1
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
2
|
Fibroblast growth factor 12 is expressed in spiral and vestibular ganglia and necessary for auditory and equilibrium function. Sci Rep 2018; 8:11491. [PMID: 30065296 PMCID: PMC6068167 DOI: 10.1038/s41598-018-28618-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated fibroblast growth factor 12 (FGF12) as a transcript enriched in the inner ear by searching published cDNA library databases. FGF12 is a fibroblast growth factor homologous factor, a subset of the FGF superfamily. To date, its localisation and function in the inner ear have not been determined. Here, we show that FGF12 mRNA is localised in spiral ganglion neurons (SGNs) and the vestibular ganglion. We also show that FGF12 protein is localised in SGNs, the vestibular ganglion, and nerve fibres extending beneath hair cells. Moreover, we investigated FGF12 function in auditory and vestibular systems using Fgf12-knockout (FGF12-KO) mice generated with CRISPR/Cas9 technology. Our results show that the inner ear morphology of FGF12-KO mice is not significantly different compared with wild-type mice. However, FGF12-KO mice exhibited an increased hearing threshold, as measured by the auditory brainstem response, as well as deficits in rotarod and balance beam performance tests. These results suggest that FGF12 is necessary for normal auditory and equilibrium function.
Collapse
|
3
|
Perny M, Ting CC, Kleinlogel S, Senn P, Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front Cell Neurosci 2017; 11:409. [PMID: 29311837 PMCID: PMC5742223 DOI: 10.3389/fncel.2017.00409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
The peripheral hearing process taking place in the cochlea mainly depends on two distinct sensory cell types: the mechanosensitive hair cells and the spiral ganglion neurons (SGNs). The first respond to the mechanical stimulation exerted by sound pressure waves on their hair bundles by releasing neurotransmitters and thereby activating the latter. Loss of these sensorineural cells is associated with permanent hearing loss. Stem cell-based approaches aiming at cell replacement or in vitro drug testing to identify potential ototoxic, otoprotective, or regenerative compounds have lately gained attention as putative therapeutic strategies for hearing loss. Nevertheless, they rely on efficient and reliable protocols for the in vitro generation of cochlear sensory cells for their implementation. To this end, we have developed a differentiation protocol based on organoid culture systems, which mimics the most important steps of in vivo otic development, robustly guiding mouse embryonic stem cells (mESCs) toward otic sensory neurons (OSNs). The stepwise differentiation of mESCs toward ectoderm was initiated using a quick aggregation method in presence of Matrigel in serum-free conditions. Non-neural ectoderm was induced via activation of bone morphogenetic protein (BMP) signaling and concomitant inhibition of transforming growth factor beta (TGFβ) signaling to prevent mesendoderm induction. Preplacodal and otic placode ectoderm was further induced by inhibition of BMP signaling and addition of fibroblast growth factor 2 (FGF2). Delamination and differentiation of SGNs was initiated by plating of the organoids on a 2D Matrigel-coated substrate. Supplementation with brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) was used for further maturation until 15 days of in vitro differentiation. A large population of neurons with a clear bipolar morphology and functional excitability was derived from these cultures. Immunostaining and gene expression analysis performed at different time points confirmed the transition trough the otic lineage and final expression of the key OSN markers. Moreover, the stem cell-derived OSNs exhibited functional electrophysiological properties of native SGNs. Our established in vitro model of OSNs development can be used for basic developmental studies, for drug screening or for the exploration of their regenerative potential.
Collapse
Affiliation(s)
- Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ching-Chia Ting
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Pascal Senn
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Marta Roccio
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Kramer B, Tropitzsch A, Müller M, Löwenheim H. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro. Neuroscience 2017; 357:75-83. [PMID: 28596120 DOI: 10.1016/j.neuroscience.2017.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition.
Collapse
Affiliation(s)
- Benedikt Kramer
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany
| | - Anke Tropitzsch
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany.
| | - Hubert Löwenheim
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany
| |
Collapse
|
5
|
Ramamurthy P, White JB, Yull Park J, Hume RI, Ebisu F, Mendez F, Takayama S, Barald KF. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and schwann cell-like cells in a slow-flow microfluidic device. Dev Dyn 2017; 246:7-27. [PMID: 27761977 PMCID: PMC5159187 DOI: 10.1002/dvdy.24466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN. mESC-derived "Schwann cells" produce MIF, as do all Schwann cells (Huang et al., a; Roth et al., 2007; Roth et al., 2008) and could attract SGN to a "cell-coated" implant. RESULTS Neuron- and Schwann cell-like cells were produced from a common population of mESCs in an ultra-slow-flow microfluidic device. As the populations interacted, "neurons" grew over the "Schwann cell" lawn, and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing "Schwann cells" were used to coat a CI: Mouse SGN and MIF-induced "neurons" grew directionally to the CI and to a wild-type but not MIF-knockout organ of Corti explant. CONCLUSIONS Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. Developmental Dynamics 246:7-27, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poornapriya Ramamurthy
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua B White
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Fumi Ebisu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Bhattacharya A, Cui Y. Knowledge-based analysis of functional impacts of mutations in microRNA seed regions. J Biosci 2016; 40:791-8. [PMID: 26564979 DOI: 10.1007/s12038-015-9560-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MicroRNAs are a class of important post-transcriptional regulators. Genetic and somatic mutations in miRNAs, especially those in the seed regions, have profound and broad impacts on gene expression and physiological and pathological processes. Over 500 SNPs were mapped to the miRNA seeds, which are located at position 2-8 of the mature miRNA sequences. We found that the central positions of the miRNA seeds contain fewer genetic variants and therefore are more evolutionary conserved than the peripheral positions in the seeds. We developed a knowledgebased method to analyse the functional impacts of mutations in miRNA seed regions. We computed the gene ontology-based similarity score GOSS and the GOSS percentile score for all 517 SNPs in miRNA seeds. In addition to the annotation of SNPs for their functional effects, in the present article we also present a detailed analysis pipeline for finding the key functional changes for seed SNPs. We performed a detailed gene ontology graph-based analysis of enriched functional categories for miRNA target gene sets. In the analysis of a SNP in the seed region of hsa-miR-96 we found that two key biological processes for progressive hearing loss 'Neurotrophin TRK receptor signaling pathway' and 'Epidermal growth factor receptor signaling pathway' were significantly and differentially enriched by the two sets of allele-specific target genes of miRNA hsa-miR-96.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Department of Microbiology, Immunology and Biochemistry and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN 38163, USA,
| | | |
Collapse
|
7
|
Peeters RP, Ng L, Ma M, Forrest D. The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3). Mol Cell Endocrinol 2015; 407:1-8. [PMID: 25737207 PMCID: PMC4390549 DOI: 10.1016/j.mce.2015.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
Apoptosis underlies various forms of tissue remodeling during development. Prior to the onset of hearing, thyroid hormone (T3) promotes cochlear remodeling, which involves regression of the greater epithelial ridge (GER), a transient structure of columnar cells adjacent to the mechanosensory hair cells. We investigated the timecourse of apoptosis in the GER and the influence of ectopic T3 on apoptosis. In saline-treated mice, activated caspase 3-positive cells were detected in the GER between postnatal days 7 and 13 and appeared progressively along the cochlear duct from base to apex over developmental time. T3 given on P0 and P1 advanced the overall program of apoptosis and remodeling by ~4 days. Thyroid hormone receptor β was required for these actions, suggesting a receptor-mediated process of initiation of apoptosis. Finally, T3 given only at P0 or P1 resulted in deafness in adult mice, thus revealing a transient period of susceptibility to long-term damage in the neonatal auditory system.
Collapse
Affiliation(s)
- R P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - L Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - M Ma
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - D Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Morell M, Lenoir M, Shadwick RE, Jauniaux T, Dabin W, Begeman L, Ferreira M, Maestre I, Degollada E, Hernandez-Milian G, Cazevieille C, Fortuño JM, Vogl W, Puel JL, André M. Ultrastructure of the Odontocete organ of Corti: scanning and transmission electron microscopy. J Comp Neurol 2014; 523:431-48. [PMID: 25269663 DOI: 10.1002/cne.23688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2014] [Indexed: 11/11/2022]
Abstract
The morphological study of the Odontocete organ of Corti, together with possible alterations associated with damage from sound exposure, represents a key conservation approach to assess the effects of acoustic pollution on marine ecosystems. By collaborating with stranding networks from several European countries, 150 ears from 13 species of Odontocetes were collected and analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Based on our analyses, we first describe and compare Odontocete cochlear structures and then propose a diagnostic method to identify inner ear alterations in stranded individuals. The two species analyzed by TEM (Phocoena phocoena and Stenella coeruleoalba) showed morphological characteristics in the lower basal turn of high-frequency hearing species. Among other striking features, outer hair cell bodies were extremely small and were strongly attached to Deiters cells. Such morphological characteristics, shared with horseshoe bats, suggest that there has been convergent evolution of sound reception mechanisms among echolocating species. Despite possible autolytic artifacts due to technical and experimental constraints, the SEM analysis allowed us to detect the presence of scarring processes resulting from the disappearance of outer hair cells from the epithelium. In addition, in contrast to the rapid decomposition process of the sensory epithelium after death (especially of the inner hair cells), the tectorial membrane appeared to be more resistant to postmortem autolysis effects. Analysis of the stereocilia imprint pattern at the undersurface of the tectorial membrane may provide a way to detect possible ultrastructural alterations of the hair cell stereocilia by mirroring them on the tectorial membrane.
Collapse
Affiliation(s)
- Maria Morell
- Laboratory of Applied Bio-Acoustics, Technological Center of Vilanova i la Geltrú, Technical University of Catalonia-Barcelona Tech, 08800, Vilanova i la Geltrú, Barcelona, Spain; Zoology Department, The University of British Columbia, V6T 1Z4 Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Maeda T, Taniguchi M, Shingaki K, Kanazawa S, Miyata S. Therapeutic Effect of Electroacupuncture in a P75 Knockout Mouse Model of Progressive Hearing Loss. Acupunct Med 2014; 32:90-2. [DOI: 10.1136/acupmed-2013-010450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Tameyasu Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kenta Shingaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Kanazawa
- Department of Plastic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka, Japan
| |
Collapse
|
10
|
Locher H, de Groot JCMJ, van Iperen L, Huisman MA, Frijns JHM, Chuva de Sousa Lopes SM. Distribution and development of peripheral glial cells in the human fetal cochlea. PLoS One 2014; 9:e88066. [PMID: 24498246 PMCID: PMC3909285 DOI: 10.1371/journal.pone.0088066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
The adult human cochlea contains various types of peripheral glial cells that envelop or myelinate the three different domains of the spiral ganglion neurons: the central processes in the cochlear nerve, the cell bodies in the spiral ganglia, and the peripheral processes in the osseous spiral lamina. Little is known about the distribution, lineage separation and maturation of these peripheral glial cells in the human fetal cochlea. In the current study, we observed peripheral glial cells expressing SOX10, SOX9 and S100B as early as 9 weeks of gestation (W9) in all three neuronal domains. We propose that these cells are the common precursor to both mature Schwann cells and satellite glial cells. Additionally, the peripheral glial cells located along the peripheral processes expressed NGFR, indicating a phenotype distinct from the peripheral glial cells located along the central processes. From W12, the spiral ganglion was gradually populated by satellite glial cells in a spatiotemporal gradient. In the cochlear nerve, radial sorting was accomplished by W22 and myelination started prior to myelination of the peripheral processes. The developmental dynamics of the peripheral glial cells in the human fetal cochlea is in support of a neural crest origin. Our study provides the first overview of the distribution and maturation of peripheral glial cells in the human fetal cochlea from W9 to W22.
Collapse
Affiliation(s)
- Heiko Locher
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, the Netherlands
| | - John C. M. J. de Groot
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, the Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Margriet A. Huisman
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan H. M. Frijns
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
11
|
Takada Y, Beyer LA, Swiderski DL, O'Neal AL, Prieskorn DM, Shivatzki S, Avraham KB, Raphael Y. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 2013; 309:124-35. [PMID: 24333301 DOI: 10.1016/j.heares.2013.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/16/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of Cx26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal's canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus with the BDNF gene insert (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal's canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and especially in a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears.
Collapse
Affiliation(s)
- Yohei Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA; Department of Otolaryngology, Kansai Medical University, 2-3-1, Shinmachi, Hirakata, Osaka 573-1191, Japan
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Aubrey L O'Neal
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Shaked Shivatzki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.
| |
Collapse
|
12
|
Rak K, Frenz S, Radeloff A, Groh J, Jablonka S, Martini R, Hagen R, Mlynski R. Mutation of the TBCE gene causes disturbance of microtubules in the auditory nerve and cochlear outer hair cell degeneration accompanied by progressive hearing loss in the pmn/pmn mouse. Exp Neurol 2013; 250:333-40. [PMID: 24120439 DOI: 10.1016/j.expneurol.2013.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
The progressive motor neuronopathy (pmn/pmn) mouse, an animal model for a fast developing human motor neuron disorder, is additionally characterized by simultaneous progressive sensorineural hearing loss. The gene defect in the pmn/pmn mouse is localized to a missense mutation in the tubulin-specific chaperone E (TBCE) gene on mouse chromosome 13, which is one of the five tubulin-specific chaperons involved in tubulin folding and dimerization. The missense mutation leads to a disturbance of tubulin structures in the auditory nerve and a progressive outer hair cell loss due to apoptosis, which is accompanied by highly elevated ABR-thresholds and loss of DPOAEs. In addition the TBCE protein is selectively expressed in the outer hair cells and the transcellular processes of the inner pillar cells in the cochlea of control and pmn/pmn mouse. We conclude from our study that the mutation of the TBCE gene affects the auditory nerve and the cochlear hair cells simultaneously, leading to progressive hearing loss. This animal model will give the chance to test possible therapeutic strategies in special forms of hearing loss, in which the auditory nerve and the cochlear hair cells are simultaneously affected.
Collapse
Affiliation(s)
- Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Germany; Comprehensive Hearing Center, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C's of Neurotrophins in the Cochlea. Anat Rec (Hoboken) 2012; 295:1877-95. [DOI: 10.1002/ar.22587] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
|
14
|
Hosoya M, Fujioka M, Matsuda S, Ohba H, Shibata S, Nakagawa F, Watabe T, Wakabayashi KI, Saga Y, Ogawa K, Okano HJ, Okano H. Expression and function of Sox21 during mouse cochlea development. Neurochem Res 2011; 36:1261-9. [PMID: 21287267 DOI: 10.1007/s11064-011-0416-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
The development of the inner ear is an orchestrated process of morphogenesis with spatiotemporally controlled generations of individual cell types. Recent studies have revealed that the Sox gene family, a family of evolutionarily conserved HMG-type transcriptional factors, is differentially expressed in each cell type of the mammalian inner ear and plays critical roles in cell-fate determination during development. In this study, we examined the expression pattern of Sox21 in the developing and adult murine cochlea. Sox21 was expressed throughout the sensory epithelium in the early otocyst stage but became restricted to supporting cells during adulthood. Interestingly, the expression in adults was restricted to the inner phalangeal, inner border, and Deiters' cells: all of these cells are in direct contact with hair cells. Evaluations of the auditory brainstem-response revealed that Sox21(-/-) mice suffered mild hearing impairments, with an increase in hair cells that miss their appropriate planar cell polarity. Taken together with the previously reported critical roles of SoxB1 families in the morphogenesis of inner ear sensory and neuronal cells, our results suggest that Sox21, a counteracting partner of the SoxB1 family, controls fine-tuned cell fate decisions. Also, the characteristic expression pattern may be useful for labelling a particular subset of supporting cells.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tauris J, Gustafsen C, Christensen EI, Jansen P, Nykjaer A, Nyengaard JR, Teng KK, Schwarz E, Ovesen T, Madsen P, Petersen CM. Proneurotrophin-3 may induce Sortilin-dependent death in inner ear neurons. Eur J Neurosci 2011; 33:622-31. [PMID: 21261755 DOI: 10.1111/j.1460-9568.2010.07556.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The precursor of the neurotrophin (NT) nerve growth factor (NGF) (proNGF) serves physiological functions distinct from its mature counterpart as it induces neuronal apoptosis through activation of a p75 NT receptor (p75(NTR) ) and Sortilin death-signalling complex. The NTs brain-derived nerve growth factor (BDNF) and NT3 provide essential trophic support to auditory neurons. Injury to the NT-secreting cells in the inner ear is followed by irreversible degeneration of spiral ganglion neurons with consequences such as impaired hearing or deafness. Lack of mature NTs may explain the degeneration of spiral ganglion neurons, but another mechanism is possible as unprocessed proNTs released from the injured cells may contribute to the degeneration by induction of apoptosis. Recent studies demonstrate that proBDNF, like proNGF, is a potent inducer of Sortilin:p75(NTR) -mediated apoptosis. In addition, a coincident upregulation of proBDNF and p75(NTR) has been observed in degenerating spiral ganglion neurons, but the Sortilin expression in the inner ear is unresolved. Here we demonstrate that Sortilin and p75(NTR) are coexpressed in neurons of the neonatal inner ear. Furthermore, we establish that proNT3 exhibits high-affinity binding to Sortilin and has the capacity to enhance cell surface Sortilin:p75(NTR) complex formation as well as to mediate apoptosis in neurons coexpressing p75(NTR) and Sortilin. Based on the examination of wildtype and Sortilin-deficient mouse embryos, Sortilin does not significantly influence the developmental selection of spiral ganglion neurons. However, our results suggest that proNT3 and proBDNF may play important roles in the response to noise-induced injuries or ototoxic damage via the Sortilin:p75(NTR) death-signalling complex.
Collapse
Affiliation(s)
- Jacob Tauris
- Department of Otorhinolaryngology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tan J, Clarke M, Barrett G, Millard R. The p75 neurotrophin receptor protects primary auditory neurons against acoustic trauma in mice. Hear Res 2010; 268:46-59. [PMID: 20466052 DOI: 10.1016/j.heares.2010.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 12/19/2022]
Abstract
In the adult rodent inner ear, p75NTR is weakly expressed in primary auditory neurons (PANs) and cochlear Schwann cells. When the organ of Corti is damaged during trauma, its expression dramatically increases. It is unclear what role p75NTR plays under these conditions. Characterisation of p75NTR mutant mice reveals that altering genetic backgrounds can differentially affect the survival of PANs in mutant mice. To conclusively elucidate the physiological role of p75NTR in the cochlea, we challenged wild type (p75NTR +/+) and mutant (p75NTR -/-) mice with an acoustic trauma at 130 dB SPL, 10 kHz for 2 h. This produces a permanent auditory threshold shift >40 dB SPL, damages the organ of Corti and causes secondary degeneration of PANs. After exposure, mice were maintained for 3-9 weeks. Interestingly, survival of PANs in p75NTR -/- mice was significantly compromised in all time-points when compared to wild type mice: 15% reduction after 3 weeks (n = 6), 32% reduction after 6 weeks (n = 6) and 26% reduction after 9 weeks (n = 6-8). Therefore, our data do not support a role of p75NTR as a death inducer in PANs but show its crucial role in protecting PANs.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Auditory Threshold
- Cell Death
- Cochlea/innervation
- Cochlear Nerve/injuries
- Cochlear Nerve/metabolism
- Cochlear Nerve/pathology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem
- Genotype
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Noise/adverse effects
- Phenotype
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Schwann Cells/metabolism
- Species Specificity
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Justin Tan
- The Bionic Ear Institute, 384-388 Albert St, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
17
|
Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 2009; 15:47-61. [PMID: 19218230 DOI: 10.1177/1073858408325269] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress and loss of neurotrophic support play major roles in the development of various diseases of the central and peripheral nervous systems. In disorders of the central nervous system such as Alzheimer's, Parkinson's, and Huntington's diseases, oxidative stress appears inextricably linked to the loss of neurotrophic support. A similar situation is seen in the peripheral nervous system in diseases of olfaction, hearing, and vision. Neurotrophic factors act to up-regulate antioxidant enzymes and promote the expression of antioxidant proteins. On the other hand, oxidative stress can cause down-regulation of neurotrophic factors. We propose that normal functioning of the nervous systems involves a positive feedback loop between antioxidant processes and neurotrophic support. Breakdown of this feedback loop in disease states leads to increased oxidative stress and reduced neurotrophic support.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, Australia.
| | | | | | | |
Collapse
|
18
|
Noben-Trauth K, Johnson KR. Inheritance patterns of progressive hearing loss in laboratory strains of mice. Brain Res 2009; 1277:42-51. [PMID: 19236853 DOI: 10.1016/j.brainres.2009.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/30/2022]
Abstract
Positional cloning of mouse deafness mutations uncovered a plethora of proteins that have important functions in the peripheral auditory system in particular in the cochlear organ of Corti and stria vascularis. Most of these mutant variants follow a monogenic form of inheritance and are rare, highly penetrant, and deleterious alleles. Inbred and heterogenous strains of mice, in contrast, present with non-syndromic hearing impairment due to the effects of multiple genes and hypomorphic and less penetrant alleles that are often transmitted in a non-Mendelian manner. Here we review hearing loss inheritance patterns as they were discovered in different strains of mice and discuss the relevance of candidate genes to late-onset progressive hearing impairment in mouse and human.
Collapse
Affiliation(s)
- Konrad Noben-Trauth
- Section on Neurogenetics, NIDCD, National Institutes of Health, 5 Research Court, Rockville, MD 20850-3227, USA.
| | | |
Collapse
|
19
|
Giraldez F, Fritzsch B. The molecular biology of ear development - "Twenty years are nothing". THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2008; 51:429-38. [PMID: 17891706 PMCID: PMC3901534 DOI: 10.1387/ijdb.072390fg] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Views of classical biological problems changed dramatically with the rise of molecular biology as a common framework. It was indeed the new language of life sciences. Molecular biology increasingly moved us towards a unified view of developmental genetics as ideas and techniques were imported to vertebrates from other biological systems where genetics was in a more advanced state. The ultimate advance has been the ability to actually perform genetic manipulations in vertebrate organisms that were almost unthinkable before. During the last two decades these technical advances entered into and affected the research on ear development. These events are still very recent and have been with us for no longer than two decades, which is the reason for the title of this article. This new scenario forms the basis of the current and productive work of many laboratories, and this is what this Special Issue of The International Journal of Developmental Biology wants to show, presenting a snapshot of insights at the beginning of the 21st Century. In this article, we give an overview of the topics that are addressed in this Ear Development Special Issue, and also we take the opportunity to informally dig into the genealogy of some of those topics, trying to link the current work with some classical work of the past.
Collapse
Affiliation(s)
- Fernando Giraldez
- Departament de Cincies Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomdica de Barcelona (PRBB), Barcelona, Spain.
| | | |
Collapse
|
20
|
Abstract
The effects of neurotrophins during the middle and late stages of development are well known. It was previously thought that neurotrophins had no role during early development, but this is not the case and is the subject of this review article. The earliest neurotrophin receptor expressed is that for neurotrophin-3 (NT-3). TrkC is detected in the neural plate and is present in the neural tube. Initially, the distribution of TrkC is homogenous, but it becomes localized to specific regions of the neural tube as the neural tube differentiates. The receptor for brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), TrkB, is detected somewhat later than TrkC in the neural tube where it is also differentially localized. In contrast, the NGF receptor, TrkA, was not detected during early development. Both NT-3 and BDNF have been shown to have effects in vitro during early development. NT-3 caused an increase in neurite outgrowth and apoptosis in neural plate explants, and promoted differentiation of progenitors into motoneurons. BDNF increased the number of motoneurons in neural tube explants. These data suggest that NT-3 and BDNF may play a role during early development in vivo.
Collapse
Affiliation(s)
- Paulette Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
21
|
Underwood CK, Coulson EJ. The p75 neurotrophin receptor. Int J Biochem Cell Biol 2007; 40:1664-8. [PMID: 17681869 DOI: 10.1016/j.biocel.2007.06.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 06/16/2007] [Accepted: 06/18/2007] [Indexed: 11/17/2022]
Abstract
The pan neurotrophin receptor (p75(NTR)) is best known for mediating neural cell death during development as well as in the adult following injury, the latter making it a target for the treatment of neurodegenerative disease. Although p75(NTR) has been studied for over 30 years, a number of recent discoveries have changed our understanding of its regulation. Here we provide a brief overview of the p75(NTR) protein, its post-translational modifications, and the phenotype of p75(NTR)-deficient mice as a starting point for researchers unfamiliar with this complex receptor. The accepted mechanisms underlying the ability of p75(NTR) to regulate cell death as well as a number of other neural functions, most notably neuronal differentiation, neurite outgrowth and synaptic plasticity, are also summarised.
Collapse
Affiliation(s)
- Clare K Underwood
- Queensland Brain Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | | |
Collapse
|