1
|
Ancatén-González C, Meza RC, Gonzalez-Sanabria N, Segura I, Alcaino A, Peña-Pichicoi A, Latorre R, Chiu CQ, Chávez AE. BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus. Proc Natl Acad Sci U S A 2025; 122:e2411506122. [PMID: 39773031 PMCID: PMC11745352 DOI: 10.1073/pnas.2411506122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD. Also, 12(S)HPETE does not change the electrophysiological properties of the BK channel when the BKα subunit is expressed alone but increases the channel open probability when the BKα is coexpressed with the β4-subunit. Our findings reveal an interaction between 12(S)HPETE and BK channels to regulate synaptic strength at central synapses and increase our understanding of the mechanisms underlying mGluR-LTD in the neonatal hippocampus that likely contribute to circuit maturation necessary for learning.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Programa de Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Rodrigo C. Meza
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Naileth Gonzalez-Sanabria
- Programa de Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Ignacio Segura
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Alejandro Alcaino
- Programa de Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Antonio Peña-Pichicoi
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Ramón Latorre
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Chiayu Q. Chiu
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Andrés E. Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| |
Collapse
|
2
|
Dickinson A, McDonald N, Dapretto M, Campos E, Senturk D, Jeste S. Accelerated Infant Brain Rhythm Maturation in Autism. Dev Sci 2025; 28:e13593. [PMID: 39704490 DOI: 10.1111/desc.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Electroencephalography (EEG) captures characteristic oscillatory shifts in infant brain rhythms over the first year of life, offering unique insights into early functional brain development and potential markers for detecting neural differences associated with autism. This study used functional principal component analysis (FPCA) to derive dynamic markers of spectral maturation from task-free EEG recordings collected at 3, 6, 9, and 12 months from 87 infants, 51 of whom were at higher likelihood of developing autism due to an older sibling diagnosed with the condition. FPCA revealed three principal components explaining over 96% of the variance in infant power spectra, with power increases between 6 and 9 Hz (FPC1) representing the most significant age-related trend, accounting for more than 71% of the variance. Notably, this oscillatory change occurred at a faster rate in infants later diagnosed with autism, indicated by a steeper trajectory of FPC1 scores between 3 and 12 months (p < 0.001). Age-related spectral changes were consistent regardless of familial likelihood status, suggesting that differences in oscillatory timing are associated with autism outcomes rather than genetic predisposition. These findings indicate that while the typical sequence of oscillatory maturation is preserved in autism, the timing of these changes is altered, underscoring the critical role of timing in autism pathophysiology and the development of potential screening tools.
Collapse
Affiliation(s)
- Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicole McDonald
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, California, USA
| | - Emilie Campos
- UCLA Department of Biostatistics, Center for Health Sciences, University of California, Los Angeles, California, USA
| | - Damla Senturk
- UCLA Department of Biostatistics, Center for Health Sciences, University of California, Los Angeles, California, USA
| | - Shafali Jeste
- Division of Neurology and Neurological Institute, The Children's Hospital of Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Zhou Y, Wang JL, Qiu L, Torpey J, Wixson JG, Lyon M, Chen X. NMDA Receptors Control Activity Hierarchy in Neural Network: Loss of Control in Hierarchy Leads to Learning Impairments, Dissociation, and Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.06.523038. [PMID: 36712055 PMCID: PMC9881912 DOI: 10.1101/2023.01.06.523038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While it is known that associative memory is preferentially encoded by memory-eligible "primed" neurons, in vivo neural activity hierarchy has not been quantified and little is known about how such a hierarchy is established. Leveraging in vivo calcium imaging of hippocampal neurons on freely behaving mice, we developed the first method to quantify real-time neural activity hierarchy in the CA1 region. Neurons at the top of activity hierarchy are identified as primed neurons. In cilia knockout mice that exhibit severe learning deficits, the percentage of primed neurons is drastically reduced. We developed a simplified neural network model that incorporates simulations of linear and non-linear weighted components, modeling the synaptic ionic conductance of AMPA and NMDA receptors, respectively. We found that moderate non-linear to linear conductance ratios naturally leads a small fraction of neurons to be primed in the simulated neural network. Removal of the non-linear component eliminates the existing activity hierarchy and reinstate it to the network stochastically primes a new pool of neurons. Blockade of NMDA receptors by ketamine not only decreases general neuronal activity causing learning impairments, but also disrupts neural activity hierarchy. Additionally, ketamine-induced super-synchronized slow oscillation during anesthesia can be simulated if the non-linear NMDAR component is removed to flatten activity hierarchy. Together, this study develops a unique method to measure neural activity hierarchy and identifies NMDA receptors as a key factor that controls the hierarchy. It presents the first evidence suggesting that hierarchy disruption by NMDAR blockade causes dissociation and psychosis.
Collapse
|
4
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Menezes EC, Geiger H, Abreu FF, Rachmany L, Wilson DA, Alldred MJ, Castellanos FX, Fu R, Sargin D, Corvelo A, Teixeira CM. Early-life prefrontal cortex inhibition and early-life stress lead to long-lasting behavioral, transcriptional, and physiological impairments. Mol Psychiatry 2024; 29:2359-2371. [PMID: 38486048 PMCID: PMC11399324 DOI: 10.1038/s41380-024-02499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 09/01/2024]
Abstract
Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.
Collapse
Affiliation(s)
- Edênia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Fabiula F Abreu
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lital Rachmany
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Melissa J Alldred
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rui Fu
- New York Genome Center, New York, NY, 10013, USA
| | - Derya Sargin
- Department of Psychology, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Cátia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Abdelhamid M, Jung CG, Zhou C, Inoue R, Chen Y, Sento Y, Hida H, Michikawa M. Potential Therapeutic Effects of Bifidobacterium breve MCC1274 on Alzheimer's Disease Pathologies in AppNL-G-F Mice. Nutrients 2024; 16:538. [PMID: 38398861 PMCID: PMC10893354 DOI: 10.3390/nu16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Rieko Inoue
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yuxin Chen
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yoshiki Sento
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Geriatric Medicine School of Life, Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
7
|
Yu L, Almeida QJ, Silva AF, He L. Editorial: Exercise-induced neuroplasticity in neurodegeneration diseases. Front Neurosci 2023; 17:1296291. [PMID: 37841683 PMCID: PMC10570825 DOI: 10.3389/fnins.2023.1296291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Laikang Yu
- Department of Sports Performance, Beijing Sport University, Beijing, China
| | - Quincy J. Almeida
- Movement Disorders Research and Rehabilitation Centre, Department of Kinesiology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), Melgaço, Portugal
| | - Lingxiao He
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Feijó DM, Pires JF, Gomes RMR, Carlo EJF, Viana TNDL, Magalhães JR, Santos ACT, Rodrigues LD, Oliveira LF, dos Santos JCC. The impact of child poverty on brain development: does money matter? Dement Neuropsychol 2023; 17:e20220105. [PMID: 37577181 PMCID: PMC10417148 DOI: 10.1590/1980-5764-dn-2022-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
The development of the human nervous system makes up a series of fundamental and interdependent events involving birth, growth, and neuronal maturation, in addition to the positive or negative selection of synapses of these neurons that will participate in the composition of neural circuits essential to the activity of the nervous system. In this context, where environment and social relationships seem to be relevant markers for neurodevelopment, advanced neuroimaging techniques and behavioral assessment tools have demonstrated alterations in brain regions and cognitive functions among children developing in low or high socioeconomic status environments. Considering the aspects mentioned, this review aimed to identify the importance of socioeconomic status in children's brain development, seeking to identify what are the impacts of these factors on the morphological and physiological formation of the nervous system, allowing a greater understanding of the importance of environmental factors in neurodevelopmental processes.
Collapse
|
9
|
Michel A, Kokten T, Saber-Cherif L, Umoret R, Alberto JM, Helle D, Julien A, Daval JL, Guéant JL, Bossenmeyer-Pourié C, Pourié G. Folate and Cobalamin Deficiencies during Pregnancy Disrupt the Glucocorticoid Response in Hypothalamus through N-Homocysteinilation of the Glucocorticoid Receptor. Int J Mol Sci 2023; 24:9847. [PMID: 37372992 DOI: 10.3390/ijms24129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin B9 (folate)/B12 (cobalamin) deficiency is known to induce brain structural and/or functional retardations. In many countries, folate supplementation, targeting the most severe outcomes such as neural tube defects, is discontinued after the first trimester. However, adverse effects may occur after birth because of some mild misregulations. Various hormonal receptors were shown to be deregulated in brain tissue under these conditions. The glucocorticoid receptor (GR) is particularly sensitive to epigenetic regulation and post-translational modifications. In a mother-offspring rat model of vitamin B9/B12 deficiency, we investigated whether a prolonged folate supplementation could restore the GR signaling in the hypothalamus. Our data showed that a deficiency of folate and vitamin B12 during the in-utero and early postnatal periods was associated with reduced GR expression in the hypothalamus. We also described for the first time a novel post-translational modification of GR that impaired ligand binding and GR activation, leading to decrease expression of one of the GR targets in the hypothalamus, AgRP. Moreover, this brain-impaired GR signaling pathway was associated with behavioral perturbations during offspring growth. Importantly, perinatal and postnatal supplementation with folic acid helped restore GR mRNA levels and activity in hypothalamus cells and improved behavioral deficits.
Collapse
Affiliation(s)
- Arnaud Michel
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Tunay Kokten
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Lynda Saber-Cherif
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Rémy Umoret
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Déborah Helle
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Amélia Julien
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Jean-Luc Daval
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital of Nancy, F-54000 Nancy, France
| | - Carine Bossenmeyer-Pourié
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Grégory Pourié
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| |
Collapse
|
10
|
Hassan Z, Coelho D, Bossenmeyer-Pourié C, Matmat K, Arnold C, Savladori A, Alberto JM, Umoret R, Guéant JL, Pourié G. Cognitive Impairment Is Associated with AMPAR Glutamatergic Dysfunction in a Mouse Model of Neuronal Methionine Synthase Deficiency. Cells 2023; 12:cells12091267. [PMID: 37174668 PMCID: PMC10177068 DOI: 10.3390/cells12091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023] Open
Abstract
Impairment of one-carbon metabolism during pregnancy, either due to nutritional deficiencies in B9 or B12 vitamins or caused by specific genetic defects, is often associated with neurological defects, including cognitive dysfunction that persists even after vitamin supplementation. Animal nutritional models do not allow for conclusions regarding the specific brain mechanisms that may be modulated by systemic compensations. Using the Cre-lox system associated to the neuronal promoter Thy1.2, a knock-out model for the methionine synthase specifically in the brain was generated. Our results on the neurobehavioral development of offspring show that the absence of methionine synthase did not lead to growth retardation, despite an effective reduction of both its expression and the methylation status in brain tissues. Behaviors were differently affected according to their functional outcome. Only temporary retardations were recorded in the acquisition of vegetative functions during the suckling period, compared to a dramatic reduction in cognitive performance after weaning. Investigation of the glutamatergic synapses in cognitive areas showed a reduction of AMPA receptors phosphorylation and clustering, indicating an epigenomic effect of the neuronal deficiency of methionine synthase on the reduction of glutamatergic synapses excitability. Altogether, our data indicate that cognitive impairment associated with methionine synthase deficiency may not only result from neurodevelopmental abnormalities, but may also be the consequence of alterations in functional plasticity of the brain.
Collapse
Affiliation(s)
- Ziad Hassan
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - David Coelho
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, F-54000 Nancy, France
| | - Carine Bossenmeyer-Pourié
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Karim Matmat
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Carole Arnold
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Aurélie Savladori
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Rémy Umoret
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, F-54000 Nancy, France
| | - Grégory Pourié
- Inserm UMRS 1256 NGERE-Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, F-54000 Nancy, France
| |
Collapse
|
11
|
Chen S, Xiao X, Song X, Qi Z, Li Y. Prediction of cord blood leptin on infant's neurodevelopment: A birth cohort in rural Yunnan, China. Psychoneuroendocrinology 2023; 148:105955. [PMID: 36442291 DOI: 10.1016/j.psyneuen.2022.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Leptin, one of the peptide hormones secreted by adipocytes, plays a vital part in metabolism, but its role in early-life neurodevelopment remains poorly understood. METHODS We performed leptin analysis on 323 cord blood samples collected from a birth cohort in Yunnan rural area, China, and assessed infants' neurodevelopment at one year of age by the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Multiple linear regression and binary logistic regression models were used to explore the associations between cord blood leptin (CBL) concentrations and infants' neurodevelopment and the ability of CBL to predict the probabilities of infants' neurodevelopment delay. RESULTS Overall, 323 infants were included in this study. The median concentration of CBL was 4.7 ng/ml. The proportion of 1-year-old infants identified as being neurodevelopmental delayed was 34.5%, and delays in cognitive, language, and motor domains were 11.1%, 26.6%, and 13.9%, respectively. Multiple linear regression analyses manifested that the CBL concentration (log10-transformed) was positively correlated with the cognitive, language, and motor composite scores in infants, respectively (β = 7.76, 95%CI: 3.81-11.71; β = 6.73, 95%CI: 3.41-10.06; and β = 6.88, 95%CI: 3.48-10.29, respectively). Binary logistic regression analysis showed that compared with the higher, lower CBL (< 4.7 ng/ml) yielded a 1.41-fold increase in the risk of language development delay (OR = 2.41,95%CI: 1.42-4.09), a 1.49-fold higher risk of motor development delay (OR = 2.49, 95%CI: 1.25-4.96), and a 1.71-fold higher risk of neurodevelopment delay (OR = 2.71, 95%CI: 1.64-4.48) among infants. The prediction models showed that the probabilities of development delay in infants' language, motor, and neurodevelopment increased with the decline of CBL concentrations [rs = -0.63 (95% CI: -0.71, -0.56), rs = -0.46 (95% CI: -0.55, -0.38), rs = -0.55 (95% CI: -0.63, -0.46), respectively]. CONCLUSION The decline of CBL was associated with the decrease in infants' neurodevelopment scores at one year of age. CBL below 4.7 ng/ml may increase the risk of infants' neurodevelopment delay. The probabilities of infants' neurodevelopment delay increased with the decrease of CBL concentrations. CBL may be a predictor of the probability of children's neurodevelopment delay.
Collapse
Affiliation(s)
- Shuqi Chen
- School of Public Health, Kunming Medical University, Kunming, China; Ministry of Child Health, Longgang District Maternity & Child Healthcare Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zhiye Qi
- School of Public Health, Kunming Medical University, Kunming, China; Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Li
- School of Public Health, Kunming Medical University, Kunming, China.
| |
Collapse
|
12
|
Dutra ML, Dias P, Freiberger V, Ventura L, Comim CM, Martins DF, Bobinski F. Maternal immune activation induces autism-like behavior and reduces brain-derived neurotrophic factor levels in the hippocampus and offspring cortex of C57BL/6 mice. Neurosci Lett 2023; 793:136974. [PMID: 36414133 DOI: 10.1016/j.neulet.2022.136974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Prenatal factors such as viral or bacterial infections occurring mainly during the first trimesters of pregnancy can increase the incidence of autism spectrum disorder (ASD) in children. In an animal model, it is already known that maternal immune activation (MIA) induces autistic-like behavior. However, it is unclear whether this behavior presents itself in young animals. In this preclinical experimental study, we investigated in the offspring of C57BL/6 female mice submitted to MIA with lipopolysaccharide (LPS), typically altered behaviors in ASD, such as social interaction and stereotyped self-grooming movement, as well as the levels of the brain-derived neurotrophic factor (BDNF) and interleukin 17A (IL-17A) in the hippocampus and cortex, at 28 and 60 days. Adult animals aged 60 days, offspring of females submitted to MIA, showed a decrease in the time of social interaction and an increase in the number of self-cleaning movements. In the hippocampus of the offspring of females submitted to MIA, a decrease in BDNF levels was found at 28 days and 60 days of life, and a decrease in IL-17A levels only at 60 days. The levels of BDNF and IL-17A did not change in the cortex of the offspring of mice submitted to MIA at the evaluated times. Young animals aged 28 days still showed typical behavior, without social deficits and stereotyped movements that characterize ASD, which suggests that at this age it is still not possible to observe the repercussions of MIA in this model. In the neurochemical issues of the hippocampal region, impairment of BDNF levels has already been demonstrated, which may be an important factor for the observation of ASD-like behaviors in adult mice at 60 days.
Collapse
Affiliation(s)
- Matheus Luchini Dutra
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Paula Dias
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Viviane Freiberger
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Leticia Ventura
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil.
| |
Collapse
|
13
|
Kozlova T, Rudnitskaya E, Burnyasheva A, Stefanova N, Peunov D, Kolosova N. Delayed Formation of Neonatal Reflexes and of Locomotor Skills Is Associated with Poor Maternal Behavior in OXYS Rats Prone to Alzheimer's Disease-like Pathology. Biomedicines 2022; 10:biomedicines10112910. [PMID: 36428477 PMCID: PMC9687320 DOI: 10.3390/biomedicines10112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Postnatal brain development is characterized by high plasticity with critical windows of opportunity where any intervention may positively or adversely influence postnatal growth and lead to long-lasting consequences later in life. Poor maternal care is among these interventions. Here, we found that senescence-accelerated OXYS rats prone to an Alzheimer's disease-like pathology are characterized by more passive maternal behavior and insufficient care for pups as compared to control (Wistar) rats. OXYS pups demonstrated a delay in physical development (of auricle detachment, of emergence of pelage and incisors, of eye opening, and of vaginal opening in females) and late manifestation of reflexes and locomotor skills. All observed behavioral abnormalities are connected either with poor coordination of limbs' movements or with a decrease in motivation and development of depression-like behavior. It is possible that their manifestations can be promoted by the features of maternal behavior of OXYS rats. Overall, these early-life events may have long-lasting consequences and contribute to neurodegeneration and development of the Alzheimer's disease-like pathology later in life.
Collapse
Affiliation(s)
- Tatiana Kozlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Ekaterina Rudnitskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Correspondence:
| | - Alena Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Natalia Stefanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Daniil Peunov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Nataliya Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Taslima F, Abdelhamid M, Zhou C, Chen Y, Jung CG, Michikawa M. Tooth Loss Induces Memory Impairment and Glial Activation in Young Wild-Type Mice. J Alzheimers Dis Rep 2022; 6:663-675. [PMID: 36506484 PMCID: PMC9696677 DOI: 10.3233/adr-220053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Background Tooth loss is closely associated with Alzheimer's disease (AD). Previously, we reported that tooth loss induced memory impairment in amyloid precursor protein knock-in mice by decreasing neuronal activity and synaptic protein levels and increasing glial activation, neuroinflammation, and pyramidal neuronal cell loss without altering amyloid-β levels in the hippocampus. However, the effects of tooth loss in young wild-type mice have not been explored yet. Objective We investigated the effects of tooth loss on memory impairment, neuronal activity, synaptic protein levels, glial activation, and pyramidal neuronal cell loss in young wild-type mice. Methods Two-month-old wild-type mice were randomly divided into control and tooth loss groups. In the tooth loss group, maxillary molar teeth on both sides were extracted, whereas no teeth were extracted in the control group. Two months after tooth extraction, we performed a novel object recognition test to evaluate memory function. Glial activation, neuronal activity, synaptic protein levels, and the number of pyramidal neurons were evaluated using immunofluorescence staining, immunohistochemistry, and western blotting. Results The tooth loss group exhibited memory impairment and decreased neuronal activity and the levels of synaptic proteins in both the hippocampus and cortex. Moreover, tooth loss increased the activation of phosphorylated c-Jun N-terminal kinase (JNK), heat shock protein 90 (HSP90), and glial activation and reduced the number of pyramidal neurons in the hippocampus. Conclusion Tooth loss in the young wild-type mice will attenuate neuronal activity, decrease synaptic protein levels, and induce pyramidal neuronal loss, and eventually lead to memory impairment.
Collapse
Affiliation(s)
- Ferdous Taslima
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuxin Chen
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,Correspondence to: Cha-Gyun Jung, PhD and Makoto Michikawa, MD, PhD, Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 Aichi, Japan. Tel.: +81 52 853 8141; Fax: +81 52 841 3480; E-mail: . (Cha-Gyun Jung) and Tel.: +81 52 853 8139; Fax: +81 52 841 3480; E-mail: . (Makoto Michikawa)
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,Correspondence to: Cha-Gyun Jung, PhD and Makoto Michikawa, MD, PhD, Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 Aichi, Japan. Tel.: +81 52 853 8141; Fax: +81 52 841 3480; E-mail: . (Cha-Gyun Jung) and Tel.: +81 52 853 8139; Fax: +81 52 841 3480; E-mail: . (Makoto Michikawa)
| |
Collapse
|
15
|
Bánkyné Perjés B, Mátrai G, Nagy B, Erdei D, Makai A, Prémusz V, Kovács KA, Bódis J. Prenatal dance activity enhances foetal and postnatal cognitive and motor development. Physiol Int 2022; 109:486-500. [DOI: 10.1556/2060.2022.00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Introduction
No research has examined the impact of any physical-artistic-cognitive activity on foetal neurodevelopment. The aim of the study was to investigate the efficacy of a unique prenatal dance activity in pre- and postnatal cognitive and motor development as a complementary health care practice.
Methods
26 clinically uncomplicated primiparas and multiparas with singleton pregnancies and their later born children were examined in this prospective study at the University of Pécs, Hungary. The activity group participated in supervised, 60-min, twice-weekly, moderate-intensity prenatal dance classes for 19.56 ± 3.97 weeks, whereas the control group did not. We determined the developmental ages of their children with the Bayley Scales of Infant and Toddler Development in both groups at 5 weeks of age and in the activity group at 33 months of age.
Results
Prenatal dance activity did not cause any adverse outcomes. Infants in the activity group had significantly higher mean developmental ages than the control group regarding cognitive skills (P < 0.001), receptive (P < 0.001) and expressive communication (P = 0.007), fine (P < 0.001) and gross motor (P = 0.001). As toddlers their mean developmental ages were significantly higher than their mean calendar age regarding cognitive skills (P = 0.001), receptive (P = 0.001) and expressive communication (P = 0.001), fine (P = 0.002) and gross motor (P = 0.001).
Conclusions
Our results confirm the safe implementation of this prenatal dance activity and the more advanced cognitive and motor development of children in the activity group as infants compared to the control group and as toddlers compared to the norm. These results offer a novel approach to dance in pre- and postnatal clinical practice.
Collapse
Affiliation(s)
| | - Gábor Mátrai
- Department of Obstetrics and Gynaecology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Bernadett Nagy
- Department of Obstetrics and Gynaecology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Daniella Erdei
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Makai
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Viktória Prémusz
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Kálmán András Kovács
- Department of Obstetrics and Gynaecology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - József Bódis
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, Pécs, Hungary
| |
Collapse
|
16
|
Cui W, Wang S, Chen B, Fan G. White matter structural network alterations in congenital bilateral profound sensorineural hearing loss children: A graph theory analysis. Hear Res 2022; 422:108521. [PMID: 35660126 DOI: 10.1016/j.heares.2022.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have revealed a functional reorganization in patients with sensorineural hearing loss (SNHL). The structural basement of functional changes has also been investigated recently. Graph theory analysis brings a new understanding of the structural connectome and topological features in central neural system diseases. However, little is known about the structural network connectome changes in SNHL patients, especially in children. We explored the differences in topologic organization, rich-club organization, and structural connection between children with congenital bilateral profound SNHL and normal hearing under the age of three using graph theory analysis and probabilistic tractography. Compared with the normal-hearing (NH) group, the SNHL group showed no difference in global and nodal topological parameters. Increased structural connection strength were found in the right cortico-striatal-thalamus-cortical circuity. Decreased cross-hemisphere connections were found between the right precuneus and the left auditory cortex as well as the left subcortical regions. Rich-club organization analysis found increased local connection in the SNHL group. These results revealed structural organizations after hearing deprivation in congenital bilateral profound SNHL children.
Collapse
Affiliation(s)
- Wenzhuo Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Shanshan Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Boyu Chen
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China.
| |
Collapse
|
17
|
Chen YN, Zheng X, Chen HL, Gao JX, Li XX, Xie JF, Xie YP, Spruyt K, Shao YF, Hou YP. Stereotaxic atlas of the infant rat brain at postnatal days 7–13. Front Neuroanat 2022; 16:968320. [PMID: 36032994 PMCID: PMC9412974 DOI: 10.3389/fnana.2022.968320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, researchers have paid progressively more attention to the study of neural development in infant rats. However, due to the lack of complete intracerebral localization information, such as clear nuclear cluster boundaries, identified main brain structures, and reliable stereotaxic coordinates, it is difficult and restricted to apply technical neuroscience to infant rat’s brain. The present study was undertaken to refine the atlas of infant rats. As such, we established a stereotaxic atlas of the infant rat’s brain at postnatal days 7–13. Furthermore, dye calibration surgery was performed in P7–P13 infant rats by injecting Methylene blue, and sections were incubated in Nissl solutions. From the panoramic images of the brain sections, atlases were made. Our article has provided the appearance and measurements of P7–P13 Sprague–Dawley rat pups. Whereas the atlas contains a series of about 530 coronal brain section images from olfactory bulbs to the brainstem, a list of abbreviations of the main brain structures, and reliable stereotaxic coordinates, which were demonstrated by vertical and oblique injections with fluorescent dye DiI. The present findings demonstrated that our study of P7–P13 atlases has reasonable nucleus boundaries and accurate and good repeatability of stereotaxic coordinates, which can make up for the shortage of postnatal rat brain atlas currently in the field.
Collapse
Affiliation(s)
- Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xin Zheng
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xin-Xuan Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Ping Xie
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou, China
| | - Karen Spruyt
- NeuroDiderot – INSERM, Université de Paris, Paris, France
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
- *Correspondence: Yu-Feng Shao,
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
- Yi-Ping Hou,
| |
Collapse
|
18
|
Chen S, Xiao X, Qi Z, Chen L, Chen Y, Xu L, Zhang L, Song X, Li Y. Effects of prenatal and infant daily exposure to pyrethroid pesticides on the language development of 2-year-old toddlers: a prospective cohort study in rural Yunnan, China. Neurotoxicology 2022; 92:180-190. [DOI: 10.1016/j.neuro.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
19
|
Sun SY, Li XW, Cao R, Zhao Y, Sheng N, Tang AH. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development. Front Synaptic Neurosci 2022; 14:748184. [PMID: 35685244 PMCID: PMC9171000 DOI: 10.3389/fnsyn.2022.748184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons. We found that volumes of synaptic clusters and their subsynaptic heterogeneity increase as synapses get matured. Synapse sizes of presynaptic and postsynaptic compartments correlated well at all stages, while only more mature synapses demonstrated a significant correlation between presynaptic and postsynaptic nano-organizations. After a long incubation with an inhibitor of action potentials or AMPA receptors, both presynaptic and postsynaptic compartments showed increased synaptic cluster volume and subsynaptic heterogeneity; however, the trans-synaptic alignment was intact. Together, our results characterize the evolvement of subsynaptic protein architectures during development and demonstrate that the nanocolumn is organized more likely by an intrinsic mechanism and independent of synaptic activities.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Wei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ai-Hui Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
20
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
21
|
Van Dyck D, Deconinck N, Aeby A, Baijot S, Coquelet N, Trotta N, Rovai A, Goldman S, Urbain C, Wens V, De Tiège X. Atypical resting-state functional brain connectivity in children with developmental coordination disorder. Neuroimage Clin 2021; 33:102928. [PMID: 34959048 PMCID: PMC8856907 DOI: 10.1016/j.nicl.2021.102928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Children with developmental coordination disorder (DCD) present lower abilities to acquire and execute coordinated motor skills. DCD is frequently associated with visual perceptual (with or without motor component) impairments. This magnetoencephalography (MEG) study compares the brain resting-state functional connectivity (rsFC) and spectral power of children with and without DCD. 29 children with DCD and 28 typically developing (TD) peers underwent 2 × 5 min of resting-state MEG. Band-limited power envelope correlation and spectral power were compared between groups using a functional connectome of 59 nodes from eight resting-state networks. Correlation coefficients were calculated between fine and gross motor activity, visual perceptual and visuomotor abilities measures on the one hand, and brain rsFC and spectral power on the other hand. Nonparametric statistics were used. Significantly higher rsFC between nodes of the visual, attentional, frontoparietal, default-mode and cerebellar networks was observed in the alpha (maximum statistics, p = .0012) and the low beta (p = .0002) bands in children with DCD compared to TD peers. Lower visuomotor performance (copying figures) was associated with stronger interhemispheric rsFC within sensorimotor areas and power in the cerebellum (right lobule VIII). Children with DCD showed increased rsFC mainly in the dorsal extrastriate visual brain system and the cerebellum. However, this increase was not associated with their coordinated motor/visual perceptual abilities. This enhanced functional brain connectivity could thus reflect a characteristic brain trait of children with DCD compared to their TD peers. Moreover, an interhemispheric compensatory process might be at play to perform visuomotor task within the normative range.
Collapse
Affiliation(s)
- Dorine Van Dyck
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nicolas Deconinck
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Simon Baijot
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonin Rovai
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Charline Urbain
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
22
|
Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, Hashimoto S, Kitagawa T, Ago K, Kajikawa K, Shibata R, Kamata Y, Ushiba J, Koga K, Furue H, Matsumoto M, Nakamura M, Nagoshi N, Okano H. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Rep 2021; 37:110019. [PMID: 34818559 DOI: 10.1016/j.celrep.2021.110019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
In cell transplantation therapy for spinal cord injury (SCI), grafted human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) mainly differentiate into neurons, forming synapses in a process similar to neurodevelopment. In the developing nervous system, the activity of immature neurons has an important role in constructing and maintaining new synapses. Thus, we investigate how enhancing the activity of transplanted hiPSC-NS/PCs affects both the transplanted cells themselves and the host tissue. We find that chemogenetic stimulation of hiPSC-derived neural cells enhances cell activity and neuron-to-neuron interactions in vitro. In a rodent model of SCI, consecutive and selective chemogenetic stimulation of transplanted hiPSC-NS/PCs also enhances the expression of synapse-related genes and proteins in surrounding host tissues and prevents atrophy of the injured spinal cord, thereby improving locomotor function. These findings provide a strategy for enhancing activity within the graft to improve the efficacy of cell transplantation therapy for SCI.
Collapse
Affiliation(s)
- Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Reo Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
23
|
Parameshwaran D, Sathishkumar S, Thiagarajan TC. The impact of socioeconomic and stimulus inequality on human brain physiology. Sci Rep 2021; 11:7439. [PMID: 33811239 PMCID: PMC8018967 DOI: 10.1038/s41598-021-85236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
The brain undergoes profound structural and dynamical alteration in response to its stimulus environment. In animal studies, enriched stimulus environments result in numerous structural and dynamical changes along with cognitive enhancements. In human society factors such as education, travel, cell phones and motorized transport dramatically expand the rate and complexity of stimulus experience but diverge in access based on income. Correspondingly, poverty is associated with significant structural and dynamical differences in the brain, but it is unknown how this relates to disparity in stimulus access. Here we studied consumption of major stimulus factors along with measurement of brain signals using EEG in 402 people in India across an income range of $0.82 to $410/day. We show that the complexity of the EEG signal scaled logarithmically with overall stimulus consumption and income and linearly with education and travel. In contrast phone use jumped up at a threshold of $30/day corresponding to a similar jump in key spectral parameters that reflect the signal energy. Our results suggest that key aspects of brain physiology increase in lockstep with stimulus consumption and that we have not fully appreciated the profound way that stimulus expanding aspects of modern life are changing our brain physiology.
Collapse
Affiliation(s)
| | - S. Sathishkumar
- Sapien Labs, 1201 Wilson Drive 27th Floor, Arlington, VA 22209 USA
| | | |
Collapse
|
24
|
Taslima F, Jung CG, Zhou C, Abdelhamid M, Abdullah M, Goto T, Saito T, Saido TC, Michikawa M. Tooth Loss Induces Memory Impairment and Gliosis in App Knock-In Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1687-1704. [PMID: 33720883 DOI: 10.3233/jad-201055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epidemiological studies have shown that tooth loss is associated with Alzheimer's disease (AD) and dementia. However, the molecular and cellular mechanisms by which tooth loss causes AD remain unclear. OBJECTIVE We investigated the effects of tooth loss on memory impairment and AD pathogenesis in AppNL-G-F mice. METHODS Maxillary molar teeth on both sides were extracted from 2-month-old AppNL-G-F mice, and the mice were reared for 2 months. The short- and long-term memory functions were evaluated using a novel object recognition test and a passive avoidance test. Amyloid plaques, amyloid-β (Aβ) levels, glial activity, and neuronal activity were evaluated by immunohistochemistry, Aβ ELISA, immunofluorescence staining, and western blotting. The mRNA expression levels of neuroinflammatory cytokines were determined by qRT-PCR analysis. RESULTS Tooth loss induced memory impairment via an amyloid-cascade-independent pathway, and decreased the neuronal activity, presynaptic and postsynaptic protein levels in both the cortex and hippocampus. Interestingly, we found that tooth loss induced glial activation, which in turn leads to the upregulation of the mRNA expression levels of the neuroinflammation cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in the hippocampus. We also found that tooth loss activated a stress-activated protein kinase, c-Jun N-terminal kinase (JNK), and increased heat shock protein 90 (HSP90) levels in the hippocampus, which may lead to a glial activation. CONCLUSION Our findings suggest that taking care of teeth is very important to preserve a healthy oral environment, which may reduce the risk of cognitive dysfunction.
Collapse
Affiliation(s)
- Ferdous Taslima
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy & Cell Biology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
25
|
Berretta E, Guida E, Forni D, Provenzi L. Glucocorticoid receptor gene (NR3C1) methylation during the first thousand days: Environmental exposures and developmental outcomes. Neurosci Biobehav Rev 2021; 125:493-502. [PMID: 33689802 DOI: 10.1016/j.neubiorev.2021.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
The first 1000 days from conception are a sensitive period for human development programming. During this period, environmental exposures may result in long-lasting epigenetic imprints that contribute to future developmental trajectories. The present review reports on the effects of adverse and protective environmental conditions occurring during the first 1000 days on glucocorticoid receptor gene (NR3C1) regulation in humans. Thirty-four studies were included. Wide variations emerged for biological tissues, number and position of analyzed CpG sites, and age at methylation and outcomes assessment. Increased NR3C1 methylation associated with first 1000 days stress exposures. Maternal caregiving behaviors significantly buffered precocious stress exposures. A less robust pattern of findings emerged for the association of NR3C1 methylation with physical health, neurobehavioral and neuroendocrine outcomes. Although drawing comprehensive conclusions is partially hindered by methodological limitations, the present review underlines the relevance of the first 1000 days from conception as a time window for developmental plasticity. Prospective cohort studies and epigenome-wide approaches may increase our understanding of dynamics epigenetic changes and their consequences for child development.
Collapse
Affiliation(s)
- Erica Berretta
- Experimental and Behavioral Neurophysiology Lab, Scientific Institute IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Elena Guida
- 0-3 Center for the At-Risk Infant, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Livio Provenzi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
26
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
27
|
Wu D, Jin Y, Shapiro TM, Hinduja A, Baas PW, Tom VJ. Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nat Commun 2020; 11:6131. [PMID: 33257677 PMCID: PMC7705672 DOI: 10.1038/s41467-020-19914-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
After a dorsal root crush injury, centrally-projecting sensory axons fail to regenerate across the dorsal root entry zone (DREZ) to extend into the spinal cord. We find that chemogenetic activation of adult dorsal root ganglion (DRG) neurons improves axon growth on an in vitro model of the inhibitory environment after injury. Moreover, repeated bouts of daily chemogenetic activation of adult DRG neurons for 12 weeks post-crush in vivo enhances axon regeneration across a chondroitinase-digested DREZ into spinal gray matter, where the regenerating axons form functional synapses and mediate behavioral recovery in a sensorimotor task. Neuronal activation-mediated axon extension is dependent upon changes in the status of tubulin post-translational modifications indicative of highly dynamic microtubules (as opposed to stable microtubules) within the distal axon, illuminating a novel mechanism underlying stimulation-mediated axon growth. We have identified an effective combinatory strategy to promote functionally-relevant axon regeneration of adult neurons into the CNS after injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tatiana M Shapiro
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Abhishek Hinduja
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Jones L, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Fabrizi L, Pillai Riddell R. The impact of parental contact upon cortical noxious-related activity in human neonates. Eur J Pain 2020; 25:149-159. [PMID: 32965725 PMCID: PMC8436758 DOI: 10.1002/ejp.1656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neonates display strong behavioural, physiological and cortical responses to tissue-damaging procedures. Parental contact can successfully regulate general behavioural and physiological reactivity of the infant, but it is not known whether it can influence noxious-related activity in the brain. Brain activity is highly dependent upon maternal presence in animal models, and therefore this could be an important contextual factor in human infant pain-related brain activity. METHODS Global topographic analysis was used to identify the presence and inter-group differences in noxious-related activity in three separate parental contexts. EEG was recorded during a clinically required heel lance in three age and sex-matched groups of neonates (a) while held by a parent in skin-to-skin (n = 9), (b) while held by a parent with clothing (n = 9) or (c) not held at all, but in individualized care (n = 9). RESULTS The lance elicited a sequence of 4-5 event-related potentials (ERPs), including the noxious ERP (nERP), which was smallest for infants held skin-to-skin and largest for infants held with clothing (p=0.016). The nERP was then followed by additional and divergent long-latency ERPs (> 750 ms post-lance), not previously described, in each of the groups, suggesting the engagement of different higher level cortical processes depending on parental contact. CONCLUSIONS These results show the importance of considering contextual factors in determining infant brain activity and reveal the powerful influence of parental contact upon noxious-related activity across the developing human brain. SIGNIFICANCE This observational study found that the way in which the neonatal brain processes a noxious stimulus is altered by the type of contact the infant has with their mother. Specifically, being held in skin-to-skin reduces the magnitude of noxious-related cortical activity. This work has also shown that different neural mechanisms are engaged depending on the mother/infant context, suggesting maternal contact can change how a baby's brain processes a noxious stimulus.
Collapse
Affiliation(s)
- Laura Jones
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | | | - Kimberley Whitehead
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | | |
Collapse
|
29
|
Kudo Y, Wada E. Ratio of naturally retained 15N to 13C in rat brain regions as a marker of brain function and activity. Neurosci Res 2020; 160:32-42. [PMID: 31931028 DOI: 10.1016/j.neures.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
Our aim in the present study was to clarify the activity-dependent and function-associated retention of stable isotopes (SIs) in rat brain regions. We measured regional distributions of the natural stable isotopes 15N and 13C in brain using a mass spectrometer with a dual inlet system and a double collector for ratiometry, and compared them with distributions obtained from internal organs and skeletal muscle. Although levels of 15N and 13C were very high in brain regions of prenatal rats, and robustly decreased after birth, developmental changes in brain regions became obvious when the ratio of 15N to 13C (abbreviated as 15N/13C) in each brain region was compared. A high correlation was observed between free motor activity and 15N/13C in the hippocampus, cerebrum, and striatum. A significantly higher 15N/13C was also observed in the hippocampus and striatum of rats with higher intelligence, which was evaluated by radial maze learning. Furthermore, 15N/13C in brain regions of trained rats were significantly higher than those of untrained age-matched rats. Our study suggests that the 15N/13C in a specific brain region may reflect the physiological feature of the region. This ratio may hence be applicable as a maker for pathological research on undiagnosed brain diseases.
Collapse
Affiliation(s)
- Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| | - Eitaro Wada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-31-1 Sugesengoku, Tama-ku, Kawasaki, Kanagawa, 214-0006, Japan.
| |
Collapse
|
30
|
Lindsey HM, Wilde EA, Caeyenberghs K, Dennis EL. Longitudinal Neuroimaging in Pediatric Traumatic Brain Injury: Current State and Consideration of Factors That Influence Recovery. Front Neurol 2019; 10:1296. [PMID: 31920920 PMCID: PMC6927298 DOI: 10.3389/fneur.2019.01296] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability for children and adolescents in the U.S. and other developed and developing countries. Injury to the immature brain varies greatly from that of the mature, adult brain due to numerous developmental, pre-injury, and injury-related factors that work together to influence the trajectory of recovery during the course of typical brain development. Substantial damage to brain structure often underlies subsequent functional limitations that persist for years following pediatric TBI. Advances in neuroimaging have established an important role in the acute management of pediatric TBI, and magnetic resonance imaging (MRI) techniques have a particular relevance for the sequential assessment of long-term consequences from injuries sustained to the developing brain. The present paper will discuss the various factors that influence recovery and review the findings from the present neuroimaging literature to assess altered development and long-term outcome following pediatric TBI. Four MR-based neuroimaging modalities have been used to examine recovery from pediatric TBI longitudinally: (1) T1-weighted structural MRI is sensitive to morphological changes in gray matter volume and cortical thickness, (2) diffusion-weighted MRI is sensitive to changes in the microstructural integrity of white matter, (3) MR spectroscopy provides a sensitive assessment of metabolic and neurochemical alterations in the brain, and (4) functional MRI provides insight into the functional changes that occur as a result of structural damage and typical developmental processes. As reviewed in this paper, 13 cohorts have contributed to only 20 studies published to date using neuroimaging to examine longitudinal changes after TBI in pediatric patients. The results of these studies demonstrate considerable heterogeneity in post-injury outcome; however, the existing literature consistently shows that alterations in brain structure, function, and metabolism can persist for an extended period of time post-injury. With larger sample sizes and multi-site cooperation, future studies will be able to further examine potential moderators of outcome, such as the developmental, pre-injury, and injury-related factors discussed in the present review.
Collapse
Affiliation(s)
- Hannah M. Lindsey
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Emily L. Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Kowalski JL, Nemanich ST, Nawshin T, Chen M, Peyton C, Zorn E, Hickey M, Rao R, Georgieff M, Rudser K, Gillick BT. Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke. J Clin Med 2019; 8:jcm8081208. [PMID: 31412592 PMCID: PMC6723226 DOI: 10.3390/jcm8081208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of cerebral palsy (CP) after perinatal stroke is often delayed beyond infancy, a period of rapid neuromotor development with heightened potential for rehabilitation. This study sought to assess whether the presence or absence of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) could be an early biomarker of atypical development within the first year of life. In 10 infants with perinatal stroke, motor outcome was assessed with a standardized movement assessment. Single-pulse TMS was utilized to assess presence of MEPs. Younger infants (3-6 months CA, n = 5, 4/5 (80%)) were more likely to present with an MEP from the more-affected hemisphere (MAH) compared to older infants (7-12 months CA, n = 5, 0/5, (0%)) (p = 0.048). Atypical movement was demonstrated in the majority of infants with an absent MEP from the MAH (5/6, 83%) compared to those with a present MEP (1/4, 25%) (p = 0.191). We found that age influences the ability to elicit an MEP from the MAH, and motor outcome may be related to MAH MEP absence. Assessment of MEPs in conjunction with current practice of neuroimaging and motor assessments could promote early detection and intervention in infants at risk of CP.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel T Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanjila Nawshin
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mo Chen
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen Peyton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Zorn
- Division of Neonatology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN 55455, USA
| | - Marie Hickey
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raghavendra Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyle Rudser
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Paldino MJ, Golriz F, Zhang W, Chu ZD. Normalization enhances brain network features that predict individual intelligence in children with epilepsy. PLoS One 2019; 14:e0212901. [PMID: 30835738 PMCID: PMC6400436 DOI: 10.1371/journal.pone.0212901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. MATERIALS AND METHODS Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. RESULTS Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. CONCLUSION Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
Collapse
Affiliation(s)
- Michael J. Paldino
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America
- * E-mail:
| | - Farahnaz Golriz
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America
| | - Wei Zhang
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America
| | - Zili D. Chu
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America
| |
Collapse
|
33
|
Borsani E, Della Vedova AM, Rezzani R, Rodella LF, Cristini C. Correlation between human nervous system development and acquisition of fetal skills: An overview. Brain Dev 2019; 41:225-233. [PMID: 30389271 DOI: 10.1016/j.braindev.2018.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
Abstract
Understanding the association between fetal nervous system structure and functioning should be an important goal in neurodevelopmental sciences, especially when considering the emerging knowledge regarding the importance of prenatal onset. Intrauterine development of the human central nervous system consists of specific processes: neurogenesis, neuronal migration, synaptogenesis, and myelination. However, as extensively shown by the neurobehavioral studies in the last century, the development of the central nervous system involves both structure and functioning. It is now recognised that the developing motor and sensory systems are able to function long before they have completed their neural maturation and that the intrauterine experience contributes to neurobehavioral development. This review analyzes the recent literature, looking at the association between the human nervous system maturation and fetal behavior. This article will follow the development and skill acquisition of the anatomical nervous system across the three trimesters of the gestation period.
Collapse
Affiliation(s)
- Elisa Borsani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Anna Maria Della Vedova
- Department of Clinical and Experimental Sciences, Division of Neurosciences, Unit of General Psychology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Carlo Cristini
- Department of Clinical and Experimental Sciences, Division of Neurosciences, Unit of General Psychology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
34
|
Developmental Impairments in a Rat Model of Methyl Donor Deficiency: Effects of a Late Maternal Supplementation with Folic Acid. Int J Mol Sci 2019; 20:ijms20040973. [PMID: 30813413 PMCID: PMC6413039 DOI: 10.3390/ijms20040973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamins B9 (folate) and B12 act as methyl donors in the one-carbon metabolism which influences epigenetic mechanisms. We previously showed that an embryofetal deficiency of vitamins B9 and B12 in the rat increased brain expression of let-7a and miR-34a microRNAs involved in the developmental control of gene expression. This was reversed by the maternal supply with folic acid (3 mg/kg/day) during the last third of gestation, resulting in a significant reduction of associated birth defects. Since the postnatal brain is subject to intensive developmental processes, we tested whether further folate supplementation during lactation could bring additional benefits. Vitamin deficiency resulted in weaned pups (21 days) in growth retardation, delayed ossification, brain atrophy and cognitive deficits, along with unchanged brain level of let-7a and decreased expression of miR-34a and miR-23a. Whereas maternal folic acid supplementation helped restore the levels of affected microRNAs, it led to a reduction of structural and functional defects taking place during the perinatal/postnatal periods, such as learning/memory capacities. Our data suggest that a gestational B-vitamin deficiency could affect the temporal control of the microRNA regulation required for normal development. Moreover, they also point out that the continuation of folate supplementation after birth may help to ameliorate neurological symptoms commonly associated with developmental deficiencies in folate and B12.
Collapse
|
35
|
Maternal Regulation of Pups' Cortical Activity: Role of Serotonergic Signaling. eNeuro 2018; 5:eN-NWR-0093-18. [PMID: 30073196 PMCID: PMC6071199 DOI: 10.1523/eneuro.0093-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
A developing brain shows intense reorganization and heightened neuronal plasticity allowing for environmental modulation of its development. During early life, maternal care is a key factor of this environment and defects in this care can derail adaptive brain development and may result in susceptibility to neuropsychiatric disorders. Nevertheless, the mechanisms by which those maternal interactions immediately impact the offspring's brain activity to initiate the pathway to pathology are not well understood. We do know that multiple neurotransmitter systems are involved, including the serotonergic system, a key neuromodulator involved in brain development and emotional regulation. We tested the importance of the serotonergic system and pups' immediate neural response to maternal presence using wireless electrophysiological recordings, a novel approach allowing us to record neural activity during pups' interactions with their mother. We found that maternal contact modulates the P10-P12 rat pups' anterior cingulate cortex (ACC) activity by notably increasing local-field potential (LFP) power in low-frequency bands. We demonstrated, by blocking serotonergic receptors, that this increase is mediated through 5-HT2 receptors (5-HT2Rs). Finally, we showed in isolated pups that enhancing serotonergic transmission, using a selective-serotonin-reuptake-inhibitor, is sufficient to enhance LFP power in low-frequency bands in a pattern similar to that observed when the mother is in the nest. Our results highlight a significant contribution of the serotonergic system in mediating changes of cortical activity in pups related to maternal presence.
Collapse
|
36
|
Shah R, Courtiol E, Castellanos FX, Teixeira CM. Abnormal Serotonin Levels During Perinatal Development Lead to Behavioral Deficits in Adulthood. Front Behav Neurosci 2018; 12:114. [PMID: 29928194 PMCID: PMC5997829 DOI: 10.3389/fnbeh.2018.00114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
Serotonin (5-HT) is one of the best-studied modulatory neurotransmitters with ubiquitous presynaptic release and postsynaptic reception. 5-HT has been implicated in a wide variety of brain functions, ranging from autonomic regulation, sensory perception, feeding and motor function to emotional regulation and cognition. The role of this neuromodulator in neuropsychiatric diseases is unquestionable with important neuropsychiatric medications, e.g., most antidepressants, targeting this system. Importantly, 5-HT modulates neurodevelopment and changes in its levels during development can have life-long consequences. In this mini-review, we highlight that exposure to both low and high serotonin levels during the perinatal period can lead to behavioral deficits in adulthood. We focus on three exogenous factors that can change 5-HT levels during the critical perinatal period: dietary tryptophan depletion, exposure to serotonin-selective-reuptake-inhibitors (SSRIs) and poor early life care. We discuss the effects of each of these on behavioral deficits in adulthood.
Collapse
Affiliation(s)
- Relish Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Emmanuelle Courtiol
- CNRS UMR 5292 - INSERM U1028, Lyon Neuroscience Research Center, Université Lyon 1, Lyon, France
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, United States.,Division of Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, United States
| |
Collapse
|
37
|
Ockleford C, Adriaanse P, Hougaard Bennekou S, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Gundert-Remy U, Kersting M, Waalkens-Berendsen I, Chiusolo A, Court Marques D, Dujardin B, Kass GEN, Mohimont L, Nougadère A, Reich H, Wolterink G. Scientific opinion on pesticides in foods for infants and young children. EFSA J 2018; 16:e05286. [PMID: 32625927 PMCID: PMC7009577 DOI: 10.2903/j.efsa.2018.5286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Protection Products and their Residues (PPR Panel) prepared a scientific opinion to provide a comprehensive evaluation of pesticide residues in foods for infants and young children. In its approach to develop this scientific opinion, the EFSA PPR Panel took into account, among the others, (i) the relevant opinions of the Scientific Committee for Food setting a default maximum residue level (MRL) of 0.01 mg/kg for pesticide residues in foods for infants and young children; (ii) the recommendations provided by EFSA Scientific Committee in a guidance on risk assessment of substances present in food intended for infants below 16 weeks of age; (iii) the knowledge on organ/system development in infants and young children. For infants below 16 weeks of age, the EFSA PPR Panel concluded that pesticide residues at the default MRL of 0.01 mg/kg for food for infants and young children are not likely to result in an unacceptable exposure for active substances for which a health-based guidance value (HBGV) of 0.0026 mg/kg body weight (bw) per day or higher applies. Lower MRLs are recommended for active substances with HBGVs below this value. For infants above 16 weeks of age and young children, the established approach for setting HBGVs is considered appropriate. For infants below 16 weeks of age the approach may not be appropriate and the application of the EFSA guidance on risk assessment of substances present in food intended for infants below 16 weeks of age is recommended. The contribution of conventional food to the total exposure to pesticide residues is much higher than that from foods intended for infants and young children. Because of the increased intake of conventional food by young children, these have the highest exposure to pesticide residues, whereas infants 3-6 months of age generally have lower exposure. The impact of cumulative exposure to pesticide residues on infants and young children is not different from the general population and the EFSA cumulative risk assessment methodology is also applicable to these age groups. Residue definitions established under Regulation (EC) No 396/2005 are in general considered appropriate also for foods for infants and young children. However, based on a tier 1 analysis of the hydrolysis potential of pesticides simulating processing, the particular appropriateness of existing residue definitions for monitoring to cover processed food, both intended for infants and young children as well as conventional food, is questionable.
Collapse
|
38
|
Medendorp WE, Petersen ED, Pal A, Wagner LM, Myers AR, Hochgeschwender U, Jenrow KA. Altered Behavior in Mice Socially Isolated During Adolescence Corresponds With Immature Dendritic Spine Morphology and Impaired Plasticity in the Prefrontal Cortex. Front Behav Neurosci 2018; 12:87. [PMID: 29867388 PMCID: PMC5954042 DOI: 10.3389/fnbeh.2018.00087] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mice socially isolated during adolescence exhibit behaviors of anxiety, depression and impaired social interaction. Although these behaviors are well documented, very little is known about the associated neurobiological changes that accompany these behaviors. It has been hypothesized that social isolation during adolescence alters the development of the prefrontal cortex, based on similar behavioral abnormalities observed in isolated mice and those with disruption of this structure. To establish relationships between behavior and underlying neurobiological changes in the prefrontal cortex, Thy-1-GFP mice were isolated from weaning until adulthood and compared to group-housed littermates regarding behavior, electrophysiological activity and dendritic morphology. Results indicate an immaturity of dendritic spines in single housed animals, with dendritic spines appearing smaller and thinner. Single housed mice additionally show impaired plasticity through measures of long-term potentiation. Together these findings suggest an altered development and impairment of the prefrontal cortex of these animals underlying their behavioral characteristics.
Collapse
Affiliation(s)
- William E Medendorp
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Eric D Petersen
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Akash Pal
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Lina-Marie Wagner
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Alexzander R Myers
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Kenneth A Jenrow
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
39
|
Synapse development organized by neuronal activity-regulated immediate-early genes. Exp Mol Med 2018; 50:1-7. [PMID: 29628504 PMCID: PMC5938016 DOI: 10.1038/s12276-018-0025-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Classical studies have shown that neuronal immediate-early genes (IEGs) play important roles in synaptic processes critical for key brain functions. IEGs are transiently activated and rapidly upregulated in discrete neurons in response to a wide variety of cellular stimuli, and they are uniquely involved in various aspects of synapse development. In this review, we summarize recent studies of a subset of neuronal IEGs in regulating synapse formation, transmission, and plasticity. We also discuss how the dysregulation of neuronal IEGs is associated with the onset of various brain disorders and pinpoint key outstanding questions that should be addressed in this field. Immediate-early genes (IEGs), genes that are rapidly and transiently activated by cellular stimuli, regulate the interactions between neurons and key brain functions. Ji Won Um and colleagues at Daegu Gyeongbuk Institute of Science and Technology in South Korea review recent studies on three IEGs that are activated by neuronal activity and highlight their contribution to neuronal excitability and cognitive behaviors. These genes rely on different molecular mechanisms to regulate neuronal receptors and the structure of synapses. Research in mice lacking any one of these IEGs reveals their contribution to learning and memory as well as to some behavioral abnormalities associated with neuropsychiatric disorders. Further research into the activity of IEGs will advance our understanding of how a neuron’s environment influences brain development and disease.
Collapse
|
40
|
Weir RK, Bauman MD, Jacobs B, Schumann CM. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains. J Comp Neurol 2017; 526:262-274. [PMID: 28929566 DOI: 10.1002/cne.24332] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
The amygdala is a medial temporal lobe structure implicated in social and emotional regulation. In typical development (TD), the amygdala continues to increase volumetrically throughout childhood and into adulthood, while other brain structures are stable or decreasing in volume. In autism spectrum disorder (ASD), the amygdala undergoes rapid early growth, making it volumetrically larger in children with ASD compared to TD children. Here we explore: (a) if dendritic arborization in the amygdala follows the pattern of protracted growth in TD and early overgrowth in ASD and (b), if spine density in the amygdala in ASD cases differs from TD from youth to adulthood. The amygdala from 32 postmortem human brains (7-46 years of age) were stained using a Golgi-Kopsch impregnation. Ten principal neurons per case were selected in the lateral nucleus and traced using Neurolucida software in their entirety. We found that both ASD and TD individuals show a similar pattern of increasing dendritic length with age well into adulthood. However, spine density is (a) greater in young ASD cases compared to age-matched TD controls (<18 years old) and (b) decreases in the amygdala as people with ASD age into adulthood, a phenomenon not found in TD. Therefore, by adulthood, there is no observable difference in spine density in the amygdala between ASD and TD age-matched adults (≥18 years old). Our findings highlight the unique growth trajectory of the amygdala and suggest that spine density may contribute to aberrant development and function of the amygdala in children with ASD.
Collapse
Affiliation(s)
- R K Weir
- Department of Psychiatry and Behavioral Sciences, University of California at Davis MIND Institute, Sacramento, California
| | - M D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California at Davis MIND Institute, Sacramento, California
| | - B Jacobs
- Laboratory of Quantitative Neuromorphology, Department of Psychology, Colorado College, Colorado Springs, Colorado
| | - C M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California at Davis MIND Institute, Sacramento, California
| |
Collapse
|
41
|
Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I, Sanacora G, Southwick SM, Duman RS. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic. Curr Psychiatry Rep 2017; 19:74. [PMID: 28844076 PMCID: PMC5904792 DOI: 10.1007/s11920-017-0829-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. RECENT FINDINGS Here, we will briefly review evidence that PTSD might be a "synaptic disconnection syndrome" and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Psychiatry Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lynette A. Averill
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Steven M. Southwick
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
42
|
The normal environment delays the development of multisensory integration. Sci Rep 2017; 7:4772. [PMID: 28684852 PMCID: PMC5500544 DOI: 10.1038/s41598-017-05118-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/24/2017] [Indexed: 11/08/2022] Open
Abstract
Multisensory neurons in animals whose cross-modal experiences are compromised during early life fail to develop the ability to integrate information across those senses. Consequently, they lack the ability to increase the physiological salience of the events that provide the convergent cross-modal inputs. The present study demonstrates that superior colliculus (SC) neurons in animals whose visual-auditory experience is compromised early in life by noise-rearing can develop visual-auditory multisensory integration capabilities rapidly when periodically exposed to a single set of visual-auditory stimuli in a controlled laboratory paradigm. However, they remain compromised if their experiences are limited to a normal housing environment. These observations seem counterintuitive given that multisensory integrative capabilities ordinarily develop during early life in normal environments, in which a wide variety of sensory stimuli facilitate the functional organization of complex neural circuits at multiple levels of the neuraxis. However, the very richness and inherent variability of sensory stimuli in normal environments will lead to a less regular coupling of any given set of cross-modal cues than does the otherwise "impoverished" laboratory exposure paradigm. That this poses no significant problem for the neonate, but does for the adult, indicates a maturational shift in the requirements for the development of multisensory integration capabilities.
Collapse
|
43
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
44
|
Paldino MJ, Golriz F, Chapieski ML, Zhang W, Chu ZD. Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy. AJNR Am J Neuroradiol 2017; 38:349-356. [PMID: 27737853 PMCID: PMC7963842 DOI: 10.3174/ajnr.a4975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The biologic basis for intelligence rests to a large degree on the capacity for efficient integration of information across the cerebral network. We aimed to measure the relationship between network architecture and intelligence in the pediatric, epileptic brain. MATERIALS AND METHODS Patients were retrospectively identified with the following: 1) focal epilepsy; 2) brain MR imaging at 3T, including resting-state functional MR imaging; and 3) full-scale intelligence quotient measured by a pediatric neuropsychologist. The cerebral cortex was parcellated into approximately 700 gray matter network "nodes." The strength of a connection between 2 nodes was defined by the correlation between their blood oxygen level-dependent time-series. We calculated the following topologic properties: clustering coefficient, transitivity, modularity, path length, and global efficiency. A machine learning algorithm was used to measure the independent contribution of each metric to the intelligence quotient after adjusting for all other metrics. RESULTS Thirty patients met the criteria (4-18 years of age); 20 patients required anesthesia during MR imaging. After we accounted for age and sex, clustering coefficient and path length were independently associated with full-scale intelligence quotient. Neither motion parameters nor general anesthesia was an important variable with regard to accurate intelligence quotient prediction by the machine learning algorithm. A longer history of epilepsy was associated with shorter path lengths (P = .008), consistent with reorganization of the network on the basis of seizures. Considering only patients receiving anesthesia during machine learning did not alter the patterns of network architecture contributing to global intelligence. CONCLUSIONS These findings support the physiologic relevance of imaging-based metrics of network architecture in the pathologic, developing brain.
Collapse
Affiliation(s)
- M J Paldino
- From the Departments of Radiology (M.J.P., F.G., Z.D.C.)
| | - F Golriz
- From the Departments of Radiology (M.J.P., F.G., Z.D.C.)
| | | | - W Zhang
- Outcomes and Impact Service (W.Z.), Texas Children's Hospital, Houston, Texas
| | - Z D Chu
- From the Departments of Radiology (M.J.P., F.G., Z.D.C.)
| |
Collapse
|
45
|
Lee PKM, Goh WWB, Sng JCG. Network-based characterization of the synaptic proteome reveals that removal of epigenetic regulator Prmt8 restricts proteins associated with synaptic maturation. J Neurochem 2017; 140:613-628. [PMID: 27935040 DOI: 10.1111/jnc.13921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022]
Abstract
The brain adapts to dynamic environmental conditions by altering its epigenetic state, thereby influencing neuronal transcriptional programs. An example of an epigenetic modification is protein methylation, catalyzed by protein arginine methyltransferases (PRMT). One member, Prmt8, is selectively expressed in the central nervous system during a crucial phase of early development, but little else is known regarding its function. We hypothesize Prmt8 plays a role in synaptic maturation during development. To evaluate this, we used a proteome-wide approach to characterize the synaptic proteome of Prmt8 knockout versus wild-type mice. Through comparative network-based analyses, proteins and functional clusters related to neurite development were identified to be differentially regulated between the two genotypes. One interesting protein that was differentially regulated was tenascin-R (TNR). Chromatin immunoprecipitation demonstrated binding of PRMT8 to the tenascin-r (Tnr) promoter. TNR, a component of perineuronal nets, preserves structural integrity of synaptic connections within neuronal networks during the development of visual-somatosensory cortices. On closer inspection, Prmt8 removal increased net formation and decreased inhibitory parvalbumin-positive (PV+) puncta on pyramidal neurons, thereby hindering the maturation of circuits. Consequently, visual acuity of the knockout mice was reduced. Our results demonstrated Prmt8's involvement in synaptic maturation and its prospect as an epigenetic modulator of developmental neuroplasticity by regulating structural elements such as the perineuronal nets.
Collapse
Affiliation(s)
- Patrick Kia Ming Lee
- Integrative Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wilson Wen Bin Goh
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Department of Computer Science, National University of Singapore, Singapore
| | - Judy Chia Ghee Sng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Babij R, De Marco Garcia N. Neuronal activity controls the development of interneurons in the somatosensory cortex. FRONTIERS IN BIOLOGY 2016; 11:459-470. [PMID: 28133476 PMCID: PMC5267357 DOI: 10.1007/s11515-016-1427-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions. OBJECTIVE In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns. METHODS We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: "interneuron", "somatosensory", "development", "activity", "network patterns", "thalamocortical", "NMDA receptor", "plasticity". We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab. RESULTS We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016. CONCLUSIONS Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.
Collapse
Affiliation(s)
- Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Natalia De Marco Garcia
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
47
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
48
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
49
|
Lenschow C, Cazalets JR, Bertrand SS. Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneurons. Sci Rep 2016; 6:28522. [PMID: 27329279 PMCID: PMC4916427 DOI: 10.1038/srep28522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022] Open
Abstract
Activity-dependent synaptic plasticity (ADSP) is paramount to synaptic processing and maturation. However, identifying the ADSP capabilities of the numerous synapses converging onto spinal motoneurons (MNs) remain elusive. Using spinal cord slices from mice at two developmental stages, 1–4 and 8–12 postnatal days (P1–P4; P8–P12), we found that high-frequency stimulation of presumed reticulospinal neuron axons in the ventrolateral funiculus (VLF) induced either an NMDA receptor-dependent-long-term depression (LTD), a short-term depression (STD) or no synaptic modulation in limb MNs. Our study shows that P1–P4 cervical MNs expressed the same plasticity profiles as P8–P12 lumbar MNs rather than P1–P4 lumbar MNs indicating that ADSP expression at VLF-MN synapses is linked to the rostrocaudal development of spinal motor circuitry. Interestingly, we observed that the ADSP expressed at VLF-MN was related to the functional flexor or extensor MN subtype. Moreover, heterosynaptic plasticity was triggered in MNs by VLF axon tetanisation at neighbouring synapses not directly involved in the plasticity induction. ADSP at VLF-MN synapses specify differential integrative synaptic processing by flexor and extensor MNs and could contribute to the maturation of spinal motor circuits and developmental acquisition of weight-bearing locomotion.
Collapse
|
50
|
Wang Y, Hersheson J, Lopez D, Hammer M, Liu Y, Lee KH, Pinto V, Seinfeld J, Wiethoff S, Sun J, Amouri R, Hentati F, Baudry N, Tran J, Singleton AB, Coutelier M, Brice A, Stevanin G, Durr A, Bi X, Houlden H, Baudry M. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep 2016; 16:79-91. [PMID: 27320912 DOI: 10.1016/j.celrep.2016.05.044] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Hersheson
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Monia Hammer
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia; Laboratory of Neurogenetics, National Institutes of Health, Bethesda 20892, MD, USA
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ka-Hung Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vanessa Pinto
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jeff Seinfeld
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Sarah Wiethoff
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rim Amouri
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia
| | - Faycal Hentati
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia
| | - Neema Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jennifer Tran
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda 20892, MD, USA
| | - Marie Coutelier
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, 75013 Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Henry Houlden
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|