1
|
Hughes MP, Clarke KSP, Hoque R, Griffiths OV, Kruchek EJ, Johnson MP, Tariq MH, Kohli N, Lewis R, Labeed FH. Label-free, non-contact determination of resting membrane potential using dielectrophoresis. Sci Rep 2024; 14:18477. [PMID: 39122771 PMCID: PMC11316104 DOI: 10.1038/s41598-024-69000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Measurement of cellular resting membrane potential (RMP) is important in understanding ion channels and their role in regulation of cell function across a wide range of cell types. However, methods available for the measurement of RMP (including patch clamp, microelectrodes, and potential-sensitive fluorophores) are expensive, slow, open to operator bias, and often result in cell destruction. We present non-contact, label-free membrane potential estimation which uses dielectrophoresis to determine the cytoplasm conductivity slope as a function of medium conductivity. By comparing this to patch clamp data available in the literature, we have demonstratet the accuracy of this approach using seven different cell types, including primary suspension cells (red blood cells, platelets), cultured suspension cells (THP-1), primary adherent cells (chondrocytes, human umbilical mesenchymal stem cells), and adherent (HeLa) and suspension (Jurkat) cancer cell lines. Analysis of the effect of ion channel inhibitors suggests the effects of pharmaceutical agents (TEA on HeLa; DMSO and neuraminidase on red blood cells) can also be measured. Comparison with published values of membrane potential suggest that the differences between our estimates and values recorded by patch clamp are accurate to within published margins of error. The method is low-cost, non-destructive, operator-independent and label-free, and has previously been shown to allow cells to be recovered after measurement.
Collapse
Affiliation(s)
- Michael Pycraft Hughes
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Krista S P Clarke
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Rashedul Hoque
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Oreoluwa V Griffiths
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily J Kruchek
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Matthew P Johnson
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Nupur Kohli
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Fatima H Labeed
- Department of Biology, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
2
|
Gest AMM, Lazzari-Dean JR, Ortiz G, Yaeger-Weiss SK, Boggess SC, Miller EW. A red-emitting carborhodamine for monitoring and measuring membrane potential. Proc Natl Acad Sci U S A 2024; 121:e2315264121. [PMID: 38551837 PMCID: PMC10998576 DOI: 10.1073/pnas.2315264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/25/2024] [Indexed: 04/02/2024] Open
Abstract
Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes but also measure values of membrane potentials. This study discloses a fluorescent indicator which can address both. We describe the synthesis of a sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials (APs) with greater signal-to-noise than state-of-the-art BeRST 1 (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of APs in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.
Collapse
Affiliation(s)
| | | | - Gloria Ortiz
- Department of Chemistry, University of California, Berkeley, CA 94720
| | | | - Steven C Boggess
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
3
|
Gest AM, Grenier V, Miller EW. Optical Estimation of Membrane Potential Values Using Fluorescence Lifetime Imaging Microscopy and Hybrid Chemical-Genetic Voltage Indicators. Bioelectricity 2024; 6:34-41. [PMID: 38516638 PMCID: PMC10951690 DOI: 10.1089/bioe.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Introduction Membrane potential (Vm), the voltage across a cell membrane, is an important biophysical phenomenon, central to the physiology of cells, tissues, and organisms. Voltage-sensitive fluorescent indicators are a powerful method for interrogating membrane potential in living systems, but most indicators are best suited for detecting changes in membrane potential rather than measuring values of the membrane potential. One promising approach is to use fluorescence lifetime imaging microscopy (FLIM) in combination of chemically synthesized dyes to estimate a value of membrane potential. However, a drawback is that chemically synthesized dyes show poor specificity of staining. Objectives To address this problem, we applied a chemical-genetic voltage imaging approach to FLIM to enable optical estimation of membrane potential values from genetically defined cells. Results In this report, we detail the characterization and evaluation of two of these systems in mammalian cells. We further validate the use of a FLIM-based chemical genetic voltage indicator in mammalian neurons. Conclusions Finally, we discuss opportunities for future improvements to chemical-genetic FLIM-based voltage indicators.
Collapse
Affiliation(s)
- Anneliese M.M. Gest
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Vincent Grenier
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
5
|
Gest AMM, Lazzari-Dean JR, Ortiz G, Yaeger-Weiss SK, Boggess SC, Miller EW. A red-emitting carborhodamine for monitoring and measuring membrane potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561080. [PMID: 37873283 PMCID: PMC10592620 DOI: 10.1101/2023.10.06.561080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes, but also measure values of membrane potentials. This study discloses a new fluorescent indicator which can address both. We describe the synthesis of a new sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials with greater signal-to-noise than state-of-the-art BeRST (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of action potentials in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.
Collapse
Affiliation(s)
| | | | - Gloria Ortiz
- Department of Chemistry, University of California, Berkeley
| | | | | | - Evan W Miller
- Department of Chemistry, University of California, Berkeley
- Department of Molecular & Cell Biology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| |
Collapse
|
6
|
Xia S, Fang P, Pan T, Xiao W, Zhang H, Zhu X, Xiao S, Fang L. Porcine deltacoronavirus accessory protein NS7a possesses the functional characteristics of a viroporin. Vet Microbiol 2022; 274:109551. [PMID: 36067658 DOI: 10.1016/j.vetmic.2022.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022]
Abstract
Viroporins are virus-encoded proteins that mediate ion channel (IC) activity, playing critical roles in virus entry, replication, pathogenesis, and immune evasion. Previous studies have shown that some coronavirus accessory proteins have viroporin-like activity. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that encodes three accessory proteins, NS6, NS7, and NS7a. However, whether any of the PDCoV accessory proteins possess viroporin-like activity, and if so which, remains unknown. In this study, we analyzed the biochemical properties of the three PDCoV-encoded accessory proteins and found that NS7a could enhance the membrane permeability of both mammalian cells and Escherichia coli cells. Indirect immunofluorescence assay and co-immunoprecipitation assay results further indicated that NS7a is an integral membrane protein and can form homo-oligomers. A bioinformation analysis revealed that a putative viroporin domain (VPD) is located within amino acids 69-88 (aa69-88) of NS7a. Experiments with truncated mutants and alanine scanning mutagenesis additionally demonstrated that the amino acid residues 69FLR71 of NS7a are essential for its viroporin-like activity. Together, our findings are the first to demonstrate that PDCoV NS7a possesses viroporin-like activity and identify its key amino acid residues associated with viroporin-like activity.
Collapse
Affiliation(s)
- Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuerui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
7
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
8
|
Gargan S, Stevenson NJ. Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses 2021; 13:2165. [PMID: 34834972 PMCID: PMC8618147 DOI: 10.3390/v13112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.
Collapse
Affiliation(s)
- Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
- Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| |
Collapse
|
9
|
Khan N, Geiger JD. Role of Viral Protein U (Vpu) in HIV-1 Infection and Pathogenesis. Viruses 2021; 13:1466. [PMID: 34452331 PMCID: PMC8402909 DOI: 10.3390/v13081466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 and HIV-2 originated from cross-species transmission of simian immunodeficiency viruses (SIVs). Most of these transfers resulted in limited spread of these viruses to humans. However, one transmission event involving SIVcpz from chimpanzees gave rise to group M HIV-1, with M being the principal strain of HIV-1 responsible for the AIDS pandemic. Vpu is an HIV-1 accessory protein generated from Env/Vpu encoded bicistronic mRNA and localized in cytosolic and membrane regions of cells capable of being infected by HIV-1 and that regulate HIV-1 infection and transmission by downregulating BST-2, CD4 proteins levels, and immune evasion. This review will focus of critical aspects of Vpu including its zoonosis, the adaptive hurdles to cross-species transmission, and future perspectives and broad implications of Vpu in HIV-1 infection and dissemination.
Collapse
Affiliation(s)
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline Street, Room 110, Grand Forks, ND 58203, USA;
| |
Collapse
|
10
|
Zaloilo I, Rud Y, Zaloilo О, Buchatskyi L. Coronavirus viroporins: structure and function. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viroporins are involved in viral pathogenesis, play an important role in the morphogenesis of virions and ensure their release from the infected cell. These proteins are potentially promising as possible targets for the regulation of virus reproduction. The literature data on the current understanding of coronavirus viroporins functioning are summarized in the review. Special attention is focused on specific structural features that determine the functional ability of these proteins. The basic principles of viroporins localization in the cell and their influence on the coronavirus life cycle are considered. Keywords: coronavirus, pore formation, protein 3a, protein 8a, protein E, SARS, viroporins
Collapse
|
11
|
Zhao Y, Iyer S, Tavanaei M, Nguyen NT, Lin A, Nguyen TP. Proarrhythmic Electrical Remodeling by Noncardiomyocytes at Interfaces With Cardiomyocytes Under Oxidative Stress. Front Physiol 2021; 11:622613. [PMID: 33603677 PMCID: PMC7884825 DOI: 10.3389/fphys.2020.622613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Life-threatening ventricular arrhythmias, typically arising from interfaces between fibrosis and surviving cardiomyocytes, are feared sequelae of structurally remodeled hearts under oxidative stress. Incomplete understanding of the proarrhythmic electrical remodeling by fibrosis limits the development of novel antiarrhythmic strategies. To define the mechanistic determinants of the proarrhythmia in electrical crosstalk between cardiomyocytes and noncardiomyocytes, we developed a novel in vitro model of interface between neonatal rat ventricular cardiomyocytes (NRVMs) and controls [NRVMs or connexin43 (Cx43)-deficient HeLa cells] vs. Cx43+ noncardiomyocytes [aged rat ventricular myofibroblasts (ARVFs) or HeLaCx43 cells]. We performed high-speed voltage-sensitive optical imaging at baseline and following acute H2O2 exposure. In NRVM-NRVM and NRVM-HeLa controls, no arrhythmias occurred under either experimental condition. In the NRVM-ARVF and NRVM-HeLaCx43 groups, Cx43+ noncardiomyocytes enabled passive decremental propagation of electrical impulses and impaired NRVM activation and repolarization, thereby slowing conduction and prolonging action potential duration. Following H2O2 exposure, arrhythmia triggers, automaticity, and non-reentrant and reentrant arrhythmias emerged. This study reveals that myofibroblasts (which generate cardiac fibrosis) and other noncardiomyocytes can induce not only structural remodeling but also electrical remodeling and that electrical remodeling by noncardiomyocytes can be particularly arrhythmogenic in the presence of an oxidative burst. Synergistic electrical remodeling between H2O2 and noncardiomyocytes may account for the clinical arrhythmogenicity of myofibroblasts at fibrotic interfaces with cardiomyocytes in ischemic/non-ischemic cardiomyopathies. Understanding the enhanced arrhythmogenicity of synergistic electrical remodeling by H2O2 and noncardiomyocytes may guide novel safe-by-design antiarrhythmic strategies for next-generation iatrogenic interfaces between surviving native cardiomyocytes and exogenous stem cells or engineered tissues in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Yali Zhao
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Shankar Iyer
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Maryam Tavanaei
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nicole T Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Andrew Lin
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Thao P Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
12
|
Agus V, Janovjak H. All-Optical Miniaturized Co-culture Assay of Voltage-Gated Ca 2+ Channels. Methods Mol Biol 2020; 2173:247-260. [PMID: 32651923 DOI: 10.1007/978-1-0716-0755-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-activated proteins enable the reversible and spatiotemporal control of cellular events in optogenetics. Optogenetics is also rapidly expanding into the field of drug discovery where it provides cost-effective and noninvasive approaches for cell manipulation in high-throughput screens. Here, we present a prototypical cell-based assay that applies Channelrhodopsin2 (ChR2) to recapitulate physiological membrane potential changes and test for voltage-gated ion channel (VGIC) blockade. ChR2 and the voltage-gated Ca2+ channel 1.2 (CaV1.2) are expressed in individual HEK293 cell lines that are then co-cultured for formation of gap junctions and an electrical syncytium. This co-culture allows identification of blockers using parallel fluorescence plate readers in the 384-well plate format in an all-optical mode of operation. The assay is transferable to other VGICs by modularly combining new and existing cell lines and potentially also to other drug targets.
Collapse
Affiliation(s)
- Viviana Agus
- Department of Cell Biology, AXXAM S.p.A, Milan, Italy.
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Chen L, Khodr CE, Al-Harthi L, Hu XT. Aging and HIV-1 alter the function of specific K + channels in prefrontal cortex pyramidal neurons. Neurosci Lett 2019; 708:134341. [PMID: 31255727 DOI: 10.1016/j.neulet.2019.134341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023]
Abstract
The medial prefrontal cortex (mPFC) is a key regulator of neurocognition. The glutamatergic pyramidal neurons are the predominant component of neurons in the mPFC. Aging and HIV profoundly alter the structure and function of mPFC pyramidal neurons, including, but are not limited to, dysregulation of NMDA receptors and voltage-gated calcium channels. Here we assessed the impact of aging and in vivo HIV exposure on the functional activity (firing) of mPFC pyramidal neurons mediated by voltage-gated K+ (Kv) channels and inwardly-rectifying K+ (Kir) channels using patch-clamp recording in rat brain slices ex vivo. We found that aging and HIV significantly affect firing in different manners by altering the activity of Kv and likely Kir channels, associated with changes in membrane properties and the mRNA levels of specific Kv channels. Evoked firing was significantly decreased in mPFC neurons of older (12 month, 12 m) rats compared to younger (6/7 week, 6/7wk) rats, regardless of HIV status. In contrast, firing was significantly increased in neurons from Tg rats compared to non-Tg rats, regardless of age. Aging/HIV-induced alterations in firing were mediated by dysfunctional Kv channels and Kir channels, which exhibit significant changes in their activity and/or expression induced by aging and HIV exposure in vivo. Collectively, these novel findings demonstrate that aging is associated with a significant decline of mPFC neuronal activity; while long-term HIV exposure in vivo could drive mPFC neurons from over-activation to loss of firing, which could ultimately exacerbate the decline of mPFC neuronal activity.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, 60612, United States
| | - Christina E Khodr
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, 60612, United States
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, 60612, United States
| | - Xiu-T Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, 60612, United States.
| |
Collapse
|
14
|
Abstract
BACKGROUND Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
15
|
Dubey RC, Mishra N, Gaur R. G protein-coupled and ATP-sensitive inwardly rectifying potassium ion channels are essential for HIV entry. Sci Rep 2019; 9:4113. [PMID: 30858482 PMCID: PMC6411958 DOI: 10.1038/s41598-019-40968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
The high genetic diversity of Human Immunodeficiency virus (HIV), has hindered the development of effective vaccines or antiviral drugs against it. Hence, there is a continuous need for identification of new antiviral targets. HIV exploits specific host proteins also known as HIV-dependency factors during its replication inside the cell. Potassium channels play a crucial role in the life cycle of several viruses by modulating ion homeostasis, cell signaling, cell cycle, and cell death. In this study, using pharmacological tools, we have identified that HIV utilizes distinct cellular potassium channels at various steps in its life cycle. Members of inwardly rectifying potassium (Kir) channel family, G protein-coupled (GIRK), and ATP-sensitive (KATP) are involved in HIV entry. Blocking these channels using specific inhibitors reduces HIV entry. Another member, Kir 1.1 plays a role post entry as inhibiting this channel inhibits virus production and release. These inhibitors are not toxic to the cells at the concentration used in the study. We have further identified the possible mechanism through which these potassium channels regulate HIV entry by using a slow-response potential-sensitive probe DIBAC4(3) and have observed that blocking these potassium channels inhibits membrane depolarization which then inhibits HIV entry and virus release as well. These results demonstrate for the first time, the important role of Kir channel members in HIV-1 infection and suggest that these K+ channels could serve as a safe therapeutic target for treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Ravi C Dubey
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Nawneet Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
16
|
Zhelay T, Wieczerzak KB, Beesetty P, Alter GM, Matsushita M, Kozak JA. Depletion of plasma membrane-associated phosphoinositides mimics inhibition of TRPM7 channels by cytosolic Mg 2+, spermine, and pH. J Biol Chem 2018; 293:18151-18167. [PMID: 30305398 PMCID: PMC6254349 DOI: 10.1074/jbc.ra118.004066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP-expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S-expressing cells but with a faster time course in the WT VSP-expressing cells. Inhibition by 150 μm Mg2+ was also significantly faster in the WT VSP-expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2-channel interactions.
Collapse
Affiliation(s)
- Tetyana Zhelay
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | | | - Pavani Beesetty
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | - Gerald M Alter
- Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435 and
| | - Masayuki Matsushita
- the Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - J Ashot Kozak
- From the Departments of Neuroscience, Cell Biology, and Physiology and.
| |
Collapse
|
17
|
Kumar V, Yin J, Billington S, Prasad B, Brown CDA, Wang J, Unadkat JD. The Importance of Incorporating OCT2 Plasma Membrane Expression and Membrane Potential in IVIVE of Metformin Renal Secretory Clearance. Drug Metab Dispos 2018; 46:1441-1445. [PMID: 30093416 DOI: 10.1124/dmd.118.082313] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Transporter expression, determined by quantitative proteomics, together with PBPK models is a promising approach for in vitro-to-in vivo extrapolation (IVIVE) of transporter-mediated drug clearance. OCT2-expressing HEK293 and MDCKII cells were used to predict in vivo renal secretory clearance (CLr,sec) of metformin. [14C]-Metformin uptake clearance in OCT2-expressing cells was determined and scaled to in vivo CLr,sec by using OCT2 expression in the cells versus the human kidney cortex. Through quantitative targeted proteomics, the total expression of OCT2 in HEK293, MDCKII cells, and human kidney cortex was 369.4 ± 26.8, 19 ± 1.1, and 7.6 ± 3.8 pmol/mg cellular protein, respectively. The expression of OCT2 in the plasma membrane of HEK293 and MDCKII cells, measured using an optimized biotinylation method followed by quantitative proteomics, was 30.2% and 51.6%, respectively. After correcting for percent of OCT2 expressed in the plasma membrane and the resting membrane potential (millivolts) difference between the OCT2-expressing cells and the renal epithelial cells, the predicted CLr,sec of metformin was 250.7 ml/min, a value within the range of the observed CLr,sec of metformin. These data demonstrate the promise of using quantitative proteomics for IVIVE of transporter-mediated drug clearance and highlight the importance of quantifying plasma membrane expression of transporters and utilizing cells that mimic the in vivo mechanism(s) of transport of drugs.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| | - Jia Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| | - Sarah Billington
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| | - Colin D A Brown
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.Y., B.P., J.W., J.D.U.) and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.B., C.D.A.B.)
| |
Collapse
|
18
|
Jain P, Boso G, Langer S, Soonthornvacharin S, De Jesus PD, Nguyen Q, Olivieri KC, Portillo AJ, Yoh SM, Pache L, Chanda SK. Large-Scale Arrayed Analysis of Protein Degradation Reveals Cellular Targets for HIV-1 Vpu. Cell Rep 2018; 22:2493-2503. [PMID: 29490283 PMCID: PMC5916846 DOI: 10.1016/j.celrep.2018.01.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Accessory proteins of lentiviruses, such as HIV-1, target cellular restriction factors to enhance viral replication. Systematic analyses of proteins that are targeted for degradation by HIV-1 accessory proteins may provide a better understanding of viral immune evasion strategies. Here, we describe a high-throughput platform developed to study cellular protein stability in a highly parallelized matrix format. We used this approach to identify cellular targets of the HIV-1 accessory protein Vpu through arrayed coexpression with 433 interferon-stimulated genes, followed by differential fluorescent labeling and automated image analysis. Among the previously unreported Vpu targets identified by this approach, we find that the E2 ligase mediating ISG15 conjugation, UBE2L6, and the transmembrane protein PLP2 are targeted by Vpu during HIV-1 infection to facilitate late-stage replication. This study provides a framework for the systematic and high-throughput evaluation of protein stability and establishes a more comprehensive portrait of cellular Vpu targets.
Collapse
Affiliation(s)
- Prashant Jain
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guney Boso
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon Langer
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephen Soonthornvacharin
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul D De Jesus
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quy Nguyen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin C Olivieri
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex J Portillo
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sunnie M Yoh
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Sumit K Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Agus V, Picardi P, Redaelli L, Scarabottolo L, Lohmer S. Three-Dimensional Control of Ion Channel Function through Optogenetics and Co-Culture. SLAS DISCOVERY 2017; 23:102-108. [PMID: 28783478 DOI: 10.1177/2472555217722990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The lack of miniaturized and cost-effective methods to control cellular excitability with dosable and temporally precise electrical perturbations represents a long-lasting and unsolved bottleneck for ion channel drug discovery pipelines. Here we developed a high-throughput-compatible fluorescent-based cellular assay that combines optogenetics and co-culture approaches to obtain spatial, temporal, and quantitative control of ion channel activity. The modularity and increased flexibility of control of this light-tandem assay, combined with contained costs and compatibility with conventional drug-screening platforms, make this system suitable for temporally precise screening of ion channel function in controlled conformations and can also be used to recapitulate other complexly regulated biological processes.
Collapse
|
20
|
Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol 2017; 98:345-351. [PMID: 28113044 DOI: 10.1099/jgv.0.000712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Becky Foster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
21
|
Soper A, Juarez-Fernandez G, Aso H, Moriwaki M, Yamada E, Nakano Y, Koyanagi Y, Sato K. Various plus unique: Viral protein U as a plurifunctional protein for HIV-1 replication. Exp Biol Med (Maywood) 2017; 242:850-858. [PMID: 28346011 DOI: 10.1177/1535370217697384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome, encodes four accessory genes, one of which is viral protein U (Vpu). Recently, the study of Vpu has been of great interest. For instance, various cellular proteins are degraded (e.g. CD4) and down-modulated (e.g. tetherin) by Vpu. Vpu also antagonizes the function of tetherin and inhibits NF-κB. Moreover, Vpu is a viroporin forming ion channels and may represent a promising target for anti-HIV-1 drugs. In this review, we summarize the domains/residues that are responsible for Vpu's functions, describe the current understanding of the role of Vpu in HIV-1-infected cells, and review the effect of Vpu on HIV-1 in replication and pathogenesis. Future investigations that simultaneously assess a combination of Vpu functions are required to clearly delineate the most important functions for viral replication. Impact statement Viral protein U (Vpu) is a unique protein encoded by human immunodeficiency virus type 1 (HIV-1) and related lentiviruses, playing multiple roles in viral replication and pathogenesis. In this review, we briefly summarize the most up-to-date knowledge of HIV-1 Vpu.
Collapse
Affiliation(s)
- Andrew Soper
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Guillermo Juarez-Fernandez
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Hirofumi Aso
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,2 Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Miyu Moriwaki
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,3 Graduate School of Biostudies, Kyoto University, Kyoto 6068315, Japan
| | - Eri Yamada
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Nakano
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshio Koyanagi
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Kei Sato
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,4 CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| |
Collapse
|
22
|
Fernández-Orth J, Ehling P, Ruck T, Pankratz S, Hofmann MS, Landgraf P, Dieterich DC, Smalla KH, Kähne T, Seebohm G, Budde T, Wiendl H, Bittner S, Meuth SG. 14-3-3 Proteins regulate K 2P 5.1 surface expression on T lymphocytes. Traffic 2016; 18:29-43. [PMID: 27743426 DOI: 10.1111/tra.12455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023]
Abstract
K2P 5.1 channels (also called TASK-2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P 5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P 5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P 5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P 5.1 channels. We show that a non-classical 14-3-3 consensus motif (R-X-X-pT/S-x) at the channel's C-terminus allows the binding between K2P 5.1 and 14-3-3. The mutant K2P 5.1/S266A diminishes the protein-protein interaction and reduces the amplitude of membrane currents. Application of a non-peptidic 14-3-3 inhibitor (BV02) significantly reduces the number of wild-type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T-cell effector functions. Taken together, we demonstrate that 14-3-3 interacts with K2P 5.1 and plays an important role in channel trafficking.
Collapse
Affiliation(s)
| | - Petra Ehling
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Susann Pankratz
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Peter Landgraf
- Neural Plasticity and Communication, Institute for Pharmacology and Toxicology, Otto von-Guericke-University, Magdeburg, Germany
| | - Daniela C Dieterich
- Neural Plasticity and Communication, Institute for Pharmacology and Toxicology, Otto von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von-Guericke-University, Magdeburg, Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Thomas Budde
- Institute for Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
23
|
Lee SW, Lee EH, Thiel G, Van Etten JL, Saraf RF. Noninvasive Measurement of Electrical Events Associated with a Single Chlorovirus Infection of a Microalgal Cell. ACS NANO 2016; 10:5123-30. [PMID: 27139597 DOI: 10.1021/acsnano.6b00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains a viral-encoded K(+) channel imbedded in its internal membrane, which triggers host plasma membrane depolarization during virus infection. This early stage of infection was monitored at high resolution by recording the cell membrane depolarization of a single Chlorella cell during infection by a single PBCV-1 particle. The measurement was achieved by depositing the cells onto a network of one-dimensional necklaces of Au nanoparticles, which spanned two electrodes 70 μm apart. The nanoparticle necklace array has been shown to behave as a single-electron device at room temperature. The resulting electrochemical field-effect transistor (eFET) was gated by the cell membrane potential, which allowed a quantitative measurement of the electrophysiological changes across the rigid cell wall of the microalgae due to a single viral attack at high sensitivity. The single viral infection signature was quantitatively confirmed by coupling the eFET measurement with a method in which a single viral particle was delivered for infection by a scanning probe microscope cantilever.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST) , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun-Hee Lee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
- Department of Environmental Science and Engineering, Ewha Womans University , Ewhayeodae-gil 52, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Gerhard Thiel
- Department of Biology, Technische Universität-Darmstadt , Schnittspahnstrasse 3, Darmstadt 64287, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, Nebraska 68583, United States
| | - Ravi F Saraf
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanosciences, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
24
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
25
|
The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis. J Virol 2015; 89:11383-95. [PMID: 26339053 DOI: 10.1128/jvi.01986-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED An accessory gene between the S and E gene loci is contained in all coronaviruses (CoVs), and its function has been studied in some coronaviruses. This gene locus in human coronavirus OC43 (HCoV-OC43) encodes the ns12.9 accessory protein; however, its function during viral infection remains unknown. Here, we engineered a recombinant mutant virus lacking the ns12.9 protein (HCoV-OC43-Δns12.9) to characterize the contributions of ns12.9 in HCoV-OC43 replication. The ns12.9 accessory protein is a transmembrane protein and forms ion channels in both Xenopus oocytes and yeast through homo-oligomerization, suggesting that ns12.9 is a newly recognized viroporin. HCoV-OC43-Δns12.9 presented at least 10-fold reduction of viral titer in vitro and in vivo. Intriguingly, exogenous ns12.9 and heterologous viroporins with ion channel activity could compensate for the production of HCoV-OC43-Δns12.9, indicating that the ion channel activity of ns12.9 plays a significant role in the production of infectious virions. Systematic dissection of single-cycle replication revealed that ns12.9 protein had no measurable effect on virus entry, subgenomic mRNA (sgmRNA) synthesis, and protein expression. Further characterization revealed that HCoV-OC43-Δns12.9 was less efficient in virion morphogenesis than recombinant wild-type virus (HCoV-OC43-WT). Moreover, reduced viral replication, inflammatory response, and virulence in HCoV-OC43-Δns12.9-infected mice were observed compared to the levels for HCoV-OC43-WT-infected mice. Taken together, our results demonstrated that the ns12.9 accessory protein functions as a viroporin and is involved in virion morphogenesis and the pathogenesis of HCoV-OC43 infection. IMPORTANCE HCoV-OC43 was isolated in the 1960s and is a major agent of the common cold. The functions of HCoV-OC43 structural proteins have been well studied, but few studies have focused on its accessory proteins. In the present study, we demonstrated that the ns12.9 protein is a newly recognized viroporin, and the ns12.9 gene knockout virus (HCoV-OC43-Δns12.9) presents a growth defect in vitro and in vivo. We identified the important functions of the ns12.9 viroporin in virion morphogenesis during HCoV-OC43 infection. Furthermore, mice infected with HCoV-OC43-Δns12.9 exhibited reduced inflammation and virulence accompanied by a lower titer in the brain than that of wild-type-infected mice, suggesting the ns12.9 viroporin influences virus pathogenesis. Therefore, our findings revealed that the ns12.9 viroporin facilitates virion morphogenesis to enhance viral production, and these results provided a deeper understanding of HCoV-OC43 pathogenesis.
Collapse
|
26
|
Vpu Protein: The Viroporin Encoded by HIV-1. Viruses 2015; 7:4352-68. [PMID: 26247957 PMCID: PMC4576185 DOI: 10.3390/v7082824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023] Open
Abstract
Viral protein U (Vpu) is a lentiviral viroporin encoded by human immunodeficiency virus type 1 (HIV-1) and some simian immunodeficiency virus (SIV) strains. This small protein of 81 amino acids contains a single transmembrane domain that allows for supramolecular organization via homoligomerization or interaction with other proteins. The topology and trafficking of Vpu through subcellular compartments result in pleiotropic effects in host cells. Notwithstanding the high variability of its amino acid sequence, the functionality of Vpu is well conserved in pandemic virus isolates. This review outlines our current knowledge on the interactions of Vpu with the host cell. The regulation of cellular physiology by Vpu and the validity of this viroporin as a therapeutic target are also discussed.
Collapse
|
27
|
Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 2015; 7:3261-84. [PMID: 26110585 PMCID: PMC4488738 DOI: 10.3390/v7062771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022] Open
Abstract
Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses’ replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.
Collapse
|
28
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
29
|
Abstract
Virus encoded ion channels, termed viroporins, are expressed by a diverse set of viruses and have been found to target nearly every host cell membrane and compartment, including endocytic/exocytic vesicles, ER, mitochondria, Golgi, and the plasma membrane. Viroporins are generally very small (<100 amino acids) integral membrane proteins that share common structure motifs (conserved cluster of basic residues adjacent to an amphipathic alpha-helix) but only limited sequence homology between viruses. Ion channel activity of viroporins is either required for replication or greatly enhances replication and pathogenesis. Channel characteristics have been investigated using standard electrophysiological techniques, including planar lipid bilayer, liposome patch clamp or whole-cell voltage clamp. In general, viroporins are voltage-independent non-specific monovalent cation channels, with the exception of the influenza A virus M2 channel that forms a highly specific proton channel due to a conserved HXXXW motif. Viroporin channel currents range between highly variable (‘burst-like’) fluctuations to well resolved unitary (‘square-top’) transitions, and emerging data indicates the quality of channel activity is influenced by many factors, including viroporin synthesis/solubilization, the lipid environment and the ionic composition of the buffers, as well as intrinsic differences between the viroporins themselves. Compounds that block viroporin channel activity are effective antiviral drugs both in vitro and in vivo. Surprisingly distinct viroporins are inhibited by the same compounds (e.g., amantadines and amiloride derivatives), despite wide sequence divergence, raising the possibility of broadly acting antiviral drugs that target viroporins. Electrophysiology of viroporins will continue to play a critical role in elucidating the functional roles viroporins play in pathogenesis and to develop new drugs to combat viroporin-encoding pathogens.
Collapse
Affiliation(s)
- Anne H. Delcour
- Dept. of Biology and Biochemistry, University of Houston, Houston, Texas USA
| |
Collapse
|
30
|
Ahn S, Lim G, Nam S, Lee J. Structural modeling of Vpu from HIV-1 based on solid-state NMR observables. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Viral channel proteins in intracellular protein-protein communication: Vpu of HIV-1, E5 of HPV16 and p7 of HCV. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1113-21. [PMID: 24035804 DOI: 10.1016/j.bbamem.2013.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/20/2023]
Abstract
Viral channel forming proteins are known for their capability to make the lipid membrane of the host cell and its subcellular compartments permeable to ions and small compounds. There is increasing evidence that some of the representatives of this class of proteins are also strongly interacting with host proteins and the effectiveness of this interaction seems to be high. Interaction of viral channel proteins with host factors has been proposed by bioinformatics approaches and has also been identified experimentally. An overview of the interactions with host proteins is given for Vpu from HIV-1, E5 from HPV-16 and p7 from HCV. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
|
32
|
Giorda KM, Hebert DN. Viroporins customize host cells for efficient viral propagation. DNA Cell Biol 2013; 32:557-64. [PMID: 23945006 DOI: 10.1089/dna.2013.2159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Viruses are intracellular parasites that must access the host cell machinery to propagate. Viruses hijack the host cell machinery to help with entry, replication, packaging, and release of progeny to infect new cells. To carry out these diverse functions, viruses often transform the cellular environment using viroporins, a growing class of viral-encoded membrane proteins that promote viral proliferation. Viroporins modify the integrity of host membranes, thereby stimulating the maturation of viral infection, and are critical for virus production and dissemination. Significant advances in molecular and cell biological approaches have helped to uncover some of the roles that viroporins serve in the various stages of the viral life cycle. In this study, the ability of viroporins to modify the cellular environment will be discussed, with particular emphasis on their role in the stepwise progression of the viral life cycle.
Collapse
Affiliation(s)
- Kristina M Giorda
- Program in Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, University of Massachusetts , Amherst, Massachusetts
| | | |
Collapse
|
33
|
Zhang R, Wang K, Lv W, Yu W, Xie S, Xu K, Schwarz W, Xiong S, Sun B. The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1088-95. [PMID: 23906728 PMCID: PMC7094429 DOI: 10.1016/j.bbamem.2013.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regulates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar functions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective channel for monovalent cations, although Li(+) partially reduced the inward current. Furthermore, viral production decreased when the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence indicates that the HCoV-229E ORF4a protein is functionally analogous to the SARS-CoV 3a protein, which also acts as a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Ronghua Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Kai Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wei Lv
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wenjing Yu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Shiqi Xie
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Ke Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wolfgang Schwarz
- Goethe-University Frankfurt, Institute for Biophysics, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany; Shanghai Research Center for Acupuncture and Meridian, 199 Guoshoujing Road, Shanghai 201023, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Bing Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China; State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
34
|
Strebel K. HIV-1 Vpu - an ion channel in search of a job. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1074-81. [PMID: 23831603 DOI: 10.1016/j.bbamem.2013.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022]
Abstract
Vpu is a small membrane protein encoded by HIV-1 and some SIV isolates. The protein is best known for its ability to degrade CD4 and to enhance the release of progeny virions from infected cells. However, Vpu also promotes host-cell apoptosis by deregulating the NFκB signaling pathway and it assembles into cation-conducting membrane pores. This review summarizes our current understanding of these various functions of Vpu with particular emphasis on recent progress in the Vpu field. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH Bldg. 4, Room 310, 4 Center Drive MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
35
|
Herrero L, Monroy N, González ME. HIV-1 Vpu Protein Mediates the Transport of Potassium in Saccharomyces cerevisiae. Biochemistry 2012; 52:171-7. [DOI: 10.1021/bi3011175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Laura Herrero
- Unidad de Expresión Viral, Centro
Nacional de
Microbiología, Instituto de Salud Carlos III, Carretera de
Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Noemí Monroy
- Unidad de Expresión Viral, Centro
Nacional de
Microbiología, Instituto de Salud Carlos III, Carretera de
Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - María Eugenia González
- Unidad de Expresión Viral, Centro
Nacional de
Microbiología, Instituto de Salud Carlos III, Carretera de
Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
36
|
Abstract
Viroporins are small virally encoded hydrophobic proteins that oligomerize in the membrane of host cells, leading to the formation of hydrophilic pores. This activity modifies several cellular functions, including membrane permeability, Ca2+ homeostasis, membrane remodelling and glycoprotein trafficking. A classification scheme for viroporins is proposed on the basis of their structure and membrane topology. Thus, class I and class II viroporins are defined according to the number of transmembrane domains in the protein (one and two, respectively), and subclasses are defined according to their orientation in the membrane. The main function of viroporins during viral replication is to participate in virion morphogenesis and release from host cells. In addition, some viroporins are involved in viral entry and genome replication. The structure and activity of several viroporins, such as picornavirus protein 2B (P2B), influenza A virus matrix protein 2 (M2), hepatitis C virus p7 and HIV-1 viral protein U (Vpu), have been analysed in detail. New members of this expanding family of viral proteins have been described, from both RNA and DNA viruses. In addition to having a common general structure, all of these new viroporins have the ability to increase membrane permeability. Viroporins represent ideal targets to block viral replication and the spread of infection. Although a number of selective inhibitors of viroporin ion channels have been analysed in detail, optimized screening systems promise to provide new and more potent antiviral compounds in the near future.
Viroporins belong to a growing family of virally encoded proteins that form aqueous channels in the membranes of host cells. Here, Carrasco and colleagues review the structure and diverse biological functions of these proteins during the viral life cycle, as well as their potential as antiviral therapeutic targets. Viroporins are small, hydrophobic proteins that are encoded by a wide range of clinically relevant animal viruses. When these proteins oligomerize in host cell membranes, they form hydrophilic pores that disrupt a number of physiological properties of the cell. Viroporins are crucial for viral pathogenicity owing to their involvement in several diverse steps of the viral life cycle. Thus, these viral proteins, which include influenza A virus matrix protein 2 (M2), HIV-1 viral protein U (Vpu) and hepatitis C virus p7, represent ideal targets for therapeutic intervention, and several compounds that block their pore-forming activity have been identified. Here, we review recent studies in the field that have advanced our knowledge of the structure and function of this expanding family of viral proteins.
Collapse
|
37
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
38
|
Huang DTN, Chi N, Chen SC, Lee TY, Hsu K. Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 2012; 61:585-94. [PMID: 21761257 PMCID: PMC7090673 DOI: 10.1007/s12013-011-9241-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The main function of background two-pore potassium (K2P) channels KCNK3/9/15 is to stabilize the cell membrane potential. We previously observed that membrane potential depolarization enhances the release of HIV-1 viruses. Because membrane polarization affects the biomembrane directly, here we examined the effects of KCNK3/9/15 on the budding of nonviral vesicles. We found that depolarization by knocking down endogenous KCNK3/9/15 promoted secretion of cell-derived vesicles. We further used Vpu (an antagonist of KCNK3) as a model for the in vivo study of depolarization-stimulated secretion. Vpu is a HIV-1-encoded, ion channel-like protein (viroporin) capable of enhancing virus release and depolarizing the cell membrane potential. We found that Vpu could also promote nonviral vesicle release, perhaps through a similar mechanism that Vpu utilizes to promote viral particle release. Notably, T cells expressing Vpu alone became pathologically low in intracellular K+ and insensitive to extracellular K+ or membrane potential stimulation. In contrast, heterologous expression of KCNK3 in T cells stabilized the cell potentials by maintaining intracellular K+. We thus concluded that KCNK3/9/15 expression limits membrane depolarization and depolarization-induced secretion at least in part by maintaining intracellular K+.
Collapse
Affiliation(s)
| | - Naiwen Chi
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
- Present Address: Bertec Enterprise Co., Ltd, Taipei, Taiwan
| | - Shiou-Ching Chen
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| | - Kate Hsu
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| |
Collapse
|
39
|
Fischer WB, Wang YT, Schindler C, Chen CP. Mechanism of function of viral channel proteins and implications for drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:259-321. [PMID: 22364876 PMCID: PMC7149447 DOI: 10.1016/b978-0-12-394305-7.00006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral channel-forming proteins comprise a class of viral proteins which, similar to their host companions, are made to alter electrochemical or substrate gradients across lipid membranes. These proteins are active during all stages of the cellular life cycle of viruses. An increasing number of proteins are identified as channel proteins, but the precise role in the viral life cycle is yet unknown for the majority of them. This review presents an overview about these proteins with an emphasis on those with available structural information. A concept is introduced which aligns the transmembrane domains of viral channel proteins with those of host channels and toxins to give insights into the mechanism of function of the viral proteins from potential sequence identities. A summary of to date investigations on drugs targeting these proteins is given and discussed in respect of their mode of action in vivo.
Collapse
Affiliation(s)
- Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|