Mdha7←Arg268, metal bond Glu6-Mn12+, and ionic bonds Glu6-Arg89, and Glu6-Mn22+ were preserved in varying degrees. Above preserved interactions maintained the interactions between PP2A and Mn2+ ions (reducing the exposure of Mn2+ ions). Above preserved interactions also hindered the combination of phosphate groups to Arg214 residual and thus exhibited potential toxicity.
Collapse
Affiliation(s)
- Huiqun Yu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| | - Chunyu Fu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| | - Mengchen Li
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| |
Collapse
|
8
|
Jaeger-Honz S, Klein K, Schreiber F. Systematic analysis, aggregation and visualisation of interaction fingerprints for molecular dynamics simulation data. J Cheminform 2024; 16:28. [PMID: 38475907 DOI: 10.1186/s13321-024-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Computational methods such as molecular docking or molecular dynamics (MD) simulations have been developed to simulate and explore the interactions between biomolecules. However, the interactions obtained using these methods are difficult to analyse and evaluate. Interaction fingerprints (IFPs) have been proposed to derive interactions from static 3D coordinates and transform them into 1D bit vectors. More recently, the concept has been applied to derive IFPs from MD simulations, which adds a layer of complexity by adding the temporal motion and dynamics of a system. As a result, many IFPs are obtained from one MD simulation, resulting in a large number of individual IFPs that are difficult to analyse compared to IFPs derived from static 3D structures. Scientific contribution: We introduce a new method to systematically aggregate IFPs derived from MD simulation data. In addition, we propose visualisations to effectively analyse and compare IFPs derived from MD simulation data to account for the temporal evolution of interactions and to compare IFPs across different MD simulations. This has been implemented as a freely available Python library and can therefore be easily adopted by other researchers and to different MD simulation datasets.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Computer and Information Science, University of Konstanz, Universitätsstrasse 10, 78464, Constance, Germany.
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Universitätsstrasse 10, 78464, Constance, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Universitätsstrasse 10, 78464, Constance, Germany
- Faculty of Information Technology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
9
|
Li T, Fan X, Cai M, Jiang Y, Wang Y, He P, Ni J, Mo A, Peng C, Liu J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167167. [PMID: 37730048 DOI: 10.1016/j.scitotenv.2023.167167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microcystins (MCs) are a class of biologically active cyclic heptapeptide pollutants produced by the freshwater alga Microcystis aeruginosa. With increased environmental pollution, MCs have become a popular research topic. In recent years, the hepatotoxicity of MCs and associated effects and mechanisms have been studied extensively. Current epidemiological data indicate that long-term human exposure to MCs can lead to severe liver toxicity, acute toxicity, and death. In addition, current toxicological studies on the liver, a vital target organ of MCs, indicate that MC contamination is associated with the development of liver cancer, nonalcoholic fatty liver, and liver fibrosis. MCs produce hepatotoxicity that affects the metabolic homeostasis of the liver, induces apoptosis, and acts as a pro-cancer factor, leading to liver lesions. MCs mainly mediate the activation of signaling pathways, such as the ERK/JNK/p38 MAPK and IL-6-STAT3 pathways, which leads to oxidative damage and even carcinogenesis. Moreover, MCs can act synergistically with other pollutants to produce combined toxicity. However, few systematic reviews have been performed on these new findings. This review systematically summarizes the toxic effects and mechanisms of MCs on the liver and discusses the combined liver toxicity effects of MCs and other pollutants to provide reference for subsequent research. The toxicity of different MC isomers deserves further study. The detection methods and limit standards of MCs in agricultural and aquatic products will represent important research directions in the future. Standard protocols for fish sampling during harmful algal blooms or to evaluate the degree of MC toxicity in nature are lacking. In future, bioinformatics can be applied to offer insights into MC toxicology research and potential drug development for MC poisoning. Further research is essential to understand the molecular mechanisms of liver function damage in combined-exposure toxicology studies to establish treatment for MC-induced liver damage.
Collapse
Affiliation(s)
- Tong Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Wang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Peishuang He
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Alba-Posse EJ, Bruque CD, Gándola Y, Gasulla J, Nadra AD. From in-silico screening to in-vitro evaluation: Enhancing the detection of Microcystins with engineered PP1 mutant variants. J Struct Biol 2023; 215:108043. [PMID: 37935286 DOI: 10.1016/j.jsb.2023.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Cyanotoxins produced during harmful algal blooms (CyanoHABs) have become a worldwide issue of concern. Microcystins (MC) are the most ubiquitous group of cyanotoxins and have known carcinogenic and hepatotoxic effects. The protein phosphatase inhibition assays (PPIAs), based on the inhibition of Protein Phosphatase 1/2A (PP1/PP2A) by MC, are one of the most cost-effective options for detecting MC. In this work, we aimed to design in-silico and evaluate in-vitro mutant variants of the PP1 protein, in order to enhance their capabilities as a MC biosensor. To this end, we performed an in-silico active site-saturated mutagenesis screening, followed by stability and docking affinity calculation with the MCLR cyanotoxin. Candidates with improved both affinity and stability were further tested in a fully flexible active-site docking. The best-scored mutations (19) were individually analysed regarding their locations and interactions. Four of them (p.D197F; p.Q249Y; p.S129W; p.D220Q) were selected for in-vitro expression and evaluation. Mutant p.D197F, exhibited a significant increment in inhibition by MCLR with respect to the WT, while showing a non-significant difference in stability nor activity. This successful PP1 inhibition enhancement suggests the potential of the p.D197F variant for practical MC detection applications.
Collapse
Affiliation(s)
- Ezequiel J Alba-Posse
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Carlos David Bruque
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina; Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate - S.A.M.I.C., Jorge Newbery 453, CP9405 El Calafate, Santa Cruz, Argentina
| | - Yamila Gándola
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | - Javier Gasulla
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina.
| | - Alejandro D Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina.
| |
Collapse
|
11
|
Li B, Zhang X, Wu G, Qin B, Tefsen B, Wells M. Toxins from harmful algal blooms: How copper and iron render chalkophore a predictor of microcystin production. WATER RESEARCH 2023; 244:120490. [PMID: 37659180 DOI: 10.1016/j.watres.2023.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Research on harmful algal blooms has focused on macronutrients, yet recent research increasingly indicates that understanding micronutrient roles is also important in the development of effective environmental management interventions. Here, we report results on metallophore production from mesocosms amended with copper and iron (enzymatic co-factors in photosynthetic electron transport) to probe questions of how cyanobacteria navigate the divide between copper nutrition, copper toxicity, and issues with iron bioavailability. These experiments utilized Microcystis, Chlorella and Desmodesmus spp., in mono- and mixed-cultures in lake water from a large, hypereutrophic lake (Taihu, China). To initiate experiments, copper and iron amendments were added to mesocosms containing algae that had been acclimated to achieve a state of copper and iron limitation. Mesocosms were analyzed over time for a range of analytes including algal growth parameters, algal assemblage progression, copper/iron concentrations and biomolecule production of chalkophore, siderophore and total microcystins. Community Trajectory Analysis and other multivariate methods were used for analysis resulting in our findings: 1) Microcystis spp. manage copper/iron requirements though a dynamically phased behavior of chalkophore/siderophore production according to their copper and iron limitation status (chalkophore correlates with Cu concentration, R2 = 0.99, and siderophore correlates with the sum of Cu and Fe concentrations, R2 = 0.98). 2) A strong correlation was observed between the production of chalkophore and the cyanobacterial toxin microcystin (R2 = 0.76)-Chalkophore is a predictor of microcystin production. 3) Based on our results and literature, we posit that Microcystis spp. produces microcystin in response to copper/iron availability to manage photosystem productivity and effect an energy-saving status. Results from this work underscore the importance of micronutrients in influencing harmful algal bloom progression and represents a major advance in understanding the ecological function for the cyanobacterial toxin microcystin as a hallmark of micronutrient limitation stress.
Collapse
Affiliation(s)
- Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gongjie Wu
- Department of Biochemistry and Systems Biology, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Boris Tefsen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA; Meadows Center for Water and the Environment, Texas State University, San Marcos, Texas, 78666, USA.
| |
Collapse
|
12
|
He Y, Hou J, Qiu Y, Ouyang K, Li D, Li L. Microcystin-LR immersion caused sequential endocrine disruption and growth inhibition in zebrafish (Danio rerio) from fertilization to sexual differentiation completion. Toxicology 2023:153569. [PMID: 37295766 DOI: 10.1016/j.tox.2023.153569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic congener and is also one of the most commonly found. Recent studies have demonstrated that MC-LR can disrupt growth and endocrine in fish, but how it works at the stage of the sex differentiation period had not been determined to date. In this study, zebrafish (Danio rerio) embryos were exposed to MC-LR (0 and 10μg/L), and sampled at 14, 28, and 42 days post fertilization (dpf), respectively. The results demonstrated that MC-LR caused the growth inhibition of zebrafish at 42 dpf. The expression levels of genes related to the growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes, as well as the levels of hormone 3,5,3'- Triiodothyronine (T3) and thyroxine (T4), were significantly decreased at all time points. A Significant decrease in the ratio of testosterone and estradiol (T/E2) were detected at 28 and 42 dpf in MC-LR group along with changes in genes related to the hypothalamic-pituitary-gonadal (HPG) axis. The result of sex ratio showed that the percentage of females was up to 61.84%, indicating a estrogenic effect induced by MC-LR. The significant changes on hormone levels and gene transcripts occurred mainly in the stage of sex differentiation. The correlation analysis further suggested that key cross-talks among three endocrine axes may be the growth hormone releasing hormone (GHRH), Transthyretin (TTR) and gonadotropin releasing hormone (GnRH) signaling molecules. Overall, our findings provide a new insight for understanding the mechanisms by which MC-LR affects fish growth and reproduction during gonadal development.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China.
| |
Collapse
|
13
|
Yu H, Cui J, Xu Y, Feng LJ, Zong W. Regulation Effectiveness and Mechanism of Biotransformation Pathway on the Toxicity of Microcystin-LR Target to Protein Phosphatase 2A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:964. [PMID: 36673721 PMCID: PMC9859369 DOI: 10.3390/ijerph20020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Biotransformation is recognized as a potential pathway to regulate the environmental risk of microcystins (MCs). To explore the regulation effectiveness and mechanism of the biotransformation pathway, six typical MCLR-biotransformation products (MCLR-BTPs) were prepared, and their inhibition effects on protein phosphatase 2A (PP2A) were evaluated. The inhibition effects of the MCLR-BTPs generally decreased with the increase in biothiol molecular weights and polarity, indicating that biotransformation was an effective pathway through which to regulate MCLR toxicity. To further explore the regulation mechanism, the key interaction processes between the MCLR/MCLR-BTPs and the PP2A were explored by homology modeling and molecular docking. The introduced biothiols blocked the covalent binding of Mdha7 to Cys269 but strengthened the hydrogen bond "Mdha7"→Arg268. The changed "Mdha7" intervened the combination of MCLR-BTPs to PP2A by weakening the hydrogen bonds Arg4←Arg214, Arg4→Pro213, Adda5←His118, and Ala1←Arg268, and the ionic bond Glu6-Mn12+. The weakening combination of the MCLR-BTPs to PP2A further attenuated the interactions between the conserved domain and the Mn2+ ions (including the ionic bonds Asp57-Mn12+ and Asp85-Mn12+ and the metal bonds Asp57-Mn12+ and Asn117-Mn12+) and increased the exposure of the Mn2+ ions. Meanwhile, the weakened hydrogen bond Arg4←Arg214 facilitated the combination of the phosphate group to Arg214 (with increased exposure). In this way, the catalytic activity of the PP2A was restored.
Collapse
Affiliation(s)
| | | | | | - Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, China
| |
Collapse
|
14
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
15
|
Yu H, Xu Y, Cui J, Zong W. Mechanism for the Potential Inhibition Effect of Microcystin-LR Disinfectant By-Products on Protein Phosphatase 2A. Toxins (Basel) 2022; 14:toxins14120878. [PMID: 36548775 PMCID: PMC9780900 DOI: 10.3390/toxins14120878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The secondary contamination of microcystin disinfection by-products (MC-DBPs) is of concern due to the residual structure similar to their original toxin. Based on identification and preparation, the potential inhibition effect of typical MCLR-DBPs (associated with the oxidation of Adda5) on PP2A was confirmed in the sequence of MCLR > P1 > P4 > P3 ≈ P2 > P7 ≈ P6 ≈ P5 > P8. To elucidate the molecular mechanism underlying the inhibition effect, the interaction models for typical MCLR-DBPs and PP2A were constructed using a modeling-based-on-ligand-similarity approach, and the candidate interaction parameters between typical MCLR-DBPs and PP2A were obtained by molecular docking. By analyzing the correlation between inhibition data and candidate interaction parameters, the key interaction parameters were filtered as hydrogen bonds "Adda5"←Asn117, "Adda5"←His118, MeAsp3←Arg89, Arg4←Arg214, Arg4→Pro213; ionic bonds Glu6-Arg89, Asp85-Mn12+, Asp57-Mn22+; and metal bonds Glu6-Mn12+, Glu6-Mn22+. With the gradual intensification of chlorination, Adda5 was destroyed to varying degrees. The key interactions changed correspondingly, resulting in the discrepant inhibition effects of typical MCLR-DBPs on PP2A.
Collapse
|
16
|
Cunningham BR, Wharton RE, Lee C, Mojica MA, Krajewski LC, Gordon SC, Schaefer AM, Johnson RC, Hamelin EI. Measurement of Microcystin Activity in Human Plasma Using Immunocapture and Protein Phosphatase Inhibition Assay. Toxins (Basel) 2022; 14:toxins14110813. [PMID: 36422987 PMCID: PMC9697287 DOI: 10.3390/toxins14110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030-0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18-15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms.
Collapse
Affiliation(s)
- Brady R. Cunningham
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Rebekah E. Wharton
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Christine Lee
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mike A. Mojica
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Logan C. Krajewski
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Shirley C. Gordon
- Christine E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Rudolph C. Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Elizabeth I. Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
- Correspondence:
| |
Collapse
|
17
|
Abdullahi H, Tanimu Y, Akinyemi SA, do Carmo Bittencourt-Oliveira M, Chia MA. Assessment of microcystins in surface water and irrigated vegetables in Kwaru stream, Hayin Danmani, Kaduna-Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78303-78313. [PMID: 35689773 DOI: 10.1007/s11356-022-21381-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are hepatotoxic secondary metabolites produced by several genera of cyanobacteria. Human exposure routes include drinking contaminated water and consuming contaminated fish, vegetables, crops, and even food supplements that contain cyanotoxin. This study investigated the presence of MCs in a stream with a long history of use as a source of water for irrigation farming. To establish the risk of a lack of monitoring programs, we studied MCs contamination of irrigated vegetables. Toxin levels in the water were generally <0.05 μg L-1 in all the investigated stations. Total microcystin concentrations in spinach (0.306 μg Kg-1 upstream and 0.217 μg Kg-1 downstream), lettuce (0.085 μg Kg-1 upstream and 0.462 μg Kg-1 downstream), carrot (0.050 μg Kg-1 downstream and 0.116 μg Kg-1 downstream), cabbage (0.014 μg Kg-1 upstream and 0.031 μg Kg-1 downstream), tomatoes (0.233 μg Kg-1 upstream), and bitter leaf (0.460 μg Kg-1 upstream and 0.050 μg Kg-1 downstream) collected in March were higher than the levels detected in samples of the same vegetables collected in April. These results highlight Nigeria's severe public health problem, especially in regions with long dry season spells. The level of MCs contamination of irrigated vegetables implies a potential for chronic exposure and associated health challenges.
Collapse
Affiliation(s)
| | - Yahuza Tanimu
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria
| | | | - Maria do Carmo Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Zip Code 13, Piracicaba, SP, 418-900, Brazil
| | | |
Collapse
|
18
|
Hill D, Lang J, McCord J, Strynar M, Rosal C, Schmid J, Le TT, Chernoff N. Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins (Basel) 2022; 14:toxins14100705. [PMID: 36287973 PMCID: PMC9611723 DOI: 10.3390/toxins14100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Microcystins (MCs) are a large group of heptapeptide cyanobacterial toxins commonly produced in harmful algal blooms (HABs) and associated with adverse health effects in wildlife, livestock, pets, and humans. MC chemical standards are extracted from cyanobacteria biomass rather than produced synthetically and are used in water assessment methods and toxicological studies. MC standards are generally supplied in less than 1 mg quantities, and verification of the mass can only be accomplished by analytical chemistry methods using a certified reference of the specific MC for comparison. Analytical quantification of MCs in environmental samples and toxicology studies using accurate doses of test chemicals administered to experimental animals rely on the availability and accuracy of chemical standards. To check the accuracy and purity of available standards, seven individual microcystin-LR (MCLR) standards were purchased from separate commercial vendors and analyzed to determine the actual mass supplied and identify the presence of potential contaminants. To determine the effect of varying toxin mass in toxicological studies, each MCLR standard was administered to CD-1 mice in doses based on mass purchased, by a single 40 µg/kg intraperitoneal injection. The measured mass purchased varied from the vendor label mass by more than 35% for two of the seven MCLR standards. Contaminants, including trifluoroacetic acid (TFA), were identified in four of the seven samples. Comparative in vivo hepatotoxicity between vendor samples closely reflected the actual amount of MCLR present in each standard and demonstrated the toxicological impact of varying cyanotoxin mass.
Collapse
Affiliation(s)
- Donna Hill
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- Correspondence:
| | - Johnsie Lang
- Arcadis (United States), 4204 Technology Dr, Durham, NC 27704, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark Strynar
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Judith Schmid
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
19
|
Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins (Basel) 2022; 14:toxins14050350. [PMID: 35622596 PMCID: PMC9145844 DOI: 10.3390/toxins14050350] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Microcystins are natural hepatotoxic metabolites secreted by cyanobacteria in aquatic ecosystems. When present at elevated concentrations, microcystins can affect water quality aesthetics; contaminate drinking water reservoirs and recreational waters; disrupt normal ecosystem functioning; and cause health hazards to animals, plants, and humans. Animal and human exposures to microcystins generally result from ingesting contaminated drinking water or physically contacting tainted water. Much research has identified a multitude of liver problems from oral exposure to microcystins, varying from hepatocellular damage to primary liver cancer. Provisional guidelines for microcystins in drinking and recreational water have been established to prevent toxic exposures and protect public health. With increasing occurrences of eutrophication in freshwater systems, microcystin contamination in groundwater and surface waters is growing, posing threats to aquatic and terrestrial plants and agricultural soils used for crop production. These microcystins are often transferred to crops via irrigation with local sources of water, such as bloom-forming lakes and ponds. Microcystins can survive in high quantities in various parts of plants (roots, stems, and leaves) due to their high chemical stability and low molecular weight, increasing health risks for consumers of agricultural products. Studies have indicated potential health risks associated with contaminated fruits and vegetables sourced from irrigated water containing microcystins. This review considers the exposure risk to humans, plants, and the environment due to the presence of microcystins in local water reservoirs used for drinking and irrigation. Additional studies are needed to understand the specific health impacts associated with the consumption of microcystin-contaminated agricultural plants.
Collapse
|
20
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
21
|
Jaeger-Honz S, Nitschke J, Altaner S, Klein K, Dietrich DR, Schreiber F. Investigation of microcystin conformation and binding towards PPP1 by molecular dynamics simulation. Chem Biol Interact 2022; 351:109766. [PMID: 34861245 DOI: 10.1016/j.cbi.2021.109766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Microcystins (MC) are a group of structurally similar cyanotoxins with currently 279 described structural variants. Human exposure is frequent by consumption of contaminated water, food or food supplements. MC can result in serious intoxications, commensurate with ensuing pathology in various organs or in rare cases even mortality. The current WHO risk assessment primarily considers MC-LR, while all other structural variants are treated as equivalent to MC-LR, despite that current data strongly suggest that MC-LR is not the most toxic MC, and toxicity can be very different for MC congeners. To investigate and analyse binding and conformation of different MC congeners, we applied for the first time Molecular Dynamics (MD) simulation to four MC congeners (MC-LR, MC-LF, [Enantio-Adda5]MC-LF, [β-D-Asp3,Dhb7]MC-RR). We could show that ser/thr protein phosphatase 1 is stable in all MD simulations and that MC-LR backbone adopts to a second conformation in solvent MD simulation, which was previously unknown. We could also show that MC congeners can adopt to different backbone conformation when simulated in solvent or in complex with ser/thr protein phosphatase 1 and differ in their binding behaviour. Our findings suggest that MD Simulation of different MC congeners aid in understanding structural differences and binding of this group of structurally similar cyanotoxins.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Computer and Information Science, University of Konstanz, Germany
| | - Jahn Nitschke
- Department of Biology, University of Konstanz, Germany
| | | | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Germany
| | | | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia.
| |
Collapse
|
22
|
Wang Y, Huang Q, Huang X, Zhao H, Guan B, Ban K, Zhu X, Ma Z, Tang Y, Su Z, Nong Q. Genetic Variant of PP2A Subunit Gene Confers an Increased Risk of Primary Liver Cancer in Chinese. Pharmgenomics Pers Med 2021; 14:1565-1574. [PMID: 34898995 PMCID: PMC8654694 DOI: 10.2147/pgpm.s335555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Protein phosphatase 2A (PP2A, a serine/threonine phosphatase) is frequently inactivated in many types of cancer, including primary liver cancer (PLC). Genetic variations in PP2A subunits have been reported to be associated with the risk of many types of cancer but rarely in PLC. This study aims to assess the association between functional polymorphisms of PP2A subunit genes and the risk of PLC in Chinese. Methods In a case-control study with a total of 541 PLC patients and 547 controls in Guangxi province of Southern China, we genotyped six putatively functional polymorphisms (rs10421191G>A, rs11453459del>insG, rs1560092T>G, rs7840855C>T, rs1255722G>A and rs10151527A>C) of three PP2A subunit genes (PPP2R1A, PPP2R2A and PPP2R5E) using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry platform. Results The rs11453459insG variant genotypes (ins/ins+del/ins) of PPP2R1A were found to be significantly associated with an increased risk of PLC compared with the del/del genotype (adjusted OR = 1.290, 95% CI = 1.009–1.650), and the number of insert G allele worked in a dose-dependent manner (Ptrend= 0.007). The stratified analysis showed that the effects of rs11453459insG variant genotypes were more evident in the subgroup who drink pond-ditch water (adjusted OR = 3.051, 95% CI = 1.264–7.364) than those never drink (P = 0.041). The carriers of rs11453459 del/ins genotype had a significantly lower level of PPP2R1A mRNA expression in liver cancer tissues than those of the del/del genotype (P = 0.021). Furthermore, we used microcystin-LR, a carcinogen presents in the pond-ditch water, to treat human peripheral blood mononuclear cells and found that the cells from carriers of rs11453459insG variant genotypes induced more DNA oxidative damages than those from the del/del genotype carriers (P < 0.001). Conclusion These findings suggest that the PPP2R1A rs11453459del>insG polymorphism is associated with an increased risk of PLC, especially for persons with a history of drinking pond-ditch water. This insertion/deletion polymorphism may be a susceptible biomarker for PLC in Chinese.
Collapse
Affiliation(s)
- Youxin Wang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Qiuyue Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xinglei Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Bin Guan
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Kechen Ban
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuefeng Zhu
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhixing Ma
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yanmei Tang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhaohui Su
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Qingqing Nong
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| |
Collapse
|
23
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
24
|
Kucheriavaia D, Veličković D, Peraino N, Lad A, Kennedy DJ, Haller ST, Westrick JA, Isailovic D. Toward Revealing Microcystin Distribution in Mouse Liver Tissue Using MALDI-MS Imaging. Toxins (Basel) 2021; 13:709. [PMID: 34679004 PMCID: PMC8538440 DOI: 10.3390/toxins13100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
Cyanotoxins can be found in water and air during cyanobacterial harmful algal blooms (cHABs) in lakes and rivers. Therefore, it is very important to monitor their potential uptake by animals and humans as well as their health effects and distribution in affected organs. Herein, the distribution of hepatotoxic peptide microcystin-LR (MC-LR) is investigated in liver tissues of mice gavaged with this most common MC congener. Preliminary matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging experiments performed using a non-automated MALDI matrix deposition device and a MALDI-time-of-flight (TOF) mass spectrometer yielded ambiguous results in terms of MC-LR distribution in liver samples obtained from MC-LR-gavaged mice. The tissue preparation for MALDI-MS imaging was improved by using an automated sprayer for matrix deposition, and liver sections were imaged using an Nd:YAG MALDI laser coupled to a 15 Tesla Fourier-transform ion cyclotron resonance (FT-ICR)-mass spectrometer. MALDI-FT-ICR-MS imaging provided unambiguous detection of protonated MC-LR (calculated m/z 995.5560, z = +1) and the sodium adduct of MC-LR (m/z 1017.5380, z = +1) in liver sections from gavaged mice with great mass accuracy and ultra-high mass resolution. Since both covalently bound and free MC-LR can be found in liver of mice exposed to this toxin, the present results indicate that the distribution of free microcystins in tissue sections from affected organs, such as liver, can be monitored with high-resolution MALDI-MS imaging.
Collapse
Affiliation(s)
- Daria Kucheriavaia
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA;
| | | | - Nicholas Peraino
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (N.P.); (J.A.W.)
| | - Apurva Lad
- Department of Medicine, University of Toledo Medical Campus, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo Medical Campus, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo Medical Campus, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (N.P.); (J.A.W.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA;
| |
Collapse
|
25
|
Role of Rhizospheric Microbiota as a Bioremediation Tool for the Protection of Soil-Plant Systems from Microcystins Phytotoxicity and Mitigating Toxin-Related Health Risk. Microorganisms 2021; 9:microorganisms9081747. [PMID: 34442826 PMCID: PMC8402104 DOI: 10.3390/microorganisms9081747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Frequent toxic cyanoblooms in eutrophic freshwaters produce various cyanotoxins such as the monocyclic heptapeptides microcystins (MCs), known as deleterious compounds to plant growth and human health. Recently, MCs are a recurrent worldwide sanitary problem in irrigation waters and farmland soils due to their transfer and accumulation in the edible tissues of vegetable produce. In such cases, studies about the persistence and removal of MCs in soil are scarce and not fully investigated. In this study, we carried out a greenhouse trial on two crop species: faba bean (Vicia faba var. Alfia 321) and common wheat (Triticum aestivum var. Achtar) that were grown in sterile (microorganism-free soil) and non-sterile (microorganism-rich soil) soils and subjected to MC-induced stress at 100 µg equivalent MC-LR L−1. The experimentation aimed to assess the prominent role of native rhizospheric microbiota in mitigating the phytotoxic impact of MCs on plant growth and reducing their accumulation in both soils and plant tissues. Moreover, we attempted to evaluate the health risk related to the consumption of MC-polluted plants for humans and cattle by determining the estimated daily intake (EDI) and health risk quotient (RQ) of MCs in these plants. Biodegradation was liable to be the main removal pathway of the toxin in the soil; and therefore, bulk soil (unplanted soil), as well as rhizospheric soil (planted soil), were used in this experiment to evaluate the accumulation of MCs in the presence and absence of microorganisms (sterile and non-sterile soils). The data obtained in this study showed that MCs had no significant effects on growth indicators of faba bean and common wheat plants in non-sterile soil as compared to the control group. In contrast, plants grown in sterile soil showed a significant decrease in growth parameters as compared to the control. These results suggest that MCs were highly bioavailable to the plants, resulting in severe growth impairments in the absence of native rhizospheric microbiota. Likewise, MCs were more accumulated in sterile soil and more bioconcentrated in root and shoot tissues of plants grown within when compared to non-sterile soil. Thereby, the EDI of MCs in plants grown in sterile soil was more beyond the tolerable daily intake recommended for both humans and cattle. The risk level was more pronounced in plants from the sterile soil than those from the non-sterile one. These findings suggest that microbial activity, eventually MC-biodegradation, is a crucial bioremediation tool to remove and prevent MCs from entering the agricultural food chain.
Collapse
|
26
|
Freytag C, Máthé C, Rigó G, Nodzyński T, Kónya Z, Erdődi F, Cséplő Á, Pózer E, Szabados L, Kelemen A, Vasas G, Garda T. Microcystin-LR, a cyanobacterial toxin affects root development by changing levels of PIN proteins and auxin response in Arabidopsis roots. CHEMOSPHERE 2021; 276:130183. [PMID: 34088085 DOI: 10.1016/j.chemosphere.2021.130183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MCY-LR) is a heptapeptide toxin produced mainly by freshwater cyanobacteria. It strongly inhibits protein phosphatases PP2A and PP1. Functioning of the PIN family of auxin efflux carriers is crucial for plant ontogenesis and their functions depend on their reversible phosphorylation. We aimed to reveal the adverse effects of MCY-LR on PIN and auxin distribution in Arabidopsis roots and its consequences for root development. Relatively short-term (24 h) MCY-LR treatments decreased the levels of PIN1, PIN2 and PIN7, but not of PIN3 in tips of primary roots. In contrast, levels of PIN1 and PIN2 increased in emergent lateral roots and their levels depended on the type of PIN in lateral root primordia. DR5:GFP reporter activity showed that the cyanotoxin-induced decrease of auxin levels/responses in tips of main roots in parallel to PIN levels. Those alterations did not affect gravitropic response of roots. However, MCY-LR complemented the altered gravitropic response of crk5-1 mutants, defective in a protein kinase with essential role in the correct membrane localization of PIN2. For MCY-LR treated Col-0 plants, the number of lateral root primordia but not of emergent laterals increased and lateral root primordia showed early development. In conclusion, inhibition of protein phosphatase activities changed PIN and auxin levels, thus altered root development. Previous data on aquatic plants naturally co-occurring with the cyanotoxin showed similar alterations of root development. Thus, our results on the model plant Arabidopsis give a mechanistic explanation of MCY-LR phytotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Csongor Freytag
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Csaba Máthé
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Gábor Rigó
- Biological Research Centre, Institute of Plant Biology, Temesvári Krt 62, H-6726, Szeged, Hungary
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zoltán Kónya
- University of Debrecen, Faculty of Medicine, Department of Medical Chemistry, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- University of Debrecen, Faculty of Medicine, Department of Medical Chemistry, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Ágnes Cséplő
- Biological Research Centre, Institute of Plant Biology, Temesvári Krt 62, H-6726, Szeged, Hungary
| | - Erik Pózer
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - László Szabados
- Biological Research Centre, Institute of Plant Biology, Temesvári Krt 62, H-6726, Szeged, Hungary
| | - Adrienn Kelemen
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Gábor Vasas
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Tamás Garda
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary.
| |
Collapse
|
27
|
Zhang Q, Fan Z, Zhang L, You Q, Wang L. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer. J Med Chem 2021; 64:8916-8938. [PMID: 34156850 DOI: 10.1021/acs.jmedchem.1c00631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among numerous posttranslational regulation patterns, phosphorylation is reversibly controlled by the balance of kinases and phosphatases. The major form of cellular signaling involves the reversible phosphorylation of proteins on tyrosine, serine, or threonine residues. However, altered phosphorylation levels are found in diverse diseases, including cancer, making kinases and phosphatases ideal drug targets. In contrast to the success of prosperous kinase inhibitors, design of small molecules targeting phosphatase is struggling due to past bias and difficulty. This is especially true for serine/threonine phosphatases, one of the largest phosphatase families. From this perspective, we aim to provide insights into serine/threonine phosphatases and the small molecules targeting these proteins for drug development, especially in cancer. Through highlighting the modulation strategies, we aim to provide basic principles for the design of small molecules and future perspectives for the application of drugs targeting serine/threonine phosphatases.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjiao Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
28
|
Wang J, Ren Y, Zheng X, Kang J, Huang Z, Xu L, Wang Y. Anti-Fibrotic Effects of Low Toxic Microcystin-RR on Bleomycin-Induced Pulmonary Fibrosis: A Comparison with Microcystin-LR. Front Pharmacol 2021; 12:675907. [PMID: 34168562 PMCID: PMC8217630 DOI: 10.3389/fphar.2021.675907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pulmonary disease characterized with radiographically evident pulmonary infiltrates and extracellular matrix deposition with limited treatment options. We previously described that microcystin-LR (MC-LR) reduces transforming growth factor (TGF)-β1/Smad signaling and ameliorates pulmonary fibrosis in bleomycin (BLM)-induced rat models. In the present study, we further demonstrate that microcystin-RR (MC-RR), an MC congener with lower toxicity than MC-LR, exerted an anti-fibrotic effect on BLM-induced pulmonary fibrosis rodent models and compared it with MC-LR. Our data show that MC-RR treatment attenuated BLM-associated pulmonary inflammation and collagen deposition in both therapeutic and preventive models. MC-RR reduced the expression of fibrotic markers, including vimentin, α-smooth muscle actin, collagen 1α1, and fibronectin, in rat pulmonary tissues. Furthermore, the core features of BLM-induced pulmonary fibrotic lesions were better alleviated by MC-RR than by MC-LR. MC-RR treatment substantially decreased the number of pulmonary M2 macrophages. In vitro, MC-RR attenuated the epithelial-mesenchymal transition and fibroblast-myofibroblast transition triggered by M2 macrophages. Therefore, we highlight MC-RR as a promising molecule for developing therapeutic and prophylactic strategies against IPF, a refractory lung disease.
Collapse
Affiliation(s)
- Jie Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Department of Tumor Biobank, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Yan Ren
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xiufen Zheng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiaqi Kang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Zhenqian Huang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lizhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
29
|
Wei N, Song L, Gan N. Quantitative Proteomic and Microcystin Production Response of Microcystis aeruginosa to Phosphorus Depletion. Microorganisms 2021; 9:microorganisms9061183. [PMID: 34072711 PMCID: PMC8227402 DOI: 10.3390/microorganisms9061183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Microcystis blooms are the most widely distributed and frequently occurring cyanobacterial blooms in freshwater. Reducing phosphorus is suggested to be effective in mitigating cyanobacterial blooms, while the underlying molecular mechanisms are yet to be elucidated. In the present study, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics was employed to study the effects of phosphorus depletion on Microcystis aeruginosa FACHB-905. The production of microcystins (MCs), a severe hazard of Microcystis blooms, was also analyzed. In total, 230 proteins were found to be differentially abundant, with 136 downregulated proteins. The results revealed that, upon phosphorus limitation stress, Microcystis aeruginosa FACHB-905 raised the availability of phosphorus primarily by upregulating the expression of orthophosphate transport system proteins, with no alkaline phosphatase producing ability. Phosphorus depletion remarkably inhibited cell growth and the primary metabolic processes of Microcystis, including transcription, translation and photosynthesis, with structures of photosystems remaining intact. Moreover, expression of nitrogen assimilation proteins was downregulated, while proteins involved in carbon catabolism were significantly upregulated, which was considered beneficial for the intracellular balance among carbon, nitrogen and phosphorus. The expression of MC synthetase was not significantly different upon phosphorus depletion, while MC content was significantly suppressed. It is assumed that phosphorus depletion indirectly regulates the production of MC by the inhibition of metabolic processes and energy production. These results contribute to further understanding of the influence mechanisms of phosphorus depletion on both biological processes and MC production in Microcystis cells.
Collapse
Affiliation(s)
- Nian Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430072, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Correspondence: (L.S.); (N.G.)
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Correspondence: (L.S.); (N.G.)
| |
Collapse
|
30
|
Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell'Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EML. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. WATER RESEARCH 2021; 196:117017. [PMID: 33765498 DOI: 10.1016/j.watres.2021.117017] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 05/06/2023]
Abstract
Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260 Piracicaba, SP, Brazil
| | - Mariana A Torres
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Fabiane Dörr
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Karolina Szubert
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Elisabeth M-L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland.
| |
Collapse
|
31
|
Sun Q, Wu S, Yin R, Bai X, Bhunia AK, Liu C, Zheng Y, Wang F, Blatchley ER. Effects of fulvic acid size on microcystin-LR photodegradation and detoxification in the chlorine/UV process. WATER RESEARCH 2021; 193:116893. [PMID: 33582494 DOI: 10.1016/j.watres.2021.116893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR), a polypeptide toxin generated by cyanobacteria, threatens the safety of drinking water supplies. In this study, fulvic acid (FA) was separated into two molecular weight (MW) ranges to evaluate the effects of FA size on MC-LR degradation in the chlorine/UV process. The rates of MC-LR degradation were significantly reduced in FA-containing water (3.7 × 10-3 s-1 for small MW FA; 4.3 × 10-3 s-1 for large MW FA) as compared with FA free water (4.9 × 10-3 s-1). The contributions of ClO• to MC-LR degradation were dramatically lower in small MW FA water (0.4%) than large MW FA (13.9%) and FA free water (17.4%), suggesting inhibition by lignin-like substances in FA in the transformation of Cl• to ClO• and scavenging ClO•. Monochlorination and hydroxylation occurred in the first step of the MC-LR degradation process. The accumulation of intermediate products in the chlorine/UV process indicated that small MW FA inhibited further degradation of MC-LR. Small MW FA, rather than MC-LR degradation, was the dominant factor in minimizing MC-LR cytotoxicity toward a human intestinal epithelial cell line.
Collapse
Affiliation(s)
- Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, United States; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Shanbin Wu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, United States
| | - Changqing Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Yuyi Zheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China.
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, United States; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
32
|
Mallia V, Verhaegen S, Styrishave B, Eriksen GS, Johannsen ML, Ropstad E, Uhlig S. Microcystins and Microcystis aeruginosa PCC7806 extracts modulate steroidogenesis differentially in the human H295R adrenal model. PLoS One 2020; 15:e0244000. [PMID: 33320886 PMCID: PMC7737990 DOI: 10.1371/journal.pone.0244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB−. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3β-hydroxysteroid dehydrogenase (3β-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3β-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− had an opposite effect on 3β-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11β1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Steven Verhaegen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjarne Styrishave
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Malene Louise Johannsen
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ropstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| |
Collapse
|
33
|
Ren L, Hu Z, Wang Q, Du Y, Zong W. Regulation Efficacy and Mechanism of the Toxicity of Microcystin-LR Targeting Protein Phosphatase 1 via the Biodegradation Pathway. Toxins (Basel) 2020; 12:toxins12120790. [PMID: 33322407 PMCID: PMC7764552 DOI: 10.3390/toxins12120790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Biodegradation is important to regulate the toxicity and environmental risk of microcystins (MCs). To explore their regulation effectiveness and mechanism, typical biodegradation products originating from microcystin-LR (MCLR) were prepared and purified. The protein phosphatase 1 (PP1) inhibition experiment showed the biodegradation pathway was effective in regulating the toxicity of the biodegradation products by extending the biodegradation. With the assistance of molecular docking, the specific interaction between the toxins and PP1 was explored. The MCLR/MCLR biodegradation products combined with PP1 mainly by the aid of interactions related to the active sites Adda5, Glu6, Mdha7, and the ionic bonds/hydrogen bonds between the integral toxin and PP1. As a consequence, the interactions between Mn22+ and Asp64/Asp92 in the catalytic center were inhibited to varying degrees, resulting in the reduced toxicity of the biodegradation products. During the biodegradation process, the relevant key interactions might be weakened or even disappear, and thus the toxicity was regulated. It is worth noting that the secondary pollution of the partial products (especially for Adda5-Glu6-Mdha7-Ala1 and the linearized MCLR), which still possessed the major active sites, is of deep concern.
Collapse
|
34
|
He Y, Ma J, Joseph V, Wei Y, Liu M, Zhang Z, Li G, He Q, Li H. Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115576. [PMID: 32898730 DOI: 10.1016/j.envpol.2020.115576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Potassium (K+) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K+ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K+ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K+, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K+ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K+ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K+ availability can regulate the physiological metabolic activity of M. aeruginosa and K+ deficiency leads to depressed growth and MC production in M. aeruginosa.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jianrong Ma
- CAS Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Vanderwall Joseph
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zhaoxue Zhang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Guo Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
35
|
Ramo LB, Da Silva AG, Pereira CX, Torres CS, Júnior EPS, Martins GC, Torres MDCDM, Alves MCF, Simões SS. Microcystin-LR removal in water using the system SrZrXSn1-XO3: influence of B cation on the structural organization of perovskite. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Weisbrod B, Riehle E, Helmer M, Martin-Creuzburg D, Dietrich DR. Can toxin warfare against fungal parasitism influence short-term Dolichospermum bloom dynamics? - A field observation. HARMFUL ALGAE 2020; 99:101915. [PMID: 33218440 DOI: 10.1016/j.hal.2020.101915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacterial blooms often consist of numerous co-existing cyanobacterial species, with predominant taxa dynamically varying intra-annually. Parasitism by fungi (chytrids) has come into focus as an important factor driving short-term bloom dynamics. Using microscopic analysis, Illumina sequencing and cyanobacterial toxin analyses, we monitored the seasonal succession of Dolichospermum blooms in a reservoir along with environmental parameters. We identified two consecutive Dolichospermum blooms that were characterized by a straight and a coiled morphotype, separated by a complete bloom collapse. Phylotyping provided evidence for three putative Dolichospermum amplicon sequence variants (ASVs); i.e. Dolichospermum1 & 2 in the first bloom (straight filaments) and Dolichospermum3 in the second bloom (coiled filaments). Morphotype succession as well as total filament concentration did not correlate with any of the measured environmental parameters. Fungal parasitism by the chytrid Rhizosiphon crassum occurred in straight Dolichospermum filaments only. Coiled filaments showed no infection despite ambient presence of chytrids, deduced from fungal ASVs, throughout the entire observation period. Toxin concentrations (microcystins (MCs) and anabaenopeptins) correlated significantly with the abundance of the straight Dolichospermum morphotype. Enhanced cyanotoxin biosynthesis in the straight Dolichospermum morphotype, interpreted as a defensive reaction to fungal parasitism, appeared to come at the expense of lowered competitiveness with the co-occurring coiled morphotype. Our findings support the hypothesis that selective parasitism by chytrids is an important factor driving short-term morphotype and toxin dynamics within cyanobacterial blooms.
Collapse
Affiliation(s)
- B Weisbrod
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| | - E Riehle
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - M Helmer
- Limnological Institute, University of Konstanz, Mainaustrasse 252, 78464 Konstanz, Germany
| | - D Martin-Creuzburg
- Limnological Institute, University of Konstanz, Mainaustrasse 252, 78464 Konstanz, Germany
| | - D R Dietrich
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| |
Collapse
|
37
|
Mallia V, Ivanova L, Eriksen GS, Harper E, Connolly L, Uhlig S. Investigation of In Vitro Endocrine Activities of Microcystis and Planktothrix Cyanobacterial Strains. Toxins (Basel) 2020; 12:toxins12040228. [PMID: 32260386 PMCID: PMC7232361 DOI: 10.3390/toxins12040228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria are cosmopolitan photosynthetic prokaryotes that can form dense accumulations in aquatic environments. They are able to produce many bioactive metabolites, some of which are potentially endocrine disrupting compounds, i.e., compounds that interfere with the hormonal systems of animals and humans. Endocrine disruptors represent potential risks to both environmental and human health, making them a global challenge. The aim of this study was to investigate the potential endocrine disrupting activities with emphasis on estrogenic effects of extracts from cultures of Microcystis or Planktothrix species. We also assessed the possible role of microcystins, some of the most studied cyanobacterial toxins, and thus included both microcystin-producing and non-producing strains. Extracts from 26 cyanobacterial cultures were initially screened in estrogen-, androgen-, and glucocorticoid-responsive reporter-gene assays (RGAs) in order to identify endocrine disruption at the level of nuclear receptor transcriptional activity. Extracts from selected strains were tested repeatedly in the estrogen-responsive RGAs, but the observed estrogen agonist and antagonist activity was minor and similar to that of the cyanobacteria growth medium control. We thus focused on another, non-receptor mediated mechanism of action, and studied the 17β-estradiol (natural estrogen hormone) biotransformation in human liver microsomes in the presence or absence of microcystin-LR (MC-LR), or an extract from the MC-LR producing M. aeruginosa PCC7806 strain. Our results show a modulating effect on the estradiol biotransformation. Thus, while 2-hydroxylation was significantly decreased following co-incubation of 17β-estradiol with MC-LR or M. aeruginosa PCC7806 extract, the relative concentration of estrone was increased.
Collapse
MESH Headings
- Bacterial Toxins/metabolism
- Bacterial Toxins/toxicity
- Biotransformation
- Cell Line, Transformed
- Endocrine Disruptors/metabolism
- Endocrine Disruptors/toxicity
- Estradiol/metabolism
- Estrogens/metabolism
- Estrogens/pharmacology
- Genes, Reporter
- Humans
- Kinetics
- Microcystis/metabolism
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Planktothrix/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Risk Assessment
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway
- Correspondence: or
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
| | - Gunnar S. Eriksen
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
| | - Emma Harper
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (E.H.); (L.C.)
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (E.H.); (L.C.)
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
| |
Collapse
|
38
|
Zhu Y, Gao Y, Sun X, Wang C, Rui X, Si D, Zhu J, Li W, Liu J. Discovery of novel serine/threonine protein phosphatase 1 inhibitors from traditional Chinese medicine through virtual screening and biological assays. J Biomol Struct Dyn 2019; 38:5464-5473. [PMID: 31820681 DOI: 10.1080/07391102.2019.1702588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) is a critical regulator of several processes, such as muscle contraction, neuronal signaling, glycogen synthesis, and cell proliferation. Dysregulation of PP1 has recently been found to be implicated in cardiac dysfunctions, which indicates that PP1 could be an attractive therapeutic target. However, discovery of PP1 inhibitors with satisfied safety and efficiency is still a challenge. Here, in order to discover potential PP1 inhibitors, compounds extracted from traditional Chinese medicine (TCM) were screened by a novel integrated virtual screening protocol including pharmacophore modeling and docking approaches. Combined with protein phosphatase inhibition assay, ZINC43060554 showed strongly inhibitory activity with IC50 values of 26.78 μM. Furthermore, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area binding free-energy analysis were performed to examine the stability of ligand binding modes. These novel scaffolds discovered in the present study can be used for rational design of PP1 inhibitors with high affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Research Institute, Nanjing Tongrentang Pharmaceutical Co. Ltd, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
Novel Microcystins from Planktothrix prolifica NIVA-CYA 544 Identified by LC-MS/MS, Functional Group Derivatization and 15N-labeling. Mar Drugs 2019; 17:md17110643. [PMID: 31731697 PMCID: PMC6891653 DOI: 10.3390/md17110643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/31/2022] Open
Abstract
Microcystins are cyclic heptapeptides from cyanobacteria that are potent inhibitors of protein phosphatases and are toxic to animals and humans. At present, more than 250 microcystin variants are known, with variants reported for all seven peptide moieties. While d-glutamic acid (d-Glu) is highly-conserved at position-6 of microcystins, there has been only one report of a cyanobacterium (Anabaena) producing microcystins containing l-Glu at the variable 2- and 4-positions. Liquid chromatography–mass spectrometry analyses of extracts from Planktothrix prolifica NIVA-CYA 544 led to the tentative identification of two new Glu-containing microcystins, [d-Asp3]MC-ER (12) and [d-Asp3]MC-EE (13). Structure determination was aided by thiol derivatization of the Mdha7-moiety and esterification of the carboxylic acid groups, while 15N-labeling of the culture and isotopic profile analysis assisted the determination of the number of nitrogen atoms present and the elemental composition of molecular and product-ions. The major microcystin analog in the extracts was [d-Asp3]MC-RR (1). A microcystin with an unprecedented high-molecular-mass (2116 Da) was also detected and tentatively identified as a sulfide-linked conjugate of [d-Asp3]MC-RR (15) by LC–HRMS/MS and sulfide oxidation, together with its sulfoxide (16) produced via autoxidation. Low levels of [d-Asp3]MC-RW (14), [d-Asp3]MC-LR (4), [d-Asp3,Mser7]MC-RR (11), [d-Asp3]MC-RY (17), [d-Asp3]MC-RF (18), [d-Asp3]MC-RR–glutathione conjugate (19), and [d-Asp3]MC-RCit (20), the first reported microcystin containing citrulline, were also identified in the extract, and an oxidized derivative of [d-Asp3]MC-RR and the cysteine conjugate of 1 were partially characterized.
Collapse
|
40
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
41
|
Simultaneous Detection of 14 Microcystin Congeners from Tissue Samples Using UPLC- ESI-MS/MS and Two Different Deuterated Synthetic Microcystins as Internal Standards. Toxins (Basel) 2019; 11:toxins11070388. [PMID: 31269739 PMCID: PMC6669509 DOI: 10.3390/toxins11070388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Cyanobacterial microcystins (MCs), potent serine/threonine-phosphatase inhibitors, pose an increasing threat to humans. Current detection methods are optimised for water matrices with only a few MC congeners simultaneously detected. However, as MC congeners are known to differ in their toxicity, methods are needed that simultaneously quantify the congeners present, thus allowing for summary hazard and risk assessment. Moreover, detection of MCs should be expanded to complex matrices, e.g., blood and tissue samples, to verify in situ MC concentrations, thus providing for improved exposure assessment and hazard interpretation. To achieve this, we applied two synthetic deuterated MC standards and optimised the tissue extraction protocol for the simultaneous detection of 14 MC congeners in a single ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) run. This procedure was validated using plasma and liver homogenates of mice (male and female) spiked with deuterated MC standards. For proof of concept, tissue and plasma samples from mice i.p. injected with MC-LR and MC-LF were analysed. While MC-LF was detected in all tissue samples of both sexes, detection of MC-LR was restricted to liver samples of male mice, suggesting different toxicokinetics in males, e.g., transport, conjugation or protein binding. Thus, deconjugation/-proteinisation steps should be employed to improve detection of bound MC.
Collapse
|
42
|
Yilmaz M, Foss AJ, Miles CO, Özen M, Demir N, Balcı M, Beach DG. Comprehensive multi-technique approach reveals the high diversity of microcystins in field collections and an associated isolate of Microcystis aeruginosa from a Turkish lake. Toxicon 2019; 167:87-100. [PMID: 31181296 DOI: 10.1016/j.toxicon.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Microcystins (MCs) are hepatotoxic and potentially carcinogenic cyanotoxins. They exhibit high structural variability, with nearly 250 variants described to date. This variability can result in incomplete detection of MC variants during lake surveys due to the frequent use of targeted analytical methods and a lack of standards available for identification and quantitation. In this study, Lake Uluabat in Turkey was sampled during the summer of 2015. Phylogenetic analysis of the environmental mcyA sequences suggested Microcystis spp. were the major MC contributors. A combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography with UV detection and mass spectrometry (LC-UV-MS), and a novel liquid chromatography-high resolution mass spectrometry (LC-HRMS) method, together with thiol and periodate reactivity, revealed more than 36 MC variants in the lake samples and a strain of M. aeruginosa (AQUAMEB-24) isolated from Lake Uluabat. Only MCs containing arginine at position-4 were detected in the culture, while MC-LA, -LY, -LW and -LF were also detected in the lake samples, suggesting the presence of other MC producers in the lake. The previously unreported MCs MC-(H2)YR (dihydrotyrosine at position-2) (17), [epoxyAdda5]MC-LR, [DMAdda5]MC-RR (1) and [Mser7]MC-RR (8) were detected in the culture and/or field samples. This study is a good example of how commonly used targeted LC-MS methods can underestimate the diversity of MCs in freshwater lakes and cyanobacteria cultures and how untargeted LC-MS methods can be used to comprehensively assess MC diversity present in a new system.
Collapse
Affiliation(s)
- Mete Yilmaz
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey.
| | - Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA.
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada.
| | - Mihriban Özen
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey; Bursa Uludağ University, Department of Biology, 16059, Bursa, Turkey.
| | - Nilsun Demir
- Ankara University, Department of Fisheries and Aquaculture Engineering, 06110, Ankara, Turkey.
| | - Muharrem Balcı
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey; Istanbul University, Department of Biology, 34134, İstanbul, Turkey.
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada.
| |
Collapse
|
43
|
Zamora-Barrios CA, Nandini S, Sarma SSS. Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:267-276. [PMID: 30897466 DOI: 10.1016/j.envpol.2019.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Cyanotoxins from toxic blooms in lakes or eutrophic reservoirs are harmful to several organisms including zooplankton, which often act as vectors of these secondary metabolites, because they consume cyanobacteria, bioaccumulate the cyanotoxins and pass them on along the food chain. Microcystins are among the most commonly found cyanotoxins and often cause zooplankton mortality. Although cyanobacterial blooms are common and persistent in Mexican water bodies, information on the bioaccumulation of cyanotoxins is scarce. In this study we present data on the bioaccumulation of cyanotoxins from Planktothrix agardhii, Microcystis sp., Cylindrospermopsis raciborskii and Dolichospermum planctonicum blooms in the seston (suspended particulate matter more than 1.2 μm) by zooplankton and fish (tilapia (Oreochromis niloticus) and mesa silverside (Chirostoma jordani) samples from Lake Zumpango (Mexico City). The cyanotoxins were extracted from the seston, zooplankton and fish tissue by disintegration using mechanical homogenization and 75% methanol. After extraction, microcystins were measured using an ELISA kit (Envirologix). Concentration of microcystins expressed as equivalents, reached a maximum value of 117 μg g-1 on sestonic samples; in zooplankton they were in the range of 0.0070-0.29 μg g-1. The dominant zooplankton taxa included Acanthocyclops americanus copepodites, Daphnia laevis and Bosmina longirostris. Our results indicate twice the permissible limits of microcystins (0.04 μg kg-1 d-1) for consumption of cyanobacterial products in whole fish tissue of Chirostoma jordani. The data have been discussed with emphasis on the importance of regular monitoring of water bodies in Mexico to test the ecotoxicological impacts of cyanobacterial blooms and the risk that consumption of products with microcystins could promote.
Collapse
Affiliation(s)
- Cesar Alejandro Zamora-Barrios
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - S Nandini
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico.
| | - S S S Sarma
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico
| |
Collapse
|
44
|
Qin L, Zhang X, Chen X, Wang K, Shen Y, Li D. Isolation of a Novel Microcystin-Degrading Bacterium and the Evolutionary Origin of mlr Gene Cluster. Toxins (Basel) 2019; 11:E269. [PMID: 31086114 PMCID: PMC6563193 DOI: 10.3390/toxins11050269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
The mlr-dependent biodegradation plays an essential role in the natural attenuation of microcystins (MCs) in eutrophic freshwater ecosystems. However, their evolutionary origin is still unclear due to the lack of mlr gene cluster sequences. In this study, a Sphingopyxis sp. strain X20 with high MC-degrading ability was isolated, and the mlrA gene activity was verified by heterologous expression. The whole sequence of the mlr gene cluster in strain X20 was obtained through PCR and thermal asymmetric interlaced (TAIL)-PCR, and then used for evolutionary origin analyses together with the sequences available in GenBank. Phylogenetic analyses of mlr gene clusters suggested that the four mlr genes had the same origin and evolutionary history. Genomic island analyses showed that there is a genomic island on the genome of sphingomonads that is capable of degrading MCs, on which the mlr gene cluster anchors. The concentrated distribution of the mlr gene cluster in sphingomonads implied that these genes have likely been present in the sphingomonads gene pool for a considerable time. Therefore, the mlr gene cluster may have initially entered into the genome of sphingomonads together with the genomic island by a horizontal gene transfer event, and then become inherited by some sphingomonads. The species other than sphingomonads have likely acquired mlr genes from sphingomonads by recently horizontal gene transfer due to the sporadic distribution of MC-degrading species and the mlr genes in them. Our results shed new light on the evolutionary origin of the mlr cluster and thus facilitate the interpretation of characteristic distribution of the mlr gene in bacteria and the understanding of whole mlr pathway.
Collapse
Affiliation(s)
- Lian Qin
- School of Resource and Enviro1nmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Xiaoxing Zhang
- School of Resource and Enviro1nmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Xiaoguo Chen
- School of Resource and Enviro1nmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Ke Wang
- School of Resource and Enviro1nmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Yitian Shen
- Lian Qin and Xiaoxing Zhang contributed equally to this work and are Co-Firstauthors.
| | - Dan Li
- School of Resource and Enviro1nmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
45
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|
46
|
Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem Toxicol 2018; 125:106-132. [PMID: 30597222 DOI: 10.1016/j.fct.2018.12.042] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
The occurrence of cyanobacterial toxins is being increasingly reported. This is a reason for concern as they can induce toxic effects both in humans and in the environment. Among them, microcystins (MCs) are the best described and most diverse group of cyanobacterial toxins, and MC-LR and MC-RR are the congeners most widely investigated. However, the number of MC variants has also increased in recent years. Some of these minority variants have been shown to have a different toxicokinetic and toxicodynamic profile, but research focused on them is still limited. Moreover, in some water bodies these minority variants can be the predominant toxins. Nonetheless, MC-LR is the only one used for risk evaluation purposes at present. In order to contribute to more realistic risk assessments in the future, the aim of this review was to compile the available information in the scientific literature regarding the occurrence and concentration of minority MCs in water and food samples, and their toxic effects. The data retrieved demonstrate the congener-specific toxicity of MCs, as well as many data gaps in relation to analytical or mechanistic aspects, among others. Therefore, further research is needed to improve the toxicological characterization of these toxins and the exposure scenarios.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| |
Collapse
|
47
|
Garda T, Kónya Z, Freytag C, Erdődi F, Gonda S, Vasas G, Szücs B, M-Hamvas M, Kiss-Szikszai A, Vámosi G, Máthé C. Allyl-Isothiocyanate and Microcystin-LR Reveal the Protein Phosphatase Mediated Regulation of Metaphase-Anaphase Transition in Vicia faba. FRONTIERS IN PLANT SCIENCE 2018; 9:1823. [PMID: 30619398 PMCID: PMC6300510 DOI: 10.3389/fpls.2018.01823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Horseradish allyl isothiocyanate (AITC, a volatile oil) and cyanobacterial microcystin-LR (MCY-LR, a cyclic heptapeptide) affect eukaryotic cell cycle. MCY-LR inhibits protein phosphatases PP1 and PP2A. We aimed to reveal the mechanisms of their cellular effects in a model eukaryote, Vicia faba. We have shown for the first time that AITC had minor effects on PP1 and PP2A activities in vitro, but it inhibited significantly PP1 in vivo. The combination of 10 μM AITC with 10 μM MCY-LR induced metaphase arrest after short-term (12 h) treatments. 10 μM AITC, 0.2-10 μM MCY-LR and their combinations induced histone H3 hyperphosphorylation, associated with the regulation of metaphase-anaphase transition. This hyperphosphorylation event occurred at any treatment which led to the inhibition of PP1 activity. 10 μM AITC + 10 μM MCY-LR increased the frequency of metaphase spindle anomalies, associated with metaphase arrest. We provide new insights into the mechanisms of metaphase-anaphase transition. Metaphase arrest is induced at the concomitant hyperphosphorylation of histone H3, alteration of metaphase spindle assembly and strong inhibition of PP1 + PP2A activity. Near-complete blocking of metaphase-anaphase transition by rapid protein phosphatase inhibition is shown here for the first time in plants, confirming a crucial role of serine-threonine phosphatases in this checkpoint of cell cycle regulation. Tissue-dependent differences in PP1 and PP2A activities induced by AITC and MCY-LR suggest that mainly regulatory subunits are affected. AITC is a potential tool for the study of protein phosphatase function and regulation. We raise the possibility that one of the biochemical events occurring during AITC release upon wounding is the modulation of protein phosphatase dependent signal transduction pathways during the plant defense response.
Collapse
Affiliation(s)
- Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Boglárka Szücs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
48
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|