1
|
Liu YY, Yi YJ, Ye J, Hu AX. Design, synthesis and neuraminidase inhibitory activity of 4-methyl-5-(3-phenylacryloyl) thiazoles. Mol Divers 2024; 28:1129-1140. [PMID: 36959424 DOI: 10.1007/s11030-023-10639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
A series of 4-methyl-5-(3-phenylacryloyl)thiazoles based on chalcones were designed, synthesized and evaluated for their influenza neuraminidase (NA) inhibitory activity in vitro. A preliminary structure-activity relationship (SAR) analysis showed that thiazoles bearing amide had greater potency. It also showed that mono-hydroxyl group at 4-position on phenyl ring was more effective than other electron-releasing groups or electron-withdraw groups. Compounds A2 and A26 were more potent against NA with IC50 values of 8.2 ± 0.5 μg/mL and 6.2 ± 1.4 μg/mL, respectively. Molecular docking study demonstrated that thiazoles skeleton was benefit for the NA inhibitory activity.
Collapse
Affiliation(s)
- Yu-Yang Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang-Jie Yi
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiao Ye
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Ai-Xi Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Kim JH, Park YI, Hur M, Park WT, Moon YH, Huh YC, Kim TIL, Kang MH, Kang JS, Cho CW, Park J. Inhibition by components of Glycyrrhiza uralensis of 3CLpro and HCoV-OC43 proliferation. J Enzyme Inhib Med Chem 2023; 38:2242704. [PMID: 37537881 PMCID: PMC10405751 DOI: 10.1080/14756366.2023.2242704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 3CLpro is a key enzyme in coronavirus proliferation and a treatment target for COVID-19. In vitro and in silico, compounds 1-3 from Glycyrrhiza uralensis had inhibitory activity and binding affinity for 3CLpro. These compounds decreased HCoV-OC43 cytotoxicity in RD cells. Moreover, they inhibited viral growth by reducing the amounts of the necessary proteins (M, N, and RDRP). Therefore, compounds 1-3 are inhibitors of 3CLpro and HCoV-OC43 proliferation.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Mok Hur
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Woo Tae Park
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Youn-Ho Moon
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Yun-Chan Huh
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Tae IL Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Min Hye Kang
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, Republic of Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
3
|
Tibenda JJ, Du Y, Huang S, Chen G, Ning N, Liu W, Ye M, Nan Y, Yuan L. Pharmacological Mechanisms and Adjuvant Properties of Licorice Glycyrrhiza in Treating Gastric Cancer. Molecules 2023; 28:6966. [PMID: 37836809 PMCID: PMC10574419 DOI: 10.3390/molecules28196966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Licorice is a remarkable traditional Chinese medicine obtained from the dried root and rhizomes of the Glycyrrhiza genus, and t has been utilized in China for many centuries. It consists of more than 300 compounds that are mainly divided into triterpene saponins, flavonoids, polysaccharides, and phenolic components. The active compounds of licorice have been found to possess multiple biological activities, including antitumor, anti-inflammatory, antiviral, antimicrobial, immunoregulatory, cardioprotective, and neuroprotective functions. In addition to providing a brief overview of licorice's adjuvant properties, this review describes and analyzes the pharmacological mechanisms by which licorice components function to treat gastric cancer. Furthermore, licorice compounds are also found to be potent adjuvant chemotherapy agents, as they can improve the quality of life of cancer patients and alleviate chemotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Joanna Japhet Tibenda
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.J.T.); (Y.D.); (S.H.); (G.C.); (N.N.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.J.T.); (Y.D.); (S.H.); (G.C.); (N.N.)
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.J.T.); (Y.D.); (S.H.); (G.C.); (N.N.)
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.J.T.); (Y.D.); (S.H.); (G.C.); (N.N.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.J.T.); (Y.D.); (S.H.); (G.C.); (N.N.)
| | - Wenjing Liu
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Mengyi Ye
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China;
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.J.T.); (Y.D.); (S.H.); (G.C.); (N.N.)
| |
Collapse
|
4
|
Wang SH, Guo C, Cui WJ, Xu QX, Zhang J, Jiang JZ, Liu Y, Chen S, Chen C, Cheng JT, Liu A. Two pyrrole acids isolated from Phyllanthus emblica L. and their bioactivities. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:26. [PMID: 37639046 PMCID: PMC10462542 DOI: 10.1007/s13659-023-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
An undescribed pyrrole acid, 1-(4'-methoxy-4'-oxobutyl)-1 H-pyrrole-2,5-dicarboxylic acid (1) and one known pyrrole acid (2) were isolated from the fruits of Phyllanthus emblica. The structures of these compounds were elucidated via the comprehensive analyses of IR, HRESIMS, 1D and 2D spectroscopic data. A series of biological assays revealed that compounds 1 and 2 could inhibit LPS-induced over-production of nitric oxide (NO), interleukin-6 (IL-6), monocyte chemotactic protein 1 (MCP-1) and tumor necrosis factor-α (TNF-α) by reducing the phosphorylation of extracellular regulated protein kinases (ERK) and c-Jun N-terminal kinases (JNK) in RAW 264.7 cells. Additionally, compounds 1 and 2 were found to reduce lipid deposition and increase the mRNA expression of ATP-binding cassette transporter A1 in oxidized low-density lipoprotein-treated RAW264.7 macrophages.
Collapse
Affiliation(s)
- Shu-Hui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wen-Jin Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing-Xia Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin-Zhu Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin-Tang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Park SA, Seo YJ, Kim LK, Kim HJ, Yoon KD, Heo TH. Butein Inhibits Cell Growth by Blocking the IL-6/IL-6Rα Interaction in Human Ovarian Cancer and by Regulation of the IL-6/STAT3/FoxO3a Pathway. Int J Mol Sci 2023; 24:ijms24076038. [PMID: 37047012 PMCID: PMC10094418 DOI: 10.3390/ijms24076038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Butea monosperma (Fabaceae) has been used in traditional Indian medicine to treat a variety of ailments, including abdominal tumors. We aimed to investigate the anti-IL-6 activity of butein in ovarian cancer and elucidate the underlying molecular mechanisms. Butein was isolated and identified from B. monosperma flowers, and the inhibition of IL-6 signaling was investigated using the HEK-Blue™ IL-6 cell line. The surface plasmon resonance assay was used to estimate the binding of butein to IL-6, IL-6Rα, and gp130. After treatment with butein, ovarian cancer cell migration, apoptosis, and tumor growth inhibition were evaluated in vitro and in vivo. Furthermore, we used STAT3 siRNA to identify the mechanistic effects of butein on the IL-6/STAT3/FoxO3a pathway. Butein suppressed downstream signal transduction through higher binding affinity to IL-6. In ovarian cancer, butein inhibited cell proliferation, migration, and invasion, and induced cell cycle arrest and apoptosis. In addition, it decreased the growth of ovarian cancer cells in xenograft tumor models. Butein inhibited STAT3 phosphorylation and induced FoxO3a accumulation in the nucleus by inhibiting IL-6 signaling. The anticancer activity of butein was mediated by blocking the IL-6/IL-6Rα interaction and suppressing IL-6 bioactivity via interfering with the IL-6/STAT3/FoxO3a pathway.
Collapse
Affiliation(s)
- Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Republic of Korea
| | - Young Ju Seo
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Republic of Korea
| |
Collapse
|
6
|
Farooq MA, Trevaskis NL. TPGS Decorated Liposomes as Multifunctional Nano-Delivery Systems. Pharm Res 2023; 40:245-263. [PMID: 36376604 PMCID: PMC9663195 DOI: 10.1007/s11095-022-03424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Liposomes are sphere-shaped vesicles that can capture therapeutics either in the outer phospholipid bilayer or inner aqueous core. Liposomes, especially when surface-modified with functional materials, have been used to achieve many benefits in drug delivery, including improving drug solubility, oral bioavailability, pharmacokinetics, and delivery to disease target sites such as cancers. Among the functional materials used to modify the surface of liposomes, the FDA-approved non-ionic surfactant D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is increasingly being applied due to its biocompatibility, lack of toxicity, applicability to various administration routes and ability to enhance solubilization, stability, penetration and overall pharmacokinetics. TPGS decorated liposomes are emerging as a promising drug delivery system for various diseases and are expected to enter the market in the coming years. In this review article, we focus on the multifunctional properties of TPGS-coated liposomes and their beneficial therapeutic applications, including for oral drug delivery, vaccine delivery, ocular administration, and the treatment of various cancers. We also suggest future directions to optimise the manufacture and performance of TPGS liposomes and, thus, the delivery and effect of encapsulated diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
7
|
Alhusban M, Pandey P, Ahn J, Avula B, Haider S, Avonto C, Ali Z, Khan SI, Ferreira D, Khan IA, Chittiboyina AG. Computational Tools to Expedite the Identification of Potential PXR Modulators in Complex Natural Product Mixtures: A Case Study with Five Closely Related Licorice Species. ACS OMEGA 2022; 7:26824-26843. [PMID: 35936409 PMCID: PMC9352242 DOI: 10.1021/acsomega.2c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The genus Glycyrrhiza, comprising approximately 36 spp., possesses complex structural diversity and is documented to possess a wide spectrum of biological activities. Understanding and finding the mechanisms of efficacy or safety for a plant-based therapy is very challenging, yet it is crucial and necessary to understand the polypharmacology of traditional medicines. Licorice extract was shown to modulate the xenobiotic receptors, which might manifest as a potential route for natural product-induced drug interactions. However, different mechanisms could be involved in this phenomenon. Since the induced herb-drug interaction of licorice supplements via Pregnane X receptor (PXR) is understudied, we ventured out to analyze the potential modulators of PXR in complex mixtures such as whole extracts by applying computational mining tools. A total of 518 structures from five species of Glycyrrhiza: 183 (G. glabra), 180 (G. uralensis), 100 (G. inflata), 33 (G. echinata), and 22 (G. lepidota) were collected and post-processed to yield 387 unique compounds. Visual inspection of top candidates with favorable ligand-PXR interactions and the highest docking scores were identified. The in vitro testing revealed that glabridin (GG-14) is the most potent PXR activator among the tested compounds, followed by licoisoflavone A, licoisoflavanone, and glycycoumarin. A 200 ns molecular dynamics study with glabridin confirmed the stability of the glabridin-PXR complex, highlighting the importance of computational methods for rapid dereplication of potential xenobiotic modulators in a complex mixture instead of undertaking time-consuming classical biological testing of all compounds in a given botanical.
Collapse
Affiliation(s)
- Manal Alhusban
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Jongmin Ahn
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Bharathi Avula
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Saqlain Haider
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Cristina Avonto
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Shabana I. Khan
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Daneel Ferreira
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G. Chittiboyina
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
8
|
Baiseitova A, Ban YJ, Kim JY, Lee G, Shah AB, Kim JH, Lee YH, Park KH. Soybean phytochemicals responsible for bacterial neuraminidase inhibition and their characterization by UPLC-ESI-TOF/MS. Food Funct 2022; 13:6923-6933. [PMID: 35695875 DOI: 10.1039/d2fo00537a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol extract of soybean (Glycine max (L.) Merr.) showed good inhibitory activity against bacterial neuraminidase (BNA), which plays a pivotal role in the pathogenesis of a number of microbial diseases. The saponin portion fractionated through preparative HPLC (IC50 = 2.25 μg mL-1) was found to be responsible for the observed BNA inhibition. Estimation of the inhibitory effects by individual compounds showed that the soyasaponins of group B (Ba, Bb, Bb', Bc, and Bd) exhibited extremely high inhibitions (IC50 = 0.25-0.48 μM), whereas group A (Aa, Ab, and Ac) was almost inactive. Kinetic studies determined that group B soyasaponins were noncompetitive inhibitors. Furthermore, molecular docking experiments confirmed that soyasaponin Ba (group B) could undergo binding interactions with various residues in the binding pocket. In contrast, soyasaponin Aa (group A) failed to enter the binding pocket due to its extra scaffold structure of oligosaccharides bonded to the 22-hydroxyl position. The metabolites in the soybean extract were fully characterized using UPLC-ESI-TOF/MS.
Collapse
Affiliation(s)
- Aizhamal Baiseitova
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Yeong Jun Ban
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Gihwan Lee
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jeong Ho Kim
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Yong Hyun Lee
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
9
|
Shoman ME, Abd El-Hafeez AA, Khobrani M, Assiri AA, Al Thagfan SS, Othman EM, Ibrahim ARN. Molecular docking and dynamic simulations study for repurposing of multitarget coumarins against SARS-CoV-2 main protease, papain-like protease and RNA-dependent RNA polymerase. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e77021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Proteases and RNA-Dependent RNA polymerase, major enzymes which are essential targets involved in the life and replication of SARS-CoV-2. This study aims at in silico examination of the potential ability of coumarins and their derivatives to inhibit the replication of SARS-Cov-2 through multiple targets, including the main protease, papain-like protease and RNA-Dependent RNA polymerase. Several coumarins as biologically active compounds were studied, including coumarin antibiotics and some naturally reported antiviral coumarins. Aminocoumarin antibiotics, especially coumermycin, showed a high potential to bind to the enzymes’ active site, causing possible inhibition and termination of viral life. They demonstrate the ability to bind to residues essential for triggering the crucial cascades within the viral cell. Molecular dynamics simulations for 50 ns supported these data pointing out the formation of rigid, stable Coumermycin/enzyme complexes. These findings strongly suggest the possible use of Coumermycin, Clorobiocin or Novobiocin in the fight against COVID-19, but biological evidence is still required to support such suggestions.
Collapse
|
10
|
Hariyono P, Kotta JC, Adhipandito CF, Aprilianto E, Candaya EJ, Wahab HA, Hariono M. A study on catalytic and non-catalytic sites of H5N1 and H1N1 neuraminidase as the target for chalcone inhibitors. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:69. [PMID: 34549099 PMCID: PMC8445792 DOI: 10.1186/s13765-021-00639-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The H1N1 pandemic in 2009 and the H5N1 outbreak in 2005 have shocked the world as millions of people were infected and hundreds of thousands died due to the infections by the influenza virus. Oseltamivir, the most common drug to block the viral life cycle by inhibiting neuraminidase (NA) enzyme, has been less effective in some resistant cases due to the virus mutation. Presently, the binding of 10 chalcone derivatives towards H5N1 and H1N1 NAs in the non-catalytic and catalytic sites was studied using molecular docking. The in silico study was also conducted for its drug-like likeness such as Lipinski Rule, mutagenicity, toxicity and pharmacokinetic profiles. The result demonstrates that two chalcones (1c and 2b) have the potential for future NA inhibitor development. Compound 1c inhibits H5N1 NA and H1N1 NA with IC50 of 27.63 µM and 28.11 µM, respectively, whereas compound 2b inhibits NAs with IC50 of 87.54 µM and 73.17 µM for H5N1 and H1N1, respectively. The in silico drug-like likeness prediction reveals that 1c is 62% better than 2b (58%) in meeting the criteria. The results suggested that 1c and 2b have potencies to be developed as non-competitive inhibitors of neuraminidase for the future development of anti-influenza drugs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-021-00639-w.
Collapse
Affiliation(s)
- Pandu Hariyono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| | - Jasvidianto Chriza Kotta
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| | - Christophorus Fideluno Adhipandito
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- Faculty of Biomedical Engineering, Taipei Medical University, Wuxing Street No. 250, Xinyi District, Taipei City, 110 Taiwan
| | - Eko Aprilianto
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- PT. Dankos Farma, Jalan Rawagatel Blok IIIS Kav 35-39, Jatinegara, Cakung, Jakarta Timur, 13930 DKI Jakarta Indonesia
| | - Evan Julian Candaya
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- Apotek Kimia Farma Sempidi Unit Bisnis Nusa Dua, Jalan Raya Sempidi No. 12, Mengwi, Badung, 80351 Bali Indonesia
| | - Habibah A. Wahab
- Pharmaceutical Technology Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Pulau Pinang Malaysia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| |
Collapse
|
11
|
Leal CM, Leitão SG, Sausset R, Mendonça SC, Nascimento PHA, de Araujo R. Cheohen CF, Esteves MEA, Leal da Silva M, Gondim TS, Monteiro MES, Tucci AR, Fintelman-Rodrigues N, Siqueira MM, Miranda MD, Costa FN, Simas RC, Leitão GG. Flavonoids from Siparuna cristata as Potential Inhibitors of SARS-CoV-2 Replication. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:658-666. [PMID: 34305198 PMCID: PMC8294293 DOI: 10.1007/s43450-021-00162-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
The novel coronavirus SARS-CoV-2 has been affecting the world, causing severe pneumonia and acute respiratory syndrome, leading people to death. Therefore, the search for anti-SARS-CoV-2 compounds is pivotal for public health. Natural products may present sources of bioactive compounds; among them, flavonoids are known in literature for their antiviral activity. Siparuna species are used in Brazilian folk medicine for the treatment of colds and flu. This work describes the isolation of 3,3',4'-tri-O-methyl-quercetin, 3,7,3',4'-tetra-O-methyl-quercetin (retusin), and 3,7-di-O-methyl-kaempferol (kumatakenin) from the dichloromethane extract of leaves of Siparuna cristata (Poepp. & Endl.) A.DC., Siparunaceae, using high-speed countercurrent chromatography in addition to the investigation of their inhibitory effect against SARS-CoV-2 viral replication. Retusin and kumatakenin inhibited SARS-CoV-2 replication in Vero E6 and Calu-3 cells, with a selective index greater than lopinavir/ritonavir and chloroquine, used as control. Flavonoids and their derivatives may stand for target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43450-021-00162-5.
Collapse
Affiliation(s)
- Carla Monteiro Leal
- Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| | - Romain Sausset
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
- Muséum National D’Histoire Naturelle, 75005 Paris, France
| | - Simony C. Mendonça
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| | - Pedro H. A. Nascimento
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| | - Caio Felipe de Araujo R. Cheohen
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045 Brazil
| | - Maria Eduarda A. Esteves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ 21041-361 Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045 Brazil
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ 21041-361 Brazil
| | - Tayssa Santos Gondim
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210 Brazil
| | - Maria Eduarda S. Monteiro
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210 Brazil
| | - Amanda Resende Tucci
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210 Brazil
| | - Natália Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210 Brazil
- Instituto Nacional de Ciência e Tecnologia de Gestão da Inovação em Doenças Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21041-210 Brazil
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210 Brazil
| | - Milene Dias Miranda
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210 Brazil
| | - Fernanda N. Costa
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| | - Rosineide C. Simas
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
12
|
Malbari K, Saha P, Chawla-Sarkar M, Dutta S, Rai S, Joshi M, Kanyalkar M. In quest of small-molecules as potent non-competitive inhibitors against influenza. Bioorg Chem 2021; 114:105139. [PMID: 34243071 DOI: 10.1016/j.bioorg.2021.105139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
A series of scaffolds namely aurones, 3-indolinones, 4-quinolones and cinnamic acid-piperazine hybrids, was designed, synthesized and investigated in vitro against influenza A/H1N1pdm09 virus. Designed molecules adopted different binding mode i.e., in 430-cavity of neuraminidase, unlike sialic acid and oseltamivir in molecular docking studies. All molecules reduced the viral titer and exhibited non-cytotoxicity along with cryo-protective property towards MDCK cells. Molecules (Z)-2-(3'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2f), (Z)-2-(4'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2g) and 2-(2'-Methoxy-phenyl)-1H-quinolin-4-one (3a) were the most interesting molecules identified in this research, endowed with robust potencies showing low-nanomolar EC50 values of 4.0 nM, 6.7 nM and 4.9 nM, respectively, compared to reference competitive and non-competitive inhibitors: oseltamivir (EC50 = 12.7 nM) and quercetin (EC50 = 0.56 µM), respectively. Besides, 2f, 2g and 3a exhibited good neuraminidase inhibitory activity in sub-micromolar range (IC50 = 0.52 µM, 3.5 µM, 1.3 µM respectively). Moreover, these molecules were determined as non-competitive inhibitors similar to reference non-competitive inhibitor quercetin unlike reference competitive inhibitor oseltamivir in kinetics studies.
Collapse
Affiliation(s)
- Khushboo Malbari
- Department of Pharmaceutical Chemistry, Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400005, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Beleghata, Kolkata 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Beleghata, Kolkata 700010, India
| | - Shanta Dutta
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Beleghata, Kolkata 700010, India
| | - Swita Rai
- Department of Pharmaceutical Chemistry, Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400005, India
| | - Mamata Joshi
- National Facility for High Field NMR, Tata Institute of Fundamental Research (TIFR), Colaba, Mumbai 400005, India
| | - Meena Kanyalkar
- Department of Pharmaceutical Chemistry, Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400005, India.
| |
Collapse
|
13
|
Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:120. [PMID: 34150912 PMCID: PMC8196934 DOI: 10.1186/s43094-021-00269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Influenza is an acute respiratory tract infection caused by the influenza virus. Vaccination and antiviral drugs are the two methods opted to control the disease. Besides their efficiency, they also cause adverse side effects. Hence, scientists turned their attention to powerful herbal medicines. This review put focus on various proven, scientifically validated anti-influenza compounds produced by the plants suggested for the production of newer drugs for the better treatment of influenza and its related antiviral diseases too. Main body In this review, fifty medicinal herb phytochemical constituents and their anti-influenza activities have been documented. Specifically, this review brings out the accurate and substantiates mechanisms of action of these constituents. This study categorizes the phytochemical constituents into primary and secondary metabolites which provide a source for synthesizing and developing new drugs. Conclusion This article provides a summary of the actions of the herbal constituents. Since the mechanisms of action of the components are elucidated, the pandemic situation arising due to influenza and similar antiviral diseases can be handled promisingly with greater efficiency. However, clinical trials are in great demand. The formulation of usage may be a single drug compound or multi-herbal combination. These, in turn, open up a new arena for the pharmaceutical industries to develop innovative drugs.
Collapse
Affiliation(s)
- A Brindha Devi
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| | - R Sarala
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| |
Collapse
|
14
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
15
|
Omrani M, Keshavarz M, Nejad Ebrahimi S, Mehrabi M, McGaw LJ, Ali Abdalla M, Mehrbod P. Potential Natural Products Against Respiratory Viruses: A Perspective to Develop Anti-COVID-19 Medicines. Front Pharmacol 2021; 11:586993. [PMID: 33679384 PMCID: PMC7926205 DOI: 10.3389/fphar.2020.586993] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
The emergence of viral pneumonia caused by a novel coronavirus (CoV), known as the 2019 novel coronavirus (2019-nCoV), resulted in a contagious acute respiratory infectious disease in December 2019 in Wuhan, Hubei Province, China. Its alarmingly quick transmission to many countries across the world and a considerable percentage of morbidity and mortality made the World Health Organization recognize it as a pandemic on March 11, 2020. The perceived risk of infection has led many research groups to study COVID-19 from different aspects. In this literature review, the phylogenetics and taxonomy of COVID-19 coronavirus, epidemiology, and respiratory viruses similar to COVID-19 and their mode of action are documented in an approach to understand the behavior of the current virus. Moreover, we suggest targeting the receptors of SARS-CoV and SARS-CoV-2 such as ACE2 and other proteins including 3CLpro and PLpro for improving antiviral activity and immune response against COVID-19 disease. Additionally, since phytochemicals play an essential role in complementary therapies for viral infections, we summarized different bioactive natural products against the mentioned respiratory viruses with a focus on influenza A, SARS-CoV, MERS, and COVID-19.Based on current literature, 130 compounds have antiviral potential, and of these, 94 metabolites demonstrated bioactivity against coronaviruses. Interestingly, these are classified in different groups of natural products, including alkaloids, flavonoids, terpenoids, and others. Most of these compounds comprise flavonoid skeletons. Based on our survey, xanthoangelol E (88), isolated from Angelica keiskei (Miq.) Koidz showed inhibitory activity against SARS-CoV PLpro with the best IC50 value of 1.2 μM. Additionally, hispidulin (3), quercetin (6), rutin (8), saikosaponin D (36), glycyrrhizin (47), and hesperetin (55) had remarkable antiviral potential against different viral infections. Among these compounds, quercetin (6) exhibited antiviral activities against influenza A, SARS-CoV, and COVID-19 and this seems to be a highly promising compound. In addition, our report discusses the obstacles and future perspectives to highlight the importance of developing screening programs to investigate potential natural medicines against COVID-19.
Collapse
Affiliation(s)
- Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Meysam Mehrabi
- Shafa Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Muna Ali Abdalla
- Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Abstract
Licorice is a traditional medicine commonly used in China and many other countries. Over the last 50 years, the structure and pharmacological effects of coumarin compounds in licorice have been investigated. However, a comprehensive review of the literature summarizing current trends is currently lacking. Thus, the aim of the present review is to provide an up-to-date summary of the scientific literature regarding the pharmacological effects of coumarin compounds in licorice, thereby laying the foundation for further research and optimal utilization of licorice. We retrieved 111 articles on the coumarin components of licorice and their potential pharmacological effects, based on titles, keywords, and abstracts from databases (including PubMed and Web of Science). Glycycoumarin, isoglycycoumarin, licoarylcoumarin, licopyranocoumarin, glycyrin, isotrifoliol, glycyrol, and glycyrurol have been investigated for their anticancer, hepatoprotective, antispasmodic, immunosuppressive, anti-inflammatory, and antibacterial properties, and use as therapeutic agents in metabolic syndrome, thereby demonstrating their potential for clinical applications. Future research should further explore the pharmacological mechanisms of action of coumarin compounds, including their antibacterial activities. Investigations into the pharmacological activities of different glycycoumarin isomers might open new research frontiers.
Collapse
Affiliation(s)
- Yimei Zang
- Pharmacy Teaching and Research Office, Biomedicine College, Beijing City University, Beijing, P. R. China
| |
Collapse
|
17
|
Inhibition of Butyrylcholinesterase and Human Monoamine Oxidase-B by the Coumarin Glycyrol and Liquiritigenin Isolated from Glycyrrhiza uralensis. Molecules 2020; 25:molecules25173896. [PMID: 32859055 PMCID: PMC7504216 DOI: 10.3390/molecules25173896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (−7.8 kcal/mol) was greater than its affinity for AChE (−7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (−8.8 kcal/mol) was greater than its affinity for MAO-A (−7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer’s disease with multi-targeting activities.
Collapse
|
18
|
Zhang Z, Morris‐Natschke SL, Cheng Y, Lee K, Li R. Development of anti‐influenza agents from natural products. Med Res Rev 2020; 40:2290-2338. [DOI: 10.1002/med.21707] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi‐Jun Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Susan L. Morris‐Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Yung‐Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kuo‐Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Chinese Medicine Research and Development Center China Medical University and Hospital Taichung Taiwan
| | - Rong‐Tao Li
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
19
|
Physiological and Biochemical Mechanisms Mediated by Allelochemical Isoliquiritigenin on the Growth of Lettuce Seedlings. PLANTS 2020; 9:plants9020245. [PMID: 32070007 PMCID: PMC7076364 DOI: 10.3390/plants9020245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Isoliquiritigenin, a natural chalcone-type flavonoid, has been recognized as an allelochemical with phytotoxicity to lettuce; however, not enough attention has been paid to the mechanisms of this secondary metabolite. In this work, we investigated the physiological and biochemical mechanisms of isoliquiritigenin on lettuce seedlings. The results show that isoliquiritigenin has a concentration-dependent inhibitory effect on radicle elongation of lettuce seedlings, but no significant impact on lettuce germination. Microscopy analyses suggest that the surface morphology of lettuce radicle tips was atrophied and the intracellular tissue structure deformed at high concentrations. Isoliquiritigenin induced the overproduction of reactive oxygen species (ROS), which led to loss of cell viability in the radicle cells. In addition, malondialdehyde (a product of lipid peroxidation) and free proline levels were found to have increased, while chlorophyll content in lettuce seedlings decreased. All these changes suggest that the primary allelopathic mechanism of isoliquiritigenin by which it inhibits radicle elongation in lettuce seedlings might be due to the overproduction of ROS, which causes oxidative damage to membrane lipids and cell death.
Collapse
|
20
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Mishra S, Pandey A, Manvati S. Coumarin: An emerging antiviral agent. Heliyon 2020; 6:e03217. [PMID: 32042967 PMCID: PMC7002824 DOI: 10.1016/j.heliyon.2020.e03217] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections are responsible for many illnesses, and recent outbreaks have raised public health concerns. Despite the availability of many antiviral drugs, they are often unsuccessful due to the generation of viral mutants and less effective against their target virus. Identifying novel antiviral drugs is therefore of critical importance and natural products are an excellent source for such discoveries. Coumarin is one such natural compound that is a potential drug candidate owing to its properties of stability, solubility, and low toxicity. There are numerous evidences showing its inhibitory role against infection of various viruses such as HIV, Influenza, Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16). The mechanisms involve either inhibition of proteins essential for viral entry, replication and infection or regulation of cellular pathways such as Akt-Mtor (mammalian target of rapamycin), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and anti-oxidative pathway including NrF-2 (The nuclear factor erythroid 2 (NFE2)-related factor 2). This review summarizes the present state of understanding with a focus on coumarin's antiviral effect and their possible molecular mechanisms against Influenza virus, HIV, Hepatitis virus, Dengue virus and Chikungunya virus.
Collapse
Affiliation(s)
| | | | - Siddharth Manvati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
22
|
Chen A, Liang Y, Ye J, Hu A, Lian W, Liu A, Du G. Synthesis of Chalcone Derivatives Containing Furan or/and Pyran Ring as Neuraminidase Inhibitors. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8346-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E, Xu X, Yu J. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes. Int J Pharm 2019; 563:53-62. [PMID: 30890449 DOI: 10.1016/j.ijpharm.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Isoliquiritigenin (ISL) has a great variety of pharmacological effects especially liver cancer therapy, but its poor solubility, bioavailability and liver targeting have limited its clinical use. In order to solve the aforementioned shortcomings, the TPGS-modified proliposomes loaded with ISL (ISL-TPGS-PLP) was prepared in this study. ISL-TPGS-PLP was fabricated via thin-film dispersion method and was characterized by the appearance, particle size, zeta potential and morphology. HPLC was used to evaluate entrapment efficiency (EE), in vitro release and stability of ISL-TPGS-PLP single or combined while appropriate physicochemical parameters were measured with DLS. Meanwhile, the pharmacokinetics and tissue distribution were also studied after oral administration. The results demonstrated that ISL-TPGS-PLP had a mean size of 23.8 ± 0.9 nm, high EE of 97.33 ± 0.40%. More importantly, nearly 90% ISL was released from ISL-TPGS-PLP within 24 h while only 50% was released from ISL suspension. In the pharmacokinetics study, the area under the curve (AUC0-24h) of ISL-TPGS-PLP was 1.53 times higher than that of ISL suspension. The Tissue distribution study showed that the ISL released from ISL-TPGS-PLP was higher in the liver than the free ISL suspension. Altogether, ISL-TPGS-PLP could ameliorate the ISL solubility, bioavailability and liver targeting ability, suggesting that ISL-TPGS-PLP could serve as a promising nanocarrier for liver cancer therapy.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiuyu Wei
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Yujiao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Kangyi Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Hao Ji
- Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China; Jiangsu Tian Sheng Pharmaceutical Co., Ltd., No. 10 Baohua Development Zone, Jurong, Zhenjiang, Jiangsu, PR China
| | - Elmurat Toreniyazov
- Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China; Ashkent State Agricultural University (Nukus Branch), Avdanberdi str., Nukus 742009, Karakalpakstan, Uzbekistan
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China; Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China; Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| |
Collapse
|
24
|
Structure-aided drug development of potential neuraminidase inhibitors against pandemic H1N1 exploring alternate binding mechanism. Mol Divers 2019; 23:927-951. [DOI: 10.1007/s11030-019-09919-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
|
25
|
Chintakrindi AS, Gohil DJ, Kothari ST, Chowdhary AS, Kanyalkar MA. Design, synthesis and evaluation of chalcones as H1N1 Neuraminidase inhibitors. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2124-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Boyapelly K, Bonin MA, Traboulsi H, Cloutier A, Phaneuf SC, Fortin D, Cantin AM, Richter MV, Marsault E. Synthesis and Characterization of a Phosphate Prodrug of Isoliquiritigenin. JOURNAL OF NATURAL PRODUCTS 2017; 80:879-886. [PMID: 28252963 DOI: 10.1021/acs.jnatprod.6b00600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Isoliquiritigenin (1) possesses a variety of biological activities in vitro. However, its poor aqueous solubility limits its use for subsequent in vivo experimentation. In order to enable the use of 1 for in vivo studies without the use of toxic carriers or cosolvents, a phosphate prodrug strategy was implemented relying on the availability of phenol groups in the molecule. In this study, a phosphate group was added to position C-4 of 1, leading to the more water-soluble prodrug 2 and its ammonium salt 3, which possesses increased stability compared to 2. Herein are reported the synthesis, characterization, solubility, and stability of phosphate prodrug 3 in biological medium in comparison to 1, as well as new results on its anti-inflammatory properties in vivo. As designed, the solubility of prodrug 3 was superior to that of the parent natural product 1 (9.6 mg/mL as opposed to 3.9 μg/mL). Prodrug 3 as an ammonium salt was also found to possess excellent stability as a solid and in aqueous solution, as opposed to its phosphoric acid precursor 2.
Collapse
Affiliation(s)
- Kumaraswamy Boyapelly
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Marc-André Bonin
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Hussein Traboulsi
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Alexandre Cloutier
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Samuel C Phaneuf
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Daniel Fortin
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - André M Cantin
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Martin V Richter
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, ‡Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, and §X-ray Crystallography Platform, Department of Chemistry, Université de Sherbrooke , 3001,12e Avenue Nord, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 2017; 57:1874-1905. [PMID: 26176651 DOI: 10.1080/10408398.2015.1032400] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.
Collapse
Affiliation(s)
- Jianbo Xiao
- a Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau , Taipa , Macau.,b Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg , Am Hubland , Würzburg , Germany
| |
Collapse
|
28
|
Sharma G, Vasanth Kumar S, Wahab HA. Molecular docking, synthesis, and biological evaluation of naphthoquinone as potential novel scaffold for H5N1 neuraminidase inhibition. J Biomol Struct Dyn 2017; 36:233-242. [DOI: 10.1080/07391102.2016.1274271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Garima Sharma
- Department of Chemistry, Karunya University, Coimbatore, India
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
29
|
Yang XY, Liu AL, Liu SJ, Xu XW, Huang LF. Screening for Neuraminidase Inhibitory Activity in Traditional Chinese Medicines Used to Treat Influenza. Molecules 2016; 21:molecules21091138. [PMID: 27618892 PMCID: PMC6273436 DOI: 10.3390/molecules21091138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022] Open
Abstract
Objective: To screen for influenza virus neuraminidase inhibition and to provide a reference for the clinical treatment of influenza using traditional Chinese medicines (TCM). In this study, 421 crude extracts (solubilized with petroleum ether, ethanol, ethyl acetate, and aqueous solvents) were obtained from 113 TCM. The medicine extracts were then reacted with oseltamivir, using 2’-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) as the substrate, to determine influenza virus neuraminidase activity using a standard fluorimetric assay. It was found that Chinese medicine extracts from Pyrola calliantha, Cynanchum wilfordii, Balanophora involucrata and Paeonia delavayi significantly inhibited neuraminidase activity at a concentration of 40 μg/mL. Dose-dependent inhibitory assays also revealed significant inhibition. The IC50 range of the TCM extracts for influenza virus neuraminidase was approximately 12.66–34.85 μg/mL, respectively. Some Chinese medicines have clear anti-influenza viral effects that may play an important role in the treatment of influenza through the inhibition of viral neuraminidase. The results of this study demonstrated that plant medicines can serve as a useful source of neuraminidase (NA) inhibitors and further investigation into the pharmacologic activities of these extracts is warranted.
Collapse
Affiliation(s)
- Xian-Ying Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
- College of Pharmacy and Chemistry, Dali University, Yunnan 671000, China.
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Shu-Jing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Xiao-Wei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
30
|
Yaeghoobi M, Frimayanti N, Chee CF, Ikram KK, Najjar BO, Zain SM, Abdullah Z, Wahab HA, Rahman NA. QSAR, in silico docking and in vitro evaluation of chalcone derivatives as potential inhibitors for H1N1 virus neuraminidase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1636-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Wang F, Zhang Q, Lu Z, Wang Q, Wang M, Liu Y, Fu S, Gao X, Tang X. Identification of chemical constituents in traditional Chinese medicine formula using HPLC coupled with linear ion trap-Orbitrap MS from high doses of medicinal materials to equivalent doses of formula: Study on Xiang-Sha-Liu-Jun-Zi-Jia-Jian granules. J Sep Sci 2016; 39:1619-27. [PMID: 26935761 DOI: 10.1002/jssc.201501223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Fengyun Wang
- Gastroenterology Department, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing P.R. China
| | - Qingqing Zhang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Zhiwei Lu
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Qing Wang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Meiling Wang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Yuehong Liu
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Shuang Fu
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Xiaoyan Gao
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing P.R. China
| | - Xudong Tang
- Gastroenterology Department, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing P.R. China
| |
Collapse
|
32
|
Phenolic Compounds from Glycyrrhiza uralensis and their Radical-Scavenging Activity. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ha TKQ, Dao TT, Nguyen NH, Kim J, Kim E, Cho TO, Oh WK. Antiviral phenolics from the leaves of Cleistocalyx operculatus. Fitoterapia 2016; 110:135-41. [PMID: 26972228 DOI: 10.1016/j.fitote.2016.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 11/24/2022]
Abstract
During the screening program for anti-influenza agents from medicinal plants, the ethanolic extract of Cleistocalyx operculatus leaves was found to exhibit potential neuraminidase (NA) inhibitory activity. Bioassay-directed fractionation led to the isolation of two new acetophenones (1 and 2) and one new flavanone (3), along with six known compounds (4-9). The structures of all isolated compounds were elucidated using various spectroscopic methods and through comparison with the previous literature. Compounds 6 and 8 exhibited strong enzymatic inhibition on various neuraminidases from different influenza viruses, including H1N1, H9N2, novel H1N1, and oseltamivir-resistant novel H1N1 (H274Y mutation) expressed in HEK293 cells (IC50 values ranging from 5.07 ± 0.94 μM to 9.34 ± 2.52 μM, respectively). Kinetic experiments revealed the non-competitive inhibitory mode of both compounds 6 and 8. Furthermore, these flavonoids reduced the cytopathic effect of the H1N1 virus in MDCK cells. The present study suggests the potential of two flavonoids (6 and 8) as new lead compounds for the development of novel NA inhibitors in the future.
Collapse
Affiliation(s)
- Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Trong Tuan Dao
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ngoc Hieu Nguyen
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jiwon Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Eunhee Kim
- Choong Ang Vaccine Laboratory, 59-3 Hwaam-dong, Yuseong-gu, Daejeon 305-348, Republic of Korea
| | - Tae Oh Cho
- Marine Bio Research Center, Department of Life Science, Chosun University, Gwangju 501-759, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
34
|
Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. PHYTOCHEMISTRY REVIEWS 2016. [PMID: 0 DOI: 10.1007/s11101-014-9387-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
35
|
Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2015; 14:57-80. [PMID: 26567957 DOI: 10.1586/14787210.2016.1120670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.
Collapse
Affiliation(s)
| | - Hamid Reza Sodagari
- b Young Researchers and Elite Club , Karaj Branch, Islamic Azad University , Karaj , Iran
| | - Mohammad Hosein Farzaei
- c Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- e Medicinal Plants Research Center , Institute of Medicinal Plants, ACECR , Karaj , Iran.,f International Campus, ICTUMS, Tehran University of Medical Sciences , Tehran , Iran
| | - Maziar Gooshe
- g Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- h Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,i Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,j Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
36
|
Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res 2015; 29:1868-86. [PMID: 26462981 DOI: 10.1002/ptr.5487] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/25/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023]
Abstract
The roots and rhizomes of various species of the perennial herb licorice (Glycyrrhiza) are used in traditional medicine for the treatment of several diseases. In experimental and clinical studies, licorice has been shown to have several pharmacological properties including antiinflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective, and cardioprotective effects. In recent years, several of the biochemical, molecular, and cellular mechanisms of licorice and its active components have also been demonstrated in experimental studies. In this review, we summarized the new phytochemical, pharmacological, and toxicological data from recent experimental and clinical studies of licorice and its bioactive constituents after our previous published review.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran
| |
Collapse
|
37
|
Lee GY, Kim JH, Choi SK, Kim YH. Constituents of the seeds of Cassia tora with inhibitory activity on soluble expoxide hydrolease. Bioorg Med Chem Lett 2015; 25:5097-101. [PMID: 26483136 DOI: 10.1016/j.bmcl.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Efforts to extract soluble epoxide hydrolase (sEH) inhibitors from food sources through bioactivity-guided fractionation of Cassia tora seed extracts led to the isolation of one new compound, 1, and 15 known compounds, 2-16. Structural elucidations were performed using 1D/2D NMR spectroscopy and mass spectrometry. Compounds 1, 3, 4, 6, 10, 11, and 13-16 exhibited inhibitory activities on sEH with IC50 values of 2.2±2.1-40.6±3.4 μM. Compound 13 was particularly active and exhibited a reversible-uncompetitive behavior in enzyme kinetic studies. A binding site on the enzyme for compound 13 was also predicted by Autodock 4.2 simulations.
Collapse
Affiliation(s)
- Ga Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Seung-Kook Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
38
|
The Flavonoid Isoliquiritigenin Reduces Lung Inflammation and Mouse Morbidity during Influenza Virus Infection. Antimicrob Agents Chemother 2015; 59:6317-27. [PMID: 26248373 DOI: 10.1128/aac.01098-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/21/2015] [Indexed: 01/21/2023] Open
Abstract
The host response to influenza virus infection is characterized by an acute lung inflammatory response in which intense inflammatory cell recruitment, hypercytokinemia, and a high level of oxidative stress are present. The sum of these events contributes to the virus-induced lung damage that leads to high a level of morbidity and mortality in susceptible infected patients. In this context, we identified compounds that can simultaneously reduce the excessive inflammatory response and the viral replication as a strategy to treat influenza virus infection. We investigated the anti-inflammatory and antiviral potential activities of isoliquiritigenin (ILG). Interestingly, we demonstrated that ILG is a potent inhibitor of influenza virus replication in human bronchial epithelial cells (50% effective concentration [EC50] = 24.7 μM). In addition, our results showed that this molecule inhibits the expression of inflammatory cytokines induced after the infection of cells with influenza virus. We demonstrated that the anti-inflammatory activity of ILG in the context of influenza virus infection is dependent on the activation of the peroxisome proliferator-activated receptor gamma pathway. Interestingly, ILG phosphate (ILG-p)-treated mice displayed decreased lung inflammation as depicted by reduced cytokine gene expression and inflammatory cell recruitment. We also demonstrated that influenza virus-specific CD8(+) effector T cell recruitment was reduced up to 60% in the lungs of mice treated with ILG-p (10 mg/kg) compared to that in saline-treated mice. Finally, we showed that administration of ILG-p reduced lung viral titers and morbidity of mice infected with the PR8/H1N1 virus.
Collapse
|
39
|
Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, Shen J, Chen J. A Review: The Pharmacology of Isoliquiritigenin. Phytother Res 2015; 29:969-77. [DOI: 10.1002/ptr.5348] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/06/2015] [Accepted: 03/13/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Fu Peng
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Qiaohui Du
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Neng Wang
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
| | - Hailin Tang
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Guangdong China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Guangdong China
| | - Jiangang Shen
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
| | - Jianping Chen
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| |
Collapse
|
40
|
Ma X, Yu Q, Guo X, Zeng K, Zhao M, Tu P, Jiang Y. Nitric oxide inhibitory flavonoids from traditional Chinese medicine formula Baoyuan Decoction. Fitoterapia 2015; 103:252-9. [PMID: 25889071 DOI: 10.1016/j.fitote.2015.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
Three new flavonoid glycosides, (3R)-(+)-isomucronulatol-2'-O-β-D-glucopyranoside (1), (3R)-(-)-isomucronulatol-7-O-β-D-apiofuranosyl(1→2)-β-D-glucopyranoside (2), and (2S)-(-)-7,8-dihydroxylflavanone-4'-O-β-D-apiofuranosyl(1→2)-β-D-glucopyranoside (3), along with eight flavanones (4, 8, 10, 12, 15, 16, 21, and 24), four isoflavones (5, 11, 13, and 23), four chalcones (6, 14, 17, and 18), two isoflavans (19-20), one flavone (7), one flavonol (9), and one dihydrochalcone (22) were isolated from Baoyuan Decoction (BYD), a traditional Chinese medicine formula. The structures of the new compounds were established by detailed analysis of NMR and HRESIMS spectroscopic data, and their absolute configurations were determined by electronic circular dichroism (ECD) data. The inhibitory effects of the isolates were evaluated on nitric oxide production in lipopolysaccharide activated RAW 264.7 macrophage cells. Compounds 6, 9, and 10 showed the significant inhibitory activities, with IC50 values of 1.4, 13.8, and 9.3 μM, respectively, comparable to or even better than the positive control, quercetin (IC50, 16.5 μM). The assignment of these isolated flavonoids was achieved using UPLC-Q-trap-MS, and the results suggested that they were originated from Astragalus membranaceus and Glycyrrhiza uralensis.
Collapse
Affiliation(s)
- Xiaoli Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Qian Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Mingbo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
41
|
Tsai YC, Hsu CC, El-Shazly M, Chiang SY, Wu CC, Wu CC, Lai WC, Yen MH, Wu YC, Chang FR. Phytochemicals and Estrogen-Receptor Agonists from the Aerial Parts of Liriope platyphylla. Molecules 2015; 20:6844-55. [PMID: 25913925 PMCID: PMC6272546 DOI: 10.3390/molecules20046844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
One new benzofuran, (2R)-(2',4'-dihydroxybenzyl)-6,7-methylenedioxy-2,3-dihydrobenzofuran (1), one new phenylisocoumarin, 3-(2'-hydroxyphenyl)-6,8-dihydroxy-7-methoxy-isocoumarin (2), and one new benzofuroisocoumarin, platyphyllarin C (3), were isolated from the ethanolic extract of Liriope platyphylla aerial parts, along with seventeen known compounds. The structures of the isolates were established by spectroscopic analysis and comparison with the literature data. The results indicated that structures 1-3 are uncommon in Nature. Benzofuroisocoumarin 4, flavonoids 9, 10, and 13-15, and homoisoflavonoids 19 and 20 exhibited significant binding activity to estrogen-receptor α and/or β as demonstrated by the SEAP reporter assay system in an MCF-7 cell-line.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Chun Hsu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Laboratory Medicine, Paochien Care Cooperation Paochien Hospital, Pingtung 900, Taiwan.
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
| | - Shang-Yu Chiang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chau-Chung Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wan-Chun Lai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Research Center for Natural Product and New Drug, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 807, Taiwan.
| |
Collapse
|
42
|
Wang Q, Qiao X, Qian Y, Liu CF, Yang YF, Ji S, Li J, Guo DA, Ye M. Metabolites identification of glycyrin and glycyrol, bioactive coumarins from licorice. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 983-984:39-46. [DOI: 10.1016/j.jchromb.2014.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
43
|
Tambunan USF, Rachmania RA, Parikesit AA. In silico modification of oseltamivir as neuraminidase inhibitor of influenza A virus subtype H1N1. J Biomed Res 2014; 29:150-9. [PMID: 25859271 PMCID: PMC4389116 DOI: 10.7555/jbr.29.20130024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 08/18/2014] [Indexed: 11/28/2022] Open
Abstract
This research focused on the modification of the functional groups of oseltamivir as neuraminidase inhibitor against influenza A virus subtype H1N1. Interactions of three of the best ligands were evaluated in the hydrated state using molecular dynamics simulation at two different temperatures. The docking result showed that AD3BF2D ligand (N-[(1S,6R)-5-amino-5-{[(2R,3S,4S)-3,4-dihydroxy-4-(hydroxymethyl) tetrahydrofuran-2-yl]oxy}-4-formylcyclohex-3-en-1-yl]acetamide-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate) had better binding energy values than standard oseltamivir. AD3BF2D had several interactions, including hydrogen bonds, with the residues in the catalytic site of neuraminidase as identified by molecular dynamics simulation. The results showed that AD3BF2D ligand can be used as a good candidate for neuraminidase inhibitor to cope with influenza A virus subtype H1N1.
Collapse
Affiliation(s)
- Usman Sumo Friend Tambunan
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok Campus, Depok 16424, Indonesia
| | - Rizky Archintya Rachmania
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok Campus, Depok 16424, Indonesia
| | - Arli Aditya Parikesit
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok Campus, Depok 16424, Indonesia
| |
Collapse
|
44
|
Kim JH, Ryu YB, Lee WS, Kim YH. Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalis turtschaninovii rhizome. Bioorg Med Chem 2014; 22:6047-52. [PMID: 25277281 DOI: 10.1016/j.bmc.2014.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
Clostridium perfringens is a Gram-positive spore-forming bacterium that causes food poisoning. The neuraminidase (NA) protein of C. perfringens plays a pivotal role in bacterial proliferation and is considered a novel antibacterial drug target. Based on screens for novel NA inhibitors, a 95% EtOH extract of Corydalis turtschaninovii rhizome showed NA inhibitory activity (68% at 30 μg/ml), which resulted in the isolation of 10 isoquinoline alkaloids; namely, palmatine (1), berberine (2), coptisine (3), pseudodehydrocorydaline (4), jatrorrhizine (5), dehydrocorybulbine (6), pseudocoptisine (7), glaucine (8), corydaline (9) and tetrahydrocoptisine (10). Interestingly, seven quaternary isoquinoline alkaloids 1-7 (IC50 = 12.8 ± 1.5 to 65.2 ± 4.5 μM) showed stronger NA inhibitory activity than the tertiary alkaloids 8-10. In addition, highly active compounds 1 and 2 showed reversible non-competitive behavior based on a kinetic study. Molecular docking simulations using the Autodock 4.2 software increased our understanding of receptor-ligand binding of these compounds. In addition, we demonstrated that compounds 1 and 2 suppressed bacterial growth.
Collapse
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young Bae Ryu
- Infection Control Material Research Center and AI Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Republic of Korea
| | - Woo Song Lee
- Infection Control Material Research Center and AI Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Republic of Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
45
|
Kim JH, Shin HK, Seo CS. Chemical interaction between Paeonia lactiflora and Glycyrrhiza uralensis, the components of Jakyakgamcho-tang, using a validated high-performance liquid chromatography method: herbal combination and chemical interaction in a decoction. J Sep Sci 2014; 37:2704-15. [PMID: 25044951 PMCID: PMC4285307 DOI: 10.1002/jssc.201400522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/25/2022]
Abstract
The herbal combination is the basic unit of a herbal formula that affects the chemical characteristics of individual herbs. In the present study, a method of simultaneous determination of the 11 marker compounds in Jakyakgamcho-tang was developed using high-performance liquid chromatography with photodiode array detection. The validated analytical method was successfully applied to approach the chemical interaction between Paeonia lactiflora and Glycyrrhiza uralensis in co-decoction. In P. lactiflora, the contents of gallic acid, oxypaeoniflorin, (+)-catechin, paeoniflorin, and benzoylpaeoniflorin were decreased, while those of albiflorin and benzoic acid were increased; in G. uralensis, the contents of liquiritin, isoliquiritin, ononin, and glycyrrhizin were decreased, when decocting two herbs together. Moreover, as the ratio between P. lactiflora and G. uralensis was increased, the contents of chemical contents from each herb were proportionally increased. However, each content of marker compound per the gram of herbal medicine was decreased as the ratio of combinative herbs increased. The results showed that P. lactiflora and G. uralensis affect the extraction efficiency of chemical compounds in a Jakyakgamcho-tang decoction. Overall, the method established in this study was simple, rapid, and accurate, and would be useful for the determination of marker compounds and for the investigation of the chemical interaction between herbal medicines.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental MedicineDaejeon, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental MedicineDaejeon, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental MedicineDaejeon, Republic of Korea
| |
Collapse
|
46
|
Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase. Bioorg Med Chem Lett 2014; 24:4312-7. [PMID: 25096296 DOI: 10.1016/j.bmcl.2014.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/21/2022]
Abstract
The constant risk of emerging new influenza virus strains that are resistant to established inhibitors like oseltamivir leaves influenza neuraminidase (NA) a prominent target for drug design. The inhibitory activity of several flavonoid derivatives was experimentally tested in comparison to oseltamivir for the NA expressed by the seasonal influenza virus strains A/California/7/09 (A(H1N1)pdm09), A/Perth/16/09 (A(H3N2)), and B/Brisbane/60/08. IC50 values of polyphenols confirmed moderate inhibition in the μM range. Structurally, the amount and site of glycosylation of tested flavonoids have no significant influence on their inhibitory potency. In a pharmacophore-based docking approach the structure-activity relationship was evaluated. Molecular dynamics simulations revealed highly flexible parts of the enzyme and the contribution of salt bridges to the structural stability of NA. The findings of this study elucidate the impact of flavonoids on viral neuraminidase activity and the analysis of their modes of action provide valuable information about the mechanism of NA inhibition.
Collapse
|
47
|
Xiao J, Chen T, Cao H. WITHDRAWN: Flavonoid glycosylation and biological benefits. Biotechnol Adv 2014:S0734-9750(14)00092-5. [PMID: 24858477 DOI: 10.1016/j.biotechadv.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 01/16/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jianbo Xiao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, China; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Anhui Academy of Applied Technology, Suixi Road 312, 230031 Hefei, Anhui, China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China
| | - Hui Cao
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China.
| |
Collapse
|
48
|
Frimayanti N, Lee VS, Zain SM, Wahab HA, Abd. Rahman N. 2D, 3D-QSAR, and pharmacophore studies on thiazolidine-4-carboxylic acid derivatives as neuraminidase inhibitors in H3N2 influenza virus. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0750-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Zhou Z, Liu H, Li Y, Liu J, Li Y, Liu J, Yao J, Wang C. Novel synthesis of substituted furo[3,2-c]chromen-4-ones via four-component reaction from substituted nitrostyrenes, aromatic aldehydes, coumarins, and ammonium acetate. ACS COMBINATORIAL SCIENCE 2013; 15:363-9. [PMID: 23772749 DOI: 10.1021/co4000419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and direct synthesis of 2-arylideneamino-3-aryl-4H-furo[3,2-c]chromen-4-ones has been developed via four-component reaction from substituted nitrostyrenes, aromatic aldehydes, coumarins, and ammonium acetate under very mild conditions, which involves sequentially a Michael addition, an aza-nucleophilic addition, of the imine to the double bond, an intermolecular nucleophilic addition and a dehydration reaction. The resulting biologically intriguing structures could have broad applications in related biomedical-program structures.
Collapse
Affiliation(s)
- Zhengquan Zhou
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Yun Li
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Juanjuan Liu
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Yan Li
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Jinliang Liu
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Juan Yao
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical
Engineering, Yangzhou University, 180 Siwangting
Street, Yangzhou
225002, Jiangsu, P. R. China
| |
Collapse
|
50
|
Palladium-Catalyzed Three-Component Coupling Reaction of Benzyl Chlorides, Allyltributylstannane, and Carbon Monoxide: Efficient Synthesis of α,β-Unsaturated Ketones. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.3724/sp.j.1088.2012.10930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|