1
|
Nguyen HS, Kang SJ, Kim S, Cha BH, Park KS, Jeong SW. Changes in the expression of satellite glial cell-specific markers during postnatal development of rat sympathetic ganglia. Brain Res 2024; 1829:148809. [PMID: 38354998 DOI: 10.1016/j.brainres.2024.148809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.
Collapse
Affiliation(s)
- Huu Son Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Jun Kang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Byung Ho Cha
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong-Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
2
|
Jager SE, Goodwin G, Chisholm KI, Denk F. In vivo calcium imaging shows that satellite glial cells have increased activity in painful states. Brain Commun 2024; 6:fcae013. [PMID: 38638153 PMCID: PMC11024818 DOI: 10.1093/braincomms/fcae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 04/20/2024] Open
Abstract
Satellite glial cells are important for proper neuronal function of primary sensory neurons for which they provide homeostatic support. Most research on satellite glial cell function has been performed with in vitro studies, but recent advances in calcium imaging and transgenic mouse models have enabled this first in vivo study of single-cell satellite glial cell function in mouse models of inflammation and neuropathic pain. We found that in naïve conditions, satellite glial cells do not respond in a time-locked fashion to neuronal firing. In painful inflammatory and neuropathic states, we detected time-locked signals in a subset of satellite glial cells, but only with suprathreshold stimulation of the sciatic nerve. Surprisingly, therefore, we conclude that most calcium signals in satellite glial cells seem to develop at arbitrary intervals not directly linked to neuronal activity patterns. More in line with expectations, our experiments also revealed that the number of active satellite glial cells was increased under conditions of inflammation or nerve injury. This could reflect the increased requirement for homeostatic support across dorsal root ganglion neuron populations, which are more active during such painful states.
Collapse
Affiliation(s)
- Sara E Jager
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - George Goodwin
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Kim I Chisholm
- Pain Centre Versus Arthritis, School of Life Sciences, University of Nottingham, Nottingham NG5 1PB, UK
| | - Franziska Denk
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
3
|
Age-Related Changes in Neurons and Satellite Glial Cells in Mouse Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24032677. [PMID: 36769006 PMCID: PMC9916822 DOI: 10.3390/ijms24032677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The effects of aging on the nervous system are well documented. However, most previous studies on this topic were performed on the central nervous system. The present study was carried out on the dorsal root ganglia (DRGs) of mice, and focused on age-related changes in DRG neurons and satellite glial cells (SGCs). Intracellular electrodes were used for dye injection to examine the gap junction-mediated coupling between neurons and SGCs, and for intracellular electrical recordings from the neurons. Tactile sensitivity was assessed with von Frey hairs. We found that 3-23% of DRG neurons were dye-coupled to SGCs surrounding neighboring neurons in 8-24-month (Mo)-old mice, whereas in young adult (3 Mo) mice, the figure was 0%. The threshold current for firing an action potential in sensory neurons was significantly lower in DRGs from 12 Mo mice compared with those from 3 Mo mice. The percentage of neurons with spontaneous subthreshold membrane potential oscillation was greater by two-fold in 12 Mo mice. The withdrawal threshold was lower by 22% in 12 Mo mice compared with 3 Mo ones. These results show that in the aged mice, a proportion of DRG neurons is coupled to SGCs, and that the membrane excitability of the DRG neurons increases with age. We propose that augmented neuron-SGC communications via gap junctions are caused by low-grade inflammation associated with aging, and this may contribute to pain behavior.
Collapse
|
4
|
Avraham O, Chamessian A, Feng R, Yang L, Halevi AE, Moore AM, Gereau RW, Cavalli V. Profiling the molecular signature of satellite glial cells at the single cell level reveals high similarities between rodents and humans. Pain 2022; 163:2348-2364. [PMID: 35503034 PMCID: PMC9522926 DOI: 10.1097/j.pain.0000000000002628] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Peripheral sensory neurons located in dorsal root ganglia relay sensory information from the peripheral tissue to the brain. Satellite glial cells (SGCs) are unique glial cells that form an envelope completely surrounding each sensory neuron soma. This organization allows for close bidirectional communication between the neuron and its surrounding glial coat. Morphological and molecular changes in SGC have been observed in multiple pathological conditions such as inflammation, chemotherapy-induced neuropathy, viral infection, and nerve injuries. There is evidence that changes in SGC contribute to chronic pain by augmenting the neuronal activity in various rodent pain models. Satellite glial cells also play a critical role in axon regeneration. Whether findings made in rodent model systems are relevant to human physiology have not been investigated. Here, we present a detailed characterization of the transcriptional profile of SGC in mice, rats, and humans at the single cell level. Our findings suggest that key features of SGC in rodent models are conserved in humans. Our study provides the potential to leverage rodent SGC properties and identify potential targets in humans for the treatment of nerve injuries and alleviation of painful conditions.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Alexander Chamessian
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Rui Feng
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Lite Yang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Neuroscience Program, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Alexandra E. Halevi
- Department of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Amy M. Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus Ohio, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
5
|
Mapps AA, Boehm E, Beier C, Keenan WT, Langel J, Liu M, Thomsen MB, Hattar S, Zhao H, Tampakakis E, Kuruvilla R. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. eLife 2022; 11:74295. [PMID: 35997251 PMCID: PMC9433091 DOI: 10.7554/elife.74295] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron–satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.
Collapse
Affiliation(s)
- Aurelia A Mapps
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Corinne Beier
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer Langel
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Michael Liu
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
6
|
Jager SE, Pallesen LT, Lin L, Izzi F, Pinheiro AM, Villa-Hernandez S, Cesare P, Vaegter CB, Denk F. Comparative transcriptional analysis of satellite glial cell injury response. Wellcome Open Res 2022; 7:156. [PMID: 35950162 PMCID: PMC9329822 DOI: 10.12688/wellcomeopenres.17885.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets. Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.
Collapse
Affiliation(s)
- Sara Elgaard Jager
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Lone Tjener Pallesen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark & Steno and Diabetes Center, Aarhus, Denmark
| | - Francesca Izzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Alana Miranda Pinheiro
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Christian Bjerggaard Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| |
Collapse
|
7
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
8
|
Gazerani P. Satellite Glial Cells in Pain Research: A Targeted Viewpoint of Potential and Future Directions. FRONTIERS IN PAIN RESEARCH 2021; 2:646068. [PMID: 35295432 PMCID: PMC8915641 DOI: 10.3389/fpain.2021.646068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is known to be caused by sensitization within the pain circuits. An imbalance occurs between excitatory and inhibitory transmission that enables this sensitization to form. In addition to neurons, the contribution of central glia, especially astrocytes and microglia, to the pathogenesis of pain induction and maintenance has been identified. This has led to the targeting of astrogliosis and microgliosis to restore the normal functions of astrocytes and microglia to help reverse chronic pain. Gliosis is broadly defined as a reactive response of glial cells in response to insults to the central nervous system (CNS). The role of glia in the peripheral nervous system (PNS) has been less investigated. Accumulating evidence, however, points to the contribution of satellite glial cells (SGCs) to chronic pain. Hence, understanding the potential role of these cells and their interaction with sensory neurons has become important for identifying the mechanisms underlying pain signaling. This would, in turn, provide future therapeutic options to target pain. Here, a viewpoint will be presented regarding potential future directions in pain research, with a focus on SGCs to trigger further research. Promising avenues and new directions include the potential use of cell lines, cell live imaging, computational analysis, 3D tissue prints and new markers, investigation of glia–glia and macrophage–glia interactions, the time course of glial activation under acute and chronic pathological pain compared with spontaneous pain, pharmacological and non-pharmacological responses of glia, and potential restoration of normal function of glia considering sex-related differences.
Collapse
Affiliation(s)
- Parisa Gazerani
- Laboratory of Molecular Pharmacology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet, Oslo, Norway
- *Correspondence: Parisa Gazerani
| |
Collapse
|
9
|
Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol 2020; 319:G748-G760. [PMID: 33084399 PMCID: PMC7792669 DOI: 10.1152/ajpgi.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), historically considered as regional gastrointestinal disorders with heightened colonic sensitivity, are increasingly recognized to have concurrent dysfunction of other visceral and somatic organs, such as urinary bladder hyperactivity, leg pain, and skin hypersensitivity. The interorgan sensory cross talk is, at large, termed "cross-organ sensitization." These organs, anatomically distant from one another, physiologically interlock through projecting their sensory information into dorsal root ganglia (DRG) and then the spinal cord for integrative processing. The fundamental question of how sensitization of colonic afferent neurons conveys nociceptive information to activate primary afferents that innervate distant organs remains ambiguous. In DRG, primary afferent neurons are surrounded by satellite glial cells (SGCs) and macrophage accumulation in response to signals of injury to form a neuron-glia-macrophage triad. Astrocytes and microglia are major resident nonneuronal cells in the spinal cord to interact, physically and chemically, with sensory synapses. Cumulative evidence gathered so far indicate the indispensable roles of paracrine/autocrine interactions among neurons, glial cells, and immune cells in sensory cross-activation. Dichotomizing afferents, sensory convergency in the spinal cord, spinal nerve comingling, and extensive sprouting of central axons of primary afferents each has significant roles in the process of cross-organ sensitization; however, more results are required to explain their functional contributions. DRG that are located outside the blood-brain barrier and reside upstream in the cascade of sensory flow from one organ to the other in cross-organ sensitization could be safer therapeutic targets to produce less central adverse effects.
Collapse
Affiliation(s)
- Liya Y. Qiao
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia,2Department of Internal Medicine, Commonwealth University School of Medicine, Richmond, Virginia
| | - Namrata Tiwari
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
10
|
Kanao-Kanda M, Kanda H, Liu S, Roy S, Toborek M, Hao S. Viral Vector-Mediated Gene Transfer of Glutamic Acid Decarboxylase for Chronic Pain Treatment: A Literature Review. Hum Gene Ther 2020; 31:405-414. [PMID: 32041431 DOI: 10.1089/hum.2019.359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic pain is long-lasting nociceptive state, impairing the patient's quality of life. Existing analgesics are generally not effective in the treatment of chronic pain, some of which such as opioids have the risk of tolerance/dependence and overdose death with higher daily opioid doses for increasing analgesic effect. Opioid use disorders have already reached an epidemic level in the United States; therefore, nonopioid analgesic approach and/or use of nonpharmacologic interventions will be employed with increasing frequency. Viral vector-mediated gene therapy is promising in clinical trials in the nervous system diseases. Glutamic acid decarboxylase (GAD) enzyme, a key enzyme in biosynthesis of γ-aminobutyric acid (GABA), plays an important role in analgesic mechanism. In the literature review, we used PubMed and bioRxiv to search the studies, and the eligible criteria include (1) article written in English, (2) use of viral vectors expressing GAD67 or GAD65, and (3) preclinical pain models. We identified 13 eligible original research articles, in which the pain models include nerve injury, HIV-related pain, painful diabetic neuropathy, and formalin test. GAD expressed by the viral vectors from all the reports produced antinociceptive effects. Restoring GABA systems is a promising therapeutic strategy for chronic pain, which provides evidence for the clinical trial of gene therapy for pain in the near future.
Collapse
Affiliation(s)
- Megumi Kanao-Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Hirotsugu Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sabita Roy
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Michal Toborek
- Department of Anesthesiology & Critical Care Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
11
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
12
|
Crawford LK, Caterina MJ. Functional Anatomy of the Sensory Nervous System: Updates From the Neuroscience Bench. Toxicol Pathol 2019; 48:174-189. [PMID: 31554486 DOI: 10.1177/0192623319869011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.
Collapse
Affiliation(s)
- LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA, Madison, WI, USA
| | - Michael J Caterina
- Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Belzer V, Hanani M. Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia. Glia 2019; 67:1296-1307. [PMID: 30801760 DOI: 10.1002/glia.23603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
Abnormal neuronal activity in sensory ganglia contributes to chronic pain. There is evidence that signals can spread between cells in these ganglia, which may contribute to this activity. Satellite glial cells (SGCs) in sensory ganglia undergo activation following peripheral injury and participate in cellular communication via gap junctions and chemical signaling. Nitric oxide (NO) is released from neurons in dorsal root ganglia (DRG) and induces cyclic GMP (cGMP) production in SCGs, but its role in SGC activation and neuronal excitability has not been explored. It was previously reported that induction of intestinal inflammation with dinitrobenzoate sulfonate (DNBS) increased gap junctional communications among SGCs, which contributed to neuronal excitability and pain. Here we show that DNBS induced SGC activation in mouse DRG, as assayed by glial fibrillary acidic protein upregulation. DNBS also upregulated cGMP level in SGCs, consistent with NO production. In vitro studies on intact ganglia from DNBS-treated mice showed that blocking NO synthesis inhibited both SGCs activation and cGMP upregulation, indicating an ongoing NO production. Application of NO donor in vitro induced SGC activation, augmented gap junctional communications, and raised neuronal excitability, as assessed by electrical recordings. The cGMP analog 8-Br-cGMP mimicked these actions, confirming the role of the NO-cGMP pathway in intraganglionic communications. NO also augmented Ca2+ waves propagation in DRG cultures. It is proposed that NO synthesis in DRG neurons increases after peripheral inflammation and that NO induces SGC activation, which in turn contributes to neuronal hyperexcitability. Thus, NO plays a major role in neuron-SGC communication.
Collapse
Affiliation(s)
- Vitali Belzer
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Lemes JBP, de Campos Lima T, Santos DO, Neves AF, de Oliveira FS, Parada CA, da Cruz Lotufo CM. Participation of satellite glial cells of the dorsal root ganglia in acute nociception. Neurosci Lett 2018; 676:8-12. [PMID: 29626652 DOI: 10.1016/j.neulet.2018.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 11/25/2022]
Abstract
At dorsal root ganglia, neurons and satellite glial cells (SGC) can communicate through ATP release and P2X7 receptor activation. SGCs are also interconnected by gap junctions and have been previously implicated in modulating inflammatory and chronic pain.We now present evidence that SGCs are also involved in processing acute nociception in rat dorsal root ganglia. Using primary dorsal root ganglia cultures we observed that calcium transients induced in neurons by capsaicin administration were followed by satellite glial cells activation. Only satellite glial cells response was reduced by administration of the P2X7 receptor antagonist A740003. In vivo, acute nociception induced by intraplantar injection of capsaicin in rats was inhibited by A740003 or by the gap junction blocker carbenoxolone administered at the dorsal root ganglia (L5 level). Both drugs also reduced the second phase of the formalin test. These results suggest that communication between neurons and satellite glial cells is not only involved in inflammatory or pathological pain, but also in the transmission of the nociceptive signal, possibly in situations involving C-fiber activation.
Collapse
Affiliation(s)
- Júlia Borges Paes Lemes
- Department of Physiological Science, Universidade Federal de Uberlândia, Minas Gerais, Brazil.
| | - Tais de Campos Lima
- Department of Physiological Science, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Débora Oliveira Santos
- Department of Physiological Science, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Amanda Ferreira Neves
- Department of Structural Biology, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Carlos Almicar Parada
- Department of Structural Biology, Universidade Estadual de Campinas, São Paulo, Brazil
| | | |
Collapse
|
15
|
Cholinergic responses of satellite glial cells in the superior cervical ganglia. Neurosci Lett 2018; 671:19-24. [PMID: 29391220 DOI: 10.1016/j.neulet.2018.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/01/2018] [Accepted: 01/25/2018] [Indexed: 11/21/2022]
Abstract
Satellite glial cells (SGCs) surround the neurons in sympathetic ganglia and are believed to make important contributions to the function of the ganglia under normal and pathological conditions. It has been proposed that SGCs communicate chemically with the neurons, but little is known about their pharmacological properties and there is no information on whether they respond to acetylcholine (ACh), which is the major neurotransmitter in these ganglia. We used calcium imaging to examine responses of SGCs in the mouse superior cervical ganglion to ACh. The SGCs responded to ACh (0.01-2 mM) with an elevation of intracellular Ca2+, which appeared to be due to direct action on these cells, as the response persisted in the presence of the nerve blocker tetrodotoxin (1 μM). The response was largely inhibited by atropine, indicating an action on muscarinic ACh receptors. In contrast to this, sensory ganglia (nodose and trigeminal) were not sensitive to ACh. Incubation of the ganglia in ACh (0.5 or 1 mM) increased the expression of glial fibrillay acidic protein, which is a marker for glial activation. Such incubation also increased the electrical coupling of SGCs, which is known to occur in sensory ganglia following injury. We conclude that SGCs in the superior cervical ganglia display muscarinic ACh receptors, which enable them to communicate chemically with the sympathetic neurons.
Collapse
|
16
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Retamal MA, Riquelme MA, Stehberg J, Alcayaga J. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity? Front Mol Neurosci 2017; 10:374. [PMID: 29200997 PMCID: PMC5696352 DOI: 10.3389/fnmol.2017.00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022] Open
Abstract
In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia). It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs). Recent evidence shows that connexin43 (Cx43) hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomedicas, Universidad Andres Bello, Santiago, Chile
| | - Julio Alcayaga
- Department of Biology, Cell Physiology Center, University of Chile, Santiago, Chile
| |
Collapse
|
18
|
Abstract
Enhanced expression and function of gap junctions and pannexin (Panx) channels have been associated with both peripheral and central mechanisms of pain sensitization. At the level of the sensory ganglia, evidence includes augmented gap junction and pannexin1 expression in glial cells and neurons in inflammatory and neuropathic pain models and increased synchrony and enhanced cross-excitation among sensory neurons by gap junction-mediated coupling. In spinal cord and in suprapinal areas, evidence is largely limited to increased expression of relevant proteins, although in several rodent pain models, hypersensitivity is reduced by treatment with gap junction/Panx1 channel blocking compounds. Moreover, targeted modulation of Cx43 expression was shown to modulate pain thresholds, albeit in somewhat contradictory ways, and mice lacking Panx1 expression globally or in specific cell types show depressed hyperalgesia. We here review the evidence for involvement of gap junctions and Panx channels in a variety of animal pain studies and then discuss ways in which gap junctions and Panx channels may mediate their action in pain processing. This discussion focusses on spread of signals among satellite glial cells, in particular intercellular Ca2+ waves, which are propagated through both gap junction and Panx1-dependent routes and have been associated with the phenomenon of spreading depression and the malady of migraine headache with aura.
Collapse
|
19
|
Fadda A, Bärtschi M, Hemphill A, Widmer HR, Zurbriggen A, Perona P, Vidondo B, Oevermann A. Primary Postnatal Dorsal Root Ganglion Culture from Conventionally Slaughtered Calves. PLoS One 2016; 11:e0168228. [PMID: 27936156 PMCID: PMC5148591 DOI: 10.1371/journal.pone.0168228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders in ruminants have an important impact on veterinary health, but very few host-specific in vitro models have been established to study diseases affecting the nervous system. Here we describe a primary neuronal dorsal root ganglia (DRG) culture derived from calves after being conventionally slaughtered for food consumption. The study focuses on the in vitro characterization of bovine DRG cell populations by immunofluorescence analysis. The effects of various growth factors on neuron viability, neurite outgrowth and arborisation were evaluated by morphological analysis. Bovine DRG neurons are able to survive for more than 4 weeks in culture. GF supplementation is not required for neuronal survival and neurite outgrowth. However, exogenously added growth factors promote neurite outgrowth. DRG cultures from regularly slaughtered calves represent a promising and sustainable host specific model for the investigation of pain and neurological diseases in bovines.
Collapse
Affiliation(s)
- A. Fadda
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Switzerland
| | - M. Bärtschi
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A. Hemphill
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - H. R. Widmer
- Neurocenter and Regenerative Neuroscience Cluster, University Hospital and University of Bern, Bern, Switzerland
| | - A. Zurbriggen
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - P. Perona
- School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - B. Vidondo
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A. Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain. Neuron 2016; 91:1085-1096. [PMID: 27568517 DOI: 10.1016/j.neuron.2016.07.044] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022]
Abstract
Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by "hijacking" neighboring neurons through gap junctions.
Collapse
|
21
|
Kaji K, Shinoda M, Honda K, Unno S, Shimizu N, Iwata K. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol Pain 2016; 12:12/0/1744806916633704. [PMID: 27030716 PMCID: PMC4955997 DOI: 10.1177/1744806916633704] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background Clinically, it is well known that injury of mandibular nerve fiber induces persistent ectopic pain which can spread to a wide area of the orofacial region innervated by the uninjured trigeminal nerve branches. However, the exact mechanism of such persistent ectopic orofacial pain is not still known. The present study was undertaken to determine the role of connexin 43 in the trigeminal ganglion on mechanical hypersensitivity in rat whisker pad skin induced by inferior alveolar nerve injury. Here, we examined changes in orofacial mechanical sensitivity following inferior alveolar nerve injury. Furthermore, changes in connexin 43 expression in the trigeminal ganglion and its localization in the trigeminal ganglion were also examined. In addition, we investigated the functional significance of connexin 43 in relation to mechanical allodynia by using a selective gap junction blocker (Gap27). Results Long-lasting mechanical allodynia in the whisker pad skin and the upper eyelid skin, and activation of satellite glial cells in the trigeminal ganglion, were induced after inferior alveolar nerve injury. Connexin 43 was expressed in the activated satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin, and the connexin 43 protein expression was significantly increased after inferior alveolar nerve injury. Administration of Gap27 in the trigeminal ganglion significantly reduced satellite glial cell activation and mechanical hypersensitivity in the whisker pad skin. Moreover, the marked activation of satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin following inferior alveolar nerve injury implies that the satellite glial cell activation exerts a major influence on the excitability of nociceptive trigeminal ganglion neurons. Conclusions These findings indicate that the propagation of satellite glial cell activation throughout the trigeminal ganglion via gap junctions, which are composed of connexin 43, plays a pivotal role in ectopic mechanical hypersensitivity in whisker pad skin following inferior alveolar nerve injury.
Collapse
Affiliation(s)
- Kaori Kaji
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Syumpei Unno
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
22
|
Warwick RA, Hanani M. Involvement of aberrant calcium signalling in herpetic neuralgia. Exp Neurol 2015; 277:10-18. [PMID: 26684187 DOI: 10.1016/j.expneurol.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022]
Abstract
Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia.
Collapse
Affiliation(s)
- Rebekah A Warwick
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| |
Collapse
|
23
|
Ikeda M, Hojo Y, Komatsuzaki Y, Okamoto M, Kato A, Takeda T, Kawato S. Hippocampal spine changes across the sleep-wake cycle: corticosterone and kinases. J Endocrinol 2015; 226:M13-27. [PMID: 26034071 DOI: 10.1530/joe-15-0078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
The corticosterone (CORT) level changes along the circadian rhythm. Hippocampus is sensitive to CORT, since glucocorticoid receptors are highly expressed. In rat hippocampus fixed in a living state every 3 h, we found that the dendritic spine density of CA1 pyramidal neurons increased upon waking (within 3 h), as compared with the spine density in the sleep state. Particularly, the large-head spines increased. The observed change in the spine density may be due to the change in the hippocampal CORT level, since the CORT level at awake state (∼30 nM) in cerebrospinal fluid was higher than that at sleep state (∼3 nM), as observed from our earlier study. In adrenalectomized (ADX) rats, such a wake-induced increase of the spine density disappeared. S.c. administration of CORT into ADX rats rescued the decreased spine density. By using isolated hippocampal slices, we found that the application of 30 nM CORT increased the spine density within 1 h and that the spine increase was mediated via PKA, PKC, ERK MAPK, and LIMK signaling pathways. These findings suggest that the moderately rapid increase of the spine density on waking might mainly be caused by the CORT-driven kinase networks.
Collapse
Affiliation(s)
- Muneki Ikeda
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Masahiro Okamoto
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Asami Kato
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Taishi Takeda
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Suguru Kawato
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| |
Collapse
|
24
|
Christie K, Koshy D, Cheng C, Guo G, Martinez JA, Duraikannu A, Zochodne DW. Intraganglionic interactions between satellite cells and adult sensory neurons. Mol Cell Neurosci 2015; 67:1-12. [DOI: 10.1016/j.mcn.2015.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/12/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022] Open
|
25
|
Feldman-Goriachnik R, Belzer V, Hanani M. Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions. Glia 2015; 63:2121-2132. [DOI: 10.1002/glia.22881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Vitali Belzer
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| |
Collapse
|
26
|
|
27
|
Costa FAL, Moreira Neto FL. Células gliais satélite de gânglios sensitivos: o seu papel na dor. Braz J Anesthesiol 2015; 65:73-81. [DOI: 10.1016/j.bjan.2013.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/15/2013] [Indexed: 10/25/2022] Open
|
28
|
Song DD, Li Y, Tang D, Huang LY, Yuan YZ. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2014; 306:G788-95. [PMID: 24627565 DOI: 10.1152/ajpgi.00318.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.
Collapse
Affiliation(s)
- Dan-dan Song
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | | | | | | | | |
Collapse
|
29
|
Nadeau JR, Wilson-Gerwing TD, Verge VMK. Induction of a reactive state in perineuronal satellite glial cells akin to that produced by nerve injury is linked to the level of p75NTR expression in adult sensory neurons. Glia 2014; 62:763-77. [PMID: 24616056 DOI: 10.1002/glia.22640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022]
Abstract
Satellite glial cells (SGCs) surrounding primary sensory neurons are similar to astrocytes of the central nervous system in that they buffer the extracellular environment via potassium and calcium channels and express the intermediate filament glial fibrillary acidic protein (GFAP). Peripheral nerve injury induces a reactive state in SGCs that includes SGC proliferation, increased SGC/SGC coupling via gap junctions, decreased inward rectifying potassium channel 4.1 (Kir 4.1) expression and increased expression of GFAP and the common neurotrophin receptor, p75NTR. In contrast, neuronal p75NTR expression, normally detected in ∼80% of adult rat sensory neurons, decreases in response to peripheral axotomy. Given the differential regulation of p75NTR expression in neurons versus SGCs with injury, we hypothesized that reduced signaling via neuronal p75NTR contributes to the induction of a reactive state in SGCs. We found that reducing neuronal p75NTR protein expression in uninjured sensory neurons by intrathecal subarachnoid infusion of p75NTR-selective anti-sense oligodeoxynucleotides for one week was sufficient to induce a "reactive-like" state in the perineuronal SGCs akin to that normally observed following peripheral nerve injury. This reactive state included significantly increased SGC p75NTR, GFAP and gap junction protein connexin-43 protein expression, increased numbers of SGCs surrounding individual sensory neurons and decreased SGC Kir 4.1 channel expression. Collectively, this supports the tenet that reductions in target-derived trophic support leading to, or as a consequence of, reduced neuronal p75NTR expression plays a critical role in switching the SGC to a reactive state.
Collapse
Affiliation(s)
- Joelle R Nadeau
- Department of Anatomy and Cell Biology, University of Saskatchewan/Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada
| | | | | |
Collapse
|
30
|
Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications. Cell Tissue Res 2013; 355:267-78. [PMID: 24241398 PMCID: PMC3921454 DOI: 10.1007/s00441-013-1735-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
Abstract
Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function.
Collapse
|
31
|
Svízenská IH, Brázda V, Klusáková I, Dubový P. Bilateral changes of cannabinoid receptor type 2 protein and mRNA in the dorsal root ganglia of a rat neuropathic pain model. J Histochem Cytochem 2013; 61:529-47. [PMID: 23657829 DOI: 10.1369/0022155413491269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptor type 2 (CB2R) plays a critical role in nociception. In contrast to cannabinoid receptor type 1 ligands, CB2R agonists do not produce undesirable central nervous system effects and thus promise to treat neuropathic pain that is often resistant to medical therapy. In the study presented here, we evaluated the bilateral distribution of the CB2R protein and messenger RNA (mRNA) in rat dorsal root ganglia (DRG) after unilateral peripheral nerve injury using immunohistochemistry, western blot, and in situ hybridization analysis. Unilateral chronic constriction injury (CCI) of the sciatic nerve induced neuropathic pain behavior and bilateral elevation of both CB2R protein and mRNA in lumbar L4-L5 as well as cervical C7-C8 DRG when compared with naive animals. CB2R protein and mRNA were increased not only in DRG neurons but also in satellite glial cells. The fact that changes appear bilaterally and (albeit at a lower level) even in the remote cervical DRG can be related to propagation of neuroinflammation alongside the neuraxis and to the neuroprotective effects of CB2R.
Collapse
|
32
|
Warwick RA, Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 2012; 17:571-80. [PMID: 23065831 DOI: 10.1002/j.1532-2149.2012.00219.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy is a serious side effect in cancer treatment, a major manifestation being neuropathic pain that can be debilitating and can reduce the quality of life of the patient. Oxaliplatin and taxol are common anti-cancer drugs that induce neuropathic pain by an unknown mechanism. We tested the hypothesis that satellite glial cells in dorsal root ganglia (DRGs) are altered in chemotherapy-induced peripheral neuropathy models and contribute to neuropathic pain. METHODS Mice were injected with either oxaliplatin or taxol and examined at 7-30 days. Glial fibrillary acidic protein (glial activation marker) expression was determined by immunohistochemistry. Satellite glial cells in isolated DRG were injected with the fluorescent dye Lucifer yellow and the incidence of dye coupling among these cells that surround different neurons was quantified. RESULTS Taxol or oxaliplatin increased glial fibrillary acidic protein expression in satellite glial cells. Gap junction-mediated coupling between satellite glial cells was increased by up to fivefold after oxaliplatin and by up to twofold after taxol. This is consistent with work on other pain models showing that augmented satellite glial cell coupling contributes to chronic pain. Administration of the gap junction blocker carbenoxolone to chemotherapy-treated mice produced an analgesic-like effect. CONCLUSIONS We propose that increased coupling by gap junctions is part of satellite glial cell activation, and that augmented coupling contributes to the lowering of pain threshold in oxaliplatin- and taxol-treated mice. We further propose that gap junction blockers may have potential in treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- R A Warwick
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
33
|
Ribeiro-Resende VT, Carrier-Ruiz A, Lemes RMR, Reis RAM, Mendez-Otero R. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system. Mol Neurodegener 2012; 7:34. [PMID: 22793996 PMCID: PMC3503565 DOI: 10.1186/1750-1326-7-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/01/2012] [Indexed: 01/19/2023] Open
Abstract
Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS). Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL) region of the lumbar spinal cord (LSC) in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM) resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.
Collapse
Affiliation(s)
- Victor Tulio Ribeiro-Resende
- Laboratório de Neurobiologia Celular e Molecular, Programa de Terapia Celular e Bioengenharia, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Centro de Ciências da Saúde, Bl, G, Cidade Universitária, 21949-900, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The fluorescent dye Lucifer yellow (LY) was introduced in 1978, and has been extremely useful in studying cell structure and communications. This dye has been used mostly for labelling cells by intracellular injection from microelectrodes. This review describes the numerous applications of LY, with emphasis on the enteric nervous system and interstitial cells of Cajal. Of particular importance is the dye coupling method, which enables the detection of cell coupling by gap junctions.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel.
| |
Collapse
|
35
|
Chen Y, Li G, Huang LYM. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons. Mol Pain 2012; 8:9. [PMID: 22314033 PMCID: PMC3292910 DOI: 10.1186/1744-8069-8-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/07/2012] [Indexed: 11/27/2022] Open
Abstract
Background The purinergic P2X3 receptor (P2X3R) expressed in the dorsal root ganglion (DRG) sensory neuron and the P2X7 receptor (P2X7R) expressed in the surrounding satellite glial cell (SGC) are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
36
|
Gap junctions in dorsal root ganglia: Possible contribution to visceral pain. Eur J Pain 2012; 14:49.e1-11. [DOI: 10.1016/j.ejpain.2009.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/08/2023]
|
37
|
Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. ACTA ACUST UNITED AC 2010; 6:53-62. [PMID: 20604979 DOI: 10.1017/s1740925x10000116] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been known for some time that the somata of neurons in sensory ganglia respond to electrical or chemical stimulation and release transmitters in a Ca2+-dependent manner. The function of the somatic release has not been well delineated. A unique characteristic of the ganglia is that each neuronal soma is tightly enwrapped by satellite glial cells (SGCs). The somatic membrane of a sensory neuron rarely makes synaptic contact with another neuron. As a result, the influence of somatic release on the activity of adjacent neurons is likely to be indirect and/or slow. Recent studies of neuron-SGC interactions have demonstrated that ATP released from the somata of dorsal root ganglion neurons activates SGCs. They in turn exert complex excitatory and inhibitory modulation of neuronal activity. Thus, SGCs are actively involved in the processing of afferent information. In this review, we summarize our understanding of bidirectional communication between neuronal somata and SGCs in sensory ganglia and its possible role in afferent signaling under normal and injurious conditions. The participation of purinergic receptors is emphasized because of their dominant roles in the communication.
Collapse
|
38
|
The structure of the perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. ACTA ACUST UNITED AC 2010; 6:3-10. [DOI: 10.1017/s1740925x10000037] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In sensory ganglia each nerve cell body is usually enveloped by a satellite glial cell (SGC) sheath, sharply separated from sheaths encircling adjacent neurons by connective tissue. However, following axon injury SGCs may form bridges connecting previously separate perineuronal sheaths. Each sheath consists of one or several layers of cells that overlap in a more or less complex fashion; sometimes SGCs form a perineuronal myelin sheath. SGCs are flattened mononucleate cells containing the usual cell organelles. Several ion channels, receptors and adhesion molecules have been identified in these cells. SGCs of the same sheath are usually linked by adherent and gap junctions, and are functionally coupled. Following axon injury, both the number of gap junctions and the coupling of SGCs increase markedly. The apposed plasma membranes of adjacent cells are separated by 15–20 nm gaps, which form a potential pathway, usually long and tortuous, between connective tissue and neuronal surface. The boundary between neuron and SGC sheath is usually complicated, mainly by many projections arising from the neuron. The outer surface of the SGC sheath is covered by a basal lamina. The number of SGCs enveloping a nerve cell body is proportional to the cell body volume; the volume of the SGC sheath is proportional to the volume and surface area of the nerve cell body. In old animals, both the number of SGCs and the mean volume of the SGC sheaths are significantly lower than in young adults. Furthermore, extensive portions of the neuronal surface are not covered by SGCs, exposing neurons of aged animals to damage by harmful substances.
Collapse
|
39
|
Abstract
Satellite glial cells (SGCs) undergo phenotypic changes and divide the following injury into a peripheral nerve. Nerve injury, also elicits an immune response and several antigen-presenting cells are found in close proximity to SGCs. Silencing SCG-specific molecules involved in intercellular transport (Connexin 43) or glutamate recycling (glutamine synthase) can dramatically alter nociceptive responses of normal and nerve-injured rats. Transducing SGCs with glutamic acid decarboxylase can produce analgesia in models of trigeminal pain. Taken together these data suggest that SGCs may play a role in the genesis or maintenance of pain and open a range of new possibilities for curing neuropathic pain.
Collapse
|
40
|
Peripheral inflammation augments gap junction-mediated coupling among satellite glial cells in mouse sympathetic ganglia. ACTA ACUST UNITED AC 2010; 6:85-9. [DOI: 10.1017/s1740925x10000025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intercellular coupling by gap junctions is one of the main features of glial cells, but very little is known about this aspect of satellite glial cells (SGCs) in sympathetic ganglia. We used the dye coupling method to address this question in both a prevertebral ganglion (superior mesenteric) and a paravertebral ganglion (superior cervical) of mice. We found that in control ganglia, the incidence of dye coupling among SGCs that form the envelope around a given neuron was 10–20%, and coupling between SGCs around different envelopes was rare (1.5–3%). The dye injections also provided novel information on the structure of SGCs. Following peripheral inflammation, both types of coupling were increased, but most striking was the augmentation of coupling between SGCs forming envelopes around different neurons, which rose by 8–14.6-fold. This effect appeared to be non-systemic, and was blocked by the gap junction blocker carbenoxolone. These changes in SGCs may affect signal transmission and processing in sympathetic ganglia.
Collapse
|
41
|
Ohara PT, Vit JP, Bhargava A, Romero M, Sundberg C, Charles AC, Jasmin L. Gliopathic pain: when satellite glial cells go bad. Neuroscientist 2010; 15:450-63. [PMID: 19826169 DOI: 10.1177/1073858409336094] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurons in sensory ganglia are surrounded by satellite glial cells (SGCs) that perform similar functions to the glia found in the CNS. When primary sensory neurons are injured, the surrounding SGCs undergo characteristic changes. There is good evidence that the SGCs are not just bystanders to the injury but play an active role in the initiation and maintenance of neuronal changes that underlie neuropathic pain. In this article the authors review the literature on the relationship between SGCs and nociception and present evidence that changes in SGC potassium ion buffering capacity and glutamate recycling can lead to neuropathic pain-like behavior in animal models. The role that SGCs play in the immune responses to injury is also considered. We propose the term gliopathic pain to describe those conditions in which central or peripheral glia are thought to be the principal generators of principal pain generators.
Collapse
Affiliation(s)
- Peter T Ohara
- Department of Anatomy, University of California, San Francisco, California 95143-0452, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tang X, Schmidt TM, Perez-Leighton CE, Kofuji P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 2010; 166:397-407. [PMID: 20074622 DOI: 10.1016/j.neuroscience.2010.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 12/31/2022]
Abstract
Satellite glial cells (SGCs) surround primary afferent neurons in sensory ganglia, and increasing evidence has implicated the K(+) channels of SGCs in affecting or regulating sensory ganglion excitability. The inwardly rectifying K(+) (Kir) channel Kir4.1 is highly expressed in several types of glial cells in the central nervous system (CNS) where it has been implicated in extracellular K(+) concentration buffering. Upon neuronal activity, the extracellular K(+) concentration increases, and if not corrected, causes neuronal depolarization and uncontrolled changes in neuronal excitability. Recently, it has been demonstrated that knockdown of Kir4.1 expression in trigeminal ganglia leads to neuronal hyperexcitability in this ganglia and heightened nociception. Thus, we investigated the contribution of Kir4.1 to the membrane K(+) conductance of SGCs in neonatal and adult mouse trigeminal and dorsal root ganglia. Whole cell patch clamp recordings were performed in conjunction with immunocytochemistry and quantitative transcript analysis in various mouse lines. We found that in wild-type mice, the inward K(+) conductance of SGCs is blocked almost completely with extracellular barium, cesium and desipramine, consistent with a conductance mediated by Kir channels. We then utilized mouse lines in which genetic ablation led to partial or complete loss of Kir4.1 expression to assess the role of this channel subunit in SGCs. The inward K(+) currents of SGCs in Kir4.1+/- mice were decreased by about half while these currents were almost completely absent in Kir4.1-/- mice. These findings in combination with previous reports support the notion that Kir4.1 is the principal Kir channel type in SGCs. Therefore Kir4.1 emerges as a key regulator of SGC function and possibly neuronal excitability in sensory ganglia.
Collapse
Affiliation(s)
- X Tang
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
43
|
Hanstein R, Zhao JB, Basak R, Smith DN, Zuckerman YY, Hanani M, Spray DC, Gulinello M. Focal Inflammation Causes Carbenoxolone-Sensitive Tactile Hypersensitivity in Mice. ACTA ACUST UNITED AC 2010; 3:123-133. [PMID: 21151805 DOI: 10.2174/1876386301003010123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A focal and transitory inflammation induced by injection of complete Freund's adjuvant (CFA) in the submandibular skin of mice elicits pain behavior that persists for several weeks after the initial inflammation has resolved. Chronic pain, assessed as tactile hypersensitivity to stimulation with von Frey filaments, was evident from 1-7 weeks following CFA injection, although inflammation at the injection site was resolved by 3-4 weeks. In contrast, there were no changes in tactile sensitivity in the paw (un-injected site for comparison), no alterations in open field behavior and no differences in a functional observation battery evident in CFA-treated mice compared to controls (saline-injected) or to baseline (before CFA injection). Neither strain (Balb/c vs. C57BL/6) nor sex differences in baseline tactile threshold were significant in the submandibular skin. CFA-induced tactile hypersensitivity was also not a function of strain or sex. A single intraperitoneal injection of the gap junction blocker carbenoxolone (CBX) restored normal tactile thresholds in CFA-treated mice when administered at the peak of inflammation (1 week), after significant resolution of inflammation (3 weeks) or after total resolution of inflammation (4 and 5 weeks) without altering the tactile threshold of control subjects, tactile threshold in the paw or open field behavior. Thus, in this novel model of post-inflammatory pain, transitory inflammation induced persistent sex- and strain-independent behavioral hypersensitivity that was reversed by the gap junction blocker CBX, suggesting neuronal and/or glial plasticity as a major component of the chronic pain.
Collapse
Affiliation(s)
- Regina Hanstein
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang H, Mei X, Zhang P, Ma C, White FA, Donnelly DF, Lamotte RH. Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia 2009; 57:1588-99. [PMID: 19330845 DOI: 10.1002/glia.20872] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cell bodies of sensory neurons in the dorsal root ganglion (DRG) are enveloped by satellite glial cells (SGCs). In an animal model of intervertebral foraminal stenosis and low-back pain, a chronic compression of the DRG (CCD) increases the excitability of neuronal cell bodies in the compressed ganglion. The morphological and electrophysiological properties of SGCs were investigated in both CCD and uninjured, control lumbar DRGs. SGCs responded within 12 h of the onset of CCD as indicated by an increased expression of glial fibrillary acidic protein (GFAP) in the compressed DRG but to lesser extent in neighboring or contralateral DRGs. Within 1 week, coupling through gap junctions between SGCs was significantly enhanced in the compressed ganglion. Under whole-cell patch clamp recordings, inward and outward potassium currents, but not sodium currents, were detected in individual SGCs. SGCs enveloping differently sized neurons had similar electrophysiological properties. SGCs in the compressed vs. control DRG exhibited significantly reduced inwardly rectifying potassium currents (Kir), increased input resistances and positively shifted resting membrane potentials. The reduction in Kir was greater for nociceptive medium-sized neurons compared to non-nociceptive neurons. Kir currents of SGCs around spontaneously active neurons were significantly reduced 1 day after compression but recovered by 7 days. These data demonstrate rapid alterations in glial membrane currents and GFAP expression in close temporal association with the development of neuronal hyperexcitability in the CCD model of neuropathic pain. However, these alterations are not fully sustained and suggest other mechanisms for the maintenance of the hyperexcitable state.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Augmentation in gap junction-mediated cell coupling in dorsal root ganglia following sciatic nerve neuritis in the mouse. Neuroscience 2009; 164:1538-45. [DOI: 10.1016/j.neuroscience.2009.09.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
|
46
|
Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. ACTA ACUST UNITED AC 2009; 6:43-51. [PMID: 19891813 DOI: 10.1017/s1740925x09990408] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes communicate with neurons, endothelial and other glial cells through transmission of intercellular calcium signals. Satellite glial cells (SGCs) in sensory ganglia share several properties with astrocytes, but whether this type of communication occurs between SGCs and sensory neurons has not been explored. In the present work we used cultured neurons and SGCs from mouse trigeminal ganglia to address this question. Focal electrical or mechanical stimulation of single neurons in trigeminal ganglion cultures increased intracellular calcium concentration in these cells and triggered calcium elevations in adjacent glial cells. Similar to neurons, SGCs responded to mechanical stimulation with increase in cytosolic calcium that spread to the adjacent neuron and neighboring glial cells. Calcium signaling from SGCs to neurons and among SGCs was diminished in the presence of the broad-spectrum P2 receptor antagonist suramin (50 muM) or in the presence of the gap junction blocker carbenoxolone (100 muM), whereas signaling from neurons to SGCs was reduced by suramin, but not by carbenoxolone. Following induction of submandibular inflammation by Complete Freund's Adjuvant injection, the amplitude of signaling among SGCs and from SGCs to neuron was increased, whereas the amplitude from neuron to SGCs was reduced. These results indicate for the first time the presence of bidirectional calcium signaling between neurons and SGCs in sensory ganglia cultures, which is mediated by the activation of purinergic P2 receptors, and to some extent by gap junctions. Furthermore, the results indicate that not only sensory neurons, but also SGCs release ATP. This form of intercellular calcium signaling likely plays key roles in the modulation of neuronal activity within sensory ganglia in normal and pathological states.
Collapse
|
47
|
Ahmed Z, Jacques SJ, Berry M, Logan A. Epidermal growth factor receptor inhibitors promote CNS axon growth through off-target effects on glia. Neurobiol Dis 2009; 36:142-50. [PMID: 19632327 DOI: 10.1016/j.nbd.2009.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/21/2009] [Accepted: 07/13/2009] [Indexed: 12/12/2022] Open
Abstract
Administration of epidermal growth factor receptor (EGFR) inhibitors (e.g. AG1478/PD168393) promotes central nervous system (CNS) axon regeneration in vivo by an unknown mechanism. Here, we show that EGFR activation is not required for AG1478-/PD168393-induced neurite outgrowth in cultures of dorsal root ganglion neurons (DRGN) with added inhibitory CNS myelin extract (CME), but is mediated by the paracrine and autocrine actions of the glia-/neuron-derived neurotrophins (NT) NGF, BDNF and NT-3 through Trk signalling in DRGN potentiated by elevated cAMP levels. The DRGN neurite growth seen in CME-inhibited cultures treated with AG1478 is eradicated by blocking Trk signalling but undiminished after siRNA knockdown of >90% EGFR. Moreover, addition of the combined triplet of NT restores neurite outgrowth in CME-inhibited cultures, when cAMP levels are raised. Accordingly, we suggest that chemical EGFR inhibitors act independently of EGFR, inducing glia and neurons to secrete NT and raising cAMP levels in DRG cultures, leading to Trk-dependent disinhibited DRGN neurite outgrowth.
Collapse
Affiliation(s)
- Zubair Ahmed
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Institute of Biomedical Research (West), Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
48
|
Zeng Y, Lv X, Zeng S, Shi J. Activity-dependent neuronal control of gap-junctional communication in fibroblasts. Brain Res 2009; 1280:13-22. [DOI: 10.1016/j.brainres.2009.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
49
|
Takeda M, Takahashi M, Matsumoto S. Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev 2009; 33:784-92. [DOI: 10.1016/j.neubiorev.2008.12.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/24/2008] [Accepted: 12/26/2008] [Indexed: 01/10/2023]
|
50
|
Xie W, Strong JA, Zhang JM. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 2009; 160:847-57. [PMID: 19303429 DOI: 10.1016/j.neuroscience.2009.03.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 12/16/2022]
Abstract
Satellite glial cells in the dorsal root ganglion (DRG), like the better-studied glia cells in the spinal cord, react to peripheral nerve injury or inflammation by activation, proliferation, and release of messengers that contribute importantly to pathological pain. It is not known how information about nerve injury or peripheral inflammation is conveyed to the satellite glial cells. Abnormal spontaneous activity of sensory neurons, observed in the very early phase of many pain models, is one plausible mechanism by which injured sensory neurons could activate neighboring satellite glial cells. We tested effects of locally inhibiting sensory neuron activity with sodium channel blockers on satellite glial cell activation in a rat spinal nerve ligation (SNL) model. SNL caused extensive satellite glial cell activation (as defined by glial fibrillary acidic protein [GFAP] immunoreactivity) which peaked on day 1 and was still observed on day 10. Perfusion of the axotomized DRG with the Na channel blocker tetrodotoxin (TTX) significantly reduced this activation at all time points. Similar findings were made with a more distal injury (spared nerve injury model), using a different sodium channel blocker (bupivacaine depot) at the injury site. Local DRG perfusion with TTX also reduced levels of nerve growth factor (NGF) in the SNL model on day 3 (when activated glia are an important source of NGF), without affecting the initial drop of NGF on day 1 (which has been attributed to loss of transport from target tissues). Local perfusion in the SNL model also significantly reduced microglia activation (OX-42 immunoreactivity) on day 3 and astrocyte activation (GFAP immunoreactivity) on day 10 in the corresponding dorsal spinal cord. The results indicate that early spontaneous activity in injured sensory neurons may play important roles in glia activation and pathological pain.
Collapse
Affiliation(s)
- W Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0531, USA
| | | | | |
Collapse
|