1
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Calcaterra V, Vandoni M, Bianchi A, Pirazzi A, Tiranini L, Baldassarre P, Diotti M, Cavallo C, Nappi RE, Zuccotti G. Menstrual Dysfunction in Adolescent Female Athletes. Sports (Basel) 2024; 12:245. [PMID: 39330722 PMCID: PMC11435995 DOI: 10.3390/sports12090245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Despite the benefits of exercise on mental and physical health, excessive training loads can lead to health problems in the long term, including a wide spectrum of menstrual dysfunction (MD). This narrative review aims to analyze the relationship between physical exercise and MD in adolescent female athletes to support regular menstrual health monitoring and promote educational programs on reproductive risks. When dealing with MD in young athletes, several factors entangled with maturation of the hypothalamus-pituitary-ovarian axis should be considered. Firstly, some disciplines seem to have a higher prevalence of MD due to the high loads of training regimes and the early introduction of athletes to a competitive career. Moreover, low energy intake and a low body mass index appear to exacerbate existing MD. Lastly, disordered eating behaviors and psychological stress can contribute to MD in female athletes. The type of sport, influencing the intensity and duration of exercise, as well as individual psycho-physiological and environmental factors, may influence the role of physical activity in the manifestation of MD. Early recognition and management of MD, along with collaboration between sports organizations and health professionals, are crucial to minimize risks, ensure proper nutrition, and balance training with recovery. Keeping an open discussion on the topic may prospectively improve awareness, early diagnosis, and treatment strategies, as well as reduce injury risk and enhance sports performance.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Alice Bianchi
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Agnese Pirazzi
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Lara Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paola Baldassarre
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Marianna Diotti
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Caterina Cavallo
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
| |
Collapse
|
3
|
Ihalainen JK, Mikkonen RS, Ackerman KE, Heikura IA, Mjøsund K, Valtonen M, Hackney AC. Beyond Menstrual Dysfunction: Does Altered Endocrine Function Caused by Problematic Low Energy Availability Impair Health and Sports Performance in Female Athletes? Sports Med 2024; 54:2267-2289. [PMID: 38995599 PMCID: PMC11393114 DOI: 10.1007/s40279-024-02065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Low energy availability, particularly when problematic (i.e., prolonged and/or severe), has numerous negative consequences for health and sports performance as characterized in relative energy deficiency in sport. These consequences may be driven by disturbances in endocrine function, although scientific evidence clearly linking endocrine dysfunction to decreased sports performance and blunted or diminished training adaptations is limited. We describe how low energy availability-induced changes in sex hormones manifest as menstrual dysfunction and accompanying hormonal dysfunction in other endocrine axes that lead to adverse health outcomes, including negative bone health, impaired metabolic activity, undesired outcomes for body composition, altered immune response, problematic cardiovascular outcomes, iron deficiency, as well as impaired endurance performance and force production, all of which ultimately may influence athlete health and performance. Where identifiable menstrual dysfunction indicates hypothalamic-pituitary-ovarian axis dysfunction, concomitant disturbances in other hormonal axes and their impact on the athlete's health and sports performance must be recognized as well. Given that the margin between podium positions and "losing" in competitive sports can be very small, several important questions regarding low energy availability, endocrinology, and the mechanisms behind impaired training adaptations and sports performance have yet to be explored.
Collapse
Affiliation(s)
- Johanna K Ihalainen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland.
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland.
| | - Ritva S Mikkonen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ida A Heikura
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Katja Mjøsund
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
- National Olympic Training Centre Helsinki, Helsinki, Finland
| | - Maarit Valtonen
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Rozzell-Voss KN, Becker KR, Tabri N, Dreier MJ, Wang SB, Kuhnle M, Gydus J, Burton-Murray H, Breithaupt L, Plessow F, Franko D, Hauser K, Asanza E, Misra M, Eddy KT, Holsen L, Micali N, Thomas JJ, Lawson EA. Trajectory of ghrelin and PYY around a test meal in males and females with avoidant/restrictive food intake disorder versus healthy controls. Psychoneuroendocrinology 2024; 167:107063. [PMID: 38896990 PMCID: PMC11341102 DOI: 10.1016/j.psyneuen.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/30/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024]
Abstract
Disruptions in appetite-regulating hormones may contribute to the development and/or maintenance of avoidant/restrictive food intake disorder (ARFID). No study has previously assessed fasting levels of orexigenic ghrelin or anorexigenic peptide YY (PYY), nor their trajectory in response to food intake among youth with ARFID across the weight spectrum. We measured fasting and postprandial (30, 60, 120 minutes post-meal) levels of ghrelin and PYY among 127 males and females with full and subthreshold ARFID (n = 95) and healthy controls (HC; n = 32). We used latent growth curve analyses to examine differences in the trajectories of ghrelin and PYY between ARFID and HC. Fasting levels of ghrelin did not differ in ARFID compared to HC. Among ARFID, ghrelin levels declined more gradually than among HC in the first hour post meal (p =.005), but continued to decline between 60 and 120 minutes post meal, whereas HC plateaued (p =.005). Fasting and PYY trajectory did not differ by group. Findings did not change after adjusting for BMI percentile (M(SD)ARFID = 37(35); M(SD)HC = 53(26); p =.006) or calories consumed during the test meal (M(SD)ARFID = 294(118); M(SD)HC = 384 (48); p <.001). These data highlight a distinct trajectory of ghrelin following a test meal in youth with ARFID. Future research should examine ghrelin dysfunction as an etiological or maintenance factor of ARFID.
Collapse
Affiliation(s)
- Kaitlin N Rozzell-Voss
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Kendra R Becker
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative.
| | - Nassim Tabri
- Department of Psychology, Carleton University, Ottawa, ON, Canada; Mental Health and Well-Being Research and Training Hub, Carleton University, Ottawa, ON, Canada
| | - Melissa J Dreier
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Shirley B Wang
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Megan Kuhnle
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Julia Gydus
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Helen Burton-Murray
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Department of Medicine, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Franziska Plessow
- Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Debra Franko
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States
| | - Kristine Hauser
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Elisa Asanza
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Laura Holsen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Nadia Micali
- Department of Psychiatry, University of Geneva, Switzerland; Department of Pediatrics Gynecology and Obstetrics, University of Geneva, Switzerland; GOSH Institute of Child Health, University College London, United Kingdom
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| | - Elizabeth A Lawson
- Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States; Mass General Brigham Multidisciplinary Eating Disorder Research Collaborative
| |
Collapse
|
5
|
Pechmann LM, Pinheiro FI, Andrade VFC, Moreira CA. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: a review. Diabetol Metab Syndr 2024; 16:175. [PMID: 39054499 PMCID: PMC11270814 DOI: 10.1186/s13098-024-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP-4) plays a crucial role in breaking down various substrates. It also has effects on the insulin signaling pathway, contributing to insulin resistance, and involvement in inflammatory processes like obesity and type 2 diabetes mellitus. Emerging effects of DPP-4 on bone metabolism include an inverse relationship between DPP-4 activity levels and bone mineral density, along with an increased risk of fractures. MAIN BODY The influence of DPP-4 on bone metabolism occurs through two axes. The entero-endocrine-osseous axis involves gastrointestinal substrates for DPP-4, including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). Studies suggest that supraphysiological doses of exogenous GLP-2 has a significant inhibitory effect on bone resorption, however the specific mechanism by which GLP-2 influences bone metabolism remains unknown. Of these, GIP stands out for its role in bone formation. Other gastrointestinal DPP-4 substrates are pancreatic peptide YY and neuropeptide Y-both bind to the same receptors and appear to increase bone resorption and decrease bone formation. Adipokines (e.g., leptin and adiponectin) are regulated by DPP-4 and may influence bone remodeling and energy metabolism in a paracrine manner. The pancreatic-endocrine-osseous axis involves a potential link between DPP-4, bone, and energy metabolism through the receptor activator of nuclear factor kappa B ligand (RANKL), which induces DPP-4 expression in osteoclasts, leading to decreased GLP-1 levels and increased blood glucose levels. Inhibitors of DPP-4 participate in the pancreatic-endocrine-osseous axis by increasing endogenous GLP-1. In addition to their glycemic effects, DPP-4 inhibitors have the potential to decrease bone resorption, increase bone formation, and reduce the incidence of osteoporosis and fractures. Still, many questions on the interactions between DPP-4 and bone remain unanswered, particularly regarding the effects of DPP-4 inhibition on the skeleton of older individuals. CONCLUSION The elucidation of the intricate interactions and impact of DPP-4 on bone is paramount for a proper understanding of the body's mechanisms in regulating bone homeostasis and responses to internal stimuli. This understanding bears significant implications in the investigation of conditions like osteoporosis, in which disruptions to these signaling pathways occur. Further research is essential to uncover the full extent of DPP-4's effects on bone metabolism and energy regulation, paving the way for novel therapeutic interventions targeting these pathways, particularly in older individuals.
Collapse
Affiliation(s)
- L M Pechmann
- Universidade Federal do Paraná, Setor de Ciências da Saúde, Endocrine Division (SEMPR), Centro de Diabetes Curitiba, Academic Research Center Pro Renal Institute, Curitiba, Brazil.
| | - F I Pinheiro
- Biotechnology at Universidade Potiguar and Discipline of Ophthalmology at the Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - V F C Andrade
- Academic Research Center Pro Renal Institute, Endocrine Division, Hospital de Cínicas da Universidade Federal do Paraná (SEMPR), Curitiba, Brazil
| | - C A Moreira
- Academic Research Center Pro Renal Institute, Endocrine Division, Hospital de Clinicas da Universidade Federal do Paraná ( SEMPR), Curitiba, Brazil
| |
Collapse
|
6
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Cacciatore C, Cangiano B, Carbone E, Spagnoli S, Cid Ramirez MP, Polli N, Bonomi M, Persani L. Body weight variation is not an independent factor in the determination of functional hypothalamic amenorrhea in anorexia nervosa. J Endocrinol Invest 2024; 47:903-911. [PMID: 37812282 DOI: 10.1007/s40618-023-02207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Functional hypothalamic amenorrhea (FHA) is one of the foremost manifestations in anorexia nervosa (AN), but a subset of patients have menses despite marked weight loss and underweight. The aim of our study was to investigate parameters potentially influencing FHA in AN. DESIGN AND METHODS In this observational retrospective study, we selected 114 female patients with AN who completed a 12 months semi-residential rehabilitation program and a subsequent 12 months outpatient follow-up. We divided our sample into three groups: "Group 0" patients who experienced FHA and recovered their menses, "Group 1" persistent FHA, "Group 2" never experienced FHA, and looked for clinical and hormonal correlations. RESULTS At the enrollment, the BMI was higher in Group 2 than in Group 1 (p = 0.0202), but the last follow-up weight was higher in Group 1 (p < 0.0001) despite persistent amenorrhea. At logistic regression, the higher BMI at which patients experienced amenorrhea was the main prediction factor for persistent FHA. Notwithstanding comparable leptin levels at admission, they improved significantly at discharge only in Groups 0 and 2 (p = 0.0054 and p = 0.0104, respectively). FT3 at admission was significantly higher in Group 2 than in Group 0 (p = 0.0249). CONCLUSIONS FHA does not correlate strictly with body weight variations in AN patients, indicating a multifactorial origin, likely including an individual predisposition. Higher FT3 levels identify patients who continue having menses at extremely low BMI. AN patients with persistent FHA constitute a subgroup in whom estroprogestins should be considered after significant weight recovery to prevent prolonged tissue hypoestrogenism.
Collapse
Affiliation(s)
- C Cacciatore
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - B Cangiano
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20100, Milan, Italy
| | - E Carbone
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - S Spagnoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - M P Cid Ramirez
- Secciòn Endocrinologia y Diabetes, Hospital Clìnico Universidad del Chile, Santiago, Chile
| | - N Polli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - M Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20100, Milan, Italy
| | - L Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20100, Milan, Italy.
| |
Collapse
|
8
|
Ito E, Sato Y, Kobayashi T, Soma T, Matsumoto T, Kimura A, Miyamoto K, Matsumoto H, Matsumoto M, Nakamura M, Sato K, Miyamoto T. Low energy availability reduces bone mass and gonadal function in male mice. J Bone Miner Metab 2023; 41:182-192. [PMID: 36914793 DOI: 10.1007/s00774-023-01413-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION In women, the female athlete triad, marked by low energy availability, functional hypothalamic amenorrhea and osteoporosis, is a recognized risk for stress fractures. Stress injuries also occur in men, but by contrast risks and mechanisms underlying them are less characterized. MATERIALS AND METHODS 5 week-old wild-type male mice were fed ad libitum (ad) or subjected to 60% food restriction (FR) for five weeks. In both groups, some mice were allowed access to an exercise wheel in cages to allow voluntary wheel running (ex) and/or treated with active vitamin D analogues. Mice were sacrificed and analyzed at 10 weeks of age. RESULT Male FR mice exhibited significantly reduced testicle weight, serum testosterone levels and bone mass. Such bone losses in FR male mice were enhanced by exercise. Histological analysis revealed that both bone-resorbing and -forming activities were significantly reduced in FR or FR plus exercise (FR + ex) mice, mimicking a state of low bone turnover. Significantly reduced bone mass in FR or FR + ex male mice was significantly rescued by treatment with active vitamin D analogues, with significant restoration of osteoblastic activities. Serum levels of insulin-like growth factor I (IGF-I), which is critical for bone remodeling, were significantly lower in FR versus control male mice. CONCLUSIONS Low energy availability puts men at risk for stress injuries as well, and low energy availability is upstream of gonadal dysfunction and osteoporosis in males. Active vitamin D analogues could serve as therapeutic or preventive options for stress injuries in men.
Collapse
Affiliation(s)
- Eri Ito
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomoya Soma
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuaki Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atushi Kimura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hideo Matsumoto
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
9
|
Zahedi B, Daley EJ, Brooks DJ, Bruce M, Townsend RL, Berthoud HR, Bouxsein ML, Yu EW. The PYY/Y2R-deficient male mouse is not protected from bone loss due to Roux-en-Y gastric bypass. Bone 2023; 167:116608. [PMID: 36368466 PMCID: PMC10064867 DOI: 10.1016/j.bone.2022.116608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Peptide YY (PYY) is an anorexigenic gut hormone that also has anti-osteogenic effects, inhibiting osteoblastic activity and inducing catabolic effects. It has been postulated that increases in PYY after Roux-en-Y gastric bypass (RYGB) contribute to declines in bone mineral density (BMD) and increases in bone turnover. The aim of this study is to determine the role of the PYY Y2-receptor in mediating bone loss post-RYGB in mice. METHODS We compared adult male wildtype (WT) and PYY Y2 receptor-deficient (KO) C57BL/6 mice that received RYGB (WT: n = 8; KO: n = 9), with sham-operated mice (Sham; WT: n = 9; KO: n = 10) and mice that were food-restricted to match the weights of the RYGB-treated group (Weight-Matched, WM; WT: n = 7; KO: n = 5). RYGB or sham surgery was performed at 15-16 weeks of age, and mice sacrificed 21 weeks later. We characterized bone microarchitecture with micro-computed tomography (μCT) at the distal femur (trabecular) and femoral midshaft (cortical). Differences in body weight, bone microarchitecture and biochemical bone markers (parathyroid hormone, PTH; C-telopeptide, CTX; and type 1 procollagen, P1NP) were compared using 2-factor ANOVA with Tukey's adjustments for multiple comparisons. RESULTS Body weights were similar in the WT-RYGB, WT-WM, KO-RYGB, and KO-WM: 41-44 g; these groups weighed significantly less than the Sham surgery groups: 55-57 g. Trabecular BMD was 31-43 % lower in RYGB mice than either Sham or WM in WT and KO groups. This deficiency in trabecular bone was accompanied by a lower trabecular number (19 %-23 %), thickness (22 %-30 %) and increased trabecular spacing (25 %-34 %) in WT and KO groups (p < 0.001 for all comparisons vs. RYGB). RYGB led to lower cortical thickness, cortical tissue mineral density, and cortical bone area fraction as compared to Sham and WM in WT and KO groups (p ≤ 0.004 for all). There were no interactions between genotype and bone microarchitecture, with patterns of response to RYGB similar in both WT and KO groups. CTX and P1NP were significantly higher in RYGB mice than WM in WT and KO groups. PTH did not differ among groups. CONCLUSIONS RYGB induced greater trabecular and cortical deficits and high bone turnover than observed in weight-matched mice, with a similar pattern in the WT and Y2RKO mice. Thus, skeletal effects of RYGB are independent of weight loss, and furthermore, PYY signaling through Y2R is not a key mediator of bone loss post-RYGB.
Collapse
Affiliation(s)
- Bita Zahedi
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States of America.
| | - Eileen J Daley
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - R Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Elaine W Yu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States of America
| |
Collapse
|
10
|
Pedreira CC, Maya J, Misra M. Functional hypothalamic amenorrhea: Impact on bone and neuropsychiatric outcomes. Front Endocrinol (Lausanne) 2022; 13:953180. [PMID: 35937789 PMCID: PMC9355702 DOI: 10.3389/fendo.2022.953180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Functional hypothalamic amenorrhea is a state of reversible hypogonadism common in adolescents and young women that can be triggered by energy deficit or emotional stress or a combination of these factors. Energy deficit may be a consequence of (i) reduced caloric intake, as seen in patients with eating disorders, such as anorexia nervosa, or (ii) excessive exercise, when caloric intake is insufficient to meet the needs of energy expenditure. In these conditions of energy deficit, suppression of the hypothalamic secretion of gonadotrophin-releasing hormone (with resulting hypoestrogenism) as well as other changes in hypothalamic-pituitary function may occur as an adaptive response to limited energy availability. Many of these adaptive changes, however, are deleterious to reproductive, skeletal, and neuropsychiatric health. Particularly, normoestrogenemia is critical for normal bone accrual during adolescence, and hypoestrogenemia during this time may lead to deficits in peak bone mass acquisition with longstanding effects on skeletal health. The adolescent years are also a time of neurological changes that impact cognitive function, and anxiety and depression present more frequently during this time. Normal estrogen status is essential for optimal cognitive function (particularly verbal memory and executive function) and may impact emotion and mood. Early recognition of women at high risk of developing hypothalamic amenorrhea and its timely management with a multidisciplinary team are crucial to prevent the severe and long-term effects of this condition.
Collapse
Affiliation(s)
- Clarissa Carvalho Pedreira
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuroendocrine Unit, Center for Endocrinology and Diabetes of Bahia State, Salvador, Brazil
| | - Jacqueline Maya
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Vasto S, Amato A, Proia P, Baldassano S. Is the Secret in the Gut? SuperJump Activity Improves Bone Remodeling and Glucose Homeostasis by GLP-1 and GIP Peptides in Eumenorrheic Women. BIOLOGY 2022; 11:296. [PMID: 35205162 PMCID: PMC8869418 DOI: 10.3390/biology11020296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023]
Abstract
We showed that twenty weeks of SuperJump activity, an innovative workout training performed on an elastic minitrampoline, reduced bone resorption and increased bone formation in eumenorrheic women acting on the key points of the regulation of bone metabolism. The present study analyzed whether the gastrointestinal hormones are involved in the mechanism of action and if it has an impact on glucose homeostasis. The control group was composed of twelve women, similar to the exercise group that performed SuperJump activity for twenty weeks. The analysis was performed on blood samples and investigated GLP-1, GIP, GLP-2, PYY, ghrelin, glucose, insulin, insulin resistance, β-cell function, and insulin sensitivity. The results showed that the activity contributes to raising the GLP-1and GIP levels, and not on GLP-2, PYY, and ghrelin, which did not change. Moreover, SuperJump activity significantly reduced fasting insulin, glucose, insulin resistance, and increased insulin sensitivity but did not affect beta cell function. These data suggest that GLP-1, and GIP are involved in the mechanism of action that improves bone and glucose homeostasis following 20 weeks of SuperJump activity in eumenorrheic women.
Collapse
Affiliation(s)
- Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Alessandra Amato
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Adolescence and young adulthood are a critical period in the life of women for optimizing long-term bone health. Young athletes lead a demanding lifestyle with increased dietary requirements to meet the robust demands of energy expenditure to maintain a state of energy balance. During a time of fast paced changes and unpredictable societal demands on young athletes, it is important to review the severe consequences of energy deficiency and options for adequate management. RECENT FINDINGS This review focuses on hormonal adaptations that occur in energy deficient female athletes that lead to menstrual irregularities and impaired bone health, increasing the risk for stress and other fractures. We also describe management strategies to mitigate the consequences of limited energy availability on bone and other outcomes. SUMMARY These strategies should help guide the management of young female athletes to prevent irreversible changes to their bone health. Identifying current knowledge should help increase awareness among medical providers, which can then be communicated to the sports community, parents, and athletes.
Collapse
Affiliation(s)
- Jacqueline Maya
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
13
|
Prevalence of Female Athlete Triad Risk Factors among Female International Volunteers and College Age-Matched Controls. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031223. [PMID: 35162245 PMCID: PMC8834590 DOI: 10.3390/ijerph19031223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022]
Abstract
This study retrospectively compared the prevalence of factors related to the female athlete triad (low energy availability, secondary amenorrhea (SA), low bone mineral density (BMD)), and post-study BMD of female college students and female international volunteer missionaries (volunteers). Female college students (21–26 years) completed a survey that retrospectively assessed an 18-month study period (volunteer service or first 18 months of college); Diet History Questionnaire III (DHQ III) and Dual-Energy X-ray Absorptiometry (DXA) scan were optional. One-way ANOVAs and chi-squared distributions assessed group differences. Logistic regression assessed covariates of SA and BMD; corresponding odds ratios (OR) and confidence intervals (CI) were calculated. Statistical significance was set at p < 0.001. 3683 participants (58.8% volunteers, 31.5% non-volunteers, 9.8% others) provided complete survey data; 246 completed the DHQ III, and 640 had a post-study DXA scan. Volunteers had higher metabolic equivalent (MET) hours than non-volunteers and others (p < 0.001), and higher prevalence of food insecurity (p < 0.001) and SA (p < 0.001). Volunteers had higher odds of SA (OR = 2.17, CI = 1.75–2.62) than non-volunteers. Weight loss, body satisfaction, “other” weight loss methods, increased MET hours, and vomiting during the study period increased participants’ odds of SA. Participants’ average BMD Z-scores were within the expected range at all sites, with no significant group differences. Volunteers’ higher MET hours and higher prevalence of food insecurity and SA did not result in significantly lower post-study period BMD.
Collapse
|
14
|
Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X, Tian L, Yu X. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne) 2022; 13:856954. [PMID: 35586625 PMCID: PMC9109619 DOI: 10.3389/fendo.2022.856954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various physiological and pathological processes ranging from glucose homeostasis, immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4 inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive attraction in many studies, indicating that DPP4 inhibitors may regulate bone homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines, bone cells, bone immune cells, and cytokines in skeleton system. This literature review shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be improved by decreasing DPP4 activities. The substantial evidence collected and analyzed in this review supports this implication.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Bing Fu
- Department of Medical Imaging, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Haibo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Hongyi Cao
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Xiang Chen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu,
| |
Collapse
|
15
|
Morrison AE, Fleming S, Levy MJ. A review of the pathophysiology of functional hypothalamic amenorrhoea in women subject to psychological stress, disordered eating, excessive exercise or a combination of these factors. Clin Endocrinol (Oxf) 2021; 95:229-238. [PMID: 33345352 DOI: 10.1111/cen.14399] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Functional hypothalamic amenorrhoea (FHA) is a common form of secondary amenorrhoea without an identifiable structural cause. Suppression of gonadotrophin-releasing hormone (GnRH) pulsatility results in reduced luteinizing hormone (LH) levels, with subsequent reduction in oestradiol, anovulation and cessation of menstruation. GnRH pulsatility suppression is a recognized complication of psychological stress, disordered eating, low body weight, excessive exercise or a combination of these factors. PATHOPHYSIOLOGY OF FHA Individuals with FHA demonstrate low energy availability (EA), body fat percentage and energy expenditure. Documented adipocytokine changes notably, raised adiponectin, ghrelin, PYY, and decreased leptin, are associated with GnRH suppression. Other endocrine responses seen in this low EA state include low insulin levels, low total T3, increased basal cortisol levels and a reduced response to corticotrophin-releasing hormone (CRH) administration. FHA is associated with raised growth hormone (GH) and low insulin-like growth factor (IGF-1), suggesting relative GH resistance. Kisspeptins are a group of polypeptides, recently discovered to play a major role in the regulation of the reproductive axis through influencing GnRH release. KNDy (kisspeptin/neurokinin B/dynorphin) act on GnRH neurons and a multitude of factors result in their release. IMPLICATIONS FOR FUTURE TREATMENT Management of FHA is imperative to prevent adverse outcomes in bone density, cardiovascular risk profile, psychological well-being and fertility. Outwith modification of nutritional intake and exercise, limited therapeutic strategies are currently available for women with FHA. Advancements in the understanding of the pathophysiological basis of this under-recognized and under-treated clinical entity will aid management and may result in the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Amy E Morrison
- Department of Endocrinology, University Hospitals of Leicester, Leicester, UK
| | - Suzannah Fleming
- Department of Endocrinology, University Hospitals of Leicester, Leicester, UK
| | - Miles J Levy
- Department of Endocrinology, University Hospitals of Leicester, Leicester, UK
- Department of Endocrinology, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Stellingwerff T, Heikura IA, Meeusen R, Bermon S, Seiler S, Mountjoy ML, Burke LM. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med 2021; 51:2251-2280. [PMID: 34181189 DOI: 10.1007/s40279-021-01491-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
The symptom similarities between training-overload (with or without an Overtraining Syndrome (OTS) diagnosis) and Relative Energy Deficiency in Sport (RED-S) are significant, with both initiating from a hypothalamic-pituitary origin, that can be influenced by low carbohydrate (CHO) and energy availability (EA). In this narrative review we wish to showcase that many of the negative outcomes of training-overload (with, or without an OTS diagnosis) may be primarily due to misdiagnosed under-fueling, or RED-S, via low EA and/or low CHO availability. Accordingly, we undertook an analysis of training-overload/OTS type studies that have also collected and analyzed for energy intake (EI), CHO, exercise energy expenditure (EEE) and/or EA. Eighteen of the 21 studies (86%) that met our criteria showed indications of an EA decrease or difference between two cohorts within a given study (n = 14 studies) or CHO availability decrease (n = 4 studies) during the training-overload/OTS period, resulting in both training-overload/OTS and RED-S symptom outcomes compared to control conditions. Furthermore, we demonstrate significantly similar symptom overlaps across much of the OTS (n = 57 studies) and RED-S/Female Athlete Triad (n = 88 studies) literature. It is important to note that the prevention of under-recovery is multi-factorial, but many aspects are based around EA and CHO availability. Herein we have demonstrated that OTS and RED-S have many shared pathways, symptoms, and diagnostic complexities. Substantial attention is required to increase the knowledge and awareness of RED-S, and to enhance the diagnostic accuracy of both OTS and RED-S, to allow clinicians to more accurately exclude LEA/RED-S from OTS diagnoses.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada.
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada.
| | - Ida A Heikura
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stéphane Bermon
- Université Côte d'Azur, LAMHESS Nice, Nice, France
- World Athletics, Health and Science Department, Monte Carlo, Monaco
| | - Stephen Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
- IOC Medical Commission Games Group, Lausanne, Switzerland
| | - Louise M Burke
- Australian Institute of Sport, Bruce, ACT, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Dipla K, Kraemer RR, Constantini NW, Hackney AC. Relative energy deficiency in sports (RED-S): elucidation of endocrine changes affecting the health of males and females. Hormones (Athens) 2021; 20:35-47. [PMID: 32557402 DOI: 10.1007/s42000-020-00214-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
The purpose of this review is to present a different perspective of the relative energy deficiency syndrome, to improve understanding of associated endocrine alterations, and to highlight the need for further research in this area. The term "female athlete triad" was coined over 25 years ago to describe three interrelated components: disordered eating, menstrual dysfunction, and low bone mass. The syndrome's etiology is attributed to energy intake deficiency relative to energy expenditure required for health, function, and daily living. Recently, it became clear that there was a need to broaden the term, as the disorder is not an issue of only three interrelated problems but of a whole spectrum of insults resulting from low energy availability (LEA; i.e., insufficient energy availability to cover basic physiological demands) that can potentially affect any exerciser, irrespective of gender. The new model, termed relative energy deficiency in sport (RED-S), has received greater scrutiny in sports medicine due to its effects on both health and performance in athletes of both sexes. RED-S results from low-energy diets (intentional or unintentional) and/or excessive exercise. Energy deficiency reduces hypothalamic pulsatile release of gonadotropin-releasing hormone, this impairing anterior pituitary release of gonadotropins. In women, reduced FSH and LH pulsatility produces hypoestrogenism, causing functional hypothalamic amenorrhea and decreased bone mass. In men, it reduces testosterone and negatively affects bone health. Moreover, LEA alters other hormonal pathways, causing physiological consequences, such as alteration of the thyroid hormone signaling pathways, leptin levels, carbohydrate metabolism, the growth hormone/insulin-like growth factor-1 axis, and sympathetic/parasympathetic tone. This review explains and clarifies the effects of RED-S in both sexes.
Collapse
Affiliation(s)
- Konstantina Dipla
- Department of Sports Science, Exercise Physiology and Biochemistry Laboratory, Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert R Kraemer
- Department of Kinesiology and Health Studies, Exercise Physiology Laboratory, Southeastern Louisiana University, Hammond, LA, USA.
| | - Naama W Constantini
- Heidi Rotberg Sport Medicine Center, Shaare Zedek Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
19
|
Mancuso C, Izquierdo A, Slattery M, Becker KR, Plessow F, Thomas JJ, Eddy KT, Lawson EA, Misra M. Changes in appetite-regulating hormones following food intake are associated with changes in reported appetite and a measure of hedonic eating in girls and young women with anorexia nervosa. Psychoneuroendocrinology 2020; 113:104556. [PMID: 31918391 PMCID: PMC7080573 DOI: 10.1016/j.psyneuen.2019.104556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/11/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Females with anorexia nervosa (AN) have higher ghrelin and peptide YY (PYY) and lower brain-derived neurotropic factor (BDNF) levels than controls, and differ in their perception of hunger cues. Studies have not examined appetite-regulating hormones in the context of homeostatic and hedonic appetite in AN. OBJECTIVE To examine whether alterations in appetite-regulating hormones following a standardized meal are associated with homeostatic and hedonic appetite in young females with AN vs. controls. METHODS 68 females (36 AN, 32 controls) 10-22 years old were enrolled. Ghrelin, PYY and BDNF levels were assessed before, and 30, 60 and 120 min following a 400-kilocalorie standardized breakfast. Visual Analog Scales (VAS) assessing prospective food consumption, hunger, satiety, and hedonic appetite were administered before and 20 min after breakfast. A Cookie Taste Test (CTT) was conducted after a snack as a measure of hedonic eating behavior ∼3 h after breakfast. RESULTS AN had higher fasting ghrelin and PYY, and lower fasting BDNF (p = 0.001, 0.002 and 0.044 respectively) than controls. Following breakfast (over 120 min), ghrelin and PYY area under the curve (AUC) were higher, while BDNF AUC was lower in AN vs. controls (p = 0.007, 0.017 and 0.020 respectively). Among AN (but not controls), reductions in ghrelin and increases in PYY in the first 30-minutes following breakfast were associated with reductions in VAS scores for prospective food consumption. AN consumed fewer calories during the CTT vs. controls (p < 0.0001). In AN (particularly AN-restrictive subtype), BDNF AUC was positively associated with kilocalories consumed during the CTT CONCLUSIONS: In young females with AN, changes in ghrelin and PYY following food intake are associated with reductions in a prospective measure of food consumption, while reductions in BDNF are associated with reduced hedonic food intake. Further studies are necessary to better understand the complex interplay between appetite signals and eating behaviors in AN.
Collapse
Affiliation(s)
- Christopher Mancuso
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States
| | - Alyssa Izquierdo
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States
| | - Meghan Slattery
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States
| | - Kendra R Becker
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States
| | - Madhusmita Misra
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, United States.
| |
Collapse
|
20
|
Sato T, Nemoto T, Hasegawa K, Ida T, Kojima M. A new action of peptide hormones for survival in a low-nutrient environment. Endocr J 2019; 66:943-952. [PMID: 31564683 DOI: 10.1507/endocrj.ej19-0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Malnutrition occurs when nutrient intake is too low for any reason and occurs regardless of gender or age. Therefore, besides loss of eating or digestive functionality due to illness, malnutrition can occur when a healthy individual undergoes an extreme diet and biases their nutrition, or when athletes exerts more energy than they can replenish through food. It has recently been reported that in Japan, the mortality rate of leaner individuals is equal to or higher than that of obese people. It is important to understand what homeostatic maintenance mechanism is behind this when the body is under hypotrophic conditions. Such mechanisms are generally endocranially controlled. We address this fundamental concern in this paper by focusing on peptide hormones. We introduce a mechanism for survival in a malnourished state via the regulation of food intake and temperature. Additionally, we will discuss the latest findings and future prospects for research on changes in the endocrine environment associated with malnutrition associated with exercise. We also review changes in next-generation endocrine environments when caused by malnutrition brought on by dieting.
Collapse
Affiliation(s)
- Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Takahiro Nemoto
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Kazuya Hasegawa
- Faculty of Nutritional Science, The University of Morioka, Takizawa, Iwate 020-0694, Japan
| | - Takanori Ida
- Division for Searching and Identification of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
21
|
Niu A, Carpenter TO, Grams JM, Bozorgmehri S, Tommasini SM, Schafer AL, Canales BK. High dose vitamin D supplementation does not rescue bone loss following Roux-en-Y gastric bypass in female rats. Bone 2019; 127:172-180. [PMID: 31226531 PMCID: PMC6708762 DOI: 10.1016/j.bone.2019.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/26/2019] [Accepted: 06/17/2019] [Indexed: 01/30/2023]
Abstract
Postoperative bone loss and increased fracture risk associated with Roux-en-Y gastric bypass (RYGB) have been attributed to vitamin D/calcium malabsorption and resultant secondary hyperparathyroidism (HPT). Adequate vitamin D supplementation (VDS), particularly in an older female population, reduces incidence of secondary HPT but the effect on bone loss and fracture risk remains unclear. To investigate whether VDS corrects the RYGB bone phenotype, 41 obese adult female rats were randomized to RYGB with 1000 IU (R1000) or 5000 IU (R5000) vitamin D/kg food or a sham surgical procedure with either paired (PF) or ad libitum (AL) feeding. Bone turnover markers, urinary calcium/creatinine ratio (CCR), and serum calciotropic and gut hormones were assessed throughout a 14-week postoperative period. Femurs were analyzed by micro-computed tomography (μCT), three-point bending test, and histomorphometry. 1000 IU animals had low 25‑hydroxyvitamin D (25(OH)D), high serum parathyroid hormone (PTH), and very low urine CCR levels. 5000 IU corrected the 25(OH)D and secondary HPT but did not increase urine CCR or serum levels of 1,25‑dihydroxyvitamin D (1,25(OH)D) significantly between RYGB groups. Compared to sham animals at 14 weeks, RYGB animals had significantly higher serum osteocalcin (OCN) and C-terminal telopeptide (CTX) levels. The gut hormone peptide tyrosine tyrosine hormone (PYY) was higher in the RYGB groups, and leptin was lower. μCT and biomechanical testing revealed RYGB females had decreased cortical and trabecular bone volume and weaker, stiffer bone than controls. Histomorphometry showed decreased bone volume and increased osteoid volume with increased mineral apposition rate in RYGB compared to controls. No differences in bone phenotype were identified between 1000 IU and 5000 IU groups, and osteoclast numbers were comparable across all four groups. Thus, in our model, 5000 IU VDS corrected vitamin D deficiency and secondary HPT but did not rescue RYGB mineralization rate nor the osteomalacia phenotype. Longer studies in this model are required to evaluate durability of these detrimental effects. Our findings not only underscore the importance of lifelong repletion of both calcium and vitamin D but also suggest that additional factors affect skeletal health in this population.
Collapse
Affiliation(s)
- Aidi Niu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Thomas O Carpenter
- Department of Pediatrics, Endocrine Section, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jayleen M Grams
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States of America; Department of Surgery, Birmingham VA Medical Center, Birmingham, AL, United States of America
| | - Shahab Bozorgmehri
- Department of Urology, North Florida/South Georgia Veterans Affairs Medical Center and University of Florida, Gainesville, FL, United States of America
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT 06520, United States of America
| | - Anne L Schafer
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, CA, United States of America
| | - Benjamin K Canales
- Department of Urology, North Florida/South Georgia Veterans Affairs Medical Center and University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
22
|
Schiellerup SP, Skov-Jeppesen K, Windeløv JA, Svane MS, Holst JJ, Hartmann B, Rosenkilde MM. Gut Hormones and Their Effect on Bone Metabolism. Potential Drug Therapies in Future Osteoporosis Treatment. Front Endocrinol (Lausanne) 2019; 10:75. [PMID: 30863364 PMCID: PMC6399108 DOI: 10.3389/fendo.2019.00075] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Bone homeostasis displays a circadian rhythm with increased resorption during the night time as compared to day time, a difference that seems-at least partly-to be caused by food intake during the day. Thus, ingestion of a meal results in a decrease in bone resorption, but people suffering from short bowel syndrome lack this response. Gut hormones, released in response to a meal, contribute to this link between the gut and bone metabolism. The responsible hormones appear to include glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), known as incretin hormones due to their role in regulating glucose homeostasis by enhancing insulin release in response to food intake. They interact with their cognate receptors (GIPR and GLP-1R), which are both members of the class B G protein-coupled receptors (GPCRs), and already recognized as targets for treatment of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide-2 (GLP-2), secreted concomitantly with GLP-1, acting via another class B receptor (GLP-2R), is also part of this gut-bone axis. Several studies, including human studies, have indicated that these three hormones inhibit bone resorption and, moreover, that GIP increases bone formation. Another hormone, peptide YY (PYY), is also secreted from the enteroendocrine L-cells (together with GLP-1 and GLP-2), and acts mainly via interaction with the class A GPCR NPY-R2. PYY is best known for its effect on appetite regulation, but recent studies have also shown an effect of PYY on bone metabolism. The aim of this review is to summarize the current knowledge of the actions of GIP, GLP-1, GLP-2, and PYY on bone metabolism, and to discuss future therapies targeting these receptors for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sine Paasch Schiellerup
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria Saur Svane
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Petkus DL, Murray-Kolb LE, De Souza MJ. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med 2018; 47:1721-1737. [PMID: 28290159 DOI: 10.1007/s40279-017-0706-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the severity and prevalence of iron deficiency in exercising women, few published reports have explored how iron deficiency interacts with another prevalent and severe condition in exercising women: the 'female athlete triad.' This review aims to describe how iron deficiency may interact with each component of the female athlete triad, that is, energy status, reproductive function, and bone health. The effects of iron deficiency on energy status are discussed in regards to thyroid function, metabolic fuel availability, eating behaviors, and energy expenditure. The interactions between iron deficiency and reproductive function are explored by discussing the potentially impaired fertility and hyperprolactinemia due to iron deficiency and the alterations in iron metabolism due to menstrual blood loss and estrogen exposure. The interaction of iron deficiency with bone health may occur via dysregulation of the growth hormone/insulin-like growth factor-1 axis, hypoxia, and hypothyroidism. Based on these discussions, several future directions for research are presented.
Collapse
Affiliation(s)
- Dylan L Petkus
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Laura E Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
24
|
Amenorrhoea in adolescent female athletes. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:677-688. [DOI: 10.1016/s2352-4642(18)30145-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
|
25
|
Abstract
The term Relative Energy Deficiency in Sport was introduced by the International Olympic Committee in 2014. It refers to the potential health and performance consequences of inadequate energy for sport, emphasizing that there are consequences of low energy availability (EA; typically defined as <30 kcal·kg-1 fat-free mass·day-1) beyond the important and well-established female athlete triad, and that low EA affects populations other than women. As the prevalence and consequences of Relative Energy Deficiency in Sport become more apparent, it is important to understand the current knowledge of the hormonal changes that occur with decreased EA. This paper highlights endocrine changes that have been observed in female and male athletes with low EA. Where studies are not available in athletes, results of studies in low EA states, such as anorexia nervosa, are included. Dietary intake/appetite-regulating hormones, insulin and other glucose-regulating hormones, growth hormone and insulin-like growth factor 1, thyroid hormones, cortisol, and gonadal hormones are all discussed. The effects of low EA on body composition, metabolic rate, and bone in female and male athletes are presented, and we identify future directions to address knowledge gaps specific to athletes.
Collapse
|
26
|
Freitas L, Amorim T, Humbert L, Fonollá R, Flouris AD, Metsios GS, Jamurtas AZ, Koutedakis Y. Cortical and trabecular bone analysis of professional dancers using 3D-DXA: a case–control study. J Sports Sci 2018; 37:82-89. [DOI: 10.1080/02640414.2018.1483178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Laura Freitas
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
| | - Tânia Amorim
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
| | | | - Roger Fonollá
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | - Andreas D. Flouris
- School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | - George S. Metsios
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
- School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | | | - Yiannis Koutedakis
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
- School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| |
Collapse
|
27
|
Perakakis N, Ghaly W, Peradze N, Boutari C, Batirel S, Douglas VP, Mantzoros CS. Research advances in metabolism 2017. Metabolism 2018; 83:280-289. [PMID: 29378200 DOI: 10.1016/j.metabol.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Physiology, Fayoum University, Fayoum, Egypt
| | - Natia Peradze
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Vivian Paraskevi Douglas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
28
|
Chou SH, Mantzoros C. Bone metabolism in anorexia nervosa and hypothalamic amenorrhea. Metabolism 2018; 80:91-104. [PMID: 29107598 DOI: 10.1016/j.metabol.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Abstract
Anorexia nervosa (AN) and hypothalamic amenorrhea (HA) are states of chronic energy deprivation associated with severely compromised bone health. Poor bone accrual during adolescence followed by increased bone loss results in lifelong low bone density, degraded bone architecture, and higher risk of fractures, despite recovery from AN/HA. Amenorrhea is only one of several compensatory responses to the negative energy balance. Other hypothalamic-pituitary hormones are affected and contribute to bone deficits, including activation of hypothalamic-pituitary-adrenal axis and growth hormone resistance. Adipokines, particularly leptin, provide information on fat/energy stores, and gut hormones play a role in the regulation of appetite and food intake. Alterations in all these hormones influence bone metabolism. Restricted in scope, current pharmacologic approaches to improve bone health have had overall limited success.
Collapse
Affiliation(s)
- Sharon H Chou
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Southmayd EA, Hellmers AC, De Souza MJ. Food Versus Pharmacy: Assessment of Nutritional and Pharmacological Strategies to Improve Bone Health in Energy-Deficient Exercising Women. Curr Osteoporos Rep 2017; 15:459-472. [PMID: 28831686 DOI: 10.1007/s11914-017-0393-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The review aims to summarize our current knowledge surrounding treatment strategies aimed at recovery of bone mass in energy-deficient women suffering from the Female Athlete Triad. RECENT FINDINGS The independent and interactive contributions of energy status versus estrogen status on bone density, geometry, and strength have recently been reported, highlighting the importance of addressing both energy and estrogen in treatment strategies for bone health. This is supported by reports that have identified energy-related features (low body weight and BMI) and estrogen-related features (late age of menarche, oligo/amenorrhea) to be significant risk factors for low bone mineral density and bone stress injury in female athletes and exercising women. Nutritional therapy is the recommended first line of treatment to recover bone mass in energy-deficient female athletes and exercising women. If nutritional therapy fails after 12 months or if fractures or significant worsening in BMD occurs, pharmacological therapy may be considered in the form of transdermal estradiol with cyclic oral progestin (not COC).
Collapse
Affiliation(s)
- Emily A Southmayd
- Women's Health and Exercise Laboratory, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, USA
| | - Adelaide C Hellmers
- Women's Health and Exercise Laboratory, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Women's Health and Exercise Laboratory, 104 Noll Laboratory, Department of Kinesiology and Physiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
30
|
Abstract
Most metabolic effects following bariatric surgery are favorable. One area in which the consequences seem to be detrimental is on skeletal health. Mechanisms that have been cited include malabsorption of calcium and vitamin D, decrease in mechanical loading, and changes in gastrointestinal and fat-derived hormone levels. It is important that the impact of these procedures on bone metabolism is closely examined. The significance of the bone loss that occurs, and its possible effect on future fracture risk, should also be evaluated.
Collapse
Affiliation(s)
- Naina Sinha Gregory
- Division of Endocrinology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, 211 East 80th Street, New York, NY 10075, USA.
| |
Collapse
|
31
|
Maïmoun L, Paris F, Coste O, Sultan C. [Intensive training and menstrual disorders in young female: Impact on bone mass]. ACTA ACUST UNITED AC 2016; 44:659-663. [PMID: 27751748 DOI: 10.1016/j.gyobfe.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
Abstract
Participation in recreational physical activity is widely acknowledged to provide significant health benefits. Conversely, intense training imposes several constraints, such as intermittent or chronic metabolic and psychogenic training stressors and maintenance of very low body fat to maximize performance. Adolescent and adult athletic women are therefore at risk of overtraining and/or poor dietary intake, which may have several consequences for endocrine function particularly on hypothalamic-pituitary-gonadal axis. Female athletes, particularly those participating in sports needing leanness or low body weight, present a high prevalence of menstrual disorders with clinical manifestations ranging from delayed menarche, oligomenorrhea to primary and secondary amenorrhea. A high degree of variability according to the type of sport and the intensity of the practice is however observed. Exercise-related reproductive dysfunction may have some consequences for growth velocity and peak bone mass acquisition during adolescence and bone pathologies in adults. Recent findings highlight the endocrine role of adipose tissue and energy balance in the regulation of homeostasis and reproductive function. A better understanding of the mechanisms whereby intense training affects the endocrine systems may orient research to develop innovative strategies probably based on individualized nutritional approach to improve the medical care of these female athletes and protect their reproductive function.
Collapse
Affiliation(s)
- L Maïmoun
- Service de médecine nucléaire, hôpital Lapeyronie, université de Montpellier 1 (UM1), CHRU de Montpellier, 34295 Montpellier, France; PhyMedExp, University of Montpellier, Inserm U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France.
| | - F Paris
- Unité d'endocrinologie et gynécologie pédiatrique, département de pédiatrie, hôpital A.-de-Villeneuve, UMI, CHRU de Montpellier, 34295 Montpellier, France
| | - O Coste
- Direction régionale de la jeunesse, des sports et de la cohésion sociale Languedoc Roussillon/Midi-Pyrénées, France
| | - C Sultan
- Unité d'endocrinologie et gynécologie pédiatrique, département de pédiatrie, hôpital A.-de-Villeneuve, UMI, CHRU de Montpellier, 34295 Montpellier, France
| |
Collapse
|
32
|
Cano Sokoloff N, Misra M, Ackerman KE. Exercise, Training, and the Hypothalamic-Pituitary-Gonadal Axis in Men and Women. FRONTIERS OF HORMONE RESEARCH 2016; 47:27-43. [PMID: 27348623 DOI: 10.1159/000445154] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis is essential for adequate responses to exercise and training both acutely and chronically. Both testosterone and estrogen play leading roles in neuromuscular adaptation to exercise in males and females. The purpose of this chapter is to illustrate the physiological and pathological changes that occur in the HPG axis secondary to exercise and training. In males, testosterone increases with acute bouts of exercise, but long-term effects are less clear, with evidence of lower testosterone in endurance athletes. Restricted energy availability may negatively affect hormone levels in male endurance athletes, but data regarding low energy availability and its impact on the HPG axis are limited in male athletes. Conversely, in females there is significant evidence that decreased energy availability inhibits the HPG axis, leading to menstrual irregularities and lower bone density. Hormonal changes secondary to acute bouts of exercise are more challenging to interpret in females due to menstrual variability, which traditionally has not been taken into account in many studies. However, some evidence supports an increase in testosterone and estradiol with acute exercise. More work is needed to elucidate the relationships among energy availability, basal hormonal fluctuations, and exercise, and their collective effects on the HPG axis.
Collapse
|
33
|
Epstein S, Defeudis G, Manfrini S, Napoli N, Pozzilli P. Diabetes and disordered bone metabolism (diabetic osteodystrophy): time for recognition. Osteoporos Int 2016; 27:1931-51. [PMID: 26980458 DOI: 10.1007/s00198-015-3454-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023]
Abstract
Diabetes and osteoporosis are rapidly growing diseases. The link between the high fracture incidence in diabetes as compared with the non-diabetic state has recently been recognized. While this review cannot cover every aspect of diabetic osteodystrophy, it attempts to incorporate current information from the First International Symposium on Diabetes and Bone presentations in Rome in 2014. Diabetes and osteoporosis are fast-growing diseases in the western world and are becoming a major problem in the emerging economic nations. Aging of populations worldwide will be responsible for an increased risk in the incidence of osteoporosis and diabetes. Furthermore, the economic burden due to complications of these diseases is enormous and will continue to increase unless public awareness of these diseases, the curbing of obesity, and cost-effective measures are instituted. The link between diabetes and fractures being more common in diabetics than non-diabetics has been widely recognized. At the same time, many questions remain regarding the underlying mechanisms for greater bone fragility in diabetic patients and the best approach to risk assessment and treatment to prevent fractures. Although it cannot cover every aspect of diabetic osteodystrophy, this review will attempt to incorporate current information particularly from the First International Symposium on Diabetes and Bone presentations in Rome in November 2014.
Collapse
Affiliation(s)
- S Epstein
- Division of Endocrinology, Mount Sinai School of Medicine, New York, NY, USA
| | - G Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128, Rome, Italy.
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - S Manfrini
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128, Rome, Italy
| | - N Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128, Rome, Italy
| | - P Pozzilli
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128, Rome, Italy
| | | |
Collapse
|
34
|
Maïmoun L, Georgopoulos NA, Sultan C. Endocrine disorders in adolescent and young female athletes: impact on growth, menstrual cycles, and bone mass acquisition. J Clin Endocrinol Metab 2014; 99:4037-50. [PMID: 24601725 DOI: 10.1210/jc.2013-3030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Puberty is a crucial period of dramatic hormonal changes, accelerated growth, attainment of reproductive capacity, and acquisition of peak bone mass. Participation in recreational physical activity is widely acknowledged to provide significant health benefits in this period. Conversely, intense training imposes several constraints, such as training stress and maintenance of very low body fat to maximize performance. Adolescent female athletes are therefore at risk of overtraining and/or poor dietary intake, which may have several consequences for endocrine function. The "adaptive" changes in the hypothalamic-pituitary-gonadal, -adrenal, and somatotropic axes and the secretory role of the adipose tissue are reviewed, as are their effects on growth, menstrual cycles, and bone mass acquisition. DESIGN A systematic search on Medline between 1990 and 2013 was conducted using the following terms: "intense training," "physical activity," or "exercise" combined with "hormone," "endocrine," and "girls," "women," or "elite female athletes." All articles reporting on the endocrine changes related to intense training and their potential implications for growth, menstrual cycles, and bone mass acquisition were considered. RESULTS AND CONCLUSION Young female athletes present a high prevalence of menstrual disorders, including delayed menarche, oligomenorrhea, and amenorrhea, characterized by a high degree of variability according to the type of sport. Exercise-related reproductive dysfunction may have consequences for growth velocity and peak bone mass acquisition. Recent findings highlight the endocrine role of adipose tissue and energy balance in the regulation of homeostasis and reproductive function. A better understanding of the mechanisms whereby intense training affects the endocrine system may orient research to develop innovative strategies (ie, based on nutritional or pharmacological approaches and individualized modalities of training and competition) to improve the medical care of these adolescents and protect their reproductive function.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Service de Médecine Nucléaire (L.M.), Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHRU) de Montpellier and Université Montpellier 1 (UM1), 34295 Montpellier, France; Département d'Hormonologie (L.M., C.S.), Hôpital Lapeyronie, CHRU Montpellier, 34295 Montpellier, France; Physiologie et Médecine Expérimentale du Cœur et des Muscles (L.M.), INSERM Unité 1046, Université Montpellier 1 (UM1) and Université Montpellier 2 (UM2), 34295 Montpellier, France; Division of Reproductive Endocrinology (N.A.G.), Department of Obstetrics and Gynecology, University of Patras Medical School, University Hospital, Patras 265 04, Greece; and Unité d'Endocrinologie et Gynécologie Pédiatrique (C.S.), Département de Pédiatrie, Hôpital Arnaud de Villeneuve, CHRU Montpellier et UM1, 34295 Montpellier, France
| | | | | |
Collapse
|
35
|
|
36
|
Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int 2014; 25:423-39. [PMID: 24008401 DOI: 10.1007/s00198-013-2480-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/29/2013] [Indexed: 01/06/2023]
Abstract
UNLABELLED Despite effective weight reduction, the impact of bariatric surgery on bone is a major concern. Mechanisms include decreased mechanical loading, calcium and vitamin D malabsorption, deficiency in other nutrients, and alterations in fat- and gut-derived hormones. The evidence to support clinical care pathways to prevent bone loss and fractures is at this point weak. INTRODUCTION There is a growing concern regarding the potential deleterious impact of bariatric surgery on bone metabolism. This comprehensive review addresses this controversial topic. METHODS We reviewed and analyzed articles evaluating bone metabolism and mechanisms for the ensuing putative bone loss in adult patients exclusively undergoing Roux-en-Y gastric bypass (RYGB) surgery, for the period spanning 1942 till September 2012. RESULTS Mechanisms identified to contribute to alterations in bone metabolism after bypass surgery include: decreased mechanical loading, calcium and vitamin D malabsorption with secondary hyperparathyroidism, deficiency in other nutrients, in addition to alterations in adipokines, gonadal steroids, and gut-derived hormones favoring bone loss, with the exception of serotonin and glucagon-like peptide-1. The relative contribution of each of these hormones to changes in bone homeostasis after bypass surgery remains undefined. Bone loss reflected by a decline in bone mineral density (BMD) and an increase in bone turnover markers have been reported in many studies, limited for the most part by the exclusive use of dual energy X-ray absorptiometry. Well-designed long-term prospective trials with fractures as an outcome, and studies investigating the magnitude, reversibility, and impact of the observed metabolic changes on fracture outcomes are lacking. CONCLUSION Robust conclusions regarding bone loss and fracture outcome after RYGB surgery cannot be drawn at this time. Although not evidence based, baseline evaluation and sequential monitoring with measurement of BMD and calciotropic hormones seem appropriate, with adequate calcium and vitamin D replacement. Beneficial interventions remain unclear.
Collapse
Affiliation(s)
- M P Hage
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut-Medical Center, PO BOX: 11-0236, Riad El Solh, 1107 2020, Beirut, Lebanon
| | | |
Collapse
|
37
|
Canales BK, Schafer AL, Shoback DM, Carpenter TO. Gastric bypass in obese rats causes bone loss, vitamin D deficiency, metabolic acidosis, and elevated peptide YY. Surg Obes Relat Dis 2014; 10:878-84. [PMID: 24969093 DOI: 10.1016/j.soard.2014.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/12/2013] [Accepted: 01/18/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Metabolic bone disease and bariatric surgery have long been interconnected. The objective of this study is to better understand the mechanisms of bone mass loss after Roux-en-Y gastric bypass (RYGB) surgery. We evaluated mineral homeostasis and bone mass in diet-induced obese (DIO) rats after RYGB or sham surgery. METHODS Twelve DIO male Sprague Dawley rats underwent RYGB (n = 8) or sham (n = 4) surgery at 21 weeks of age. Postoperatively, animals ate an ad libitum 40% fat, normal calcium diet and were euthanized 22 weeks later. Serum and urine chemistries, insulin, leptin, bone turnover markers (BTM), and calciotropic and gut hormones were measured before and 22 weeks after surgery. Femurs were analyzed using microcomputed tomography (µCT). RESULTS Compared to sham, RYGB animals had lower serum bicarbonate, calcium, 25-hydroxyvitamin D, insulin, and leptin levels with higher serum parathyroid hormone, peptide YY, and urinary calcium at 43 weeks of age. Sham control rats gained weight and had coupled decreases in formation (P1NP and OC) and unchanged resorption (CTX) BTMs. Comparatively, RYGB animals had higher serum CTX and OC but even lower P1NP levels than controls. µCT revealed lower trabecular bone volume, number, and thickness and lower cortical bone volume, thickness, and moment of inertia relative to controls. CONCLUSION In rats with DIO, long-term RYGB-associated bone resorption appears to be driven in part by vitamin D malabsorption and secondary hyperparathyroidism. Other mechanisms, such as chronic acidosis, changes in fat-secreted hormones, and persistently elevated gut-derived hormone peptide YY, may also contribute to observed bone mass differences. Further investigation of these potential contributors to bone loss may lead to new targets for skeletal maintenance after RYGB.
Collapse
Affiliation(s)
- Benjamin K Canales
- Department of Urology, North Florida/South Georgia Veterans Affairs Medical Center and University of Florida, Gainesville, Florida.
| | - Anne L Schafer
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California
| | - Dolores M Shoback
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
38
|
Abstract
Athletic activity may be associated with alterations in various neuroendocrine axes depending on the state of energy availability. In addition, genetic factors and an underlying predilection for polycystic ovarian syndrome (PCOS) may predispose some athletes to develop functional hypothalamic amenorrhea earlier than other athletes. In conditions of low energy availability associated with athletic activity, changes that occur in various neuroendocrine axes are primarily adaptive, and aim to either conserve energy for the most essential functions, or allow the body to draw on its reserves to meet energy needs. These hormonal changes, however, then lead to changes in body composition and bone metabolism. Impaired bone accrual in younger athletes and low bone density in older athletes constitutes the major pathologic consequence of neuroendocrine changes associated with low energy availability. The female athlete triad of low energy availability, menstrual dysfunction, and low bone density is prevalent in certain kinds of sports and activities, particularly endurance sports, gymnastics, and ballet. It is essential to screen for this condition in athletes at every preparticipation physical and during office visits, and to put in place an effective treatment team to manage the triad early, in order to optimize outcomes.
Collapse
Affiliation(s)
- Madhusmita Misra
- Pediatric Endocrine and Neuroendocrine Units, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Amini P, Cahill F, Wadden D, Ji Y, Pedram P, Vidyasankar S, Yi Y, Gulliver W, Paterno G, Zhang H, Rideout A, Sun G. Beneficial association of serum ghrelin and peptide YY with bone mineral density in the Newfoundland population. BMC Endocr Disord 2013; 13:35. [PMID: 24053729 PMCID: PMC3848823 DOI: 10.1186/1472-6823-13-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ghrelin and peptide YY (PYY) are appetite regulating hormones secreted from the gastrointestinal tract (gut). Aside from their known effect on energy homeostasis, accumulating data indicates that these gut hormones also affect bone metabolism. However, data regarding the influence of ghrelin and PYY on bone density in humans is very limited, and the results are inconclusive. Therefore, this study was designed to investigate the potential association between circulating ghrelin and PYY with bone density indices in the general population. METHODS A total of 2257 adult subjects from the CODING (Complex Diseases in the Newfoundland Population: Environment and Genetics) study participated in this investigation. Acylated ghrelin and total PYY were measured in serum after a 12-hour fasting, with the Enzyme- Linked Immunosorbent Assay (ELISA) method. Bone mineral density was measured by dual-energy X-ray absorptiometry at the spine, femoral neck, and total hip. Multiple regression analyses adjusting for age, BMI, physical activity, smoking, and alcohol consumption were employed to analyze the association between serum ghrelin and PYY with bone mineral density parameters. RESULTS Significant positive associations of ghrelin concentration with L2-L4 BMD, L2-L4 Z-score, femoral neck BMD, femoral neck Z-score, total hip BMD, and total hip Z-score were found in women. No significant correlations between ghrelin and bone density indices were present in men. After dividing the female group into pre-menopausal and post-menopausal, ghrelin was positively correlated with femoral neck Z-score, and total hip Z-score in pre-menopausal women and L2-L4 BMD, and Z-score in post-menopausal group. Moreover, no significant association was discovered between serum PYY and bone density at any site. CONCLUSION Our results suggest a beneficial association of circulating ghrelin concentration with bone density in women at the population level. This association is independent of major confounding factors including BMI, physical activity, age, alcohol consumption, and smoking. Effect of menopause on this association seemed to be site specific. However, PYY does not seem to be associated with bone density parameters.
Collapse
Affiliation(s)
- Peyvand Amini
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Farrell Cahill
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Danny Wadden
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Yunqi Ji
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Pardis Pedram
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Sangeetha Vidyasankar
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Yanqing Yi
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Wayne Gulliver
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Gary Paterno
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Hongwei Zhang
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Alecia Rideout
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| | - Guang Sun
- Division of Medicine, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NF, Canada
| |
Collapse
|
40
|
Fuqua JS, Rogol AD. Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism 2013; 62:911-21. [PMID: 23415825 DOI: 10.1016/j.metabol.2013.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/02/2013] [Accepted: 01/15/2013] [Indexed: 01/26/2023]
Abstract
Complex mechanisms exist in the human to defend against adverse effects of negative energy balance. These include alterations of hormone secretion affecting the growth hormone/insulin-like growth factor system, the adrenal axis, and the reproductive system, particularly in females. Energy deficits are least partially offset by neuroendocrine mechanisms regulating appetite and satiety. The complex feedback mechanisms reporting peripheral fat and energy stores to the central nervous system involve secretion of the peptide hormones leptin and ghrelin, which act centrally on neurons in the arcuate nucleus and anteroventral periventricular area. In addition to appetite regulation, these hormones exert influences on spatially and functionally-related mechanisms regulating reproductive function, such as the kisspeptin-gonadotropin releasing hormone system. Negative energy balance often occurs partially as a result of strenuous and repetitive physical exercise. Exercise stress leads to increased cortisol secretion, but this action is mediated through the induced negative energy balance. In healthy adults with energy deficits, this exercise-induced stress appears to be more important than pure psychological stress in impairing reproductive function. Estrogen deficiency resulting from negative energy balance has important adverse effects on bone density as well as bone microarchitecture, and it may also adversely affect markers of cardiovascular disease.
Collapse
Affiliation(s)
- John S Fuqua
- Section of Pediatric Endocrinology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
41
|
|
42
|
Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev 2013; 14:52-67. [PMID: 23094966 DOI: 10.1111/j.1467-789x.2012.01050.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/15/2012] [Accepted: 09/17/2012] [Indexed: 12/14/2022]
Abstract
Bariatric surgery remains the most effective treatment for severely obese patients. However, the potential long-term effects of bariatric surgical procedures on health, including bone health, are only partially understood. The goal of this review was to present data on the impact of bariatric surgery on bone metabolism and to analyse possible reasons for the loss of bone mass that frequently occurs after bariatric surgery. Such factors include nutritional deficiencies, rapid weight loss per se, effects of fat-derived adipokines and gut-derived appetite-regulatory hormones. However, the relative roles of these factors in skeletal regulation and the mechanisms by which they work are not yet fully defined. Our review was focussed on the complex relationship between body weight, fat mass and bone mass, as well as peripheral and central mediators potentially involved in the dual regulation of both energy and bone homeostasis. We also review the data on the inverse relationship between central obesity, bone marrow fat and osteoporosis. As the number of bariatric operations increases, it is imperative to recognize mechanisms responsible for bariatric surgery-induced bone loss, with careful monitoring of bone health including long-term fracture incidence in patients undergoing these procedures.
Collapse
Affiliation(s)
- M M Brzozowska
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | |
Collapse
|
43
|
Ackerman KE, Putman M, Guereca G, Taylor AP, Pierce L, Herzog DB, Klibanski A, Bouxsein M, Misra M. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone 2012; 51:680-7. [PMID: 22878154 PMCID: PMC3482939 DOI: 10.1016/j.bone.2012.07.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/28/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
Abstract
CONTEXT Lower bone density in young amenorrheic athletes (AA) compared to eumenorrheic athletes (EA) and non-athletes may increase fracture risk during a critical time of bone accrual. Finite element analysis (FEA) is a unique tool to estimate bone strength in vivo, and the contribution of cortical microstructure to bone strength in young athletes is not well understood. OBJECTIVE We hypothesized that FEA-estimated stiffness and failure load are impaired in AA at the distal radius and tibia compared to EA and non-athletes despite weight-bearing exercise. DESIGN AND SETTING Cross-sectional study; Clinical Research Center SUBJECTS 34 female endurance athletes involved in weight-bearing sports (17 AA, 17 EA) and 16 non-athletes (14-21 years) of comparable age, maturity and BMI OUTCOME MEASURES: We used HR-pQCT images to assess cortical microarchitecture and FEA to estimate bone stiffness and failure load. RESULTS Cortical perimeter, porosity and trabecular area at the weight-bearing tibia were greater in both groups of athletes than non-athletes, whereas the ratio (%) of cortical to total area was lowest in AA. Despite greater cortical porosity in EA, estimated tibial stiffness and failure load was higher than in non-athletes. However, this advantage was lost in AA. At the non-weight-bearing radius, failure load and stiffness were lower in AA than non-athletes. After controlling for lean mass and menarchal age, athletic status accounted for 5-9% of the variability in stiffness and failure load, menarchal age for 8-23%, and lean mass for 12-37%. CONCLUSION AA have lower FEA-estimated bone strength at the distal radius than non-athletes, and lose the advantage of weight-bearing exercise seen in EA at the distal tibia.
Collapse
Affiliation(s)
- Kathryn E Ackerman
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Context: The female athlete triad (the triad) is an interrelationship of menstrual dysfunction, low energy availability (with or without an eating disorder), and decreased bone mineral density; it is relatively common among young women participating in sports. Diagnosis and treatment of this potentially serious condition is complicated and often requires an interdisciplinary team. Evidence Acquisition: Articles from 1981 to present found on PubMed were selected for review of major components of the female athlete triad as well as strategies for diagnosis and treatment of the conditions. Results: The main goal in treatment of young female athletes with the triad is a natural return of menses as well as enhancement of bone mineral density. While no specific drug intervention has been shown to consistently improve bone mineral density in this patient population, maximizing energy availability and optimizing vitamin D and calcium intake are recommended. Conclusions: Treatment requires a multidisciplinary approach involving health care professionals as well as coaches and family members. Prevention of this condition is important to minimize complications of the female athlete triad.
Collapse
Affiliation(s)
| | - Kathryn E. Ackerman
- Division of Sports Medicine, Children’s Hospital Boston and Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Address correspondence to Kathryn E. Ackerman, MD MPH Division of Sports Medicine Children’s Hospital Boston 319 Longwood Avenue, Boston, MA 02115 (e-mail: )
| |
Collapse
|
45
|
Wong IPL, Driessler F, Khor EC, Shi YC, Hörmer B, Nguyen AD, Enriquez RF, Eisman JA, Sainsbury A, Herzog H, Baldock PA. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS One 2012; 7:e40038. [PMID: 22792209 PMCID: PMC3391226 DOI: 10.1371/journal.pone.0040038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/31/2012] [Indexed: 12/29/2022] Open
Abstract
Background & Aims Gastrointestinal peptides are increasingly being linked to processes controlling the maintenance of bone mass. Peptide YY (PYY), a gut-derived satiety peptide of the neuropeptide Y family, is upregulated in some states that also display low bone mass. Importantly, PYY has high affinity for Y-receptors, particularly Y1R and Y2R, which are known to regulate bone mass. Anorexic conditions and bariatric surgery for obesity influence circulating levels of PYY and have a negative impact on bone mass, but the precise mechanism behind this is unclear. We thus examined whether alterations in PYY expression affect bone mass. Methods Bone microstructure and cellular activity were analyzed in germline PYY knockout and conditional adult-onset PYY over-expressing mice at lumbar and femoral sites using histomorphometry and micro-computed tomography. Results PYY displayed a negative relationship with osteoblast activity. Male and female PYY knockout mice showed enhanced osteoblast activity, with greater cancellous bone mass. Conversely, PYY over-expression lowered osteoblast activity in vivo, via a direct Y1 receptor mediated mechanism involving MAPK stimulation evident in vitro. In contrast to PYY knockout mice, PYY over expression also altered bone resorption, as indicated by greater osteoclast surface, despite the lack of Y-receptor expression in osteoclastic cells. While evident in both sexes, cellular changes were generally more pronounced in females. Conclusions These data demonstrate that the gut peptide PYY is critical for the control of bone remodeling. This regulatory axis from the intestine to bone has the potential to contribute to the marked bone loss observed in situations of extreme weight loss and higher circulating PYY levels, such as anorexia and bariatric obesity surgery, and may be important in the maintenance of bone mass in the general population.
Collapse
Affiliation(s)
- Iris P. L. Wong
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Frank Driessler
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ee Cheng Khor
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Birgit Hörmer
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - John A. Eisman
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Paul A. Baldock
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
46
|
Dimitri P, Bishop N, Walsh JS, Eastell R. Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 2012; 50:457-66. [PMID: 21619952 DOI: 10.1016/j.bone.2011.05.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/14/2011] [Accepted: 05/09/2011] [Indexed: 01/19/2023]
Abstract
With the rise in obesity worldwide, an important debate has developed as to whether excess fat has a detrimental or protective effect on skeletal health in children and adults. Obese children appear to be over represented in fracture groups and recent evidence suggests that fat may be detrimental to bone accrual in children, although this effect may be confined to adolescence during rapid skeletal growth. Fat induced alterations in hormonal factors and cytokines during growth may play a pivotal role in disturbing bone accrual. In contrast, the widely accepted opinion is that fat appears to be protective of bone in adults and minimises bone loss in postmenopausal women. Recent evidence suggests that in adults, site specific fat depots may exert differing effects on bone (with visceral fat acting as a pathogenic fat depot and subcutaneous fat exerting protective effects), and that the effects of fat mass on bone and fracture risk may vary by skeletal site; obesity protects against hip and vertebral fractures but is a risk factor for fractures of the humerus and ankle. The incidence of fracture during adolescence is rising and osteoporosis remains a considerable health burden in older adults. Understanding the effects of fat mass on bone during growth and early adulthood is vital in informing future health strategies and pharmacotherapies to optimise peak bone mass and prevent fracture.
Collapse
Affiliation(s)
- P Dimitri
- The NIHR Bone Biomedical Research Unit, Sheffield, UK.
| | | | | | | |
Collapse
|
47
|
Abstract
Gonadal steroids, including androgens and oestrogens, play a critical part in bone metabolism, and conditions associated with a deficiency of gonadal steroids can reduce BMD in adults and impair bone accrual in adolescents. In addition, other associated hormone alterations, for example, insulin-like growth factor 1 deficiency or high cortisol levels, can further exacerbate the effect of hypogonadism on bone metabolism, as can factors such as calcium and vitamin D deficiency, low body weight and exercise status. This Review discusses the effects of different hypogonadal states on bone metabolism in female adolescents and young adults, with particular emphasis on conditions associated with low energy availability, such as anorexia nervosa and athletic amenorrhoea, in which many factors other than hypogonadism affect bone. In contrast to most hypogonadal conditions, in which replacement of gonadal steroids is sufficient to normalize bone accrual rates and BMD, gonadal steroid replacement may not be sufficient to normalize bone metabolism in these states of energy deficit.
Collapse
Affiliation(s)
- Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, BUL 457, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
48
|
Jürimäe J, Vaiksaar S, Mäestu J, Purge P, Jürimäe T. Adiponectin and bone metabolism markers in female rowers: eumenorrheic and oral contraceptive users. J Endocrinol Invest 2011; 34:835-9. [PMID: 21169728 DOI: 10.3275/7415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated whether adiponectin, bone formation (osteocalcin) and bone resorption [type I carboxyterminal telopeptide (ICTP)] values are influenced by menstrual cycle phase and oral contraceptive use in female rowers. Twenty-four rowers divided into normally cycling athletes (NOC; no.=15) and athletes taking oral contraceptive pills (OC; no.=9) participated in this study. Fasting blood samples, body composition and aerobic capacity measurements were taken during the follicular (FP) and the luteal (LP) phases of the menstrual cycle. Adiponectin, insulin, glucose, insulin resistance, body composition and aerobic capacity did not fluctuate significantly during menstrual cycle in both groups. Osteocalcin and ICTP were lower (p<0.05) in OC compared with NOC, but did not change significantly across menstrual cycle phases in both groups. Estradiol and progesterone were not related to adiponectin, osteocalcin or ICTP (r<0.147; p>0.05). Adiponectin was correlated (p<0.05) with osteocalcin (r=0.452) and fat free mass (r=0.428), and osteocalcin was related (p<0.05) to insulin (r=-0.413), glucose (r=-0.486) and insulin resistance (r=-0.528). In conclusion, adiponectin was not affected by menstrual cycle phase and OC use in female rowers, while bone metabolism markers were lower in OC compared to NOC groups. Adiponectin and osteocalcin were interrelated and may characterise energy homeostasis in female athletes.
Collapse
Affiliation(s)
- J Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, 18. Ülikooli St, Tartu 50090, Estonia.
| | | | | | | | | |
Collapse
|
49
|
Parm AL, Jürimäe J, Saar M, Pärna K, Tillmann V, Maasalu K, Neissaar I, Jürimäe T. Plasma adipocytokine and ghrelin levels in relation to bone mineral density in prepubertal rhythmic gymnasts. J Bone Miner Metab 2011; 29:717-24. [PMID: 21598092 DOI: 10.1007/s00774-011-0272-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to investigate possible differences in plasma adipocytokine and ghrelin levels and body composition parameters in prepubertal rhythmic gymnasts (RG) and untrained controls (UC), and to examine the relationships of bone mineral density (BMD) with hormonal status in prepubertal children with different physical activity patterns. Eighty-nine 7- to 9-year-old girls participated in the study (RG, n = 46; UC, n = 43). Body composition and BMD were measured by dual-energy X-ray absorptiometry. Bone maturity was estimated by using a radiograph of the nondominant hand. The measured whole-body, lumbar spine (LS), and femoral neck (FN) BMD values were significantly higher (P < 0.05) in gymnasts than in controls. In addition, RG presented significantly lower and higher values (P < 0.05) for leptin and ghrelin concentrations, respectively, in comparison with UC. No differences were observed for adiponectin levels between the studied groups. No relationships between measured BMD values with leptin and ghrelin were observed even after adjustment for age and fat mass (FM) in RG. Whole-body and LS BMD values were significantly correlated with leptin after controlling for age and FM (r = 0.32, P < 0.05) in UC. Femoral neck BMD remained significantly correlated with ghrelin after adjusting for age and FM (r = -0.4, P < 0.05) in UC. No relationships were found between measured BMD values and adiponectin even after controlling for age and FM values in both groups. In conclusion, although all measured BMD values were significantly higher in RG, plasma adipocytokine and ghrelin concentrations were not directly related to bone mineralization in prepubertal RG in contrast to UC.
Collapse
Affiliation(s)
- Anna-Liisa Parm
- Faculty of Exercise and Sport Sciences, University of Tartu, Jakobi 5, 51014 Tartu, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, Bouxsein ML, Misra M. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab 2011; 96:3123-33. [PMID: 21816790 PMCID: PMC3200253 DOI: 10.1210/jc.2011-1614] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Bone mineral density (BMD) is lower in young amenorrheic athletes (AA) compared to eumenorrheic athletes (EA) and nonathletic controls and may contribute to fracture risk during a critical time of bone accrual. Abnormal bone microarchitecture is an independent determinant of fracture risk and has not been assessed in young athletes and nonathletes. OBJECTIVE We hypothesized that bone microarchitecture is impaired in AA compared to EA and nonathletes despite weight-bearing exercise. DESIGN AND SETTING We conducted this cross-sectional study at the Clinical Research Center of Massachusetts General Hospital. SUBJECTS AND OUTCOME MEASURES We assessed BMD and bone microarchitecture in 50 subjects [16 AA, 18 EA, and 16 nonathletes (15-21 yr old)] using dual-energy x-ray absorptiometry and high-resolution peripheral quantitative computed tomography. RESULTS Groups did not differ for chronological age, bone age, body mass index, or vitamin D levels. Lumbar BMD Z-scores were lower in AA vs. EA and nonathletes; hip and femoral neck BMD Z-scores were highest in EA. At the weight-bearing tibia, athletes had greater total area, trabecular area, and cortical perimeter than nonathletes, whereas cortical area and thickness trended lower in AA. Trabecular number was lower and trabecular separation higher in AA vs. EA and nonathletes. At the non-weight-bearing radius, trabecular density was lower in AA vs. EA and nonathletes. Later menarchal age was an important determinant of impaired microarchitecture. After controlling for covariates, subject grouping accounted for 18-24% of the variability in tibial trabecular number and separation. CONCLUSION In addition to low BMD, AA have impaired bone microarchitecture compared with EA and nonathletes. These are the first data to show abnormal bone microarchitecture in AA.
Collapse
Affiliation(s)
- Kathryn E Ackerman
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|