1
|
Bertram R, Marinelli I, Fletcher PA, Satin LS, Sherman AS. Deconstructing the integrated oscillator model for pancreatic β-cells. Math Biosci 2023; 365:109085. [PMID: 37802364 PMCID: PMC10991200 DOI: 10.1016/j.mbs.2023.109085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Electrical bursting oscillations in the β-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and a deconstruction of the IOM that describes the various elements that have been added to the model over time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the publication of the Chay-Keizer model.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, United States.
| | - Isabella Marinelli
- Centre for Systems Modeling and Quantitative Biomedicine, University of Birmingham, United Kingdom
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Loss of Slc12a2 specifically in pancreatic β-cells drives metabolic syndrome in mice. PLoS One 2022; 17:e0279560. [PMID: 36580474 PMCID: PMC9799326 DOI: 10.1371/journal.pone.0279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting β-cells of the pancreatic islet (Nkcc1βKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller β-cells. Remarkably, Nkcc1βKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1βKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary β-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and β-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.
Collapse
|
3
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
4
|
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab 2022; 34:947-968. [PMID: 35728586 PMCID: PMC9262871 DOI: 10.1016/j.cmet.2022.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/03/2023]
Abstract
In this review, we focus on recent developments in our understanding of nutrient-induced insulin secretion that challenge a key aspect of the "canonical" model, in which an oxidative phosphorylation-driven rise in ATP production closes KATP channels. We discuss the importance of intrinsic β cell metabolic oscillations; the phasic alignment of relevant metabolic cycles, shuttles, and shunts; and how their temporal and compartmental relationships align with the triggering phase or the secretory phase of pulsatile insulin secretion. Metabolic signaling components are assigned regulatory, effectory, and/or homeostatic roles vis-à-vis their contribution to glucose sensing, signal transmission, and resetting the system. Taken together, these functions provide a framework for understanding how allostery, anaplerosis, and oxidative metabolism are integrated into the oscillatory behavior of the secretory pathway. By incorporating these temporal as well as newly discovered spatial aspects of β cell metabolism, we propose a much-refined MitoCat-MitoOx model of the signaling process for the field to evaluate.
Collapse
Affiliation(s)
- Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montréal, ON, Canada.
| |
Collapse
|
5
|
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell-specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022; 7:e154198. [PMID: 35603790 PMCID: PMC9220824 DOI: 10.1172/jci.insight.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from β‑Zfp148KO and control mice fed both a chow and a Western-style diet. β-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. β-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of β-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, β-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving β cell function that are robust to the metabolic challenge imposed by a Western diet.
Collapse
Affiliation(s)
| | | | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziyue Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie L. Lewandowski
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L’Hospitalet del Llobregat, Barcelona, Spain
| | - Christina M. Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard G. Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Marinelli I, Fletcher PA, Sherman AS, Satin LS, Bertram R. Symbiosis of Electrical and Metabolic Oscillations in Pancreatic β-Cells. Front Physiol 2021; 12:781581. [PMID: 34925070 PMCID: PMC8682964 DOI: 10.3389/fphys.2021.781581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic β-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca2+ initiated by bursts of electrical activity. In parallel with these electrical and Ca2+ oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar. A key question that remains unresolved is whether the electrical oscillations are responsible for the metabolic oscillations via the effects of Ca2+, or whether the metabolic oscillations are responsible for the electrical oscillations due to the effects of ATP on ATP-sensitive ion channels? Mathematical modeling is a useful tool for addressing this and related questions as modeling can aid in the design of well-focused experiments that can test the predictions of particular models and subsequently be used to improve the models in an iterative fashion. In this article, we discuss a recent mathematical model, the Integrated Oscillator Model (IOM), that was the product of many years of development. We use the model to demonstrate that the relationship between calcium and metabolism in beta cells is symbiotic: in some contexts, the electrical oscillations drive the metabolic oscillations, while in other contexts it is the opposite. We provide new insights regarding these results and illustrate that what might at first appear to be contradictory data are actually compatible when viewed holistically with the IOM.
Collapse
Affiliation(s)
- Isabella Marinelli
- Centre for Systems Modelling and Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, United Kingdom
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Leslie S Satin
- Department of Pharmacology, Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Richard Bertram
- Programs in Neuroscience and Molecular Biophysics, Department of Mathematics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Zmazek J, Klemen MS, Markovič R, Dolenšek J, Marhl M, Stožer A, Gosak M. Assessing Different Temporal Scales of Calcium Dynamics in Networks of Beta Cell Populations. Front Physiol 2021; 12:612233. [PMID: 33833686 PMCID: PMC8021717 DOI: 10.3389/fphys.2021.612233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components. How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue slices with time series analysis and network science approaches to unveil the glucose-dependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Lewandowski SL, Cardone RL, Foster HR, Ho T, Potapenko E, Poudel C, VanDeusen HR, Sdao SM, Alves TC, Zhao X, Capozzi ME, de Souza AH, Jahan I, Thomas CJ, Nunemaker CS, Davis DB, Campbell JE, Kibbey RG, Merrins MJ. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metab 2020; 32:736-750.e5. [PMID: 33147484 PMCID: PMC7685238 DOI: 10.1016/j.cmet.2020.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic β cells couple nutrient metabolism with appropriate insulin secretion. Here, we show that pyruvate kinase (PK), which converts ADP and phosphoenolpyruvate (PEP) into ATP and pyruvate, underlies β cell sensing of both glycolytic and mitochondrial fuels. Plasma membrane-localized PK is sufficient to close KATP channels and initiate calcium influx. Small-molecule PK activators increase the frequency of ATP/ADP and calcium oscillations and potently amplify insulin secretion. PK restricts respiration by cyclically depriving mitochondria of ADP, which accelerates PEP cycling until membrane depolarization restores ADP and oxidative phosphorylation. Our findings support a compartmentalized model of β cell metabolism in which PK locally generates the ATP/ADP required for insulin secretion. Oscillatory PK activity allows mitochondria to perform synthetic and oxidative functions without any net impact on glucose oxidation. These findings suggest a potential therapeutic route for diabetes based on PK activation that would not be predicted by the current consensus single-state model of β cell function.
Collapse
Affiliation(s)
- Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca L Cardone
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Hannah R Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chetan Poudel
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Halena R VanDeusen
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sophia M Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tiago C Alves
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Xiaojian Zhao
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Arnaldo H de Souza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ishrat Jahan
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| | - Craig J Thomas
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Fazli M, Vo T, Bertram R. Phantom bursting may underlie electrical bursting in single pancreatic β-cells. J Theor Biol 2020; 501:110346. [PMID: 32505826 DOI: 10.1016/j.jtbi.2020.110346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Insulin is secreted by pancreatic β-cellsthat are electrically coupled into micro-organs called islets of Langerhans. The secretion is due to the influx of Ca2+ions that accompany electrical impulses, which are clustered into bursts. So-called "medium bursting" occurs in many β-cellsin intact islets, while in other islets the β-cellsexhibit "slow bursting", with a much longer period. Each burst brings in Ca2+ that, through exocytosis, results in insulin secretion. When isolated from an islet, β-cellsbehave very differently. The electrical activity is much noisier, and consists primarily of trains of irregularly-timed spikes, or fast or slow bursting. Medium bursting, so often seen in intact islets, is rarely if ever observed. In this study, we examine what the isolated cell behavior can tell us about the mechanism for bursting in intact islets. A previous mathematical study concluded that the slow bursting observed in isolated β-cells, and therefore most likely in islets, must be due to intrinsic glycolytic oscillations, since this mechanism for bursting is robust to noise. It was demonstrated that an alternate mechanism, phantom bursting, was very sensitive to noise, and therefore could not account for the slow bursting in single cells. We re-examine these conclusions, motivated by recent experimental and mathematical modeling evidence that slow bursting in intact islets is, at least in many cases, driven by the phantom bursting mechanism and not endogenous glycolytic oscillations. We employ two phantom bursting models, one minimal and the other more biophysical, to determine the sensitivity of medium and slow bursting to electrical current noise. In the minimal model, both forms of bursting are highly sensitive to noise. In the biophysical model, while medium bursting is sensitive to noise, slow bursting is much less sensitive. This suggests that the slow bursting seen in isolated β-cellsmay be due to a phantom bursting mechanism, and by extension, slow bursting in intact islets may also be driven by this mechanism.
Collapse
Affiliation(s)
- Mehran Fazli
- Florida State University, Department of Mathematics, Tallahassee, FL, United States
| | - Theodore Vo
- Monash University, School of Mathematics, Clayton, Victoria, Australia
| | - Richard Bertram
- Florida State University, Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Tallahassee, FL, United States
| |
Collapse
|
10
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
11
|
Marinelli I, Vo T, Gerardo-Giorda L, Bertram R. Transitions between bursting modes in the integrated oscillator model for pancreatic β-cells. J Theor Biol 2018; 454:310-319. [PMID: 29935201 DOI: 10.1016/j.jtbi.2018.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 11/27/2022]
Abstract
Insulin-secreting β-cells of pancreatic islets of Langerhans produce bursts of electrical impulses, resulting in intracellular Ca2+ oscillations and pulsatile insulin secretion. The mechanism for this bursting activity has been the focus of mathematical modeling for more than three decades, and as new data are acquired old models are modified and new models are developed. Comprehensive models must now account for the various modes of bursting observed in islet β-cells, which include fast bursting, slow bursting, and compound bursting. One such model is the Integrated Oscillator Model (IOM), in which β-cell electrical activity, intracellular Ca2+, and glucose metabolism interact via numerous feedforward and feedback pathways. These interactions can produce metabolic oscillations with a sawtooth time course or a pulsatile time course, reflecting very different oscillation mechanisms. In this report, we determine conditions favorable to one form of oscillations or the other, and examine the transitions between modes of bursting and the relationship of the transitions to the patterns of metabolic oscillations. Importantly, this work clarifies what can be expected in experimental measurements of β-cell oscillatory activity, and suggests pathways through which oscillations of one type can be converted to oscillations of another type.
Collapse
Affiliation(s)
| | - Theodore Vo
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | | | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
12
|
Samanta T, Sharma P, Kukri D, Kar S. Decoding the regulatory mechanism of glucose and insulin induced phosphatidylinositol 3,4,5-trisphosphate dynamics in β-cells. MOLECULAR BIOSYSTEMS 2018. [PMID: 28636047 DOI: 10.1039/c7mb00227k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In MIN6 pancreatic β-cells, glucose and insulin act in a synergistic manner to regulate the dynamics of Phosphatidylinositol (3,4,5)-trisphosphate (PIP3). However, the precise regulatory mechanism behind such an experimentally observed synergy is poorly understood. In this article, we propose a phenomenological mathematical model for studying the glucose and insulin driven PIP3 activation dynamics under various stimulatory conditions to unfold the mechanism responsible for the observed synergy. The modeling study reveals that the experimentally observed oscillation in PIP3 dynamics with disparate time scales for different external glucose doses is mainly orchestrated by the complex dynamic regulation of cytosolic Ca2+ in β-cells. The model accounts for the dose-dependent activation of PIP3 as a function of externally added insulin, and further shows that even in the absence of Ca2+ signaling, externally added glucose can still maintain a basal level of endogenous insulin secretion via the fatty acid metabolism pathway. Importantly, the model analysis suggests that the glucose mediated ROS (reactive oxygen species) activation often contributes considerably to the synergistic activation of PIP3 by glucose and insulin in a context dependent manner. Under the physiological conditions that keep β-cells in an insulin responsive state, the effect of glucose induced ROS signaling plays a moderate role in PIP3 activation. As β-cells approach an insulin resistant state, the glucose induced ROS signaling significantly affects the PIP3 dynamics. Our findings provide a plausible mechanistic insight into the experimentally observed synergy, and can lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Tagari Samanta
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Peeyush Sharma
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Dwijendra Kukri
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
13
|
Bertram R, Satin LS, Sherman AS. Closing in on the Mechanisms of Pulsatile Insulin Secretion. Diabetes 2018; 67:351-359. [PMID: 29463575 PMCID: PMC5828455 DOI: 10.2337/dbi17-0004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
Abstract
Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Leiser RJ, Rotstein HG. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity. Phys Rev E 2017; 96:022303. [PMID: 28950537 DOI: 10.1103/physreve.96.022303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 11/07/2022]
Abstract
Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.
Collapse
Affiliation(s)
- Randolph J Leiser
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Horacio G Rotstein
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
15
|
Yildirim V, Vadrevu S, Thompson B, Satin LS, Bertram R. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets. PLoS Comput Biol 2017; 13:e1005686. [PMID: 28749940 PMCID: PMC5549769 DOI: 10.1371/journal.pcbi.1005686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/08/2017] [Accepted: 07/16/2017] [Indexed: 12/02/2022] Open
Abstract
Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels. Pulsatile insulin secretion is important for the proper regulation of blood glucose, and disruption of this pulsatility is a hallmark of type II diabetes. An ion channel was discovered more than three decades ago that conveys the metabolic state of insulin-secreting β-cells to the plasma membrane because it is blocked by ATP and opened by ADP, and thereby controls the activity of these electrically-excitable cells on a rapid time scale according to the prevailing blood glucose level. In addition to setting the appropriate level of insulin secretion, K(ATP) channels play a key role in generating the oscillations in cellular activity that underlie insulin pulsatility. It is therefore surprising that oscillations in activity persist in islets in which the K(ATP) channels are genetically knocked out. In this combined modeling and experimental study, we demonstrate that the role played by K(ATP) current in wild-type β-cells can be taken over by an inward-rectifying K+ current which, we show here, is upregulated in β-cells from SUR1 knockout mice. This result helps to resolve a mystery in the field that has remained elusive for more than a decade, since the first studies showing oscillations in SUR1-/- islets.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, United States of America
| | - Suryakiran Vadrevu
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Benjamin Thompson
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Leslie S. Satin
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
17
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
18
|
McKenna JP, Ha J, Merrins MJ, Satin LS, Sherman A, Bertram R. Ca2+ Effects on ATP Production and Consumption Have Regulatory Roles on Oscillatory Islet Activity. Biophys J 2017; 110:733-742. [PMID: 26840737 DOI: 10.1016/j.bpj.2015.11.3526] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/21/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Pancreatic islets respond to elevated blood glucose by secreting pulses of insulin that parallel oscillations in β-cell metabolism, intracellular Ca(2+) concentration, and bursting electrical activity. The mechanisms that maintain an oscillatory response are not fully understood, yet several models have been proposed. Only some can account for experiments supporting that metabolism is intrinsically oscillatory in β-cells. The dual oscillator model (DOM) implicates glycolysis as the source of oscillatory metabolism. In the companion article, we use recently developed biosensors to confirm that glycolysis is oscillatory and further elucidate the coordination of metabolic and electrical signals in the insulin secretory pathway. In this report, we modify the DOM by incorporating an established link between metabolism and intracellular Ca(2+) to reconcile model predictions with experimental observations from the companion article. With modification, we maintain the distinguishing feature of the DOM, oscillatory glycolysis, but introduce the ability of Ca(2+) influx to reshape glycolytic oscillations by promoting glycolytic efflux. We use the modified model to explain measurements from the companion article and from previously published experiments with islets.
Collapse
Affiliation(s)
- Joseph P McKenna
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Joon Ha
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Matthew J Merrins
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan, Ann Arbor, Michigan
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida; Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida.
| |
Collapse
|
19
|
Merrins MJ, Poudel C, McKenna JP, Ha J, Sherman A, Bertram R, Satin LS. Phase Analysis of Metabolic Oscillations and Membrane Potential in Pancreatic Islet β-Cells. Biophys J 2017; 110:691-699. [PMID: 26840733 DOI: 10.1016/j.bpj.2015.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023] Open
Abstract
Metabolism in islet β-cells displays oscillations that can trigger pulses of electrical activity and insulin secretion. There has been a decades-long debate among islet biologists about whether metabolic oscillations are intrinsic or occur in response to oscillations in intracellular Ca(2+) that result from bursting electrical activity. In this article, the dynamics of oscillatory metabolism were investigated using five different optical reporters. Reporter activity was measured simultaneously with membrane potential bursting to determine the phase relationships between the metabolic oscillations and electrical activity. Our experimental findings suggest that Ca(2+) entry into β-cells stimulates the rate of mitochondrial metabolism, accounting for the depletion of glycolytic intermediates during each oscillatory burst. We also performed Ca(2+) clamp tests in which we clamped membrane potential with the KATP channel-opener diazoxide and KCl to fix Ca(2+) at an elevated level. These tests confirm that metabolic oscillations do not require Ca(2+) oscillations, but show that Ca(2+) plays a larger role in shaping metabolic oscillations than previously suspected. A dynamical picture of the mechanisms of oscillations emerged that requires the restructuring of contemporary mathematical β-cell models, including our own dual oscillator model. In the companion article, we modified our model to account for these new data.
Collapse
Affiliation(s)
- Matthew J Merrins
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Chetan Poudel
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Joseph P McKenna
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Joon Ha
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
20
|
Gregg T, Poudel C, Schmidt BA, Dhillon RS, Sdao SM, Truchan NA, Baar EL, Fernandez LA, Denu JM, Eliceiri KW, Rogers JD, Kimple ME, Lamming DW, Merrins MJ. Pancreatic β-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity. Diabetes 2016; 65:2700-10. [PMID: 27284112 PMCID: PMC5001174 DOI: 10.2337/db16-0432] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic β-cells. To investigate the effects of age on β-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that impaired mitochondrial activity underlies an age-dependent loss of insulin secretion in human islets. NAD(P)H FLIM revealed a comparable decline in mitochondrial function in the pancreatic islets of aged mice (≥24 months), the result of 52% and 57% defects in flux through complex I and II, respectively, of the electron transport chain. However, insulin secretion and glucose tolerance are preserved in aged mouse islets by the heightened metabolic sensitivity of the β-cell triggering pathway, an adaptation clearly encoded in the metabolic and Ca(2+) oscillations that trigger insulin release (Ca(2+) plateau fraction: young 0.211 ± 0.006, aged 0.380 ± 0.007, P < 0.0001). This enhanced sensitivity is driven by a reduction in KATP channel conductance (diazoxide: young 5.1 ± 0.2 nS; aged 3.5 ± 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L left shift in the β-cell glucose threshold. The results demonstrate how mice but not humans are able to successfully compensate for age-associated metabolic dysfunction by adjusting β-cell glucose sensitivity and highlight an essential mechanism for ensuring the maintenance of insulin secretion.
Collapse
Affiliation(s)
- Trillian Gregg
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Biophysics Graduate Training Program, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI
| | - Chetan Poudel
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI
| | - Brian A Schmidt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Sophia M Sdao
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Nathan A Truchan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Emma L Baar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Luis A Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin-Madison, Madison, WI
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Jeremy D Rogers
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Dudley W Lamming
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
21
|
Lancaster G, Suprunenko YF, Jenkins K, Stefanovska A. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states. Sci Rep 2016; 6:29584. [PMID: 27483987 PMCID: PMC4971499 DOI: 10.1038/srep29584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Abstract
Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states.
Collapse
Affiliation(s)
- Gemma Lancaster
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Yevhen F Suprunenko
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kirsten Jenkins
- Randall Division of Cell &Molecular Biophysics, King's College London, London, WC2R 2LS, UK
| | | |
Collapse
|
22
|
Modeling of glucose-induced cAMP oscillations in pancreatic β cells: cAMP rocks when metabolism rolls. Biophys J 2016. [PMID: 26200880 DOI: 10.1016/j.bpj.2015.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (cAMP) in insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic β cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypothesize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for β cells, in which metabolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.
Collapse
|
23
|
Kenty JHR, Melton DA. Testing pancreatic islet function at the single cell level by calcium influx with associated marker expression. PLoS One 2015; 10:e0122044. [PMID: 25853429 PMCID: PMC4390334 DOI: 10.1371/journal.pone.0122044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
Studying the response of islet cells to glucose stimulation is important for understanding cell function in healthy and disease states. Most functional assays are performed on whole islets or cell populations, resulting in averaged observations and loss of information at the single cell level. We demonstrate methods to examine calcium fluxing in individual cells of intact islets in response to multiple glucose challenges. Wild-type mouse islets predominantly contained cells that responded to three (out of three) sequential high glucose challenges, whereas cells of diabetic islets (db/db or NOD) responded less frequently or not at all. Imaged islets were also immunostained for endocrine markers to associate the calcium flux profile of individual cells with gene expression. Wild-type mouse islet cells that robustly fluxed calcium expressed β cell markers (INS/NKX6.1), whereas islet cells that inversely fluxed at low glucose expressed α cell markers (GCG). Diabetic mouse islets showed a higher proportion of dysfunctional β cells that responded poorly to glucose challenges. Most of the failed calcium influx responses in β cells were observed in the second and third high glucose challenges, emphasizing the importance of multiple sequential glucose challenges for assessing the full function of islet cells. Human islet cells were also assessed and showed functional α and β cells. This approach to analyze islet responses to multiple glucose challenges in correlation with gene expression assays expands the understanding of β cell function and the diseased state.
Collapse
Affiliation(s)
- Jennifer H. R. Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Watts M, Fendler B, Merrins MJ, Satin LS, Bertram R, Sherman A. Calcium and Metabolic Oscillations in Pancreatic Islets: Who's Driving the Bus? *. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2015; 13:683-703. [PMID: 25698909 PMCID: PMC4331037 DOI: 10.1137/130920198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pancreatic islets exhibit bursting oscillations in response to elevated blood glucose. These oscillations are accompanied by oscillations in the free cytosolic Ca2+ concentration (Cac ), which drives pulses of insulin secretion. Both islet Ca2+ and metabolism oscillate, but there is some debate about their interrelationship. Recent experimental data show that metabolic oscillations in some cases persist after the addition of diazoxide (Dz), which opens K(ATP) channels, hyperpolarizing β-cells and preventing Ca2+ entry and Ca2+ oscillations. Further, in some islets in which metabolic oscillations were eliminated with Dz, increasing the cytosolic Ca2+ concentration by the addition of KCl could restart the metabolic oscillations. Here we address why metabolic oscillations persist in some islets but not others, and why raising Cac restarts oscillations in some islets but not others. We answer these questions using the dual oscillator model (DOM) for pancreatic islets. The DOM can reproduce the experimental data and shows that the model supports two different mechanisms for slow metabolic oscillations, one that requires calcium oscillations and one that does not.
Collapse
Affiliation(s)
- Margaret Watts
- National Institutes of Health, Bethesda, MD 20892. The first and sixth authors’ research was supported by the NIH/NIDDK Intramural Research Program
| | - Bernard Fendler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. This author’s research was supported by the Simons Foundation and the Starr Cancer Consortium (I3-A123)
| | - Matthew J. Merrins
- University of Michigan, Ann Arbor, MI 48105. The third author’s research was supported by the National Institutes of Health (F32-DK085960), and the fourth author’s research was supported by the National Institutes of Health (R01-DK46409)
| | - Leslie S. Satin
- University of Michigan, Ann Arbor, MI 48105. The third author’s research was supported by the National Institutes of Health (F32-DK085960), and the fourth author’s research was supported by the National Institutes of Health (R01-DK46409)
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL 32306. This author’s research was supported by the National Institutes of Health (DK080714)
| | - Arthur Sherman
- National Institutes of Health, Bethesda, MD 20892. The first and sixth authors’ research was supported by the NIH/NIDDK Intramural Research Program
| |
Collapse
|
25
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
26
|
Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Aspects Med 2015; 42:61-77. [PMID: 25637831 DOI: 10.1016/j.mam.2015.01.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes (T2DM) results when increases in beta cell function and/or mass cannot compensate for rising insulin resistance. Numerous studies have documented the longitudinal changes in metabolism that occur during the development of glucose intolerance and lead to T2DM. However, the role of changes in insulin secretion, both amount and temporal pattern, has been understudied. Most of the insulin secreted from pancreatic beta cells of the pancreas is released in a pulsatile pattern, which is disrupted in T2DM. Here we review the evidence that changes in beta cell pulsatility occur during the progression from glucose intolerance to T2DM in humans, and contribute significantly to the etiology of the disease. We review the evidence that insulin pulsatility improves the efficacy of secreted insulin on its targets, particularly hepatic glucose production, but also examine evidence that pulsatility alters or is altered by changes in peripheral glucose uptake. Finally, we summarize our current understanding of the biophysical mechanisms responsible for oscillatory insulin secretion. Understanding how insulin pulsatility contributes to normal glucose homeostasis and is altered in metabolic disease states may help improve the treatment of T2DM.
Collapse
|
27
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
28
|
In vivo tissue-wide synchronization of mitochondrial metabolic oscillations. Cell Rep 2014; 9:514-21. [PMID: 25373899 DOI: 10.1016/j.celrep.2014.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/09/2014] [Accepted: 09/11/2014] [Indexed: 11/20/2022] Open
Abstract
Little is known about the spatiotemporal coordination of mitochondrial metabolism in multicellular organisms in situ. Using intravital microscopy in live animals, we report that mitochondrial metabolism undergoes rapid and periodic oscillations under basal conditions. Notably, mitochondria in vivo behave as a network of functionally coupled oscillators, which maintain a high level of coordination throughout the tissue via the activity of gap junctions. These findings reveal a unique aspect of the relationship between tissue architecture and self-organization of mitochondrial metabolism in vivo.
Collapse
|
29
|
Hodson DJ, Tarasov AI, Gimeno Brias S, Mitchell RK, Johnston NR, Haghollahi S, Cane MC, Bugliani M, Marchetti P, Bosco D, Johnson PR, Hughes SJ, Rutter GA. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol Endocrinol 2014; 28:860-71. [PMID: 24766140 PMCID: PMC4042069 DOI: 10.1210/me.2014-1038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Incretins such as glucagon-like peptide 1 (GLP-1) are released from the gut and potentiate insulin release in a glucose-dependent manner. Although this action is generally believed to hinge on cAMP and protein kinase A signaling, up-regulated beta cell intermediary metabolism may also play a role in incretin-stimulated insulin secretion. By employing recombinant probes to image ATP dynamically in situ within intact mouse and human islets, we sought to clarify the role of GLP-1-modulated energetics in beta cell function. Using these techniques, we show that GLP-1 engages a metabolically coupled subnetwork of beta cells to increase cytosolic ATP levels, an action independent of prevailing energy status. We further demonstrate that the effects of GLP-1 are accompanied by alterations in the mitochondrial inner membrane potential and, at elevated glucose concentration, depend upon GLP-1 receptor-directed calcium influx through voltage-dependent calcium channels. Lastly, and highlighting critical species differences, beta cells within mouse but not human islets respond coordinately to incretin stimulation. Together, these findings suggest that GLP-1 alters beta cell intermediary metabolism to influence ATP dynamics in a species-specific manner, and this may contribute to divergent regulation of the incretin-axis in rodents and man.
Collapse
Affiliation(s)
| | | | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Natalie R. Johnston
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Shahab Haghollahi
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew C. Cane
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Paul R. Johnson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
30
|
Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. J Biol Chem 2014; 289:12189-94. [PMID: 24637025 DOI: 10.1074/jbc.r114.557314] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This minireview looks back at a century of glycolysis research with a focus on the mechanisms of flux regulation. Traditionally, glycolysis is regarded as a feeder pathway that prepares glucose for further catabolism and energy production. However, glycolysis is much more than that, in particular in those tissues that express the low affinity glucose-phosphorylating enzyme glucokinase. This enzyme equips the glycolytic pathway with a special steering function for the regulation of intermediary metabolism. In beta cells, glycolysis acts as a transducer for triggering and amplifying physiological glucose-induced insulin secretion. On the basis of these considerations, I have defined a glycolytic flux regulatory unit composed of the two fructose ester steps of this pathway with various enzymes and metabolites that regulate glycolysis.
Collapse
Affiliation(s)
- Sigurd Lenzen
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
31
|
Pedersen MG, Mosekilde E, Polonsky KS, Luciani DS. Complex patterns of metabolic and Ca²⁺ entrainment in pancreatic islets by oscillatory glucose. Biophys J 2014; 105:29-39. [PMID: 23823221 DOI: 10.1016/j.bpj.2013.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 11/29/2022] Open
Abstract
Glucose-stimulated insulin secretion is pulsatile and driven by intrinsic oscillations in metabolism, electrical activity, and Ca(2+) in pancreatic islets. Periodic variations in glucose can entrain islet Ca(2+) and insulin secretion, possibly promoting interislet synchronization. Here, we used fluorescence microscopy to demonstrate that glucose oscillations can induce distinct 1:1 and 1:2 entrainment of oscillations (one and two oscillations for each period of exogenous stimulus, respectively) in islet Ca(2+), NAD(P)H, and mitochondrial membrane potential. To our knowledge, this is the first demonstration of metabolic entrainment in islets, and we found that entrainment of metabolic oscillations requires voltage-gated Ca(2+) influx. We identified diverse patterns of 1:2 entrainment and showed that islet synchronization during entrainment involves adjustments of both oscillatory phase and period. All experimental findings could be recapitulated by our recently developed mathematical model, and simulations suggested that interislet variability in 1:2 entrainment patterns reflects differences in their glucose sensitivity. Finally, our simulations and recordings showed that a heterogeneous group of islets synchronized during 1:2 entrainment, resulting in a clear oscillatory response from the collective. In summary, we demonstrate that oscillatory glucose can induce complex modes of entrainment of metabolically driven oscillations in islets, and provide additional support for the notion that entrainment promotes interislet synchrony in the pancreas.
Collapse
|
32
|
Riz M, Braun M, Pedersen MG. Mathematical modeling of heterogeneous electrophysiological responses in human β-cells. PLoS Comput Biol 2014; 10:e1003389. [PMID: 24391482 PMCID: PMC3879095 DOI: 10.1371/journal.pcbi.1003389] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Electrical activity plays a pivotal role in glucose-stimulated insulin secretion from pancreatic β-cells. Recent findings have shown that the electrophysiological characteristics of human β-cells differ from their rodent counterparts. We show that the electrophysiological responses in human β-cells to a range of ion channels antagonists are heterogeneous. In some cells, inhibition of small-conductance potassium currents has no effect on action potential firing, while it increases the firing frequency dramatically in other cells. Sodium channel block can sometimes reduce action potential amplitude, sometimes abolish electrical activity, and in some cells even change spiking electrical activity to rapid bursting. We show that, in contrast to L-type Ca2+-channels, P/Q-type Ca2+-currents are not necessary for action potential generation, and, surprisingly, a P/Q-type Ca2+-channel antagonist even accelerates action potential firing. By including SK-channels and Ca2+ dynamics in a previous mathematical model of electrical activity in human β-cells, we investigate the heterogeneous and nonintuitive electrophysiological responses to ion channel antagonists, and use our findings to obtain insight in previously published insulin secretion measurements. Using our model we also study paracrine signals, and simulate slow oscillations by adding a glycolytic oscillatory component to the electrophysiological model. The heterogenous electrophysiological responses in human β-cells must be taken into account for a deeper understanding of the mechanisms underlying insulin secretion in health and disease, and as shown here, the interdisciplinary combination of experiments and modeling increases our understanding of human β-cell physiology.
Collapse
Affiliation(s)
- Michela Riz
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthias Braun
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padua, Padua, Italy
- * E-mail:
| |
Collapse
|
33
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
34
|
O'Brien RM. Moving on from GWAS: functional studies on the G6PC2 gene implicated in the regulation of fasting blood glucose. Curr Diab Rep 2013; 13:768-77. [PMID: 24142592 PMCID: PMC4041587 DOI: 10.1007/s11892-013-0422-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWAS) have shown that single-nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in fasting blood glucose (FBG) levels. Molecular studies examining the functional impact of these SNPs on G6PC2 gene transcription and splicing suggest that they affect FBG by directly modulating G6PC2 expression. This conclusion is supported by studies on G6pc2 knockout (KO) mice showing that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux and opposing the action of glucokinase. Suppression of G6PC2 activity might, therefore, represent a novel therapy for lowering FBG and the risk of cardiovascular-associated mortality. GWAS and G6pc2 KO mouse studies also suggest that G6PC2 affects other aspects of beta cell function. The evolutionary benefit conferred by G6PC2 remains unclear, but it is unlikely to be related to its ability to modulate FBG.
Collapse
Affiliation(s)
- Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA,
| |
Collapse
|
35
|
Merrins MJ, Van Dyke AR, Mapp AK, Rizzo MA, Satin LS. Direct measurements of oscillatory glycolysis in pancreatic islet β-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. J Biol Chem 2013; 288:33312-22. [PMID: 24100037 DOI: 10.1074/jbc.m113.508127] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pulses of insulin released from pancreatic β-cells maintain blood glucose in a narrow range, although the source of these pulses is unclear. We and others have proposed that positive feedback mediated by the glycolytic enzyme phosphofructokinase-1 (PFK1) enables β-cells to generate metabolic oscillations via autocatalytic activation by its product fructose 1,6-bisphosphate (FBP). Although much indirect evidence has accumulated in favor of this hypothesis, a direct measurement of oscillating glycolytic intermediates has been lacking. To probe glycolysis directly, we engineered a family of inter- and intramolecular FRET biosensors based on the glycolytic enzyme pyruvate kinase M2 (PKAR; pyruvate kinase activity reporter), which multimerizes and is activated upon binding FBP. When introduced into Min6 β-cells, PKAR FRET efficiency increased rapidly in response to glucose. Importantly, however, metabolites entering downstream of PFK1 (glyceraldehyde, pyruvate, and ketoisocaproate) failed to activate PKAR, consistent with sensor activation by FBP; the dependence of PKAR on FBP was further confirmed using purified sensor in vitro. Using a novel imaging modality for monitoring mitochondrial flavin fluorescence in mouse islets, we show that slow oscillations in mitochondrial redox potential stimulated by 10 mm glucose are in phase with glycolytic efflux through PKM2, measured simultaneously from neighboring islet β-cells expressing PKAR. These results indicate that PKM2 activity in β-cells is oscillatory and are consistent with pulsatile PFK1 being the mediator of slow glycolytic oscillations.
Collapse
Affiliation(s)
- Matthew J Merrins
- From the Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | | | | | | |
Collapse
|
36
|
Ren J, Sherman A, Bertram R, Goforth PB, Nunemaker CS, Waters CD, Satin LS. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am J Physiol Endocrinol Metab 2013; 305:E805-17. [PMID: 23921138 PMCID: PMC3798703 DOI: 10.1152/ajpendo.00046.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We used the patch clamp technique in situ to test the hypothesis that slow oscillations in metabolism mediate slow electrical oscillations in mouse pancreatic islets by causing oscillations in KATP channel activity. Total conductance was measured over the course of slow bursting oscillations in surface β-cells of islets exposed to 11.1 mM glucose by either switching from current clamp to voltage clamp at different phases of the bursting cycle or by clamping the cells to -60 mV and running two-second voltage ramps from -120 to -50 mV every 20 s. The membrane conductance, calculated from the slopes of the ramp current-voltage curves, oscillated and was larger during the silent phase than during the active phase of the burst. The ramp conductance was sensitive to diazoxide, and the oscillatory component was reduced by sulfonylureas or by lowering extracellular glucose to 2.8 mM, suggesting that the oscillatory total conductance is due to oscillatory KATP channel conductance. We demonstrate that these results are consistent with the Dual Oscillator model, in which glycolytic oscillations drive slow electrical bursting, but not with other models in which metabolic oscillations are secondary to calcium oscillations. The simulations also confirm that oscillations in membrane conductance can be well estimated from measurements of slope conductance and distinguished from gap junction conductance. Furthermore, the oscillatory conductance was blocked by tolbutamide in isolated β-cells. The data, combined with insights from mathematical models, support a mechanism of slow (∼5 min) bursting driven by oscillations in metabolism, rather than by oscillations in the intracellular free calcium concentration.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
37
|
Li J, Shuai HY, Gylfe E, Tengholm A. Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+). Diabetologia 2013; 56:1577-86. [PMID: 23536115 PMCID: PMC3671113 DOI: 10.1007/s00125-013-2894-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS ATP links changes in glucose metabolism to electrical activity, Ca(2+) signalling and insulin secretion in pancreatic beta cells. There is evidence that beta cell metabolism oscillates, but little is known about ATP dynamics at the plasma membrane, where regulation of ion channels and exocytosis occur. METHODS The sub-plasma-membrane ATP concentration ([ATP]pm) was recorded in beta cells in intact mouse and human islets using total internal reflection microscopy and the fluorescent reporter Perceval. RESULTS Glucose dose-dependently increased [ATP]pm with half-maximal and maximal effects at 5.2 and 9 mmol/l, respectively. Additional elevations of glucose to 11 to 20 mmol/l promoted pronounced [ATP]pm oscillations that were synchronised between neighbouring beta cells. [ATP]pm increased further and the oscillations disappeared when voltage-dependent Ca(2+) influx was prevented. In contrast, K(+)-depolarisation induced prompt lowering of [ATP]pm. Simultaneous recordings of [ATP]pm and the sub-plasma-membrane Ca(2+) concentration ([Ca(2+)]pm) during the early glucose-induced response revealed that the initial [ATP]pm elevation preceded, and was temporarily interrupted by the rise of [Ca(2+)]pm. During subsequent glucose-induced oscillations, the increases of [Ca(2+)]pm correlated with lowering of [ATP]pm. CONCLUSIONS/INTERPRETATION In beta cells, glucose promotes pronounced oscillations of [ATP]pm, which depend on negative feedback from Ca(2+) . The bidirectional interplay between these messengers in the sub-membrane space generates the metabolic and ionic oscillations that underlie pulsatile insulin secretion.
Collapse
Affiliation(s)
- J. Li
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - H. Y. Shuai
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - E. Gylfe
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - A. Tengholm
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
38
|
Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism. PLoS One 2012; 7:e34036. [PMID: 22532827 PMCID: PMC3332096 DOI: 10.1371/journal.pone.0034036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/21/2012] [Indexed: 12/29/2022] Open
Abstract
Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis.
Collapse
|
39
|
Abstract
Insulin secretion is one of the most characteristic features of β-cell physiology. As it plays a central role in glucose regulation, a number of experimental and theoretical studies have been performed since the discovery of the pancreatic β-cell. This review article aims to give an overview of the mathematical approaches to insulin secretion. Beginning with the bursting electrical activity in pancreatic β-cells, we describe effects of the gap-junction coupling between β-cells on the dynamics of insulin secretion. Then, implications of paracrine interactions among such islet cells as α-, β-, and δ-cells are discussed. Finally, we present mathematical models which incorporate effects of glycolysis and mitochondrial glucose metabolism on the control of insulin secretion.
Collapse
Affiliation(s)
- Kyungreem Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul, South Korea
| | | | | | | |
Collapse
|
40
|
Watts M, Tabak J, Bertram R. Mathematical modeling demonstrates how multiple slow processes can provide adjustable control of islet bursting. Islets 2011; 3:320-6. [PMID: 21934356 PMCID: PMC3329513 DOI: 10.4161/isl.3.6.17636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pancreatic islets exhibit bursting oscillations that give rise to oscillatory Ca (2+) entry and insulin secretion from β-cells. These oscillations are driven by a slowly activating K (+) current, Kslow, which is composed of two components: an ATP-sensitive K (+) current and a Ca (2+) -activated K (+) current through SK4 channels. Using a mathematical model of pancreatic β-cells, we analyze how the factors that comprise Kslow can contribute to bursting. We employ the dominance factor technique developed recently to do this and demonstrate that the contributions the slow processes make to bursting are non-obvious and often counterintuitive, and that their contributions vary with parameter values and are thus adjustable.
Collapse
Affiliation(s)
- Margaret Watts
- Department of Mathematics; Florida State University; Tallahassee, FL USA
| | - Joel Tabak
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience; Florida State University; Tallahassee, FL USA
- Correspondence to: Richard Bertram,
| |
Collapse
|
41
|
Cha CY, Nakamura Y, Himeno Y, Wang J, Fujimoto S, Inagaki N, Earm YE, Noma A. Ionic mechanisms and Ca2+ dynamics underlying the glucose response of pancreatic β cells: a simulation study. ACTA ACUST UNITED AC 2011; 138:21-37. [PMID: 21708953 PMCID: PMC3135323 DOI: 10.1085/jgp.201110611] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca2+ dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst–interburst electrical events accompanied by Ca2+ transients, and continuous firing of action potentials over [G] ranges of 0–6, 7–18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca2+ transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst–interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate–sensitive K+ current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca2+- or Na+-dependent currents, which were generated by the plasma membrane Ca2+ pump, Na+/K+ pump, Na+/Ca2+ exchanger, and TRPM channel. Accumulation and release of Ca2+ by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings.
Collapse
Affiliation(s)
- Chae Young Cha
- Biosimulation Project, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fridlyand LE, Phillipson LH. Mechanisms of glucose sensing in the pancreatic β-cell: A computational systems-based analysis. Islets 2011; 3:224-30. [PMID: 21814042 PMCID: PMC3219158 DOI: 10.4161/isl.3.5.16409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pancreatic β-cells respond to rising blood glucose by increasing oxidative metabolism, leading to an increased ATP/ADP ratio in the cytoplasm with a subsequent influx of calcium and the eventual secretion of insulin. The mechanisms of glucose sensing in the pancreatic β-cell involve the coupling of cytoplasmic and mitochondrial processes. Our analysis, based on mathematical models of data from multiple sources has implications for β-cell function and the treatment of type 2 diabetes (Fridlyand and Philipson, 2010). This β-cell glucose response model correctly predicts changes in the ATP/ADP ratio, cytoplasmic and mitochondrial calcium levels, and other metabolic parameters in response to alterations in substrate delivery at steady-state and during cytoplasmic calcium oscillations. Here we consider how peculiarities of β-cell pathways that result in dysfunction can be a consequence of specific mechanisms of glucose sensitivity, using our computational systems-based analysis. We found that the mitochondrial membrane potential must be relatively low in β-cells compared with other cell types to permit precise mitochondrial regulation of the cytoplasmic ATP/ADP ratio. This key difference may follow from a relative reduction in cellular respiratory activity. Our analysis additionally demonstrates how activity of lactate dehydrogenase, uncoupling proteins, and the redox shuttles all working in concert can regulate β-cell function. We further show that a decreased mitochondrial membrane potential may lead to a low rate of production of reactive oxygen species in β-cells under physiological conditions. This computational systems analysis aids in providing a more complete understanding of the complex process of β-cell glucose sensing.
Collapse
|
43
|
Tian G, Sandler S, Gylfe E, Tengholm A. Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets. Diabetes 2011; 60:1535-43. [PMID: 21444924 PMCID: PMC3292328 DOI: 10.2337/db10-1087] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE cAMP is a critical messenger for insulin and glucagon secretion from pancreatic β- and α-cells, respectively. Dispersed β-cells show cAMP oscillations, but the signaling kinetics in cells within intact islets of Langerhans is unknown. RESEARCH DESIGN AND METHODS The subplasma-membrane cAMP concentration ([cAMP](pm)) was recorded in α- and β-cells in the mantle of intact mouse pancreatic islets using total internal reflection microscopy and a fluorescent translocation biosensor. Cell identification was based on the opposite effects of adrenaline on cAMP in α- and β-cells. RESULTS In islets exposed to 3 mmol/L glucose, [cAMP](pm) was low and stable. Glucagon and glucagon-like peptide-1(7-36)-amide (GLP-1) induced dose-dependent elevation of [cAMP](pm), often with oscillations synchronized among β-cells. Whereas glucagon also induced [cAMP](pm) oscillations in most α-cells, <20% of the α-cells responded to GLP-1. Elevation of the glucose concentration to 11-30 mmol/L in the absence of hormones induced slow [cAMP](pm) oscillations in both α- and β-cells. These cAMP oscillations were coordinated with those of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) in the β-cells but not caused by the changes in [Ca(2+)](i). The transmembrane adenylyl cyclase (AC) inhibitor 2'5'-dideoxyadenosine suppressed the glucose- and hormone-induced [cAMP](pm) elevations, whereas the preferential inhibitors of soluble AC, KH7, and 1,3,5(10)-estratrien-2,3,17-β-triol perturbed cell metabolism and lacked effect, respectively. CONCLUSIONS Oscillatory [cAMP](pm) signaling in secretagogue-stimulated β-cells is maintained within intact islets and depends on transmembrane AC activity. The discovery of glucose- and glucagon-induced [cAMP](pm) oscillations in α-cells indicates the involvement of cAMP in the regulation of pulsatile glucagon secretion.
Collapse
|