1
|
Aksu H, Demirbilek A, Uba AI. Insights into the structure and activation mechanism of some class B1 GPCR family members. Mol Biol Rep 2024; 51:966. [PMID: 39240462 DOI: 10.1007/s11033-024-09876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Crystallography, X-Ray/methods
- Protein Conformation
- Animals
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Glucagon-Like Peptide 1/metabolism
- Models, Molecular
- Protein Binding
- Signal Transduction
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/chemistry
Collapse
Affiliation(s)
- Hayrunisa Aksu
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Ayşenur Demirbilek
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| |
Collapse
|
2
|
Krogh LM, Nissen A, Weischendorff S, Hartmann B, Andersen JL, Holst JJ, Sørensen K, Fridh MK, Mackey AL, Müller K. Bone remodeling in survivors of pediatric hematopoietic stem cell transplantation: Impact of heavy resistance training. Pediatr Blood Cancer 2024; 71:e31159. [PMID: 38953152 DOI: 10.1002/pbc.31159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Early-onset osteoporosis is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT). It remains unknown if physical training can improve bone formation in these patients, as the transplantation procedure may cause sustained dysregulation of the bone-forming osteoblast progenitor cells. OBJECTIVE We aimed to explore the effect of resistance training on bone remodeling in long-term survivors of pediatric HSCT. PROCEDURE In this prospective, controlled intervention study, we included seven HSCT survivors and 15 age- and sex-matched healthy controls. The participants completed a 12-week heavy load, lower extremity resistance training intervention with three weekly sessions. We measured fasting serum levels of the bone formation marker "N-terminal propeptide of type I procollagen" (P1NP), and the bone resorption marker "C-terminal telopeptide of type I collagen" (CTX). The hypothesis was planned before data collection began. The trial was registered at Clinicaltrials.gov before including the first participant, with trial registration no. NCT04922970. RESULTS Resistance training led to significantly increased levels of fasting P1NP in both patients (from 57.62 to 114.99 ng/mL, p = .03) and controls (from 66.02 to 104.62 ng/mL, p < .001). No significant changes in fasting CTX levels were observed. CONCLUSIONS Despite previous high-dose cytotoxic therapy, long-term survivors of pediatric HSCT respond to resistance training with improvement of bone formation, comparable to that of healthy controls. This suggests that resistance training might be a promising non-pharmacological approach to prevent the early decline in bone mass, and should be considered as part of a follow-up program to counteract long-term sequela after pediatric HSCT.
Collapse
Affiliation(s)
- Lise Marie Krogh
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Nissen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Weischendorff
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Løvind Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg & Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Bone Marrow Transplantation and Immunodeficiency, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Kaj Fridh
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Abigail Louise Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg & Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Helsted MM, Schaltz NL, Gasbjerg LS, Christensen MB, Vilsbøll T, Knop FK. Safety of native glucose-dependent insulinotropic polypeptide in humans. Peptides 2024; 177:171214. [PMID: 38615716 DOI: 10.1016/j.peptides.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In this systematic review, we assessed the safety and possible safety events of native glucose-dependent insulinotropic polypeptide (GIP)(1-42) in human studies with administration of synthetic human GIP. We searched the PubMed database for all trials investigating synthetic human GIP(1-42) administration. A total of 67 studies were included. Study duration ranged from 30 min to 6 days. In addition to healthy individuals, the studies included individuals with impaired glucose tolerance, type 2 diabetes, type 1 diabetes, chronic pancreatitis and secondary diabetes, latent autoimmune diabetes in adults, diabetes caused by a mutation in the hepatocyte nuclear factor 1-alpha gene, end-stage renal disease, chronic renal insufficiency, critical illness, hypoparathyroidism, or cystic fibrosis-related diabetes. Of the included studies, 78% did not mention safety events, 10% of the studies reported that no safety events were observed in relation to GIP administration, and 15% of the studies reported safety events in relation to GIP administration with most frequently reported event being a moderate and transient increased heart rate. Gastrointestinal safety events, and changes in blood pressure were also reported. Plasma concentration of active GIP(1-42) increased linearly with dose independent of participant phenotype. There was no significant correlation between achieved maximal concentration of GIP(1-42) and reported safety events. Clearance rates of GIP(1-42) were similar between participant groups. In conclusion, the available data indicate that GIP(1-42) in short-term (up to 6 days) infusion studies is generally well-tolerated. The long-term safety of continuous GIP(1-42) administration is unknown.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Schaltz
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
4
|
Mabilleau G, Bouvard B. Gut hormone analogues and skeletal health in diabetes and obesity: Evidence from preclinical models. Peptides 2024; 177:171228. [PMID: 38657908 DOI: 10.1016/j.peptides.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Département de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers F-49933, France.
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Service de Rhumatologie, Angers F-49933, France
| |
Collapse
|
5
|
Rosenkilde MM, Lindquist P, Kizilkaya HS, Gasbjerg LS. GIP-derived GIP receptor antagonists - a review of their role in GIP receptor pharmacology. Peptides 2024; 177:171212. [PMID: 38608836 DOI: 10.1016/j.peptides.2024.171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.
Collapse
Affiliation(s)
- Mette Marie Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Lindquist
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Skov-Jeppesen K, Christiansen CB, Hansen LS, Windeløv JA, Hedbäck N, Gasbjerg LS, Hindsø M, Svane MS, Madsbad S, Holst JJ, Rosenkilde MM, Hartmann B. Effects of Exogenous GIP and GLP-2 on Bone Turnover in Individuals With Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:1773-1780. [PMID: 38217866 PMCID: PMC11180509 DOI: 10.1210/clinem/dgae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
CONTEXT Individuals with type 2 diabetes (T2D) have an increased risk of bone fractures despite normal or increased bone mineral density. The underlying causes are not well understood but may include disturbances in the gut-bone axis, in which both glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are regulators of bone turnover. Thus, in healthy fasting participants, both exogenous GIP and GLP-2 acutely reduce bone resorption. OBJECTIVE The objective of this study was to investigate the acute effects of subcutaneously administered GIP and GLP-2 on bone turnover in individuals with T2D. METHODS We included 10 men with T2D. Participants met fasting in the morning on 3 separate test days and were injected subcutaneously with GIP, GLP-2, or placebo in a randomized crossover design. Blood samples were drawn at baseline and regularly after injections. Bone turnover was estimated by circulating levels of collagen type 1 C-terminal telopeptide (CTX), procollagen type 1 N-terminal propeptide (P1NP), sclerostin, and PTH. RESULTS GIP and GLP-2 significantly reduced CTX to (mean ± SEM) 66 ± 7.8% and 74 ± 5.9% of baseline, respectively, compared with after placebo (P = .001). In addition, P1NP and sclerostin increased acutely after GIP whereas a decrease in P1NP was seen after GLP-2. PTH levels decreased to 67 ± 2.5% of baseline after GLP-2 and to only 86 ± 3.4% after GIP. CONCLUSION Subcutaneous GIP and GLP-2 affect CTX and P1NP in individuals with T2D to the same extent as previously demonstrated in healthy individuals.
Collapse
Affiliation(s)
- Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Hindsø
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
8
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
9
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
10
|
Hartmann B, Longo M, Mathiesen DS, Hare KJ, Jørgensen NR, Esposito K, Deacon CF, Vilsbøll T, Holst JJ, Knop FK. Signs of a Glucose- and Insulin-Independent Gut-Bone Axis and Aberrant Bone Homeostasis in Type 1 Diabetes. J Clin Endocrinol Metab 2023; 109:e259-e265. [PMID: 37466204 DOI: 10.1210/clinem/dgad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT Gut hormones seem to play an important role in postprandial bone turnover, which also may be affected by postprandial plasma glucose excursions and insulin secretion. OBJECTIVE To investigate the effect of an oral glucose tolerance test (OGTT) and an isoglycemic intravenous glucose infusion (IIGI) on bone resorption and formation markers in individuals with type 1 diabetes and healthy controls. METHODS This observational case-control study, conducted at the Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark, included 9 individuals with C-peptide negative type 1 diabetes and 8 healthy controls matched for gender, age, and body mass index. Subjects underwent an OGTT and a subsequent IIGI. We analyzed changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type I N-terminal propeptide (PINP) concentrations. RESULTS Baseline CTX and PINP levels were similar in the 2 groups. Both groups exhibited significantly greater suppression of CTX during OGTT than IIGI. PINP levels were unaffected by OGTT and IIGI, respectively, in healthy controls. Participants with type 1 diabetes displayed impaired suppression of CTX-assessed bone resorption and inappropriate suppression of PINP-assessed bone formation during OGTT. CONCLUSION Our data suggest the existence of a gut-bone axis reducing bone resorption in response to oral glucose independently of plasma glucose excursions and insulin secretion. Subjects with type 1 diabetes showed impaired suppression of bone resorption and reduced bone formation during OGTT, which may allude to the reduced bone mineral density and increased fracture risk characterizing these individuals.
Collapse
Affiliation(s)
- Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Miriam Longo
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Advanced Medical and Surgical Sciences, Division of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Kristine J Hare
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, University of Copenhagen, DK-2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Centre of Diagnostic Investigation, Rigshospitalet, University of Copenhagen, DK-2100 Glostrup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2750 Herlev, Denmark
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, Division of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2750 Herlev, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2750 Herlev, Denmark
| |
Collapse
|
11
|
Tetens I, Hare MH, Petersen CF, Stanstrup J, Hitz MF. The Postprandial Calcium Absorption of a Milk-Derived Calcium Permeate - The Acute RENEW Double-Blinded Randomized Controlled Cross-Over Study. J Nutr 2023; 153:3430-3438. [PMID: 37844839 DOI: 10.1016/j.tjnut.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Studies suggest that dairy-derived calcium supplements have additional beneficial properties compared with other calcium supplements in relation to bone health. OBJECTIVES We investigated the postprandial calcium absorption from a milk-derived calcium permeate (CP) compared with calcium carbonate (CC). METHODS In this randomized double-blinded cross-over study, 10 healthy postmenopausal females (age 50-65 y) received maltodextrin (placebo), 800 mg calcium from CP or from CC provided in 6 capsules on separate days. A fasting blood sample was collected at baseline, 60, 120, 240, and 360 min after ingestion. At baseline and 360 min, spot-urine samples were collected. Serum-ionized calcium, intact parathyroid hormone, phosphorus, and magnesium were analyzed, as were urinary calcium, phosphorus, and magnesium. A linear mixed model was applied. RESULTS Serum-ionized calcium concentration after the CC supplement was higher at 240 min compared with the CP supplement [between-group difference; 95% confidence interval (CI): 0.039 mmol/L; 95% CI: 0.017-0.061; P = 0.00078]. Serum-ionized calcium concentration after the CC supplement was significantly higher than placebo at all postprandial time points except at 60 min. Urinary calcium concentration in 360 min spot urine was higher after intake of CC compared with CP [between-group difference; 95% CI: 2.47 mmol/L; 95% CI: 1.90-3.03; P = 0.0042]. CONCLUSIONS Postprandial calcium absorption from CP was lower than that of CC, and concurrently, urinary concentration reflected increased serum appearance by CC compared with CP, highlighting different metabolic responses. The long-term and clinical implications should be studied further.
Collapse
Affiliation(s)
- Inge Tetens
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Majbritt Hybholt Hare
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark; National Research Center for Bone Health, Zealand University Hospital, Køge, Denmark
| | | | - Jan Stanstrup
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Mette Friberg Hitz
- National Research Center for Bone Health, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
12
|
Dalsgaard NB, Gasbjerg LS, Helsted MM, Hansen LS, Hansen NL, Skov-Jeppesen K, Hartmann B, Holst JJ, Vilsbøll T, Knop FK. Acarbose diminishes postprandial suppression of bone resorption in patients with type 2 diabetes. Bone 2023; 170:116687. [PMID: 36754130 DOI: 10.1016/j.bone.2023.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
AIMS The alpha-glucosidase inhibitor acarbose is an antidiabetic drug delaying assimilation of carbohydrates and, thus, increasing the amount of carbohydrates in the distal parts of the intestines, which in turn increases circulating levels of the gut-derived incretin hormone glucagon-like peptide 1 (GLP-1). As GLP-1 may suppress bone resorption, acarbose has been proposed to potentiate meal-induced suppression of bone resorption. We investigated the effect of acarbose treatment on postprandial bone resorption in patients with type 2 diabetes and used the GLP-1 receptor antagonist exendin(9-39)NH2 to disclose contributory effect of acarbose-induced GLP-1 secretion. METHODS In a randomised, placebo-controlled, double-blind, crossover study, 15 participants with metformin-treated type 2 diabetes (2 women/13 men, age 71 (57-85 years), BMI 29.7 (23.6-34.6 kg/m2), HbA1c 48 (40-74 mmol/mol)/6.5 (5.8-11.6 %) (median and range)) were subjected to two 14-day treatment periods with acarbose and placebo, respectively, separated by a six-week wash-out period. At the end of each period, circulating bone formation and resorption markers were assessed during two randomised 4-h liquid mixed meal tests (MMT) with infusions of exendin(9-39)NH2 and saline, respectively. Glucagon-like peptide 2 (GLP-2) was also assessed. RESULTS Compared to placebo, acarbose impaired the MMT-induced suppression of CTX as assessed by baseline-subtracted area under curve (P = 0.0037) and nadir of CTX (P = 0.0128). During acarbose treatment, exendin(9-39)NH2 infusion lowered nadir of CTX compared to saline (P = 0.0344). Neither parathyroid hormone or the bone formation marker procollagen 1 intact N-terminal propeptide were affected by acarbose or GLP-1 receptor antagonism. Acarbose treatment induced a greater postprandial GLP-2 response than placebo treatment (P = 0.0479) and exendin(9-39)NH2 infusion exacerbated this (P = 0.0002). CONCLUSIONS In patients with type 2 diabetes, treatment with acarbose reduced postprandial suppression of bone resorption. Acarbose-induced GLP-1 secretion may contribute to this phenomenon as the impairment was partially reversed by GLP-1 receptor antagonism. Also, acarbose-induced reductions in other factors reducing bone resorption, e.g. glucose-dependent insulinotropic polypeptide, may contribute.
Collapse
Affiliation(s)
- Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
13
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Gobron B, Couchot M, Irwin N, Legrand E, Bouvard B, Mabilleau G. Development of a First-in-Class Unimolecular Dual GIP/GLP-2 Analogue, GL-0001, for the Treatment of Bone Fragility. J Bone Miner Res 2023; 38:733-748. [PMID: 36850034 DOI: 10.1002/jbmr.4792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Due to aging of the population, bone frailty is dramatically increasing worldwide. Although some therapeutic options exist, they do not fully protect or prevent against the occurrence of new fractures. All current drugs approved for the treatment of bone fragility target bone mass. However, bone resistance to fracture is not solely due to bone mass but relies also on bone extracellular matrix (ECM) material properties, i.e., the quality of the bone matrix component. Here, we introduce the first-in-class unimolecular dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-2 (GIP/GLP-2) analogue, GL-0001, that activates simultaneously the glucose-dependent insulinotropic polypeptide receptor (GIPr) and the glucagon-like peptide-2 receptor (GLP-2r). GL-0001 acts synergistically through a cyclic adenosine monophosphate-lysyl oxidase pathway to enhance collagen maturity. Furthermore, bilateral ovariectomy was performed in 32 BALB/c mice at 12 weeks of age prior to random allocation to either saline, dual GIP/GLP-2 analogues (GL-0001 or GL-0007) or zoledronic acid groups (n = 8/group). Treatment with dual GIP/GLP-2 analogues was initiated 4 weeks later for 8 weeks. At the organ level, GL-0001 modified biomechanical parameters by increasing ultimate load, postyield displacement, and energy-to-fracture of cortical bone. GL-0001 also prevented excess trabecular bone degradation at the appendicular skeleton and enhanced bone ECM material properties in cortical bone through a reduction of the mineral-to-matrix ratio and augmentation in enzymatic collagen cross-linking. These results demonstrate that targeting bone ECM material properties is a viable option to enhance bone strength and opens an innovative pathway for the treatment of patients suffering from bone fragility. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benoit Gobron
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Malory Couchot
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,SATT Ouest Valorisation, Nantes, France
| | - Nigel Irwin
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Coleraine, UK
| | - Erick Legrand
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers, France
| |
Collapse
|
15
|
Maagensen H, Helsted MM, Gasbjerg LS, Vilsbøll T, Knop FK. The Gut-Bone Axis in Diabetes. Curr Osteoporos Rep 2023; 21:21-31. [PMID: 36441432 DOI: 10.1007/s11914-022-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. RECENT FINDINGS The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.
Collapse
Affiliation(s)
- Henrik Maagensen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Gabe MBN, von Voss L, Hunt JE, Gadgaard S, Gasbjerg LS, Holst JJ, Kissow H, Hartmann B, Rosenkilde MM. Biased GLP-2 agonist with strong G protein-coupling but impaired arrestin recruitment and receptor desensitization enhances intestinal growth in mice. Br J Pharmacol 2023. [PMID: 36683195 DOI: 10.1111/bph.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/04/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially by enteroendocrine L-cells and stimulates growth of the gut and bone. One GLP-2 analogue is approved for short bowel syndrome (SBS). To improve therapeutic efficacy, we developed biased GLP-2 receptor (GLP-2R) agonists through N-terminal modifications. EXPERIMENTAL APPROACH Variants with Ala and Trp substitutions of the first seven positions of GLP-2(1-33) were studied in vitro for affinity, G protein activation (cAMP accumulation), recruitment of β-arrestin 1 and 2, and internalization of the human and mouse GLP-2R. The intestinotrophic actions of the most efficacious (cAMP) biased variant were examined in mice. KEY RESULTS Ala substitutions had more profound effects than Trp substitutions. For both, alterations at positions 1, 3 and 6 most severely impaired activity. β-arrestin recruitment was more affected than cAMP accumulation. Among Ala substitutions, [H1A], [D3A] and [F6A] impaired potency (EC50 ) for cAMP-accumulation >20-fold and efficacy (Emax ) to 48%-87%, and were unable to recruit arrestins. The Trp substitutions, [A2W], [D3W] and [G4W] were partial agonists (Emax of 46%-59%) with 1.7-12-fold decreased potencies in cAMP and diminished β-arrestin recruitment. The biased variants, [F6A], [F6W] and [S7W] induced less GLP-2R internalization compared with GLP-2, which induced internalization in a partly arrestin-independent manner. In mice, [S7W] enhanced gut trophic actions with increased weight of the small intestine, increased villus height and crypt depth compared with GLP-2. CONCLUSION AND IMPLICATIONS G protein-biased GLP-2R agonists with diminished receptor desensitization have superior intestinotrophic effects and may represent improved treatment of intestinal insufficiency including SBS.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liv von Voss
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Heimbürger SMN, Hoe B, Nielsen CN, Bergman NC, Skov-Jeppesen K, Hartmann B, Holst JJ, Dela F, Overgaard J, Størling J, Vilsbøll T, Dejgaard TF, Havelund JF, Gorshkov V, Kjeldsen F, Færgeman NJ, Madsen MR, Christensen MB, Knop FK. GIP Affects Hepatic Fat and Brown Adipose Tissue Thermogenesis but Not White Adipose Tissue Transcriptome in Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:3261-3274. [PMID: 36111559 DOI: 10.1210/clinem/dgac542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. OBJECTIVE We investigated the effects of a 6-day subcutaneous GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, inflammatory markers, respiratory exchange ratio (RER), and bone homeostasis in patients with type 1 diabetes. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous subcutaneous infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed 7-day washout period. RESULTS During GIP infusion, participants (26 ± 8 years [mean ± SD]; BMI 23.8 ± 1.8 kg/m2; glycated hemoglobin A1c 51 ± 10 mmol/mol [6.8 ± 3.1%]) experienced transiently increased circulating concentrations of nonesterified fatty acid (NEFA) (P = 0.0005), decreased RER (P = 0.009), indication of increased fatty acid β-oxidation, and decreased levels of the bone resorption marker C-terminal telopeptide (P = 0.000072) compared with placebo. After 6 days of GIP infusion, hepatic fat content was increased by 12.6% (P = 0.007) and supraclavicular skin temperature, a surrogate indicator of BAT activity, was increased by 0.29 °C (P < 0.000001) compared with placebo infusion. WAT transcriptomic profile as well as circulating lipid species, proteome, markers of inflammation, and bone homeostasis were unaffected. CONCLUSION Six days of subcutaneous GIP infusion in men with type 1 diabetes transiently decreased bone resorption and increased NEFA and β-oxidation. Further, hepatic fat content, and supraclavicular skin temperature were increased without affecting WAT transcriptomics, the circulating proteome, lipids, or inflammatory markers.
Collapse
Affiliation(s)
- Sebastian Møller Nguyen Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Translational Pharmacology, Zealand Pharma A/S, 2860 Søborg, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chris Neumann Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Natasha Chidekel Bergman
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Julie Overgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Fremming Dejgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
18
|
Gabe MBN, Gasbjerg LS, Gadgaard S, Lindquist P, Holst JJ, Rosenkilde MM. N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 receptor selectivity towards more GLP-1 receptor interaction. Br J Pharmacol 2022; 179:4473-4485. [PMID: 35523760 PMCID: PMC9541843 DOI: 10.1111/bph.15866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To fully elucidate the regulatory role of the GLP-2 system in the gut and the bones, potent and selective GLP-2 receptor (GLP-2R) antagonists are needed. Searching for antagonist activity, we performed systematic N-terminal truncations of human GLP-2(1-33). EXPERIMENTAL APPROACH COS-7 cells were transfected with the human GLP-2R and assessed for cAMP accumulation or competition binding using 125 I-GLP-2(1-33)[M10Y]. To examine selectivity, human GLP-1 or GIP receptor expressing COS-7 cells were assessed for cAMP accumulation. KEY RESULTS The affinity for the GLP-2R of the N-terminally truncated GLP-2 peptides decreased with reduced N-terminal peptide length (Ki 6.5-871 nM), while increasing antagonism appeared with inhibitory potencies (IC50 ) values from 79 to 204 nM for truncation up to GLP-2(4-33) and then declined. In contrast, truncation-dependent increases in intrinsic activity were observed from an Emax of only 20% for GLP-(2-33) up to 46% for GLP-2(6-33) at 1 μM, followed by a decline. GLP-2(9-33) had the highest intrinsic efficacy (Emax 65%) and no antagonistic properties. Moreover, with truncations up to GLP-2(8-33) a gradual loss in selectivity for the GLP-2R appeared with increasing GLP-1 receptor (GLP-1R) inhibition (up to 73% at 1 μM). Lipidation of the peptides improved antagonism (IC50 down to 7.9 nM) for both the GLP-2R and the GLP-1R. CONCLUSION AND IMPLICATIONS The N-terminus of GLP-2 is crucial for GLP-2R activity and selectivity. Our observations form the basis for the development of tool compounds for further characterization of the GLP-2 system.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
19
|
Gabe MBN, Skov-Jeppesen K, Gasbjerg LS, Schiellerup SP, Martinussen C, Gadgaard S, Boer GA, Oeke J, Torz LJ, Veedfald S, Svane MS, Bojsen-Møller KN, Madsbad S, Holst JJ, Hartmann B, Rosenkilde MM. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment. Pharmacol Res 2022; 176:106058. [PMID: 34995796 DOI: 10.1016/j.phrs.2022.106058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 11/22/2022]
Abstract
The intestinal hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are key regulators of postprandial bone turnover in humans. We hypothesized that GIP and GLP-2 co-administration would provide stronger effect on bone turnover than administration of the hormones separately, and tested this using subcutaneous injections of GIP and GLP-2 alone or in combination in humans. Guided by these findings, we designed series of GIPR-GLP-2R co-agonists as template for new osteoporosis treatment. The clinical experiment was a randomized cross-over design including 10 healthy men administered subcutaneous injections of GIP and GLP-2 alone or in combination. The GIPR-GLP-2R co-agonists were characterized in terms of binding and activation profiles on human and rodent GIP and GLP-2 receptors, and their pharmacokinetic (PK) profiles were improved by dipeptidyl peptidase-4 protection and site-directed lipidation. Co-administration of GIP and GLP-2 in humans resulted in an additive reduction in bone resorption superior to each hormone individually. The GIPR-GLP-2R co-agonists, designed by combining regions of importance for cognate receptor activation, obtained similar efficacies as the two native hormones and nanomolar potencies on both human receptors. The PK-improved co-agonists maintained receptor activity along with their prolonged half-lives. Finally, we found that the GIPR-GLP-2R co-agonists optimized toward the human receptors for bone remodeling are not feasible for use in rodent models. The successful development of potent and efficacious GIPR-GLP-2R co-agonists, combined with the improved effect on bone metabolism in humans by co-administration, support these co-agonists as a future osteoporosis treatment.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sine Pasch Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer Martinussen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannika Oeke
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lola Julia Torz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Saur Svane
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Endocrinology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Muzurović EM, Volčanšek Š, Tomšić KZ, Janež A, Mikhailidis DP, Rizzo M, Mantzoros CS. Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease-Current Evidence. J Cardiovasc Pharmacol Ther 2022; 27:10742484221146371. [PMID: 36546652 DOI: 10.1177/10742484221146371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease (CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dysmetabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most components of the "cardiometabolic continuum" and consequently help reduce the need for polypharmacy. In this review, we highlight the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs independently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1 RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1 RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the metabolic component predominates, and whether the benefits outweigh any potential harm.
Collapse
Affiliation(s)
- Emir M Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.,Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Karin Zibar Tomšić
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Lindquist P, Gasbjerg LS, Mokrosinski J, Holst JJ, Hauser AS, Rosenkilde MM. The Location of Missense Variants in the Human GIP Gene Is Indicative for Natural Selection. Front Endocrinol (Lausanne) 2022; 13:891586. [PMID: 35846282 PMCID: PMC9277503 DOI: 10.3389/fendo.2022.891586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is involved in important physiological functions, including postprandial blood glucose homeostasis, bone remodeling, and lipid metabolism. While mutations leading to physiological changes can be identified in large-scale sequencing, no systematic investigation of GIP missense variants has been performed. Here, we identified 168 naturally occurring missense variants in the human GIP genes from three independent cohorts comprising ~720,000 individuals. We examined amino acid changing variants scattered across the pre-pro-GIP peptide using in silico effect predictions, which revealed that the sequence of the fully processed GIP hormone is more protected against mutations than the rest of the precursor protein. Thus, we observed a highly species-orthologous and population-specific conservation of the GIP peptide sequence, suggestive of evolutionary constraints to preserve the GIP peptide sequence. Elucidating the mutational landscape of GIP variants and how they affect the structural and functional architecture of GIP can aid future biological characterization and clinical translation.
Collapse
Affiliation(s)
- Peter Lindquist
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Mokrosinski
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, United States
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Sebastian Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Alexander Sebastian Hauser, ; Mette Marie Rosenkilde,
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Alexander Sebastian Hauser, ; Mette Marie Rosenkilde,
| |
Collapse
|
22
|
Gadgaard S, van der Velden WJC, Schiellerup SP, Hunt JE, Gabe MBN, Windeløv JA, Boer GA, Kissow H, Ørskov C, Holst JJ, Hartmann B, Rosenkilde MM. Novel agonist- and antagonist-based radioligands for the GLP-2 receptor - useful tools for studies of basic GLP-2R pharmacology. Br J Pharmacol 2021; 179:1998-2015. [PMID: 34855984 PMCID: PMC9303331 DOI: 10.1111/bph.15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background Glucagon‐like peptide‐2 (GLP‐2) is a pro‐glucagon‐derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP‐2(1–33) is cleaved by DPP‐4, forming GLP‐2(3–33), having low intrinsic activity and competitive antagonism properties at GLP‐2 receptors. We created radioligands based on these two molecules. Experimental approach The methionine in position 10 of GLP‐2(1–33) and GLP‐2(3–33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y). Both were characterized by competition binding, on‐and‐off‐rate determination and receptor activation. Receptor expression was determined by target‐tissue autoradiography and immunohistochemistry. Key results Both M10Y‐substituted peptides induced cAMP production via the GLP‐2 receptor comparable to the wildtype peptides. GLP‐2(3–33,M10Y) maintained the antagonistic properties of GLP‐2(3–33). However, hGLP‐2(1–33,M10Y) had lower arrestin recruitment than hGLP‐2(1–33). High affinities for the hGLP‐2 receptor were observed using [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP‐1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP‐2 receptor specific antibody that in turn was confirmed in GLP‐2 receptor knock‐out mice. Conclusion and implications Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP‐2 receptor expression.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bainan Biotech, Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Sine P Schiellerup
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Maria B N Gabe
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke Aline Boer
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Cathrine Ørskov
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Katra B, Fedak D, Matejko B, Małecki MT, Wędrychowicz A. The enteroendocrine-osseous axis in patients with long-term type 1 diabetes mellitus. Bone 2021; 153:116105. [PMID: 34245933 DOI: 10.1016/j.bone.2021.116105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The relationship between the gut and skeleton is increasingly recognized as a component of the regulation of carbohydrate metabolism. The aim of our study was to assess the relationship between bone mineral density (BMD), incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), intestinotrophic peptide glucagon-like peptide-2 (GLP-2) and osteocalcin isoforms in patients with long-term type 1 diabetes (T1D) when compared to healthy controls. METHODS Eighty two patients with long term T1D, treated in the Department of Metabolic Diseases and 53 healthy controls were recruited to the study. Long term disease duration was defined as lasting for more than 10 years. The control group was selected among age- and sex-matched healthy people. Fasting blood samples were collected to measure levels of incretin hormones (GLP-1, GLP-2, GIP), two forms of osteocalcin (uncarboxylated (ucOC), and carboxylated (cOC)), and additional biochemical parameters associated with glucose and bone metabolism (HbA1c, calcium, phosphorus, 25(OH)D3, PTH). RESULTS Patients with T1D had higher BMI than in controls (p = 0.02). There was no difference in BMD at the lumbar spine and the femoral neck between patients with long-term T1D and healthy ones. Z-score values in both groups were within normal ranges. The level of GIP was significantly higher in T1D patients (p = 0.0002) in comparison to the healthy ones. The levels of GLP-1 and GLP-2 did not differ between T1D patients and controls. In the T1D group, strong, positive associations were found between serum levels of GLP-1 and cOC (r = 0.546, p < 0.001) and between GLP-1 and total OC (r = 0.51, p < 0.001), also after adjusting for BMI (p < 0.001 and p < 0.001, respectively). Significant positive associations were also found between serum levels of GLP-2 and cOC (r = 0.27, p = 0.013) and between GLP-2 and total OC (r = 0.25, p = 0.018), also in a multivariate regression (p = 0.009, p = 0,175, respectively). Moreover, in T1D patients, GLP-1 correlated positively with the femoral neck BMD (g/cm2) (r = 0.265, p = 0.016) and this association was statistically significant after adjusting for BMI (p = 0.011). These correlations were not present in the control group. The only significant correlation observed in the control group was between OC and BMD of the neck (p = 0.049 for neck BMD g/cm2, and p = 0.041 for neck Z-score). CONCLUSIONS Our data suggests an effect of gut hormones on bone in long-term T1D, which could be associated with OC activity, however we did not find a direct connection with glucose metabolism. GLP-1 could have a possible, protective role on bone mineral density in patients with T1D. The data from our study suggests that gut hormones could be considered as a new link in the skeleton - pancreatic endocrine loop in patients with T1D.
Collapse
Affiliation(s)
- Barbara Katra
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Danuta Fedak
- Department of Diagnostics, Jagiellonian University Medical College, Kraków, Poland
| | - Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Wędrychowicz
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
24
|
Kizilkaya HS, Sørensen KV, Kibsgaard CJ, Gasbjerg LS, Hauser AS, Sparre-Ulrich AH, Grarup N, Rosenkilde MM. Loss of Function Glucose-Dependent Insulinotropic Polypeptide Receptor Variants Are Associated With Alterations in BMI, Bone Strength and Cardiovascular Outcomes. Front Cell Dev Biol 2021; 9:749607. [PMID: 34760890 PMCID: PMC8573201 DOI: 10.3389/fcell.2021.749607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are involved in multiple physiological systems related to glucose metabolism, bone homeostasis and fat deposition. Recent research has surprisingly indicated that both agonists and antagonists of GIPR may be useful in the treatment of obesity and type 2 diabetes, as both result in weight loss when combined with GLP-1 receptor activation. To understand the receptor signaling related with weight loss, we examined the pharmacological properties of two rare missense GIPR variants, R190Q (rs139215588) and E288G (rs143430880) linked to lower body mass index (BMI) in carriers. At the molecular and cellular level, both variants displayed reduced G protein coupling, impaired arrestin recruitment and internalization, despite maintained high GIP affinity. The physiological phenotyping revealed an overall impaired bone strength, increased systolic blood pressure, altered lipid profile, altered fat distribution combined with increased body impedance in human carriers, thereby substantiating the role of GIP in these physiological processes.
Collapse
Affiliation(s)
- Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kimmie Vestergaard Sørensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla J Kibsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hovard Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Antag Therapeutics ApS, Copenhagen, Denmark
| | - Niels Grarup
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Skov-Jeppesen K, Veedfald S, Madsbad S, Holst JJ, Rosenkilde MM, Hartmann B. Subcutaneous GIP and GLP-2 inhibit nightly bone resorption in postmenopausal women: A preliminary study. Bone 2021; 152:116065. [PMID: 34153529 DOI: 10.1016/j.bone.2021.116065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are gut hormones secreted in response to food ingestion, and they have been suggested to regulate bone turnover. In humans, exogenous GIP and GLP-2 acutely inhibit bone resorption as measured by circulating levels of carboxy-terminal type 1 collagen crosslinks (CTX). OBJECTIVE The objective was to study the individual and combined acute effects of GIP and GLP-2 on bone turnover in postmenopausal women during nighttime - a period of increased bone resorption. METHODS Using a randomized, placebo-controlled, double-blinded, crossover design, each participant (n = 9) received on four separate study days: GIP, GLP-2, GIP + GLP-2, and placebo (saline) as subcutaneous injections at bedtime. Main outcomes were levels of CTX and procollagen type 1 N-terminal propeptide (P1NP). RESULTS Compared with placebo, GIP and GLP-2 alone significantly inhibited bone resorption (measured by CTX). GIP rapidly reduced CTX levels in the period from 45 to 120 min after injection, while GLP-2 had a more delayed effect with reduced CTX levels in the period from 120 to 240 min after injection. Combining GIP and GLP-2 showed complementary effects resulting in a sustained inhibition of CTX with reduced levels from 45 to 240 min after injection. Furthermore, GIP acutely increased bone formation (measured by P1NP). CONCLUSION Both GIP and GLP-2 reduced CTX during the night and had complementary effects when combined.
Collapse
Affiliation(s)
- Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Department of Endocrinology, Hvidovre University Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Skov‐Jeppesen K, Hepp N, Oeke J, Hansen MS, Jafari A, Svane MS, Balenga N, Olson JA, Frost M, Kassem M, Madsbad S, Beck Jensen J, Holst JJ, Rosenkilde MM, Hartmann B. The Antiresorptive Effect of GIP, But Not GLP-2, Is Preserved in Patients With Hypoparathyroidism-A Randomized Crossover Study. J Bone Miner Res 2021; 36:1448-1458. [PMID: 33852173 PMCID: PMC8338760 DOI: 10.1002/jbmr.4308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 01/20/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are gut hormones secreted postprandially. In healthy humans, both hormones decrease bone resorption accompanied by a rapid reduction in parathyroid hormone (PTH). The aim of this study was to investigate whether the changes in bone turnover after meal intake and after GIP- and GLP-2 injections, respectively, are mediated via a reduction in PTH secretion. This was tested in female patients with hypoparathyroidism given a standardized liquid mixed-meal test (n = 7) followed by a peptide injection test (n = 4) using a randomized crossover design. We observed that the meal- and GIP- but not the GLP-2-induced changes in bone turnover markers were preserved in the patients with hypoparathyroidism. To understand the underlying mechanisms, we examined the expression of the GIP receptor (GIPR) and the GLP-2 receptor (GLP-2R) in human osteoblasts and osteoclasts as well as in parathyroid tissue. The GIPR was expressed in both human osteoclasts and osteoblasts, whereas the GLP-2R was absent or only weakly expressed in osteoclasts. Furthermore, both GIPR and GLP-2R were expressed in parathyroid tissue. Our findings suggest that the GIP-induced effect on bone turnover may be mediated directly via GIPR expressed in osteoblasts and osteoclasts and that this may occur independent of PTH. In contrast, the effect of GLP-2 on bone turnover seems to depend on changes in PTH and may be mediated through GLP-2R in the parathyroid gland. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kirsa Skov‐Jeppesen
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Nicola Hepp
- Department of EndocrinologyHvidovre University HospitalHvidovreDenmark
| | - Jannika Oeke
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Morten Steen Hansen
- Molecular Endocrinology Unit (KMEB), Department of EndocrinologyOdense University HospitalOdenseDenmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (Danstem)University of CopenhagenCopenhagenDenmark
| | - Maria Saur Svane
- Department of EndocrinologyHvidovre University HospitalHvidovreDenmark
| | - Nariman Balenga
- Division of General and Oncologic Surgery, Department of Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - John A Olson
- Division of General and Oncologic Surgery, Department of Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Morten Frost
- Molecular Endocrinology Unit (KMEB), Department of EndocrinologyOdense University HospitalOdenseDenmark
| | - Moustapha Kassem
- Molecular Endocrinology Unit (KMEB), Department of EndocrinologyOdense University HospitalOdenseDenmark
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (Danstem)University of CopenhagenCopenhagenDenmark
| | - Sten Madsbad
- Department of EndocrinologyHvidovre University HospitalHvidovreDenmark
| | - Jens‐Erik Beck Jensen
- Department of EndocrinologyHvidovre University HospitalHvidovreDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jens Juul Holst
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | | | - Bolette Hartmann
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Hansen MS, Frost M. Alliances of the gut and bone axis. Semin Cell Dev Biol 2021; 123:74-81. [PMID: 34303607 DOI: 10.1016/j.semcdb.2021.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.
Collapse
Affiliation(s)
- Morten Steen Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| |
Collapse
|
28
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
29
|
Amato A, Proia P, Caldara GF, Alongi A, Ferrantelli V, Baldassano S. Analysis of Body Perception, Preworkout Meal Habits and Bone Resorption in Child Gymnasts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042184. [PMID: 33672264 PMCID: PMC7926894 DOI: 10.3390/ijerph18042184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
The beneficial effects of physical activity on body image perception and bone are debated among artistic gymnasts. Gymnasts seem to be at greater risk of developing body dissatisfaction, eating disorders and osteoporosis due to inadequate nutrition and attention to the appearance of the body. The objective of this work was to investigate the association between the artistic gymnast and a more favorable body image compared to their sedentary peers and if a preworkout high-carbohydrate meal (HCM; 300 kcal, 88% carbohydrates, 9% protein, 3% fat) or high-protein meal (HPM; 300 kcal, 55% carbohydrates, 31% protein, 13% fat) is able to attenuate bone resorption in young rhythmic gymnasts. Twenty-eight preadolescent female gymnasts were examined. Self-esteem tests were used to analyze body image perception. Preworkout eating habits were examined by short food frequency questions (FFQ) validated for children. The biomarker of the bone resorption C-terminal telopeptide region of collagen type 1 (CTX) was measured in the urine (fasting, postmeal and postworkout). Gymnasts reported higher satisfaction with their body appearance compared to sedentary peers. Of the gymnasts, 30% did not have a preworkout meal regularly, and the timing of the consumption was variable. Bone resorption was decreased by the HCM, consumed 90 min before the training, with respect to the HPM. The study suggests that playing artistic gymnastics is associated with a positive body self-perception in a child. The variability in preworkout meal frequency and timing need attention to prevent inadequate eating habits in light of the ability of the HCM to reduce acute bone resorption.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, 90128 Palermo, Italy; (A.A.); (P.P.)
| | - Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, 90128 Palermo, Italy; (A.A.); (P.P.)
| | - Gaetano Felice Caldara
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy; (G.F.C.); (A.A.); (V.F.)
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Angelina Alongi
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy; (G.F.C.); (A.A.); (V.F.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy; (G.F.C.); (A.A.); (V.F.)
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
30
|
Marrano N, Biondi G, Borrelli A, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Irisin and Incretin Hormones: Similarities, Differences, and Implications in Type 2 Diabetes and Obesity. Biomolecules 2021; 11:286. [PMID: 33671882 PMCID: PMC7918991 DOI: 10.3390/biom11020286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α- and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis-involving the gut, muscle, and endocrine pancreas that controls energy homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; (N.M.); (G.B.); (A.B.); (A.C.); (S.P.); (L.L.); (A.N.)
| | | |
Collapse
|
31
|
Abildgaard J, Ploug T, Pedersen AT, Eiken P, Pedersen BK, Holst JJ, Hartmann B, Lindegaard B. Preserved postprandial suppression of bone turnover markers, despite increased fasting levels, in postmenopausal women. Bone 2021; 143:115612. [PMID: 32853851 DOI: 10.1016/j.bone.2020.115612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Menopause leads to an increased bone turnover associated with a high risk of fractures. Bone turnover is inhibited by meal intake, to some extent mediated by gut hormones, and interventions based on these endocrine changes may have potential in future prevention of osteoporosis. OBJECTIVE To investigate whether postmenopausal women exhibit postprandial suppression of bone turnover markers to the same extent as premenopausal women, despite higher fasting levels. Furthermore, to assess whether menopausal differences in bone turnover markers are related to postmenopausal changes in plasma gut hormone levels. METHODS A cross-sectional study of 21 premenopausal, 9 perimenopausal, and 24 postmenopausal women between 45 and 60 years of age. Serum/plasma levels of bone turnover markers and gut hormones were investigated during a 120 min oral glucose tolerance test. Bone turnover markers included N-terminal propeptide of type-I procollagen (PINP, bone formation marker) and carboxyterminal collagen I crosslinks (CTX-I, bone resorption marker). Gut hormone secretion was evaluated from responses of glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP). RESULTS Fasting levels of s-CTX-I were increased in peri- and postmenopausal women compared to premenopausal women (p = 0.001). Despite higher fasting levels, the relative postprandial s-CTX-I suppression was comparable across menopausal status (p = 0.14). Fasting levels of s-PINP were also increased in postmenopausal women compared to premenopausal women (p < 0.001) with comparable and modest s-PINP suppression over menopause (p = 0.13). Postprandial plasma GLP-1 (p = 0.006) and GLP-2 (p = 0.01) were significantly increased in postmenopausal women compared to premenopausal women while GIP responses were slightly increased in the perimenopausal group (p = 0.02) but comparable between pre- and postmenopausal women. None of the postprandial gut hormone increases predicted postprandial bone turnover suppression in these women. CONCLUSIONS Glucose-induced suppression of bone turnover markers is preserved in postmenopausal women, despite significantly higher fasting values, indicating that CTX-I lowering treatments based on these postprandial mechanisms might be a feasible strategy to prevent postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Julie Abildgaard
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Thorkil Ploug
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Eiken
- Department of Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Birgitte Lindegaard
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark.
| |
Collapse
|
32
|
Mieczkowska A, Bouvard B, Legrand E, Mabilleau G. [Gly²]-GLP-2, But Not Glucagon or [D-Ala²]-GLP-1, Controls Collagen Crosslinking in Murine Osteoblast Cultures. Front Endocrinol (Lausanne) 2021; 12:721506. [PMID: 34421828 PMCID: PMC8371440 DOI: 10.3389/fendo.2021.721506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Bone tissue is organized at the molecular level to resist fracture with the minimum of bone material. This implies that several modifications of the extracellular matrix, including enzymatic collagen crosslinking, take place. We previously highlighted the role of several gut hormones in enhancing collagen maturity and bone strength. The present study investigated the effect of proglucagon-derived peptides on osteoblast-mediated collagen post-processing. Briefly, MC3T3-E1 murine osteoblasts were cultured in the presence of glucagon (GCG), [D-Ala²]-glucagon-like peptide-1 ([D-Ala²]-GLP-1), and [Gly²]-glucagon-like peptide-2 ([Gly²]-GLP-2). Gut hormone receptor expression at the mRNA and protein levels were investigated by qPCR and Western blot. Extent of collagen postprocessing was examined by Fourier transform infrared microspectroscopy. GCG and GLP-1 receptors were not evidenced in osteoblast cells at the mRNA and protein levels. However, it is not clear whether the known GLP-2 receptor is expressed. Nevertheless, administration of [Gly²]-GLP-2, but not GCG or [D-Ala²]-GLP-1, led to a dose-dependent increase in collagen maturity and an acceleration of collagen post-processing. This mechanism was dependent on adenylyl cyclase activation. In conclusion, the present study highlighted a direct effect of [Gly²]-GLP-2 to enhance collagen post-processing and crosslinking maturation in murine osteoblast cultures. Whether this effect is translatable to human osteoblasts remains to be elucidated.
Collapse
Affiliation(s)
| | - Beatrice Bouvard
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Rheumatology Department, Angers, France
| | - Erick Legrand
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Rheumatology Department, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Bone Pathology Unit, Angers, France
- *Correspondence: Guillaume Mabilleau,
| |
Collapse
|
33
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Helsted MM, Gasbjerg LS, Lanng AR, Bergmann NC, Stensen S, Hartmann B, Christensen MB, Holst JJ, Vilsbøll T, Rosenkilde MM, Knop FK. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 2020; 140:115553. [PMID: 32730920 DOI: 10.1016/j.bone.2020.115553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are well known for their insulinotropic effects and they are thought to affect bone homeostasis as mediators in the so-called entero-osseous axis. We examined the contributions of endogenous GIP and GLP-1, respectively, to postprandial bone homeostasis, in healthy subjects in two randomized and double-blind crossover studies. We included healthy men who received either four oral glucose tolerance tests (OGTTs) (n = 18, median age 27 (range 20-70), BMI 27.2 (22.4-37.0) kg/m2) or liquid mixed meal tests (MMTs) (n = 12, age 23 (19-65), BMI 23.7 (20.3-25.5) kg/m2) with infusions of 1) the GIP receptor antagonist GIP(3-30)NH2, 2) the GLP-1 receptor antagonist exendin(9-39)NH2, 3) both GIP(3-30)NH2 and exendin(9-39)NH2, or 4) placebo infusions (saline) on four separate visits. Bone resorption was evaluated from levels of circulating carboxy-terminal collagen crosslinks (CTX) and bone formation from levels of procollagen type 1 amino-terminal propeptide (P1NP). During placebo infusions, baseline-subtracted area under the curve values for CTX were -39 ± 5.0 (OGTT) and -57 ± 4.3 ng/ml × min (MMT). When GIP(3-30)NH2 was administered, CTX suppression was significantly diminished compared to placebo (-30 ± 4.8 (OGTT) and -45 ± 4.6 ng/ml × min (MMT), P = 0.0104 and P = 0.0288, respectively, compared to placebo. During exendin(9-39)NH2 infusion, CTX suppression after OGTT/MMT was similar to placebo (P = 0.28 (OGTT) and P = 0.93 (MMT)). The relative contribution of endogenous GIP to postprandial suppression of bone resorption during both OGTT and MMT was similar and reached 22-25%. There were no differences in P1NP concentrations between interventions. In conclusion, endogenous GIP contributes by up to 25% to postprandial suppression of bone resorption in humans whereas an effect of endogenous GLP-1 could not be demonstrated.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
35
|
Lynggaard MB, Gasbjerg LS, Christensen MB, Knop FK. GIP(3-30)NH 2 - a tool for the study of GIP physiology. Curr Opin Pharmacol 2020; 55:31-40. [PMID: 33053504 DOI: 10.1016/j.coph.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.
Collapse
Affiliation(s)
- Mads Bank Lynggaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Christensen MB, Lund AB, Jørgensen NR, Holst JJ, Vilsbøll T, Knop FK. Glucose-Dependent Insulinotropic Polypeptide (GIP) Reduces Bone Resorption in Patients With Type 2 Diabetes. J Endocr Soc 2020; 4:bvaa097. [PMID: 32904711 PMCID: PMC7458112 DOI: 10.1210/jendso/bvaa097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
CONTEXT In healthy individuals, glucose-dependent insulinotropic polypeptide (GIP) enhances insulin secretion and reduces bone resorption by up to 25% estimated by absolute placebo-corrected changes in carboxy-terminal type 1 collagen crosslinks (CTX) during GIP and glucose administration. In patients with type 2 diabetes (T2D), GIP's insulinotropic effect is impaired and effects on bone may be reduced. OBJECTIVE To investigate GIP's effect on bone biomarkers in patients with T2D. DESIGN Randomized, double-blinded, crossover study investigating 6 interventions. PATIENTS Twelve male patients with T2D. INTERVENTIONS A primed continuous 90-minute GIP infusion (2 pmol/kg/min) or matching placebo (saline) administered at 3 plasma glucose (PG) levels (i.e., paired days with "insulin-induced hypoglycemia" (PG lowered to 3 mmol/L), "fasting hyperglycemia" (mean PG ~8 mmol/L), or "aggravated hyperglycemia" (mean PG ~12 mmol/L). MAIN OUTCOME MEASURES Bone biomarkers: CTX, procollagen type 1 N-terminal propeptide (P1NP) and PTH. RESULTS On days with insulin-induced hypoglycemia, CTX was suppressed by up to 40 ± 15% during GIP administration compared with 12 ± 11% during placebo infusion (P < 0.0001). On days with fasting hyperglycemia, CTX was suppressed by up to 36 ± 15% during GIP administration, compared with 0 ± 9% during placebo infusion (P < 0.0001). On days with aggravated hyperglycemia, CTX was suppressed by up to 47 ± 23% during GIP administration compared with 10 ± 9% during placebo infusion (P = 0.0005). At all glycemic levels, P1NP and PTH concentrations were similar between paired days after 90 minutes. CONCLUSIONS Short-term GIP infusions reduce bone resorption by more than one-third (estimated by absolute placebo-corrected CTX reductions) in patients with T2DM, suggesting preserved bone effects of GIP in these patients. PRÉCIS Short-term GIP infusions reduce the bone resorption marker CTX by one-third in patients with type 2 diabetes independent of glycemic levels.
Collapse
Affiliation(s)
- Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asger B Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Chemistry, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
37
|
Sherk VD, Schauer I, Shah VN. Update on the Acute Effects of Glucose, Insulin, and Incretins on Bone Turnover In Vivo. Curr Osteoporos Rep 2020; 18:371-377. [PMID: 32504189 PMCID: PMC8118128 DOI: 10.1007/s11914-020-00598-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To provide an update on the acute effects of glucose, insulin, and incretins on markers of bone turnover in those with and without diabetes. RECENT FINDINGS Bone resorption is suppressed acutely in response to glucose and insulin challenges in both healthy subjects and patients with diabetes. The suppression is stronger with oral glucose compared with intravenous delivery. Stronger responses with oral glucose may be related to incretin effects on insulin secretion or from a direct effect on bone turnover. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) infusion acutely suppresses bone resorption without much effect on bone formation. The bone turnover response to a metabolic challenge may be attenuated in type 2 diabetes, but this is an understudied area. A knowledge gap exists regarding bone turnover responses to a metabolic challenge in type 1 diabetes. The gut-pancreas-bone link is potentially an endocrine axis. This linkage is disrupted in diabetes, but the mechanism and progression of this disruption are not understood.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Irene Schauer
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
38
|
Gabe MBN, van der Velden WJC, Gadgaard S, Smit FX, Hartmann B, Bräuner‐Osborne H, Rosenkilde MM. Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and long-term impairment of the GIP system. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:122-132. [PMID: 31299132 PMCID: PMC7317972 DOI: 10.1111/bcpt.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
In patients with type 2 diabetes mellitus (T2DM), the insulinotropic action of the GIP system is desensitized, whereas this is not the case for the GLP-1 system. This has raised an interesting discussion of whether GIP agonists or antagonists are most suitable for future treatment of T2DM together with GLP-1-based therapies. Homozygous carriers of the GIP receptor (GIPR) variant, [E354Q], display lower bone mineral density, increased bone fracture risk and slightly increased blood glucose. Here, we present an in-depth molecular pharmacological phenotyping of GIPR-[E354Q]. In silico modelling suggested similar interaction of the endogenous agonist GIP(1-42) to [E354Q] as to GIPR wt. This was supported by homologous competition binding in COS-7 cells revealing GIPR wt-like affinities of GIP(1-42) with Kd values of ~2 nmol/L and wt-like agonist association rates (Kon ). In contrast, the dissociation rates (Koff ) were slower, resulting in 25% higher agonist residence time for GIPR-[E354Q]. Moreover, in Gαs signalling (cAMP production) GIP(1-42) was ~2-fold more potent and more efficacious on GIPR-[E354Q] compared to wt with 17.5% higher basal activity. No difference from GIPR wt was found in the recruitment of β-arrestin 2, whereas the agonist-induced internalization rate was 2.1- to 2.3-fold faster for [E354Q]. Together with the previously described impaired recycling of [E354Q], our findings with enhanced signalling and internalization rate possibly explained by an altered ligand-binding kinetics will lead to receptor desensitization and down-regulation. This could explain the long-term functional impairment of the GIP system in bone metabolism and blood sugar maintenance for [E354Q] carriers and may shed light on the desensitization of the insulinotropic action of GIP in patients with T2DM.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Wijnand J. C. van der Velden
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Florent Xavier Smit
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
39
|
|
40
|
Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T, Knop FK. GIP's involvement in the pathophysiology of type 2 diabetes. Peptides 2020; 125:170178. [PMID: 31682875 DOI: 10.1016/j.peptides.2019.170178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
During the past four decades derangements in glucose-dependent insulinotropic polypeptide (GIP) biology has been viewed upon as contributing factors to various parts of the pathophysiology type 2 diabetes. This overview outlines and discusses the impaired insulin responses to GIP as well as the effect of GIP on glucagon secretion and the potential involvement of GIP in the obesity and bone disease associated with type 2 diabetes. As outlined in this review, it is unlikely that the impaired insulinotropic effect of GIP occurs as a primary event in the development of type 2 diabetes, but rather develops once the diabetic state is present and beta cells are unable to maintain normoglycemia. In various models, GIP has effects on glucagon secretion, bone and lipid homeostasis, but whether these effects contribute substantially to the pathophysiology of type 2 diabetes is at present controversial. The review also discusses the substantial uncertainty surrounding the translation of preclinical data relating to the GIP system and outline future research directions.
Collapse
Affiliation(s)
- Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Holst JJ, Rosenkilde MM. Recent advances of GIP and future horizons. Peptides 2020; 125:170230. [PMID: 31838219 DOI: 10.1016/j.peptides.2019.170230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Recently GIP-GLP-1 co-agonists with powerful effects on glycemic control and body weight in patients with type 2 diabetes have been described. While such effects are the expected ones from a glucagonlike peptide-1 receptor agonist, similar contributions from the GIP component of the co-agonist would be surprising and contrast to the existing literature. Conventionally, GIP is thought of as an important incretin hormone regulating postprandial insulin secretion in glucose tolerant individuals, but such effects are weak or absent in patients with type 2 diabetes, and GIP has been proposed to an obesity-promoting hormone, rather than the opposite. Recent studies with a GIP receptor antagonist suitable for human studies have confirmed these concepts regarding the actions of endogenous GIP and point to potential beneficial metabolic effects of GIP receptor antagonists rather than agonist in the treatment of obesity and type 2 diabetes. So how is it possible that apparently similar results can be obtained with GIP receptor agonists and antagonists? Maybe the explanation should be sought in GIP receptor dynamics, where the agonists clearly elicit beta-arrestin mediated receptor internalization, rendering the target tissues unresponsive, whereas antagonists block the internalization and increase receptor expression on the cell surfaces. This may explain that both antagonists and agonists show efficacy in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark.
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
42
|
Gasbjerg LS, Bergmann NC, Stensen S, Christensen MB, Rosenkilde MM, Holst JJ, Nauck M, Knop FK. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 2020; 125:170183. [PMID: 31693916 DOI: 10.1016/j.peptides.2019.170183] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) potentiate glucose-induced insulin secretion and are therefore thought to be responsible for the incretin effect. The magnitude of the incretin effect, defined as the fraction of postprandial insulin secretion stimulated by intestinal factors, has been reported to be up to ∼60% in healthy individuals. In several pathological conditions but especially in patients with type 2 diabetes, the incretin effect is severely reduced or even absent. In line with this, the insulinotropic effects of GIP and GLP-1 are impaired in patients with type 2 diabetes, even when administered in supraphysiological doses. In healthy individuals, GIP has been proposed to be the most important incretin hormone of the two, but the individual contribution of the two is difficult to determine. However, using incretin hormone receptor antagonists: the novel GIP receptor antagonist GIP(3-30)NH2 and the widely used GLP-1 receptor antagonist exendin(9-39)NH2, we can now distinguish between the effects of the two hormones. In this review, we present and discuss studies in which the individual contribution of GIP and GLP-1 to the incretin effect in healthy individuals have been estimated and discuss the limitations of using incretin hormone receptor antagonists.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nauck
- Diabetes Division, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
43
|
Heimbürger SM, Bergmann NC, Augustin R, Gasbjerg LS, Christensen MB, Knop FK. Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides 2020; 125:170174. [PMID: 31689454 DOI: 10.1016/j.peptides.2019.170174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggests that glucose-dependent insulinotropic polypeptide (GIP) in addition to its involvement in type 2 diabetic pathophysiology may be involved in the development of obesity and the pathogenesis of cardiovascular disease. In this review, we outline recent preclinical and clinical cardiovascular-related discoveries about GIP. These include chronotropic and blood pressure-lowering effects of GIP. Furthermore, GIP has been suggested to control vasodilation via secretion of nitric oxide, and vascular leukocyte adhesion and inflammation via expression and secretion of endothelin 1. Also, GIP seems to regulate circulating lipids via effects on adipose tissue uptake and metabolism of lipids. Lastly, we discuss how dysmetabolic conditions such as obesity and type 2 diabetes may shift the actions of GIP in an atherogenic direction, and we provide a perspective on the therapeutic potential of GIP receptor agonism and antagonism in cardiovascular diseases. We conclude that GIP actions may have implications for the development of cardiovascular disease, but also that the potential of GIP-based drugs for the treatment of cardiovascular disease currently is uncertain.
Collapse
Affiliation(s)
- Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Robert Augustin
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim GmbH & CoKG, Biberach, Germany
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Stensen S, Gasbjerg LS, Helsted MM, Hartmann B, Christensen MB, Knop FK. GIP and the gut-bone axis - Physiological, pathophysiological and potential therapeutic implications. Peptides 2020; 125:170197. [PMID: 31715213 DOI: 10.1016/j.peptides.2019.170197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
The influence by gut-derived hormones on bone remodelling appears increasingly important as research on the enteroendocrine-osseous axis accelerates. Glucose-dependent insulinotropic polypeptide (GIP) is secreted from the gut and potentiates insulin secretion in a glucose-dependent manner. GIP has, like the two other gut-derived hormones, glucagon-like peptide 1 and glucagon-like peptide 2, been shown to affect bone remodelling as part of the enteroendocrine-osseous axis. Observational studies have shown that a mutation in the GIP receptor causing reduced receptor signalling leads to lower bone mineral density and increased fracture risk. Rodent as well as human studies have shown that GIP causes serum levels of the bone resorption marker carboxy-terminal type 1 collagen crosslinks to decline. GIP may also increase bone formation indicating a potential uncoupling of bone resorption and formation. Here, we review past and recent discoveries elucidating the enteroendocrine-osseous axis with a special focus on GIP.
Collapse
Affiliation(s)
- Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Marstrand Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
45
|
GIP as a Potential Therapeutic Target for Atherosclerotic Cardiovascular Disease-A Systematic Review. Int J Mol Sci 2020; 21:ijms21041509. [PMID: 32098413 PMCID: PMC7073149 DOI: 10.3390/ijms21041509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that are secreted from enteroendocrine L cells and K cells in response to digested nutrients, respectively. They are also referred to incretin for their ability to stimulate insulin secretion from pancreatic beta cells in a glucose-dependent manner. Furthermore, GLP-1 exerts anorexic effects via its actions in the central nervous system. Since native incretin is rapidly inactivated by dipeptidyl peptidase-4 (DPP-4), DPP-resistant GLP-1 receptor agonists (GLP-1RAs), and DPP-4 inhibitors are currently used for the treatment of type 2 diabetes as incretin-based therapy. These new-class agents have superiority to classical oral hypoglycemic agents such as sulfonylureas because of their low risks for hypoglycemia and body weight gain. In addition, a number of preclinical studies have shown the cardioprotective properties of incretin-based therapy, whose findings are further supported by several randomized clinical trials. Indeed, GLP-1RA has been significantly shown to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes. However, the role of GIP in cardiovascular disease remains to be elucidated. Recently, pharmacological doses of GIP receptor agonists (GIPRAs) have been found to exert anti-obesity effects in animal models. These observations suggest that combination therapy of GLP-1R and GIPR may induce superior metabolic and anti-diabetic effects compared with each agonist individually. Clinical trials with GLP-1R/GIPR dual agonists are ongoing in diabetic patients. Therefore, in this review, we summarize the cardiovascular effects of GIP and GIPRAs in cell culture systems, animal models, and humans.
Collapse
|
46
|
Gasbjerg LS, Hartmann B, Christensen MB, Lanng AR, Vilsbøll T, Jørgensen NR, Holst JJ, Rosenkilde MM, Knop FK. GIP's effect on bone metabolism is reduced by the selective GIP receptor antagonist GIP(3-30)NH 2. Bone 2020; 130:115079. [PMID: 31622777 DOI: 10.1016/j.bone.2019.115079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
Infusion of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) suppresses the bone resorption marker carboxy-terminal type 1 collagen crosslinks (CTX). Using separate and combined infusions of the selective GIP receptor (GIPR) antagonist, GIP(3-30)NH2, and GIP, we investigated how GIPR inhibition affects bone turnover markers. Ten healthy men (median age 22.5 years (range 21-25), BMI 21.3kg/m2 (19.9-24.7)) participated in a randomized, doubled blinded, placebo-controlled, crossover study with four 1h 12mmol/l-hyperglycemic clamps on four separate study days with concomitant infusions of GIP, GIP+GIP(3-30)NH2, GIP(3-30)NH2, and placebo, respectively, separated by a period of at least one week. GIP was infused at 1.5pmol/kg/min and GIP(3-30)NH2 at 800pmol/kg/min. Plasma glucose was clamped at 12.0±1.2mmol/l and plasma levels of GIP and GIP(3-30)NH2 amounted to ∼80pmol/l and ∼50nmol/l, respectively. GIP suppressed CTX more than placebo (baseline-subtracted AUC -6,811±1,260 vs. -3,012±3,018ng/l×min, P= 0.002) and resulted in CTX values of 53 ± 6.9% (GIP) versus 81 ± 10% of baseline (placebo), respectively (P = 0.0006), at the end of the hyperglycemic clamp. Co-infusion of GIP and GIP(3-30)NH2 attenuated the GIP-induced CTX suppression by 51±33% (P = 0.01). The peak value of the bone formation marker N-terminal propeptide of type 1 procollagen (P1NP) peaked at higher levels during GIP (109±6.7% of baseline) than during GIP(3-30)NH2 infusion (101±8.9%) (P = 0.049) and GIP suppressed PTH levels compared to GIP(3-30)NH2 alone (P = 0.0158). In conclusion, blockade of the GIPR with GIP(3-30)NH2 diminished GIP-induced CTX and P1NP responses, showing that these effects are GIPR-mediated and that GIPR antagonism might interfere with bone resorption.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; OPEN, Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|