1
|
Salman A, Bolinches‐Amorós A, Storm T, Moralli D, Bryika P, Russell AJ, Davies SG, Barnard AR, MacLaren RE. Spontaneously Immortalised Nonhuman Primate Müller Glia Cell Lines as Source to Explore Retinal Reprogramming Mechanisms for Cell Therapies. J Cell Physiol 2025; 240:e31482. [PMID: 39605294 PMCID: PMC11774137 DOI: 10.1002/jcp.31482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Cell replacement therapies for ocular diseases characterised by photoreceptors degeneration are challenging due to poor primary cell survival in culture. A stable retinal cell source to replace lost photoreceptors holds promise. Müller glia cells play a pivotal role in retinal homoeostasis by providing metabolic and structural support to retinal neurons, preventing aberrant photoreceptors migration, and facilitating safe glutamate uptake. In fish and amphibians, injured retinas regenerate due to Müller-like glial stem cells, a phenomenon absent in the mammalian retina for unknown reasons. Research on Müller cells has been complex due to difficulties in obtaining pure cell population and their rapid de-differentiation in culture. While various Müller glia cell lines from human and rats are described, no nonhuman primate Müller glia cell line is currently available. Here, we report spontaneously immortalised Müller glia cell lines derived from macaque neural retinas that respond to growth factors and expand indefinitely in culture. They exhibit Müller cells morphology, such as an elongated shape and cytoplasmic projections, express Müller glia markers (VIMENTIN, GLUTAMINE SYNTHASE, glutamate-aspartate transporter, and CD44), and express stem cell markers such as PAX6 and SOX2. In the presence of factors that induce photoreceptor differentiation, these cells show a shift in gene expression patterns suggesting a state of de-differentiation, a phenomenon known in reprogrammed mammalian Müller cells. The concept of self-renewing retina might seem unfeasible, but not unprecedented. While vertebrate Müller glia have a regeneration potential absent in mammals, understanding the mechanisms behind reprogramming of Müller glia in mammals could unlock their potential for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOxfordshireUK
| | - Arantxa Bolinches‐Amorós
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOxfordshireUK
- Welcome Centre for Human GeneticsUniversity of OxfordOxfordOxfordshireUK
| | - Tina Storm
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOxfordshireUK
| | - Daniela Moralli
- Department of ChemistryUniversity of OxfordOxfordOxfordshireUK
| | - Paulina Bryika
- Department of ChemistryUniversity of OxfordOxfordOxfordshireUK
| | - Angela J. Russell
- Welcome Centre for Human GeneticsUniversity of OxfordOxfordOxfordshireUK
- Department of PharmacologyUniversity of OxfordOxfordOxfordshireUK
| | | | - Alun R. Barnard
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOxfordshireUK
| | - Robert E. MacLaren
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOxfordshireUK
- Oxford Eye HospitalOxfordOxfordshireUK
| |
Collapse
|
2
|
Goel M, Dhingra NK. bFGF and insulin lead to migration of Müller glia to photoreceptor layer in rd1 mouse retina. Neurosci Lett 2021; 755:135936. [PMID: 33910061 DOI: 10.1016/j.neulet.2021.135936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Müller glia can act as endogenous stem cells and regenerate the missing neurons in the injured or degenerating retina in lower vertebrates. However, mammalian Müller glia, although can sometimes express stem cell markers and specific neuronal proteins in response to injury or degeneration, do not differentiate into functional neurons. We asked whether bFGF and insulin would stimulate the Müller glia to migrate, proliferate and differentiate into photoreceptors in rd1 mouse. We administered single or repeated (two or three) intravitreal injections of basic fibroblast growth factor (bFGF;200 μg) and insulin (2 μg) in 2-week-old rd1 mice. Müller glia were checked for proliferation, migration and differentiation using immunostaining. A single injection resulted within 5 days in a decrease in the numbers of Müller glia in the inner nuclear layer (INL) and a corresponding increase in the outer nuclear layer (ONL). The total number of Müller glia in the INL and ONL was unaltered, suggesting that they did not proliferate, but migrated from INL to ONL. However, maintaining the Müller cells in the ONL for two weeks or longer required repeated injections of bFGF and insulin. Interestingly, all Müller cells in the ONL expressed chx10, a stem cell marker. We did not find any immunolabeling for rhodopsin, m-opsin or s-opsin in the Müller glia in the ONL.
Collapse
Affiliation(s)
- Manvi Goel
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122051, India.
| | | |
Collapse
|
3
|
Babaie A, Bakhshandeh B, Abedi A, Mohammadnejad J, Shabani I, Ardeshirylajimi A, Reza Moosavi S, Amini J, Tayebi L. Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Öner A. Stem Cell Treatment in Retinal Diseases: Recent Developments. Turk J Ophthalmol 2018; 48:33-38. [PMID: 29576896 PMCID: PMC5854857 DOI: 10.4274/tjo.89972] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
Stem cells are undifferentiated cells which have the ability to self-renew and differentiate into mature cells. They are highly proliferative, implying that an unlimited number of mature cells can be generated from a given stem cell source. On this basis, stem cell replacement therapy has been evaluated in recent years as an alternative for various pathologies. Degenerative retinal diseases cause progressive visual decline which originates from continuing loss of photoreceptor cells and outer nuclear layers. Theoretically, this therapy will enable the generation of new retinal cells from stem cells to replace the damaged cells in the diseased retina. In addition, stem cells are able to perform multiple functions, such as immunoregulation, anti-apoptosis of neurons, and neurotrophin secretion. With recent progress in experimental stem cell applications, phase I/II clinical trials have been approved. These latest stem cell transplantation studies showed that this therapy is a promising approach to restore visual function in eyes with degenerative retinal diseases such as retinitis pigmentosa, Stargardts’ macular dystrophy, and age-related macular degeneration. This review focuses on new developments in stem cell therapy for degenerative retinal diseases.
Collapse
Affiliation(s)
- Ayşe Öner
- Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
| |
Collapse
|
5
|
Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1113-1126. [PMID: 28664762 DOI: 10.1080/14712598.2017.1346079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In age-related macular degeneration (AMD), stem cells could possibly replace or regenerate disrupted pathologic retinal pigment epithelium (RPE), and produce supportive growth factors and cytokines such as brain-derived neurotrophic factor. Induced pluripotent stem cells (iPSCs)-derived RPE was first subretinally transplanted in a neovascular AMD patient in 2014. Areas covered: Induced PSCs are derived from the introduction of transcription factors to adult cells under specific cell culture conditions, followed by differentiation into RPE cells. Induced PSC-derived RPE cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression that is similar to native RPE. Despite having similar in vitro function, morphology, immunostaining and microscopic analysis, it remains to be seen if iPSC-derived RPE can replicate the myriad of in vivo functions, including immunomodulatory effects, of native RPE cells. Historically, adjuvant RPE transplantation during CNV resections were technically difficult and complicated by immune rejection. Autologous iPSCs are hypothesized to reduce the risk of immune rejection, but their production is time-consuming and expensive. Alternatively, allogenic transplantation using human leukocyte antigen (HLA)-matched iPSCs, similar to HLA-matched organ transplantation, is currently being investigated. Expert opinion: Challenges to successful transplantation with iPSCs include surgical technique, a pathologic subretinal microenvironment, possible immune rejection, and complications of immunosuppression.
Collapse
Affiliation(s)
- Peter Bracha
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nicholas A Moore
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
6
|
Sam TN, Xiao J, Roehrich H, Low WC, Gregerson DS. Engrafted Neural Progenitor Cells Express a Tissue-Restricted Reporter Gene Associated with Differentiated Retinal Photoreceptor Cells. Cell Transplant 2017; 15:147-60. [PMID: 16719048 DOI: 10.3727/000000006783982098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cells (NPCs) have shown ability to repair injured CNS, and might provide precursors to retinal neurons. NPCs were isolated from the brains of 14 day murine embryos of transgenic mice that express β-galactosidase (β-gal) on the arrestin promoter, which specifically directs expression to retinal photoreceptor cells. NPCs were transferred to adult, syngeneic mice via inoculation into the anterior chamber of the eye, the peritoneal cavity, or the brain. At 14 weeks postgrafting, tissues were collected and examined to determine if differentiated NPC progeny were present in retina based on histochemical detection of β-gal. Four of six anterior chamber-inoculated recipients showed Bluo-gal-stained cells in retina, indicating the presence of transferred NPCs or their progeny. Because the progenitor cells do not express β-gal, positive staining indicates differentiation leading to activation of the arrestin promoter. Two recipients inoculated by the intraperitoneal route also exhibited Bluo-gal staining in retina. The NPCs did not express β-gal if inoculated into brain, but survived and dispersed. Most recipients, regardless of inoculation route, were PCR positive for β-gal DNA in extraocular tissues, but no Bluo-gal staining was found outside of the retina. Injury to the retina promoted, but was not required, for progenitor cell engraftment. β-Gal-positive cells were concentrated in the outer layers of the retina. In summary, a reporter gene specifically expressed in differentiated retinal photoreceptor cells due to the activity of the arrestin promoter was expressed in recipient mouse retina following transfer of NPCs prepared from the β-gal transgenic mice. The presence of β-gal DNA, but not Bluo-gal staining, in spleen and other tissues revealed that the cells also migrated elsewhere and took up residence in other organs, but did not undergo differentiation that led to β-gal expression.
Collapse
Affiliation(s)
- Thien N Sam
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
7
|
Jindal N, Banik A, Prabhakar S, Vaiphie K, Anand A. Alteration of Neurotrophic Factors After Transplantation of Bone Marrow Derived Lin-ve Stem Cell in NMDA-Induced Mouse Model of Retinal Degeneration. J Cell Biochem 2017; 118:1699-1711. [PMID: 27935095 DOI: 10.1002/jcb.25827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/06/2016] [Indexed: 02/02/2023]
Abstract
Retinal ganglion cell layer (RGCs) is one of the important layers of retina, depleted in Glaucoma. Loss of RGC neurons is a major cellular mechanism involved in its pathogenesis resulting in severe vision loss. Stem cell therapy has emerged as a potential strategy to arrest the apoptotic loss of RGCs and also replace the degenerative cells in damaged retina. Here, we have investigated the incorporation and survival of mouse bone marrow derived Lin-ve stem cells in N-methyl-d-aspartate (NMDA)-induced mouse model of retinal degeneration. Two days after intravitreal injection of NMDA (100 mM) showed significant decrease in ganglion cell number and increase in TUNEL positive apoptotic cells in retinal layers. The injury was further characterized by immunohistochemical expression of Brn3b, GFAP, Bcl2, pCREB, CNTF, GDNF, and BDNF in retinal layers. Lin-ve cells (100,000 dose) were intravitreally transplanted after 2 days of injury and evaluated after 7, 14, and 21 days of transplantation. Transplanted cells were found to have migrated from intravitreal space and incorporated into injured retina at 7, 14, and 21 days post-transplantation. At 21 days Brn3b, CNTF, and BDNF expression was found to be upregulated whereas GDNF was downregulated when compared to respective injury time points. Molecular data showed decrease in the expression of Brn3b, BDNF, CNTF, and GDNF post transplantation when compared with injury groups. This study reveals that Lin-ve stem cells may exert neuroprotective effect in damaged retina mediated by participation of neurotrophic factors induced by stem cell transplantation at the site of injury. J. Cell. Biochem. 118: 1699-1711, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neeru Jindal
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Avijit Banik
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Sudesh Prabhakar
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Kim Vaiphie
- Department of Histopathology, PGIMER, Chandigarh 160012, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| |
Collapse
|
8
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
9
|
Fan WJ, Li X, Yao HL, Deng JX, Liu HL, Cui ZJ, Wang Q, Wu P, Deng JB. Neural differentiation and synaptogenesis in retinal development. Neural Regen Res 2016; 11:312-8. [PMID: 27073386 PMCID: PMC4810997 DOI: 10.4103/1673-5374.177743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function.
Collapse
Affiliation(s)
- Wen-Juan Fan
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Xue Li
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Huan-Ling Yao
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jie-Xin Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Hong-Liang Liu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Zhan-Jun Cui
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Qiang Wang
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Ping Wu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jin-Bo Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
10
|
Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater 2016; 31:61-70. [PMID: 26621699 DOI: 10.1016/j.actbio.2015.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Tissue decellularization strategies have enabled engineering of scaffolds that preserve native extracellular matrix (ECM) structure and composition. In this study, we developed decellularized retina (decell-retina) thin films. We hypothesized that these films, mimicking the retina niche, would promote human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. Retinas isolated from bovine eyes were decellularized using 1% w/v sodium dodecyl sulfate (SDS) and pepsin digested. The resulting decell-retina was biochemically assayed for composition and cast dried to develop thin films. Attachment, viability, morphology, proliferation and gene expression of hRPC cultured on the films were studied in vitro. Biochemical analyses of decell-retina compared to native retina indicated the bulk of DNA (94%) was removed, while the majority of sulfated GAGs (55%), collagen (83%), hyaluronic acid (87%), and key growth factors were retained. The decell-retina films supported hRPC attachment and growth, with cell number increasing 1.5-fold over a week. RT-PCR analysis revealed hRPC expression of rhodopsin, rod outer membrane, neural retina-specific leucine zipper neural and cone-rod homeobox gene on decell-retina films, indicating photoreceptor development. In conclusion, novel decell-retina films show promise as potential substrates for culture and/or transplantation of retinal progenitor cells to treat retinal degenerative disorders. STATEMENT OF SIGNIFICANCE In this study, we report the development of a novel biomaterial, based on decellularized retina (decell-retina) that mimics the retina niche and promotes human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. We estimated, for the first time, the amounts of collagen I, GAGs and HA present in native retina, as well as the decell-retina. We demonstrated that retinas can be decellularized using ionic detergents and can be processed into mechanically stable thin films, which can act as substrates for culturing hRPCs. Rhodopsin, ROM1, NRL and CRX gene expression on the decell-retina films indicated photoreceptor development from RPCs. These results support the potential of decell-retina as a cell delivery platform to treat and manage retinal degenerative disease like AMD.
Collapse
|
11
|
Retinal Cell Degeneration in Animal Models. Int J Mol Sci 2016; 17:ijms17010110. [PMID: 26784179 PMCID: PMC4730351 DOI: 10.3390/ijms17010110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Collapse
|
12
|
Zhao MT, Whyte JJ, Hopkins GM, Kirk MD, Prather RS. Methylated DNA immunoprecipitation and high-throughput sequencing (MeDIP-seq) using low amounts of genomic DNA. Cell Reprogram 2014; 16:175-84. [PMID: 24773292 DOI: 10.1089/cell.2014.0002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA modifications, such as methylation and hydroxymethylation, are pivotal players in modulating gene expression, genomic imprinting, X-chromosome inactivation, and silencing repetitive sequences during embryonic development. Aberrant DNA modifications lead to embryonic and postnatal abnormalities and serious human diseases, such as cancer. Comprehensive genome-wide DNA methylation and hydroxymethylation studies provide a way to thoroughly understand normal development and to identify potential epigenetic mutations in human diseases. Here we established a working protocol for methylated DNA immunoprecipitation combined with next-generation sequencing [methylated DNA immunoprecipitation (MeDIP)-seq] for low starting amounts of genomic DNA. By using spike-in control DNA sets with standard cytosine, 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC), we demonstrate the preferential binding of antibodies to 5mC and 5hmC, respectively. MeDIP-PCRs successfully targeted highly methylated genomic loci with starting genomic DNA as low as 1 ng. The enrichment efficiency declined for constant spiked-in controls but increased for endogenous methylated regions. A MeDIP-seq library was constructed starting with 1 ng of DNA, with the majority of fragments between 250 bp and 600 bp. The MeDIP-seq reads showed higher quality than the Input control. However, after being preprocessed by Cutadapt, MeDIP (97.53%) and Input (94.98%) reads showed comparable alignment rates. SeqMonk visualization tools indicated MeDIP-seq reads were less uniformly distributed across the genome than Input reads. Several commonly known unmethylated and methylated genomic loci showed consistent methylation patterns in the MeDIP-seq data. Thus, we provide proof-of-principle that MeDIP-seq technology is feasible to profile genome-wide DNA methylation in minute DNA samples, such as oocytes, early embryos, and human biopsies.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- 1 Division of Animal Sciences, University of Missouri , Columbia, MO, 65211
| | | | | | | | | |
Collapse
|
13
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
14
|
Reynolds J, Lamba DA. Human embryonic stem cell applications for retinal degenerations. Exp Eye Res 2013; 123:151-60. [PMID: 23880530 DOI: 10.1016/j.exer.2013.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
Loss of vision in severe retinal degenerations often is a result of photoreceptor cell or retinal pigment epithelial cell death or dysfunction. Cell replacement therapy has the potential to restore useful vision for these individuals especially after they have lost most or all of their light-sensing cells in the eye. A reliable, well-characterized source of retinal cells will be needed for replacement purposes. Human embryonic stem cells (ES cells) can provide an unlimited source of replacement retinal cells to take over the function of lost cells in the eye. The author's intent for this review is to provide an historical overview of the field of embryonic stem cells with relation to the retina. The review will provide a quick primer on key pathways involved in the development of the neural retina and RPE followed by a discussion of the various protocols out in the literature for generating these cells from non-human and human embryonic stem cells and end with in vivo application of ES cell-derived photoreceptors and RPE cells.
Collapse
Affiliation(s)
- Joseph Reynolds
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
15
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Pluripotent stem cell for modeling neurological diseases. Exp Cell Res 2013; 319:177-84. [DOI: 10.1016/j.yexcr.2012.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022]
|
17
|
Bian H, Fan YD, Guo LY, Yu HL. [A technique of rhesus monkey neural progenitor cells intravitreal transplant to rats]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:85-8. [PMID: 22345014 DOI: 10.3724/sp.j.1141.2012.01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate a simple and effective intraocular xenotransplant technique of rhesus monkey neural progenitor cells to rats, mechanical injury was induced in the rat's right retina. And the GFP-labeled rhesus monkey neural progenitor cells suspension was slowly injected into the vitreous space of the right injured and left control eye. Confocal image suggested that the xenografted cells survived in both the injured and control eye, meanwhile the cells integrated in the injured right retina. The results demonstrated that intravitreal xenotransplant could be adopted as a simple and reliable method.
Collapse
Affiliation(s)
- Hui Bian
- Department of Minimally Invasive Neurosurgery, First Affiliated Hospital of Kunming Medical College, Kunming,China
| | | | | | | |
Collapse
|
18
|
Wong IYH, Poon MW, Pang RTW, Lian Q, Wong D. Promises of stem cell therapy for retinal degenerative diseases. Graefes Arch Clin Exp Ophthalmol 2011; 249:1439-48. [PMID: 21866334 PMCID: PMC3178027 DOI: 10.1007/s00417-011-1764-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
With the development of stem cell technology, stem cell-based therapy for retinal degeneration has been proposed to restore the visual function. Many animal studies and some clinical trials have shown encouraging results of stem cell-based therapy in retinal degenerative diseases. While stem cell-based therapy is a promising strategy to replace damaged retinal cells and ultimately cure retinal degeneration, there are several important challenges which need to be overcome before stem cell technology can be applied widely in clinical settings. In this review, different types of donor cell origins used in retinal treatments, potential target cell types for therapy, methods of stem cell delivery to the eye, assessments of potential risks in stem cell therapy, as well as future developments of retinal stem cells therapy, will be discussed.
Collapse
Affiliation(s)
- Ian Yat-Hin Wong
- Department of Medicine and Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | | | | | | | | |
Collapse
|
19
|
Yuan J, Yu JX, Ge J. Sexual dimorphism on the neurogenic potential of rhesus monkeys mesenchymal stem cells. Biochem Biophys Res Commun 2010; 396:394-400. [DOI: 10.1016/j.bbrc.2010.04.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/19/2010] [Indexed: 11/17/2022]
|
20
|
Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010; 89:911-9. [PMID: 20164818 PMCID: PMC2855750 DOI: 10.1097/tp.0b013e3181d45a61] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. METHODS Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RESULTS RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. CONCLUSIONS ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Joaquin Tosi
- Department of Ophthalmology, Columbia University, New York City, NY
| | | | - Chai Lin Chou
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Jian Kong
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Nancy Parmalee
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Genetics and Development, Columbia University, New York, NY
| | - Katherine J. Wert
- Department of Ophthalmology, Columbia University, New York City, NY
- Institute of Human Nutrient, Columbia University, New York, NY
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chyuan-Sheng Lin
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| |
Collapse
|
21
|
Meyer JS, Tullis G, Pierret C, Spears KM, Morrison JA, Kirk MD. Detection of calcium transients in embryonic stem cells and their differentiated progeny. Cell Mol Neurobiol 2010; 29:1191-203. [PMID: 19475505 DOI: 10.1007/s10571-009-9413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 05/12/2009] [Indexed: 12/16/2022]
Abstract
A central issue in stem cell biology is the determination of function and activity of differentiated stem cells, features that define the true phenotype of mature cell types. Commonly, physiological mechanisms are used to determine the functionality of mature cell types, including those of the nervous system. Calcium imaging provides an indirect method of determining the physiological activities of a mature cell. Camgaroos are variants of yellow fluorescent protein that act as intracellular calcium sensors in transfected cells. We expressed one version of the camgaroos, Camgaroo-2, in mouse embryonic stem (ES) cells under the control of the CAG promoter system. Under the control of this promoter, Camgaroo-2 fluorescence was ubiquitously expressed in all cell types derived from the ES cells that were tested. In response to pharmacological stimulation, the fluorescence levels in transfected cells correlated with cellular depolarization and hyperpolarization. These changes were observed in both undifferentiated ES cells as well as ES cells that had been neurally induced, including putative neurons that were differentiated from transfected ES cells. The results presented here indicate that Camgaroo-2 may be used like traditional fluorescent proteins to track cells as well as to study the functionality of stem cells and their progeny.
Collapse
Affiliation(s)
- Jason S Meyer
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Sanalkumar R, Vidyanand S, Lalitha Indulekha C, James J. Neuronal vs. glial fate of embryonic stem cell-derived neural progenitors (ES-NPs) is determined by FGF2/EGF during proliferation. J Mol Neurosci 2010; 42:17-27. [PMID: 20155332 DOI: 10.1007/s12031-010-9335-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/18/2010] [Indexed: 01/25/2023]
Abstract
Fate-specific differentiation of neural progenitors attracts keen interest in modern medicine due to its application in cell replacement therapy. Though various signaling pathways are involved in maintenance and differentiation of neural progenitors, the mechanism of development of lineage-restricted progenitors from embryonic stem (ES) cells is not clearly understood. Here, we have demonstrated that neuronal vs. glial differentiation potential of ES cell-derived neural progenitors (ES-NPs) are governed by the growth factors, exposed during their proliferation/expansion phase and cannot be significantly altered during differentiation phase. Exposure of ES-NPs to fibroblast growth factor-2 (FGF2) during proliferation triggered the expression of pro-neural genes that are required for neuronal lineage commitment, and upon differentiation, predominantly generated neurons. On the other hand, epidermal growth factor (EGF)-exposed ES-NPs are not committed to neuronal fate due to decreased expression of pro-neural genes. These ES-NPs further generate more glial cells due to expression of glial-restricted factors. Exposure of ES-NPs to the same growth factors during proliferation/expansion and differentiation phase augments the robust differentiation of neurons or glial subtypes. We also demonstrate that, during differentiation, exposure to growth factors other than that in which the ES-NPs were expanded does not significantly alter the fate of ES-NPs. Thus, we conclude that FGF2 and EGF determine the neural vs. glial fate of ES-NPs during proliferation and augment it during differentiation. Further modification of these protocols would help in generating fate-specified neurons for various regenerative therapies.
Collapse
Affiliation(s)
- Rajendran Sanalkumar
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | | | | | | |
Collapse
|
23
|
Pierret C, Morrison JA, Rath P, Zigler RE, Engel LA, Fairchild CL, Shi H, Maruniak JA, Kirk MD. Developmental cues and persistent neurogenic potential within an in vitro neural niche. BMC DEVELOPMENTAL BIOLOGY 2010; 10:5. [PMID: 20074373 PMCID: PMC2824744 DOI: 10.1186/1471-213x-10-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 01/14/2010] [Indexed: 12/18/2022]
Abstract
Background Neurogenesis, the production of neural cell-types from neural stem cells (NSCs), occurs during development as well as within select regions of the adult brain. NSCs in the adult subependymal zone (SEZ) exist in a well-categorized niche microenvironment established by surrounding cells and their molecular products. The components of this niche maintain the NSCs and their definitive properties, including the ability to self-renew and multipotency (neuronal and glial differentiation). Results We describe a model in vitro NSC niche, derived from embryonic stem cells, that produces many of the cells and products of the developing subventricular zone (SVZ) and adult SEZ NSC niche. We demonstrate a possible role for apoptosis and for components of the extracellular matrix in the maintenance of the NSC population within our niche cultures. We characterize expression of genes relevant to NSC self-renewal and the process of neurogenesis and compare these findings to gene expression produced by an established neural-induction protocol employing retinoic acid. Conclusions The in vitro NSC niche shows an identity that is distinct from the neurally induced embryonic cells that were used to derive it. Molecular and cellular components found in our in vitro NSC niche include NSCs, neural progeny, and ECM components and their receptors. Establishment of the in vitro NSC niche occurs in conjunction with apoptosis. Applications of this culture system range from studies of signaling events fundamental to niche formation and maintenance as well as development of unique NSC transplant platforms to treat disease or injury.
Collapse
Affiliation(s)
- Chris Pierret
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rath P, Shi H, Maruniak JA, Litofsky NS, Maria BL, Kirk MD. Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 2009; 4:44-9. [PMID: 19149629 DOI: 10.2174/157488809787169138] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prognosis of patients diagnosed with malignant gliomas including glioblastoma multiforme (GBM) is poor and there is an urgent need to develop and translate novel therapies into the clinic. Neural stem cells display remarkable tropism toward GBMs and thus may provide a platform to deliver oncolytic agents to improve survival. First we provide a brief review of clinical trials that have used intra-tumoral herpes simplex virus thymidine kinase (HSV/tk) gene therapy to treat brain tumors. Then, we review recent evidence that neural stem cells can be used to deliver HSV/tk to GBMs in animal models. While previous clinical trials used viruses or non-migratory vector-producing cells to deliver HSV/tk, the latter approaches were not effective in humans, primarily because of satellite tumor cells that escaped surgical resection and survived due to low efficiency delivery of HSV/tk. To enhance delivery of HSV/tk to kill gliomas cells, recent animal studies have focused on the ability of neural stem cells, transduced with HSV/tk, to migrate efficiently and selectively to regions occupied by GBM cells. This approach holds the promise of targeting GBM cells that have infiltrated the brain well beyond the original site of the tumor epicenter.
Collapse
Affiliation(s)
- Prakash Rath
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
25
|
Limb GA, Daniels JT, Cambrey AD, Secker GA, Shortt AJ, Lawrence JM, Khaw PT. Current Prospects for Adult Stem Cell–Based Therapies in Ocular Repair and Regeneration. Curr Eye Res 2009; 31:381-90. [PMID: 16714229 DOI: 10.1080/02713680600681210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent advances in stem cell biology have led to the exploration of stem cell-based therapies to treat a wide range of human diseases. In the ophthalmic field, much hope has been placed on the potential use of these cells to restore sight, particularly in those conditions in which other established treatments have failed and in which visual function has been irreversibly damaged by disease or injury. At present, there are many limitations for the immediate use of embryonic stem cells to treat ocular disease, and as more evidence emerges that adult stem cells are present in the adult human eye, it is clear that these cells may have advantages to develop into feasible therapeutic treatments without the problems associated with embryonic research and immune rejection. Here we discuss the current prospects for the application of various adult ocular stem cells to human therapies for restoration of vision.
Collapse
Affiliation(s)
- G A Limb
- Ocular Repair and Regeneration Biology Unit, Departments of Cell Biology and Pathology, Institute of Ophthalmology, UCL and Moorfields Eye Hospital, 11 Bath Street, London, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Over the past few years a great deal of interest has been generated in using stem cells/progenitors to treat degenerative diseases that afflict different tissues, including retina. This interest is due to the defining properties of stem cells/progenitors, the ability of these cells to self-renew and generate all the basic cell types of the particular tissue to which they belong. In addition, the recent reports of plasticity of the adult tissue-specific stem cells/progenitors and directed differentiation of the embryonic cells (ES) has fueled the hope for cell and gene therapy using stem cells from heterologous sources. Will this approach work for treating retinal degeneration? Here, we review the current state of knowledge about obtaining retinal cells from heterologous sources, including ES cells.
Collapse
Affiliation(s)
- Ani M Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, 68198, USA
| | | | | |
Collapse
|
27
|
Chaudhry GR, Fecek C, Lai MM, Wu WC, Chang M, Vasquez A, Pasierb M, Trese MT. Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev 2009; 18:247-58. [PMID: 18442304 DOI: 10.1089/scd.2008.0057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stem cell therapy may be used potentially to treat retinal degeneration and restore vision. Since embryonic stem cells (ESCs) can differentiate into almost any cell types, including those found in the eye, they can be transplanted to repair or replace damaged or injured retinal tissue resulting from inherited diseases or traumas. In this investigation, we explored the potential of ESCs and ESC-derived neuroprogenitors to proliferate and integrate into the diseased retinal tissue of rd12 mice. These rd12 mice mimic the slow and progressive retinal degeneration seen in humans. Both ESCs and ESC-derived neuroprogenitors from ESCs survived and proliferated as evidenced from an increase in yellow fluorescent protein fluorescence. Quantification analysis of cryosectioned retinal tissue initially revealed that both ESCs and neuroprogenitors differentiated into cells expressing neural markers. However, ESC proliferation was robust and resulted in the disruption of the retinal structure and the eventual formation of teratomas beyond 6 weeks postimplantation. In contrast, the neuroprogenitors proliferated slowly, but differentiated further and integrated into the retinal layers of the eye. The differentiation of neuroprogenitors represented various retinal cell types, as judged from the expression of cell-specific markers including Nestin, Olig1, and glial fibrillary acidic protein. These results suggest that ESC-derived neuroprogenitors can survive, proliferate, and differentiate when implanted into the eyes of experimental mice and may be used potentially as cell therapy for treating degenerated or damaged retinal tissue.
Collapse
Affiliation(s)
- G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lamba DA, Karl MO, Reh TA. Strategies for retinal repair: cell replacement and regeneration. PROGRESS IN BRAIN RESEARCH 2009; 175:23-31. [PMID: 19660646 DOI: 10.1016/s0079-6123(09)17502-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The retina, like most other regions of the central nervous system, is subject to degeneration from both genetic and acquired causes. Once the photoreceptors or inner retinal neurons have degenerated, they are not spontaneously replaced in mammals. In this review, we provide an overview of retinal development and regeneration with emphasis on endogenous repair and replacement seen in lower vertebrates and recent work on induced mammalian retinal regeneration from Müller glia. Additionally, recent studies demonstrating the potential for cellular replacement using postmitotic photoreceptors and embryonic stem cells are also reviewed.
Collapse
Affiliation(s)
- Deepak A Lamba
- Department of Biological Structure, Institute of Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
29
|
Smith J, Wardle F, Loose M, Stanley E, Patient R. Germ layer induction in ESC--following the vertebrate roadmap. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1D.1. [PMID: 18785165 DOI: 10.1002/9780470151808.sc01d01s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Controlled differentiation of pluripotential cells takes place routinely and with great success in developing vertebrate embryos. It therefore makes sense to take note of how this is achieved and use this knowledge to control the differentiation of embryonic stem cells (ESCs). An added advantage is that the differentiated cells resulting from this process in embryos have proven functionality and longevity. This unit reviews what is known about the embryonic signals that drive differentiation in one of the most informative of the vertebrate animal models of development, the amphibian Xenopus laevis. It summarizes their identities and the extent to which their activities are dose-dependent. The unit details what is known about the transcription factor responses to these signals, describing the networks of interactions that they generate. It then discusses the target genes of these transcription factors, the effectors of the differentiated state. Finally, how these same developmental programs operate during germ layer formation in the context of ESC differentiation is summarized.
Collapse
Affiliation(s)
- Jim Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Lang H, Schulte BA, Goddard JC, Hedrick M, Schulte JB, Wei L, Schmiedt RA. Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effects of timing after injury. J Assoc Res Otolaryngol 2008; 9:225-40. [PMID: 18449604 DOI: 10.1007/s10162-008-0119-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 03/06/2008] [Indexed: 12/18/2022] Open
Abstract
Application of ouabain to the round window membrane of the gerbil selectively induces the death of most spiral ganglion neurons and thus provides an excellent model for investigating the survival and differentiation of embryonic stem cells (ESCs) introduced into the inner ear. In this study, mouse ESCs were pretreated with a neural-induction protocol and transplanted into Rosenthal's canal (RC), perilymph, or endolymph of Mongolian gerbils either 1-3 days (early post-injury transplant group) or 7 days or longer (late post-injury transplant group) after ouabain injury. Overall, ESC survival in RC and perilymphatic spaces was significantly greater in the early post-injury microenvironment as compared to the later post-injury condition. Viable clusters of ESCs within RC and perilymphatic spaces appeared to be associated with neovascularization in the early post-injury group. A small number of ESCs transplanted within RC stained for mature neuronal or glial cell markers. ESCs introduced into perilymph survived in several locations, but most differentiated into glia-like cells. ESCs transplanted into endolymph survived poorly if at all. These experiments demonstrate that there is an optimal time window for engraftment and survival of ESCs that occurs in the early post-injury period.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, P.O. Box 250908, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch Clin Exp Ophthalmol 2007; 246:255-65. [PMID: 18004585 DOI: 10.1007/s00417-007-0710-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/13/2007] [Accepted: 10/04/2007] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. METHODS ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. RESULTS Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. DISCUSSION These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 2007; 26:598-635. [PMID: 17920328 DOI: 10.1016/j.preteyeres.2007.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal pigment epithelial (RPE) transplantation aims to restore the subretinal anatomy and re-establish the critical interaction between the RPE and the photoreceptor, which is fundamental to sight. The field has developed over the past 20 years with advances coming from a large body of animal work and more recently a considerable number of human trials. Enormous progress has been made with the potential for at least partial restoration of visual function in both animal and human clinical work. Diseases that have been treated with RPE transplantation demonstrating partial reversal of vision loss include primary RPE dystrophies such as the merTK dystrophy in the Royal College of Surgeons (RCS) rat and in humans, photoreceptor dystrophies as well as complex retinal diseases such as atrophic and neovascular age-related macular degeneration (AMD). Unfortunately, in the human trials the visual recovery has been limited at best and full visual recovery has not been demonstrated. Autologous full-thickness transplants have been used most commonly and effectively in human disease but the search for a cell source to replace autologous RPE such as embryonic stem cells, marrow-derived stem cells, umbilical cord-derived cells as well as immortalised cell lines continues. The combination of cell transplantation with other modalities of treatment such as gene transfer remains an exciting future prospect. RPE transplantation has already been shown to be capable of restoring the subretinal anatomy and improving photoreceptor function in a variety of retinal diseases. In the near future, refinements of current techniques are likely to allow RPE transplantation to enter the mainstream of retinal therapy at a time when the treatment of previously blinding retinal diseases is finally becoming a reality.
Collapse
Affiliation(s)
- Lyndon da Cruz
- Division of Cellular Therapy, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
34
|
Canola K, Arsenijevic Y. Generation of cells committed towards the photoreceptor fate for retinal transplantation. Neuroreport 2007; 18:851-5. [PMID: 17515789 DOI: 10.1097/wnr.0b013e32815277c1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell transplantation is an active field of research to replace lost cells in retinal dystrophies to potentially restore visual function. We hypothesized that in-vitro differentiated retinal stem cells would integrate the appropriate retinal layer and differentiate into photoreceptors when transplanted during development. Here we show that retinal stem cells driven to the photoreceptor fate start to incorporate the retina and express photoreceptor markers but do not survive. Nevertheless surviving grafted cells express the glial marker glial fibrillary acidic protein and incorporate the ganglion cell layer as well as the inner plexiform layer. These results suggest that the maturation state of the photoreceptors is primordial to obtain robust incorporation and that a fine tuning of retinal stem cells differentiation should provide adequate cells for transplantation.
Collapse
Affiliation(s)
- Kriss Canola
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | | |
Collapse
|
35
|
Abstract
Progenitor and stem cell transplantation represent therapeutic strategies for retinal disorders that are accompanied by photoreceptor degeneration. The transplanted cells may either replace degenerating photoreceptors or secrete beneficial factors that halt the processes of photoreceptor degeneration. The present study analyzes whether rat retinal progenitor cells differentiated into photoreceptor phenotypic cells in neurospheres have a potential to interact with rat retinal explants. Immunocytochemistry for rhodopsin and synaptophysin indicated photoreceptor cell-like differentiation in neurospheres that were stimulated by basic fibroblast growth factor and epidermal growth factor. Differentiation into neural phenotypes including photoreceptor cells was effectively blocked by an addition of leukemia inhibitory factor. Grafting of neurospheres onto retinal explants demonstrated a consistent penetration of glial cell processes into the explanted tissue. On the other hand, the incorporation of donor cells into explants was very low. A general finding was that neurospheres grafting was associated with local decrease in Müller cell activation in the explants. Further characterization of these effect(s) could provide further insight into progenitor cell-based therapies of retinal degenerative disorders.
Collapse
|
36
|
Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 2007; 25:2033-43. [PMID: 17525239 DOI: 10.1634/stemcells.2006-0724] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that glial cells may have a role as neural precursors in the adult central nervous system. Although it has been shown that Müller cells exhibit progenitor characteristics in the postnatal chick and rat retinae, their progenitor-like role in developed human retina is unknown. We first reported the Müller glial characteristics of the spontaneously immortalized human cell line MIO-M1, but recently we have derived similar cell lines from the neural retina of several adult eye donors. Since immortalization is one of the main properties of stem cells, we investigated whether these cells expressed stem cell markers. Cells were grown as adherent monolayers, responded to epidermal growth factor, and could be expanded indefinitely without growth factors under normal culture conditions. They could be frozen and thawed without losing their characteristics. In the presence of extracellular matrix and fibroblast growth factor-2 or retinoic acid, they acquired neural morphology, formed neurospheres, and expressed neural stem cell markers including betaIII tubulin, Sox2, Pax6, Chx10, and Notch 1. They also expressed markers of postmitotic retinal neurons, including peripherin, recoverin, calretinin, S-opsin, and Brn3. When grafted into the subretinal space of dystrophic Royal College of Surgeons rats or neonatal Lister hooded rats, immortalized cells migrated into the retina, where they expressed various markers of retinal neurons. These observations indicate that adult human neural retina harbors a population of cells that express both Müller glial and stem cell markers and suggest that these cells may have potential use for cell-based therapies to restore retinal function. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jean M Lawrence
- Ocular Repair and Regeneration Biology Unit, Department of Cell Biology, Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, Yanagi Y. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 2007; 85:234-41. [PMID: 17570362 DOI: 10.1016/j.exer.2007.04.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 03/24/2007] [Accepted: 04/25/2007] [Indexed: 01/14/2023]
Abstract
Because there is no effective treatment for this retinal degeneration, potential application of cell-based therapy has attracted considerable attention. Several investigations support that bone marrow mesenchymal stem cells (MSCs) can be used for a broad spectrum of indications. Bone marrow MSCs exert their therapeutic effect in part by secreting trophic factors to promote cell survival. The current study investigates whether bone marrow MSCs secrete factor(s) to promote photoreceptor cell survival and whether subretinal transplantation of bone marrow MSCs promotes photoreceptor survival in a retinal degeneration model using Royal College of Surgeons (RCS) rats. In vitro, using mouse retinal cell culture, it was demonstrated that the conditioned medium of the MSCs delays photoreceptor cell apoptosis, suggesting that the secreted factor(s) from the MSCs promote photoreceptor cell survival. In vivo, the MSCs were injected into the subretinal space of the RCS rats and histological analysis, real-time RT-PCR and electrophysiological analysis demonstrated that the subretinal transplantation of MSCs delays retinal degeneration and preserves retinal function in the RCS rats. These results suggest that MSC is a useful cell source for cell-replacement therapy for some forms of retinal degeneration.
Collapse
Affiliation(s)
- Yuji Inoue
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y. Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 2007; 48:446-54. [PMID: 17197566 PMCID: PMC2823590 DOI: 10.1167/iovs.06-0190] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the potential of newborn retinal stem cells (RSCs) isolated from the radial glia population to integrate the retina, this study was conducted to investigate the fate of in vitro expanded RSCs transplanted into retinas devoid of photoreceptors (adult rd1 and old VPP mice and rhodopsin-mutated transgenic mice) or partially degenerated retina (adult VPP mice) retinas. METHODS Populations of RSCs and progenitor cells were isolated either from DBA2J newborn mice and labeled with the red lipophilic fluorescent dye (PKH26) or from GFP (green fluorescent protein) transgenic mice. After expansion in EGF+FGF2 (epidermal growth factor+fibroblast growth factor), cells were transplanted intravitreally or subretinally into the eyes of adult wild-type, transgenic mice undergoing slow (VPP strain) or rapid (rd1 strain) retinal degeneration. RESULTS Only limited migration and differentiation of the cells were observed in normal mice injected subretinally or in VPP and rd1 mice injected intravitreally. After subretinal injection in old VPP mice, transplanted cells massively migrated into the ganglion cell layer and, at 1 and 4 weeks after injection, harbored neuronal and glial markers expressed locally, such as beta-tubulin-III, NeuN, Brn3b, or glial fibrillary acidic protein (GFAP), with a marked preference for the glial phenotype. In adult VPP retinas, the grafted cells behaved similarly. Few grafted cells stayed in the degenerating outer nuclear layer (ONL). These cells were, in rare cases, positive for rhodopsin or recoverin, markers specific for photoreceptors and some bipolar cells. CONCLUSIONS These results show that the grafted cells preferentially integrate into the GCL and IPL and express ganglion cell or glial markers, thus exhibiting migratory and differentiation preferences when injected subretinally. It also appears that the retina, whether partially degenerated or already degenerated, does not provide signals to induce massive differentiation of RSCs into photoreceptors. This observation suggests that a predifferentiation of RSCs into photoreceptors before transplantation may be necessary to obtain graft integration in the ONL.
Collapse
Affiliation(s)
- Kriss Canola
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Brigitte Angénieux
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Meriem Tekaya
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander Quiambao
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Francis L. Munier
- Unit of Clinical Oculogenetics, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Hall CM, Kicic A, Lai CM, Rakoczy PE. Using stem cells to repair the degenerate retina. Stem cells in the context of retinal degenerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:381-8. [PMID: 17249600 DOI: 10.1007/0-387-32442-9_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Christine M Hall
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Australia
| | | | | | | |
Collapse
|
40
|
Hara A, Niwa M, Aoki H, Kumada M, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H. A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain Res 2006; 1109:192-200. [PMID: 16863645 DOI: 10.1016/j.brainres.2006.06.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/29/2022]
Abstract
Retinal photoreceptor cell degeneration was induced by cobalt chloride, a chemical hypoxia-mimicking agent in rodents. Time course and dose-response of photoreceptor cell degeneration in mouse retina after intravitreal injection of cobalt chloride were examined by conventional histological analysis by hematoxylin and eosin staining and in situ terminal dUTP-biotin nick end labeling of DNA fragments (TUNEL) method with the use of paraffin-embedded sections. The dose-response of photoreceptor cell degeneration in rat retina was also examined. Photoreceptor cells progressively degenerated with time and under dose-response relationship. The suitable dose of cobalt chloride for the selective photoreceptor cell degeneration in mice is 10-12 nmol intravitreal injection at the volume of 2 microl. The retinal morphology of the mice 2 weeks after the 10-12 nmol intravitreal injection was similar to that of retinal degeneration in the mutant rd mouse. Retinal damage of total retinal layers was induced by an excessive dose of cobalt chloride. The progression of retinal damage after cobalt chloride injection, measured morphologically, was completed at 1 week. However, nuclear DNA fragmentation, mainly detected at outer nuclear layer by TUNEL, peaked at 48 h after 12 nmol cobalt chloride injection. Thus, the selective photoreceptor cell degeneration induced by cobalt chloride follows DNA fragmentation at outer nuclear layer. The photoreceptor cell degeneration is established optionally by cobalt chloride without use of the retinal degeneration mutant animals. Thus, we have described the development of a new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hara A, Niwa M, Kumada M, Aoki H, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H. Intraocular injection of folate antagonist methotrexate induces neuronal differentiation of embryonic stem cells transplanted in the adult mouse retina. Brain Res 2006; 1085:33-42. [PMID: 16584710 DOI: 10.1016/j.brainres.2006.02.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Transplanted embryonic stem (ES) cells can be integrated into the retinas of adult mice as well-differentiated neuronal cells. However, the integrated ES cells also have a tumorigenic effect just because they have the ability for multipotential differentiation to various types of tissues. Thus, control of neoplastic potentials of ES cells is very important for the treatment of degenerative or injured diseases. Mouse ES cells carrying the sequence for the green fluorescent protein (GFP) gene were transplanted into adult mouse retinas by intravitreal injections 20 h after intravitreal N-methyl-d-aspartate (NMDA) administration. One week after the ES cell injection, folate antagonist methotrexate (MTX) was injected intravitreally. Eyes were retrieved 4 weeks after ES cell transplantation for histologic analyses. Conventional histological analysis was performed by hematoxylin and eosin staining with the use of paraffin-embedded sections. Neuronal differentiation and teratogenic potential of ES cells were demonstrated by immunohistochemistry. The proliferative activity of transplanted cells was detected by mitotic index, proliferating cell nuclear antigen index and AgNOR count. The incorporation of transplanted ES cells in MTX-treated and non-treated retinas at 4 weeks after transplantation was observed in 8/16 eyes (50%) and 8/16 eyes (50%), respectively. Transplanted ES cells in MTX-treated retina showed increased neuronal differentiation and decreased expression of teratogenic markers, compared with ES cells in non-treated retina. The proliferative activity of transplanted ES cells in MTX-treated retina was lower than that in non-treated retina. These results suggest that intravitreal MTX treatment following transplantation can induce neuronal differentiation in the transplanted ES cells and decrease their proliferative activity.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 2006; 23:1579-88. [PMID: 16293582 DOI: 10.1634/stemcells.2005-0111] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinal progenitor cells (RPCs) are multipotent central nervous system precursors that give rise to all of the cell types of the retina during development. Several groups have reported that mammalian RPCs can be isolated and expanded in culture and can differentiate into retinal neurons upon grafting to the mature, diseased eye. However, cell delivery and survival remain formidable obstacles to application of RPCs in a clinical setting. Because biodegradable polymer/progenitor constructs have been shown to be capable of tissue generation in other compartments, we evaluated the survival, migration, and differentiation of RPCs delivered on PLLA/PLGA polymer substrates to the mouse subretinal space and compared these results to conventional injections of RPCs. Polymer composite grafts resulted in a near 10-fold increase in the number of surviving cells after 4 weeks, with a 16-fold increase in cell delivery. Grafted RPCs migrated into the host retina and expressed the mature markers neurofilament-200, glial fibrillary acidic protein, protein kinase C-alpha, recoverin, and rhodopsin. We conclude that biodegradable polymer/progenitor cell composite grafts provide an effective means of increasing progenitor cell survival and overall yield when transplanting to sites within the central nervous system such as the retina.
Collapse
Affiliation(s)
- Minoru Tomita
- The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
43
|
Aoki H, Hara A, Nakagawa S, Motohashi T, Hirano M, Takahashi Y, Kunisada T. Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res 2006; 82:265-74. [PMID: 16150443 DOI: 10.1016/j.exer.2005.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/16/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022]
Abstract
A culture system to generate eye-like structures consisting of lens, neural retina, and retinal pigmented epithelium (RPE) cells from undifferentiated embryonic stem cells has been established. Precursors of RPE cells that differentiated in the cultures were responsive to Wnt2b signaling and identified retrospectively to form secondary colonies consisting of only RPE-like cells in eye-like structures. These transplanted eye-like structures were capable of populating the developing chick eye as neuronal retina and RPE cells. The outgrowth of a single cell layer of mature RPE cells from the grafted eye-like structures confirmed the existence of precursors for RPE cells. These results suggest that the eye-like structures resulted from the normal developmental pathway responsible for generating eyes in vivo. If a functional effect of these cells can be established, such eye-like structures may be potentially used to establish therapy models for various eye diseases.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Serfozo P, Schlarman MS, Pierret C, Maria BL, Kirk MD. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines. Cancer Cell Int 2006; 6:1. [PMID: 16436212 PMCID: PMC1397869 DOI: 10.1186/1475-2867-6-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 01/25/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). RESULTS Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. CONCLUSION Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.
Collapse
Affiliation(s)
- Peter Serfozo
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Maggie S Schlarman
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Chris Pierret
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Bernard L Maria
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, 135 Rutledge Ave., Charleston, SC 29425
| | - Mark D Kirk
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| |
Collapse
|
45
|
Abstract
Many systemic and eye-specific genetic disorders are accompanied by retinal degenerations that lead to blindness. In some of these diseases retinal degeneration occurs early in life and is quite rapid, whereas in other disorders, retinal degeneration starts later and progresses very slowly. At present, no therapies are available to patients for preventing or reversing the retinal degeneration that occurs in these diseases. Implantation of neural progenitor cells into the eye may be a means by which to retard or even reverse degeneration of the retina. To evaluate the potential of neural precursor cell implantation for treating retinal degenerative disorders, neuralized mouse embryonic stem cells from green fluorescent protein (GFP) transgenic mice were administered intravitreally to normal mice, mice with early retinal degeneration, and mice with slowly progressing retinal degeneration. In normal mice, the donor cells remained in the vitreous cavity and did not associate with the host retina. In mice with early retinal degeneration, implantation of the neural precursors was performed after the degeneration was almost complete. In these animals, the donor cells primarily associated closely with the inner surface of the retina, although a small fraction of donor cells did integrate into the host retina. Donor cells implanted in mice with slowly progressing retinal degeneration also associated with the inner retinal surface, but many more of the cells integrated into the retina. These findings indicate the importance of host tissue-donor cell interactions in determining the fate of implanted neural precursor cells. These interactions will be a major consideration when devising strategies for using cell implantation therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jason S Meyer
- University of Missouri, Division of Biological Sciences, 103 Lefevre Hall, Columbia MO 65211, USA
| | | | | |
Collapse
|
46
|
Meyer JS, Katz ML, Maruniak JA, Kirk MD. Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells 2005; 24:274-83. [PMID: 16123383 PMCID: PMC3381839 DOI: 10.1634/stemcells.2005-0059] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Embryonic stem (ES) cells differentiate into all cell types of the body during development, including those of the central nervous system (CNS). After transplantation, stem cells have the potential to replace host cells lost due to injury or disease or to supply host tissues with therapeutic factors and thus provide a functional benefit. In the current study, we assessed whether mouse neuralized ES cells can incorporate into retinal tissue and prevent retinal degeneration in mnd mice. These mice have an inherited lysosomal storage disease characterized by retinal and CNS degeneration. Sixteen weeks after intravitreal transplantation into adult mice, donor cells had incorporated into most layers of the retina, where they resembled retinal neurons in terms of morphology, location in the retina, and expression of cell type-specific marker proteins. Presence of these donor cells was correlated with a reduction in the sizes and numbers of lysosomal storage bodies in host retinal cells. The presence of transplanted donor cells was also accompanied by enhanced survival of host retinal neurons, particularly photoreceptors. These results demonstrate that neuralized ES cells protect host neurons from degeneration and appear to replace at least some types of lost neurons.
Collapse
Affiliation(s)
- Jason S. Meyer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martin L. Katz
- Department of Ophthalmology, University of Missouri, Columbia, Missouri, USA
| | - Joel A. Maruniak
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Mark D. Kirk
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
47
|
Cho KJ, Trzaska KA, Greco SJ, McArdle J, Wang FS, Ye JH, Rameshwar P. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells 2005; 23:383-91. [PMID: 15749933 DOI: 10.1634/stemcells.2004-0251] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) exhibit immune-suppressive properties, follow a pattern of multilineage differentiation, and exhibit transdifferentiation potential. Ease in expansion from adult bone marrow, as well as its separation from ethical issues, makes MSCs appealing for clinical application. MSCs treated with retinoic acid resulted in synaptic transmission, based on immunostaining of synaptophysin and electrophysiological studies. In situ hybridization indicated that the neurotransmitter gene preprotachykinin-I was expressed in these cells. However, translation of this gene only occurred after stimulation with interleukin (IL)-1 alpha. This effect was blunted by costimulation with IL-1 receptor antagonist. This study reports on the ability of MSCs to be transdifferentiated into neurons with functional synapses with the potential to become polarized towards producing specific neurotransmitters.
Collapse
Affiliation(s)
- Kyung Jin Cho
- Department of Medicine, Hematology/Oncology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sugie Y, Yoshikawa M, Ouji Y, Saito K, Moriya K, Ishizaka S, Matsuura T, Maruoka S, Nawa Y, Hara Y. Photoreceptor cells from mouse ES cells by co-culture with chick embryonic retina. Biochem Biophys Res Commun 2005; 332:241-7. [PMID: 15896323 DOI: 10.1016/j.bbrc.2005.04.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 04/24/2005] [Indexed: 01/09/2023]
Abstract
Degeneration of photoreceptors is a consistent and common endpoint in retinal diseases. Herein, we report the efficient induction of photoreceptor-like cells from mouse embryonic stem (ES) cells using chick embryonic retina tissue. Undifferentiated mouse ES cells were initially cultured in a preferential condition into a neural lineage, and ES cells were then co-cultured with chick embryonic day 6 (E6) retina tissues. After a 10-day co-culture, approximately 20% of the mouse ES derivatives became immuno-positive for rhodopsin. RT-PCR analysis demonstrated expression of the transcription factor crx and a distinct increase of rod photoreceptor-specific markers, IRBP and recoverin, after the start of the co-culture. These results indicate that co-culture of ES cells with chick embryonic retina tissue is a useful and efficient method for the induction of photoreceptor-like cells.
Collapse
Affiliation(s)
- Yuko Sugie
- Department of Ophthalmology, Nara Medical University, Nara, Kashihara-Shi 630-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In the context of cell-based therapies for hereditary retinal dystrophies and other retinal disorders, interest has focussed on the therapeutic potential of embryonic and tissue-specific stem cells. Stem cells are characterised by their capacity for self-renewal and by their multipotentiality. Because of these properties, they can be expanded in vitro and eventually differentiated into "desired" specialized cell types. Stem cells are not only candidate cells for the development of cell replacement strategies, but are also interesting cells for the establishment of ex vivo gene therapies. Here, we discuss recent experimental work performed to evaluate the therapeutic potential of embryonic, mesenchymal, hematopoietic, neural and retinal stem cells for the treatment of inherited retinal dystrophies and other retinal diseases.
Collapse
Affiliation(s)
- U Bartsch
- Transplantationslabor des Kopf- und Hautzentrums, Klinik und Poliklinik für Augenheilkunde des Universitätsklinikums Hamburg-Eppendorf, Hamburg.
| | | | | |
Collapse
|
50
|
Smith LEH. Bone marrow-derived stem cells preserve cone vision in retinitis pigmentosa. J Clin Invest 2004; 114:755-7. [PMID: 15372096 PMCID: PMC516270 DOI: 10.1172/jci22930] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa is a heritable group of blinding diseases resulting from loss of photoreceptors, primarily rods and secondarily cones, that mediate central vision. Loss of retinal vasculature is a presumed metabolic consequence of photoreceptor degeneration. A new study shows that autologous bone marrow-derived lineage-negative hematopoietic stem cells, which incorporate into the degenerating blood vessels in two murine models of retinitis pigmentosa, rd1 and rd10, prevent cone loss. The use of autologous bone marrow might avoid problems with rejection while preserving central cone vision in a wide variety of genetically disparate retinal degenerative diseases.
Collapse
Affiliation(s)
- Lois E H Smith
- Department of Ophthalmology, Children's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|