1
|
Soltani Khaboushan A, Moeinafshar A, Ersi MH, Teixeira AL, Majidi Zolbin M, Kajbafzadeh AM. Circulating levels of inflammatory biomarkers in Huntington's disease: A systematic review and meta-analysis. J Neuroimmunol 2023; 385:578243. [PMID: 37984118 DOI: 10.1016/j.jneuroim.2023.578243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disease caused by an abnormally high number of CAG repeats at the huntingtin-encoding gene, HTT. This genetic alteration results in the expression of a mutant form of the protein (mHTT) and the formation of intracellular aggregates, inducing an inflammatory state within the affected areas. This dysfunction of inflammatory response leads to elevated levels of related inflammatory markers in both CNS tissue samples and body fluids. This study aims to investigate peripheral/blood concentrations of inflammatory molecules in HD. METHODS A search was conducted in MEDLINE, Scopus, Web of Science, and Embase databases until March 30th, 2023. Random-effect meta-analysis was used for exploring concentrations of inflammatory molecules in HD. Subgroup and sensitivity analyses were used to assess heterogeneity among the included studies. The study protocol has been registered in PROSPERO with the ID number CRD42022296078. RESULTS Ten studies were included in the meta-analysis. Plasma levels of Interleukin 6 (IL-6) and IL-10 were higher in HD compared to controls. Other biomarkers, namely, complement component C-reactive protein (CRP), C3, interferon-γ (IFN-γ), IL-1, IL-2, IL-8, and tumor necrosis factor-α (TNF-α), did not show any significant differences between the two groups. In addition, the subgroup analysis results established no significant differences in levels of these biomarkers in body fluids among premanifest and manifest HD patients. CONCLUSION The results of this study provide evidence for the presence of higher plasma levels of IL-6 and IL-10 in HD patients in comparison with healthy controls.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hamed Ersi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Evidence Based Medicine Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
3
|
de Oliveira Furlam T, Roque IG, Machado da Silva EW, Vianna PP, Costa Valadão PA, Guatimosim C, Teixeira AL, de Miranda AS. Inflammasome activation and assembly in Huntington's disease. Mol Immunol 2022; 151:134-142. [PMID: 36126501 DOI: 10.1016/j.molimm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Inflammasomes are multiprotein complexes capable of sensing pathogen-associated and damage-associated molecular patterns, triggering innate immune pathways. Activation of inflammasomes results in a pro-inflammatory cascade involving, among other molecules, caspases and interleukins. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3) is the most studied inflammasome complex, and its activation results in caspase-1 mediated cleavage of the pro-interleukins IL-1β and IL-18 into their mature forms, also inducing a gasdermin D mediated form of pro-inflammatory cell death, i.e. pyroptosis. Accumulating evidence has implicated NLRP3 inflammasome complex in neurodegenerative diseases. The evidence in HD is still scant and mostly derived from pre-clinical studies. This review aims to present the available evidence on NLRP3 inflammasome activation in HD and to discuss whether targeting this innate immune system complex might be a promising therapeutic strategy to alleviate its symptoms.
Collapse
Affiliation(s)
| | | | | | - Pedro Parenti Vianna
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cristina Guatimosim
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Faculdade Santa Casa BH, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-Oliver F, Ruiz-Albusac J, Ávila J, Pozo MÁ. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol (Lausanne) 2022; 13:873301. [PMID: 35615716 PMCID: PMC9125423 DOI: 10.3389/fendo.2022.873301] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Several neurological diseases share pathological alterations, even though they differ in their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress, mitochondrial dysfunction and amyloidosis are biological events found in those neurological disorders. Altered insulin-mediated signaling and brain glucose hypometabolism are characteristic signs observed in the brains of patients with certain neurological diseases, but also others such as type 2 diabetes mellitus and vascular diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in these neurological diseases as contributing to the decline in cognitive function. Supporting this relationship is the fact that nasal and hippocampal insulin administration has been found to improve cognitive function. Additionally, brain glucose hypometabolism precedes the unmistakable clinical manifestations of some of these diseases by years, which may become a useful early biomarker. Deficiencies in the major pathways of oxidative energy metabolism have been reported in patients with several of these neurological diseases, which supports the hypothesis of their metabolic background. This review remarks on the significance of insulin and brain glucose metabolism alterations as keystone common pathogenic substrates for certain neurological diseases, highlighting new potential targets.
Collapse
Affiliation(s)
- Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- *Correspondence: Enrique Blázquez,
| | | | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
5
|
Erro R, Mencacci NE, Bhatia KP. The Emerging Role of Phosphodiesterases in Movement Disorders. Mov Disord 2021; 36:2225-2243. [PMID: 34155691 PMCID: PMC8596847 DOI: 10.1002/mds.28686] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Niccoló E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
6
|
Tan X, Liu Y, Zhang T, Cong S. Integrated analysis of differentially expressed genes and construction of a competing endogenous RNA network in human Huntington neural progenitor cells. BMC Med Genomics 2021; 14:48. [PMID: 33579286 PMCID: PMC7881634 DOI: 10.1186/s12920-021-00894-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is one of the most common polyglutamine disorders, leading to progressive dyskinesia, cognitive impairment, and neuropsychological problems. Besides the dysregulation of many protein-coding genes in HD, previous studies have revealed a variety of non-coding RNAs that are also dysregulated in HD, including several long non-coding RNAs (lncRNAs). However, an integrated analysis of differentially expressed (DE) genes based on a competing endogenous RNA (ceRNA) network is still currently lacking. METHODS In this study, we have systematically analyzed the gene expression profile data of neural progenitor cells (NPCs) derived from patients with HD and controls (healthy controls and the isogenic controls of HD patient cell lines corrected using a CRISPR-Cas9 approach at the HTT locus) to screen out DE mRNAs and DE lncRNAs and create a ceRNA network. To learn more about the possible functions of lncRNAs in the ceRNA regulatory network in HD, we conducted a functional analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and established a protein-protein interaction (PPI) network for mRNAs interacting with these lncRNAs. RESULTS We identified 490 DE mRNAs and 94 DE lncRNAs, respectively. Of these, 189 mRNAs and 20 lncRNAs were applied to create a ceRNA network. The results showed that the function of DE lncRNAs mainly correlated with transcriptional regulation as demonstrated by GO analysis. Also, KEGG enrichment analysis showed these lncRNAs were involved in tumor necrosis factor, calcium, Wnt, and NF-kappa B signaling pathways. Interestingly, the PPI network revealed that a variety of transcription factors in the ceRNA network interacted with each other, suggesting such lncRNAs may regulate transcription in HD by controlling the expression of such protein-coding genes, especially transcription factors. CONCLUSIONS Our research provides new clues for uncovering the mechanisms of lncRNAs in HD and can be used as the focus for further investigation.
Collapse
Affiliation(s)
- Xiaoping Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yang Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Taiming Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Dhankhar J, Agrawal N, Shrivastava A. An interplay between immune response and neurodegenerative disease progression: An assessment using Drosophila as a model. J Neuroimmunol 2020; 346:577302. [PMID: 32683186 DOI: 10.1016/j.jneuroim.2020.577302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Neurodegeneration, the slow and progressive loss of neurons in the central nervous system has become a major challenge to public health worldwide particularly with elderly people. Until recently, the brain and immune system were studied exclusively, independent of each other representing two distinct systems. Recent studies ensue crosstalk between these two systems to maintain homeostasis. Though the progressive loss of specific neuronal subsets is a hallmark of neurodegenerative disease, emerging evidences indicate that immune response also plays a critical role in disease progression. Due to conservation of mechanisms that govern neural development and innate immune activation in flies and humans, and availability of powerful genetic tools, the fruit fly Drosophila melanogaster is one of the best model organisms to investigate the immune response in neurodegenerative disease. Owing to significant homology between human and Drosophila immune system and recent reports on interplay between immune system and neurodegenerative disease progression, the main focus of the review is to develop a comprehensive understanding of how neuro-immune interactions contribute to neurodegeneration using Drosophila as a model system.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, Delhi, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
8
|
Cho K. Emerging Roles of Complement Protein C1q in Neurodegeneration. Aging Dis 2019; 10:652-663. [PMID: 31165008 PMCID: PMC6538225 DOI: 10.14336/ad.2019.0118] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
The innate immune system is an ancient and primary component system that rapidly reacts to defend the body against external pathogens. C1 is the initial responder of classical pathway of the innate immune system. C1 is comprised of C1q, C1r, and C1s. Among them, C1q is known to interact with diverse ligands, which can perform various functions in physiological and pathophysiological conditions. Because C1q participates in the clearance of pathogens, its interaction with novel receptors is expected to facilitate apoptosis induction, which could prevent the onset or progression of neurodegenerative diseases and could delay the aging process. Because senescence-associated secreting phenotype determinants are generally inflammatory cytokines or immune factors to activate immune cells. In the central nervous system, C1q has diverse neuroprotective roles against pathogens and inflammation. Most of neurodegenerative diseases show region specific pathology feature in the brain. It has been suggested the evidences that the active site and amount of C1q may be disease specific. This review considers currently the emerging and under-recognized roles of C1q in neurodegeneration and highlights the need for further research to clarify these roles. Future studies on the roles of C1q in regulating disease progression should consider these aspects, including the age-dependent onset time of each neurodegenerative disease progression.
Collapse
Affiliation(s)
- Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea
| |
Collapse
|
9
|
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94:112-120. [PMID: 31077796 DOI: 10.1016/j.semcdb.2019.05.004] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Microglia, being the resident immune cells of the central nervous system, play an important role in maintaining tissue homeostasis and contributes towards brain development under normal conditions. However, when there is a neuronal injury or other insult, depending on the type and magnitude of stimuli, microglia will be activated to secrete either proinflammatory factors that enhance cytotoxicity or anti-inflammatory neuroprotective factors that assist in wound healing and tissue repair. Excessive microglial activation damages the surrounding healthy neural tissue, and the factors secreted by the dead or dying neurons in turn exacerbate the chronic activation of microglia, causing progressive loss of neurons. It is the case observed in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This review gives a detailed account of the microglia-mediated neuroinflammation in various neurodegenerative diseases. Hence, resolving chronic inflammation mediated by microglia bears great promise as a novel treatment strategy to reduce neuronal damage and to foster a permissive environment for further regeneration effort.
Collapse
Affiliation(s)
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
10
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
11
|
Abstract
Significant advancements have been made in unraveling and understanding the non-coding elements of the human genome. New insights into the structure and function of noncoding RNAs have emerged. Their relevance in the context of both physiological cellular homeostasis and human diseases is getting appreciated. As a result, exploration of noncoding RNAs, in particular microRNAs (miRs), as therapeutic agents or targets of therapeutic strategies is under way. This review summarizes and discusses in depth the current literature on the role of miRs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Salil Sharma
- Department of Psychological and Brain Sciences, The Linda and Jack Gill Center for Bimolecular Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, The Linda and Jack Gill Center for Bimolecular Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Abstract
To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time.
Collapse
Affiliation(s)
| | - Paola Piccini
- Correspondence to: Professor Paola Piccini, Imperial CollegeLondon, Hammersmith Hospital, Neurology Imaging Unit, 1stfloor, B-Block, Du Cane Road, London, W12 0NN, UK. Tel.: +44 2083833773; Fax: +44 2033131783; E-mail:
| |
Collapse
|
13
|
Neuroimmunology of Huntington's Disease: Revisiting Evidence from Human Studies. Mediators Inflamm 2016; 2016:8653132. [PMID: 27578922 PMCID: PMC4992798 DOI: 10.1155/2016/8653132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by selective loss of neurons in the striatum and cortex, which leads to progressive motor dysfunction, cognitive decline, and psychiatric disorders. Although the cause of HD is well described—HD is a genetic disorder caused by a trinucleotide (CAG) repeat expansion in the gene encoding for huntingtin (HTT) on chromosome 4p16.3—the ultimate cause of neuronal death is still uncertain. Apart from impairment in systems for handling abnormal proteins, other metabolic pathways and mechanisms might contribute to neurodegeneration and progression of HD. Among these, inflammation seems to play a role in HD pathogenesis. The current review summarizes the available evidence about immune and/or inflammatory changes in HD. HD is associated with increased inflammatory mediators in both the central nervous system and periphery. Accordingly, there have been some attempts to slow HD progression targeting the immune system.
Collapse
|
14
|
Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol 2015; 16:256. [PMID: 26628058 PMCID: PMC4667491 DOI: 10.1186/s13059-015-0815-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023] Open
Abstract
Background Males and females differ in cognitive functions and emotional processing, which in part have been associated with baseline sex differences in gene expression in the medial prefrontal cortex. Nevertheless, a growing body of evidence suggests that sex differences in medial prefrontal cortex-dependent cognitive functions are attenuated by hormonal fluctuations within the menstrual cycle. Despite known genomic effects of ovarian hormones, the interaction of the estrous cycle with sex differences in gene expression in the medial prefrontal cortex remains unclear and warrants further investigations. Results We undertake a large-scale characterization of sex differences and their interaction with the estrous cycle in the adult medial prefrontal cortex transcriptome and report that females with high and low ovarian hormone levels exhibited a partly opposed sexually biased transcriptome. The extent of regulation within females vastly exceeds sex differences, and supports a multi-level reorganization of synaptic function across the estrous cycle. Genome-wide analysis of the transcription factor early growth response 1 binding highlights its role in controlling the synapse-related genes varying within females. Conclusions We uncover a critical influence of the estrous cycle on the adult rat medial prefrontal cortex transcriptome resulting in partly opposite sex differences in proestrus when compared to diestrus females, and we discovered a direct role for Early Growth Response 1 in this opposite regulation. In addition to illustrating the importance of accounting for the estrous cycle in females, our data set the ground for a better understanding of the female specificities in cognition and emotional processing. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0815-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
15
|
Politis M, Lahiri N, Niccolini F, Su P, Wu K, Giannetti P, Scahill RI, Turkheimer FE, Tabrizi SJ, Piccini P. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. Neurobiol Dis 2015; 83:115-21. [PMID: 26297319 DOI: 10.1016/j.nbd.2015.08.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/19/2015] [Accepted: 08/12/2015] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown activation of the immune system and altered immune response in Huntington's disease (HD) gene carriers. Here, we hypothesized that peripheral and central immune responses could be concurrent pathophysiological events and represent a global innate immune response to the toxic effects of mutant huntingtin in HD gene carriers. We sought to investigate our hypothesis using [(11)C]PK11195 PET as a translocator protein (TSPO) marker of central microglial activation, together with assessment of peripheral plasma cytokine levels in a cohort of premanifest HD gene carriers who were more than a decade from predicted symptomatic conversion. Data were also compared to those from a group of healthy controls matched for age and gender. We found significantly increased peripheral plasma IL-1β levels in premanifest HD gene carriers compared to the group of normal controls (P=0.018). Premanifest HD gene carriers had increased TSPO levels in cortical, basal ganglia and thalamic brain regions (P<0.001). Increased microglial activation in somatosensory cortex correlated with higher plasma levels of IL-1β (rs=0.87, P=0.013), IL-6 (rs=0.85, P=0.013), IL-8 (rs=0.68, P=0.045) and TNF-α (rs=0.79; P=0.013). Our findings provide first in vivo evidence for an association between peripheral and central immune responses in premanifest HD gene carriers, and provide further supporting evidence for the role of immune dysfunction in the pathogenesis of HD.
Collapse
Affiliation(s)
- Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Nayana Lahiri
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paul Su
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Kit Wu
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paolo Giannetti
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Rachael I Scahill
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Paola Piccini
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Smalley JL, Breda C, Mason RP, Kooner G, Luthi-Carter R, Gant TW, Giorgini F. Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington's disease models. J Mol Med (Berl) 2015; 94:235-45. [PMID: 26428929 PMCID: PMC4762922 DOI: 10.1007/s00109-015-1344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Huntington's disease (HD) is a genetic disease caused by a CAG trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin (HTT) protein, ultimately leading to neuronal loss and consequent cognitive decline and death. As no treatments for HD currently exist, several chemical screens have been performed using cell-based models of mutant HTT toxicity. These screens measured single disease-related endpoints, such as cell death, but had low 'hit rates' and limited dimensionality for therapeutic detection. Here, we have employed gene expression microarray analysis of HD samples--a snapshot of the expression of 25,000 genes--to define a gene expression signature for HD from publically available data. We used this information to mine a database for chemicals positively and negatively correlated to the HD gene expression signature using the Connectivity Map, a tool for comparing large sets of gene expression patterns. Chemicals with negatively correlated expression profiles were highly enriched for protective characteristics against mutant HTT fragment toxicity in in vitro and in vivo models. This study demonstrates the potential of using gene expression to mine chemical activity, guide chemical screening, and detect potential novel therapeutic compounds. KEY MESSAGES Single-endpoint chemical screens have low therapeutic discovery hit-rates. In the context of HD, we guided a chemical screen using gene expression data. The resulting chemicals were highly enriched for suppressors of mutant HTT fragment toxicity. This study provides a proof of concept for wider usage in all chemical screening.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.,MRC Toxicology Unit, University of Leicester, Leicester, LE1 7HB, UK
| | - Carlo Breda
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Gurdeep Kooner
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ruth Luthi-Carter
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Timothy W Gant
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 7HB, UK.,Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Oxfordshire, OX11 0RQ, UK
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
17
|
The role of the immune system in triplet repeat expansion diseases. Mediators Inflamm 2015; 2015:873860. [PMID: 25873774 PMCID: PMC4385693 DOI: 10.1155/2015/873860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022] Open
Abstract
Trinucleotide repeat expansion disorders (TREDs) are a group of dominantly inherited neurological diseases caused by the expansion of unstable repeats in specific regions of the associated genes. Expansion of CAG repeat tracts in translated regions of the respective genes results in polyglutamine- (polyQ-) rich proteins that form intracellular aggregates that affect numerous cellular activities. Recent evidence suggests the involvement of an RNA toxicity component in polyQ expansion disorders, thus increasing the complexity of the pathogenic processes. Neurodegeneration, accompanied by reactive gliosis and astrocytosis is the common feature of most TREDs, which may suggest involvement of inflammation in pathogenesis. Indeed, a number of immune response markers have been observed in the blood and CNS of patients and mouse models, and the activation of these markers was even observed in the premanifest stage of the disease. Although inflammation is not an initiating factor of TREDs, growing evidence indicates that inflammatory responses involving astrocytes, microglia, and the peripheral immune system may contribute to disease progression. Herein, we review the involvement of the immune system in the pathogenesis of triplet repeat expansion diseases, with particular emphasis on polyglutamine disorders. We also present various therapeutic approaches targeting the dysregulated inflammation pathways in these diseases.
Collapse
|
18
|
Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Muñoz E, Sagredo O. Neuroprotective properties of cannabigerol in Huntington's disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 2015; 12:185-99. [PMID: 25252936 PMCID: PMC4322067 DOI: 10.1007/s13311-014-0304-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington's disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms. Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD. CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity. In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP. We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice. Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment. We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals. In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.
Collapse
Affiliation(s)
- Sara Valdeolivas
- />Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, 28040 Spain
- />Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad Complutense, Madrid, Spain
- />Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Irene Cantarero
- />Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC)/Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | | | - Eduardo Muñoz
- />Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC)/Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Onintza Sagredo
- />Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, 28040 Spain
- />Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad Complutense, Madrid, Spain
- />Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
19
|
Abstract
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Collapse
|
20
|
Spielman LJ, Little JP, Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol 2014; 273:8-21. [PMID: 24969117 DOI: 10.1016/j.jneuroim.2014.06.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022]
Abstract
Obesity is a growing epidemic that contributes to several brain disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Obesity could promote these diseases through several different mechanisms. Here we review evidence supporting the involvement of two recently recognized factors linking obesity with neurodegeneration: the induction of pro-inflammatory cytokines and onset of insulin and insulin-like growth factor 1 (IGF-1) resistance. Excess peripheral pro-inflammatory mediators, some of which can cross the blood brain barrier, may trigger neuroinflammation, which subsequently exacerbates neurodegeneration. Insulin and IGF-1 resistance leads to weakening of neuroprotective signaling by these molecules and can contribute to onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lindsay J Spielman
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7 Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7 Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7 Canada.
| |
Collapse
|
21
|
Dysregulation of system xc(-) expression induced by mutant huntingtin in a striatal neuronal cell line and in R6/2 mice. Neurochem Int 2014; 76:59-69. [PMID: 25004085 DOI: 10.1016/j.neuint.2014.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/18/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of Huntington's disease (HD), however, the origin of the oxidative stress is unknown. System xc(-) plays a role in the import of cystine to synthesize the antioxidant glutathione. We found in the STHdh(Q7/Q7) and STHdh(Q111/Q111) striatal cell lines, derived from neuronal precursor cells isolated from knock-in mice containing 7 or 111 CAG repeats in the huntingtin gene, that there is a decrease in system xc(-) function. System xc(-) is composed of two proteins, the substrate specific transporter, xCT, and an anchoring protein, CD98. The decrease in function in system xc(-) that we observed is caused by a decrease in xCT mRNA and protein expression in the STHdh(Q111/Q111) cells. In addition, we found a decrease in protein and mRNA expression in the transgenic R6/2 HD mouse model at 6weeks of age. STHdh(Q111/Q111) cells have lower basal levels of GSH and higher basal levels of ROS. Acute inhibition of system xc(-) causes greater increase in oxidative stress in the STHdh(Q111/Q111) cells than in the STHdh(Q7/Q7) cells. These results suggest that a defect in the regulation of xCT may be involved in the pathogenesis of HD by compromising xCT expression and increasing susceptibility to oxidative stress.
Collapse
|
22
|
Alto LT, Chen X, Ruhn KA, Treviño I, Tansey MG. AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease. PLoS One 2014; 9:e96544. [PMID: 24824433 PMCID: PMC4019512 DOI: 10.1371/journal.pone.0096544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
CNS inflammation is a hallmark of neurodegenerative disease, and recent studies suggest that the inflammatory response may contribute to neuronal demise. In particular, increased tumor necrosis factor (TNF) signaling is implicated in the pathology of both Parkinson's disease (PD) and Alzheimer's disease (AD). We have previously shown that localized gene delivery of dominant negative TNF to the degenerating brain region can limit pathology in animal models of PD and AD. TNF is upregulated in Huntington's disease (HD), like in PD and AD, but it is unknown whether TNF signaling contributes to neuronal degeneration in HD. We used in vivo gene delivery to test whether selective reduction of soluble TNF signaling could attenuate medium spiny neuron (MSN) degeneration in the YAC128 transgenic (TG) mouse model of Huntington's disease (HD). AAV vectors encoding cDNA for dominant-negative tumor necrosis factor (DN-TNF) or GFP (control) were injected into the striatum of young adult wild type WT and YAC128 TG mice and achieved 30-50% target coverage. Expression of dominant negative TNF protein was confirmed immunohistologically and biochemically and was maintained as mice aged to one year, but declined significantly over time. However, the extent of striatal DN-TNF gene transfer achieved in our studies was not sufficient to achieve robust effects on neuroinflammation, rescue degenerating MSNs or improve motor function in treated mice. Our findings suggest that alternative drug delivery strategies should be explored to determine whether greater target coverage by DN-TNF protein might afford some level of neuroprotection against HD-like pathology and/or that soluble TNF signaling may not be the primary driver of striatal neuroinflammation and MSN loss in YAC128 TG mice.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Xi Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelly A. Ruhn
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Isaac Treviño
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Malú G. Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Valor LM. Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective. Mol Neurobiol 2014; 51:406-23. [PMID: 24788684 PMCID: PMC4309905 DOI: 10.1007/s12035-014-8715-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022]
Abstract
Transcriptional dysregulation in Huntington’s disease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disruption in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and noncoding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microarray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtained from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain,
| |
Collapse
|
24
|
Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C, Cattaneo E, Gage FH, Cleveland DW, Glass CK. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 2014; 17:513-21. [PMID: 24584051 DOI: 10.1038/nn.3668] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an extended polyglutamine repeat in the N terminus of the Huntingtin protein (HTT). Reactive microglia and elevated cytokine levels are observed in the brains of HD patients, but the extent to which neuroinflammation results from extrinsic or cell-autonomous mechanisms in microglia is unknown. Using genome-wide approaches, we found that expression of mutant Huntingtin (mHTT) in microglia promoted cell-autonomous pro-inflammatory transcriptional activation by increasing the expression and transcriptional activities of the myeloid lineage-determining factors PU.1 and C/EBPs. We observed elevated levels of PU.1 and its target genes in the brains of mouse models and individuals with HD. Moreover, mHTT-expressing microglia exhibited an increased capacity to induce neuronal death ex vivo and in vivo in the presence of sterile inflammation. These findings suggest a cell-autonomous basis for enhanced microglia reactivity that may influence non-cell-autonomous HD pathogenesis.
Collapse
Affiliation(s)
- Andrea Crotti
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Christopher Benner
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Bilal E Kerman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA
| | - David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Clotilde Lagier-Tourenne
- 1] Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. [2] Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Chiara Zuccato
- Department of BioSciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Department of BioSciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Don W Cleveland
- 1] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA. [2] Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Christopher K Glass
- 1] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA. [2] Department of Medicine, University of California, La Jolla, San Diego, California, USA
| |
Collapse
|
25
|
Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 2013; 714:486-97. [PMID: 23850946 DOI: 10.1016/j.ejphar.2013.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Abstract
Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.
Collapse
|
26
|
Ghasemi R, Dargahi L, Haeri A, Moosavi M, Mohamed Z, Ahmadiani A. Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders. Mol Neurobiol 2013; 47:1045-65. [PMID: 23335160 DOI: 10.1007/s12035-013-8404-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/03/2013] [Indexed: 12/18/2022]
Abstract
Arduous efforts have been made in the last three decades to elucidate the role of insulin in the brain. A growing number of evidences show that insulin is involved in several physiological function of the brain such as food intake and weight control, reproduction, learning and memory, neuromodulation and neuroprotection. In addition, it is now clear that insulin and insulin disturbances particularly diabetes mellitus may contribute or in some cases play the main role in development and progression of neurodegenerative and neuropsychiatric disorders. Focusing on the molecular mechanisms, this review summarizes the recent findings on the involvement of insulin dysfunction in neurological disorders like Alzheimer's disease, Parkinson's disease and Huntington's disease and also mental disorders like depression and psychosis sharing features of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
27
|
Seredenina T, Luthi-Carter R. What have we learned from gene expression profiles in Huntington's disease? Neurobiol Dis 2012; 45:83-98. [DOI: 10.1016/j.nbd.2011.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 12/22/2022] Open
|
28
|
Giorgini F. Is modulating translation a therapeutic option for Huntington's disease? Neurodegener Dis Manag 2011; 1:89-91. [PMID: 24527061 DOI: 10.2217/nmt.11.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Flaviano Giorgini
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK; Tel.: +44 116 252 3485; ;
| |
Collapse
|
29
|
Costain WJ, Haqqani AS, Rasquinha I, Giguere MS, Slinn J, Zurakowski B, Stanimirovic DB. Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing. Proteomics 2011; 10:3272-91. [PMID: 20718007 DOI: 10.1002/pmic.200900447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia (CI) induces dramatic changes in synaptic structure and function that precedes delayed post-ischemic neuronal death. Here, a proteomic analysis was used to identify the effects of focal CI on synaptosomal protein levels. Contralateral and ipsilateral synaptosomes, prepared from adult mice subjected to 60 min middle cerebral artery occlusion, were isolated following 3, 6 and 20 h of reperfusion. Synaptosomal protein samples (n=3) were labeled using the cleavable ICAT system prior to analysis with nanoLC-MS/MS. Each sample was analyzed by LC-MS to identify differential expressions using InDEPT software and differentially expressed peptides were identified by targeted LC-MS/MS. A total of 62 differentially expressed proteins were identified and Gene Ontology classification (cellular component) indicated that the majority of the proteins were located in the mitochondria and other components consistent with synaptic localization. The observed alterations in synaptic protein levels poorly correlated with gene expression, indicating the involvement of post-transcriptional regulatory mechanisms in determining post-ischemic synaptic protein content. Additionally, immunohistochemistry analysis of prosaposin (Psap) and saposin C (SapC) indicates that CI disrupts Psap processing and glycosphingolipid metabolism. These results demonstrate that the synapse is adversely affected by CI and may play a role in mediating post-ischemic neuronal viability.
Collapse
Affiliation(s)
- Willard J Costain
- Glycosyltransferases and Neuroglycomics, Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that currently has no cure. In order to develop effective treatment, an understanding of HD pathogenesis and the evaluation of therapeutic efficacy of novel medications with the aid of animal models are critical steps. Transgenic animals sharing similar genetic defects that lead to HD have provided important discoveries in HD mechanisms that cell models are not able to replicate, which include psychiatric impairment, cognitive behavioral impact, and motor functions. Although transgenic HD rodent models have been widely used in HD research, it is clear that an animal model with comparable physiology to man, similar genetic defects that lead to HD, and the ability to develop similar cognitive and behavioral impairments is critical for explaining HD pathogenesis and the development of cures. Compared to HD rodents, HD transgenic nonhuman primates have not only developed comparable neuropathology but also present HD clinical features such as rigidity, seizure, dystonia, bradykinesia, and chorea that no other animal model has been able to replicate. Distinctive degenerating neurons and the accumulation of neuropil aggregates observed in HD monkey brain strongly support the hypothesis that the unique neuropathogenic events seen in HD monkey brain recapitulate HD in man. The latest development of transgenic HD primates has opened a new era of animal modeling that better represents human genetic disorders such as HD, which will accelerate the development of diagnostic tools and identifying novel biomarkers through longitudinal studies including gene expression and metabolite profiling, and noninvasive imaging. Furthermore, novel treatments with predictable efficacy in human patients can be developed using HD monkeys because of comparable neuropathology and clinical features.
Collapse
Affiliation(s)
- Shang-Hsun Yang
- Department of Physiology, National Cheng Kung University Medical College, 1, University Road, Tainan, 70101, Taiwan,
| | | |
Collapse
|
31
|
Tauber E, Miller-Fleming L, Mason RP, Kwan W, Clapp J, Butler NJ, Outeiro TF, Muchowski PJ, Giorgini F. Functional gene expression profiling in yeast implicates translational dysfunction in mutant huntingtin toxicity. J Biol Chem 2010; 286:410-9. [PMID: 21044956 PMCID: PMC3012999 DOI: 10.1074/jbc.m110.101527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the huntingtin (htt) protein. To uncover candidate therapeutic targets and networks involved in pathogenesis, we integrated gene expression profiling and functional genetic screening to identify genes critical for mutant htt toxicity in yeast. Using mRNA profiling, we have identified genes differentially expressed in wild-type yeast in response to mutant htt toxicity as well as in three toxicity suppressor strains: bna4Δ, mbf1Δ, and ume1Δ. BNA4 encodes the yeast homolog of kynurenine 3-monooxygenase, a promising drug target for HD. Intriguingly, despite playing diverse cellular roles, these three suppressors share common differentially expressed genes involved in stress response, translation elongation, and mitochondrial transport. We then systematically tested the ability of the differentially expressed genes to suppress mutant htt toxicity when overexpressed and have thereby identified 12 novel suppressors, including genes that play a role in stress response, Golgi to endosome transport, and rRNA processing. Integrating the mRNA profiling data and the genetic screening data, we have generated a robust network that shows enrichment in genes involved in rRNA processing and ribosome biogenesis. Strikingly, these observations implicate dysfunction of translation in the pathology of HD. Recent work has shown that regulation of translation is critical for life span extension in Drosophila and that manipulation of this process is protective in Parkinson disease models. In total, these observations suggest that pharmacological manipulation of translation may have therapeutic value in HD.
Collapse
Affiliation(s)
- Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tebbenkamp ATN, Borchelt DR. Analysis of chaperone mRNA expression in the adult mouse brain by meta analysis of the Allen Brain Atlas. PLoS One 2010; 5:e13675. [PMID: 21060842 PMCID: PMC2965669 DOI: 10.1371/journal.pone.0013675] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/04/2010] [Indexed: 12/18/2022] Open
Abstract
The pathology of many neurodegenerative diseases is characterized by the accumulation of misfolded and aggregated proteins in various cell types and regional substructures throughout the central and peripheral nervous systems. The accumulation of these aggregated proteins signals dysfunction of cellular protein homeostatic mechanisms such as the ubiquitin/proteasome system, autophagy, and the chaperone network. Although there are several published studies in which transcriptional profiling has been used to examine gene expression in various tissues, including tissues of neurodegenerative disease models, there has not been a report that focuses exclusively on expression of the chaperone network. In the present study, we used the Allen Brain Atlas online database to analyze chaperone expression levels. This database utilizes a quantitative in situ hybridization approach and provides data on 270 chaperone genes within many substructures of the adult mouse brain. We determined that 256 of these chaperone genes are expressed at some level. Surprisingly, relatively few genes, only 30, showed significant variations in levels of mRNA across different substructures of the brain. The greatest degree of variability was exhibited by genes of the DnaJ co-chaperone, Tetratricopeptide repeat, and the HSPH families. Our analysis provides a valuable resource towards determining how variations in chaperone gene expression may modulate the vulnerability of specific neuronal populations of mammalian brain.
Collapse
Affiliation(s)
- Andrew T. N. Tebbenkamp
- Department of Neuroscience, SantaFe Health Alzheimer's Disease Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - David R. Borchelt
- Department of Neuroscience, SantaFe Health Alzheimer's Disease Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
33
|
Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiol Dis 2010; 39:28-39. [PMID: 20170730 DOI: 10.1016/j.nbd.2010.02.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a devastating disorder that affects approximately 1 in 10,000 people and is accompanied by neuronal dysfunction and neurodegeneration. HD manifests as a progressive chorea, a decline in mental abilities accompanied by behavioural, emotional and psychiatric problems followed by, dementia, and ultimately, death. The molecular pathology of HD is complex but includes widespread transcriptional dysregulation. Although many transcriptional regulatory molecules have been implicated in the pathogenesis of HD, a growing body of evidence points to the pivotal role of RE1 Silencing Transcription Factor (REST). In HD, REST, translocates from the cytoplasm to the nucleus in neurons resulting in repression of key target genes such as BDNF. Since these original observations, several thousand direct target genes of REST have been identified, including numerous non-coding RNAs including both microRNAs and long non-coding RNAs, several of which are dysregulated in HD. More recently, evidence is emerging that hints at epigenetic abnormalities in HD brain. This in turn, promotes the notion that targeting the epigenetic machinery may be a useful strategy for treatment of some aspects of HD. REST also recruits a host of histone and chromatin modifying activities that can regulate the local epigenetic signature at REST target genes. Collectively, these observations present REST as a hub that coordinates transcriptional, posttranscriptional and epigenetic programmes, many of which are disrupted in HD. We identify several spokes emanating from this REST hub that may represent useful sites to redress REST dysfunction in HD.
Collapse
Affiliation(s)
- Noel J Buckley
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | | | |
Collapse
|
34
|
Becanovic K, Pouladi MA, Lim RS, Kuhn A, Pavlidis P, Luthi-Carter R, Hayden MR, Leavitt BR. Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum Mol Genet 2010; 19:1438-52. [PMID: 20089533 DOI: 10.1093/hmg/ddq018] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Evaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel: Affymetrix and Illumina. The data from these two powerful platforms were integrated to create a combined rank list, thereby revealing the identity of additional genes that proved to be differentially expressed between YAC128 and control mice. Using this approach, we identified 13 genes to be differentially expressed between YAC128 and controls which were validated by quantitative real-time PCR in independent cohorts of animals. In addition, we analyzed additional time points relevant to disease pathology: 3, 6 and 9 months of age. Here we present data showing the evolution of changes in the expression of selected genes: Wt1, Pcdh20 and Actn2 RNA levels change as early as 3 months of age, whereas Gsg1l, Sfmbt2, Acy3, Polr2a and Ppp1r9a RNA expression levels are affected later, at 12 and 24 months of age. We also analyzed the expression of these 13 genes in human HD and control brain, thereby revealing changes in SLC45A3, PCDH20, ACTN2, DDAH1 and PPP1R9A RNA expression. Further study of these genes may unravel novel pathways contributing to HD pathogenesis. DDBJ/EMBL/GenBank accession no: GSE19677.
Collapse
Affiliation(s)
- Kristina Becanovic
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | | | | | |
Collapse
|
35
|
An integrated systems analysis implicates EGR1 downregulation in simian immunodeficiency virus encephalitis-induced neural dysfunction. J Neurosci 2009; 29:12467-76. [PMID: 19812322 DOI: 10.1523/jneurosci.3180-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus (HIV)-associated dementia (HAD) is a syndrome occurring in HIV-infected patients with advanced disease that likely develops as a result of macrophage and microglial activation as well as other immune events triggered by virus in the central nervous system. The most relevant experimental model of HAD, rhesus macaques exhibiting simian immunodeficiency virus (SIV) encephalitis (SIVE), closely reproduces the human disease and has been successfully used to advance our understanding of mechanisms underlying HAD. In this study we integrate gene expression data from uninfected and SIV-infected hippocampus with a human protein interaction network and discover modules of genes whose expression patterns distinguish these two states, to facilitate identification of neuronal genes that may contribute to SIVE/HIV cognitive deficits. Using this approach we identify several downregulated candidate genes and select one, EGR1, a key molecule in hippocampus-related learning and memory, for further study. We show that EGR1 is downregulated in SIV-infected hippocampus and that it can be downregulated in differentiated human neuroblastoma cells by treatment with CCL8, a product of activated microglia. Integration of expression data with protein interaction data to discover discriminatory modules of interacting proteins can be usefully used to prioritize differentially expressed genes for further study. Investigation of EGR1, selected in this manner, indicates that its downregulation in SIVE may occur as a consequence of the host response to infection, leading to deficits in cognition.
Collapse
|
36
|
Lu C, Schoenfeld R, Shan Y, Tsai C, Hammock B, Cortopassi G. Frataxin deficiency induces Schwann cell inflammation and death. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:1052-61. [PMID: 19679182 PMCID: PMC3563672 DOI: 10.1016/j.bbadis.2009.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 06/18/2009] [Accepted: 07/27/2009] [Indexed: 12/15/2022]
Abstract
Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreich's ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.
Collapse
Affiliation(s)
- Chunye Lu
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Robert Schoenfeld
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Yuxi Shan
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Cindy Tsai
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Bruce Hammock
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| |
Collapse
|
37
|
Raychaudhuri S, Dey S, Bhattacharyya NP, Mukhopadhyay D. The role of intrinsically unstructured proteins in neurodegenerative diseases. PLoS One 2009; 4:e5566. [PMID: 19440375 PMCID: PMC2679209 DOI: 10.1371/journal.pone.0005566] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 03/24/2009] [Indexed: 11/19/2022] Open
Abstract
The number and importance of intrinsically disordered proteins (IUP), known to be involved in various human disorders, are growing rapidly. To test for the generalized implications of intrinsic disorders in proteins involved in Neurodegenerative diseases, disorder prediction tools have been applied to three datasets comprising of proteins involved in Huntington Disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD). Results show, in general, proteins in disease datasets possess significantly enhanced intrinsic unstructuredness. Most of these disordered proteins in the disease datasets are found to be involved in neuronal activities, signal transduction, apoptosis, intracellular traffic, cell differentiation etc. Also these proteins are found to have more number of interactors and hence as the proportion of disorderedness (i.e., the length of the unfolded stretch) increased, the size of the interaction network simultaneously increased. All these observations reflect that, “Moonlighting” i.e. the contextual acquisition of different structural conformations (transient), eventually may allow these disordered proteins to act as network “hubs” and thus they may have crucial influences in the pathogenecity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Swasti Raychaudhuri
- Structural Genomics Section, Saha Institute of Nuclear Physics, Kolkata, India
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sucharita Dey
- Structural Genomics Section, Saha Institute of Nuclear Physics, Kolkata, India
| | - Nitai P. Bhattacharyya
- Structural Genomics Section, Saha Institute of Nuclear Physics, Kolkata, India
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Debashis Mukhopadhyay
- Structural Genomics Section, Saha Institute of Nuclear Physics, Kolkata, India
- * E-mail:
| |
Collapse
|
38
|
Zabel C, Mao L, Woodman B, Rohe M, Wacker MA, Kläre Y, Koppelstätter A, Nebrich G, Klein O, Grams S, Strand A, Luthi-Carter R, Hartl D, Klose J, Bates GP. A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. Mol Cell Proteomics 2008; 8:720-34. [PMID: 19043139 DOI: 10.1074/mcp.m800277-mcp200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is fatal in humans within 15-20 years of symptomatic disease. Although late stage HD has been studied extensively, protein expression changes that occur at the early stages of disease and during disease progression have not been reported. In this study, we used a large two-dimensional gel/mass spectrometry-based proteomics approach to investigate HD-induced protein expression alterations and their kinetics at very early stages and during the course of disease. The murine HD model R6/2 was investigated at 2, 4, 6, 8, and 12 weeks of age, corresponding to absence of disease and early, intermediate, and late stage HD. Unexpectedly the most HD stage-specific protein changes (71-100%) as well as a drastic alteration (almost 6% of the proteome) in protein expression occurred already as early as 2 weeks of age. Early changes included mainly the up-regulation of proteins involved in glycolysis/gluconeogenesis and the down-regulation of the actin cytoskeleton. This suggests a period of highly variable protein expression that precedes the onset of HD phenotypes. Although an up-regulation of glycolysis/gluconeogenesis-related protein alterations remained dominant during HD progression, late stage alterations at 12 weeks showed an up-regulation of proteins involved in proteasomal function. The early changes in HD coincide with a peak in protein alteration during normal mouse development at 2 weeks of age that may be responsible for these massive changes. Protein and mRNA data sets showed a large overlap on the level of affected pathways but not single proteins/mRNAs. Our observations suggest that HD is characterized by a highly dynamic disease pathology not represented by linear protein concentration alterations over the course of disease.
Collapse
Affiliation(s)
- Claus Zabel
- Institute for Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 2008; 85:433-51. [PMID: 18554773 DOI: 10.1016/j.pneurobio.2008.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/12/2008] [Accepted: 04/28/2008] [Indexed: 01/09/2023]
Abstract
Retinoids are important signals in brain development. They regulate gene transcription by binding to retinoic acid receptors (RAR) and, as was discovered recently, a peroxisome proliferator-activated receptor (PPAR). Traditional ligands of PPAR are best known for their functions in lipid metabolism and inflammation. RAR and PPAR are ligand-activated transcription factors, which share members of the retinoid X receptor (RXR) family as heterodimeric partners. Both signal transduction pathways have recently been implicated in the progression of neurodegenerative and psychiatric diseases. Since inflammatory processes contribute to various neurodegenerative diseases, the anti-inflammatory activity of retinoids and PPARgamma agonists recommends them as potential therapeutic targets. In addition, genetic linkage studies, transgenic mouse models and experiments with vitamin A deprivation provide evidence that retinoic acid signaling is directly involved in physiology and pathology of motoneurons, of the basal ganglia and of cognitive functions. The activation of PPAR/RXR and RAR/RXR transcription factors has therefore been proposed as a therapeutic strategy in disorders of the central nervous system.
Collapse
|
40
|
Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis 2007; 29:438-45. [PMID: 18082412 DOI: 10.1016/j.nbd.2007.11.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/07/2007] [Accepted: 11/05/2007] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a dominantly-inherited neurodegenerative disorder which is incurable and ultimately fatal. HD is characterised by widespread mRNA dysregulation, particularly in neurons of the forebrain, by mechanisms which are not fully understood. Such dysregulation has been demonstrated to result, in part, from aberrant nuclear localisation of the transcriptional repressor, REST. Here, we show that expression of a number of neuronal-specific microRNAs is also dysregulated in HD tissues, probably as a result of increased repression by REST. This phenomenon is observed in both murine models of HD and in the brains of human HD sufferers. MicroRNA loss is reflected in increased levels of a number of target messenger RNAs. These data are the first to demonstrate a role for microRNAs in HD, and indicate that the molecular aetiology of HD is reflected in a loss of neuronal identity, caused in part by dysregulation of both transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Rory Johnson
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore.
| | | | | | | | | | | |
Collapse
|
41
|
Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 2007; 27:11056-64. [PMID: 17928447 DOI: 10.1523/jneurosci.1941-07.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Collapse
|
42
|
Liu X, Miller BR, Rebec GV, Clemmer DE. Protein expression in the striatum and cortex regions of the brain for a mouse model of Huntington's disease. J Proteome Res 2007; 6:3134-42. [PMID: 17625815 PMCID: PMC2577606 DOI: 10.1021/pr070092s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liquid chromatography (LC) coupled with mass spectrometry (MS) and database assignment methods have been used to conduct a large-scale proteome survey of the R6/2 mouse model of Huntington's disease (HD). Although the neuropathological mechanisms of HD are not known, the mutant huntingtin gene that causes the disease is thought to alter gene transcription, leading to a cascade of neurotoxic events. In this report, we have focused on characterizing changes in the brain proteome associated with HD pathophysiology. Differences in the relative abundances of proteins (R6/2 compared to wild type) in brain tissue from the striatum and cortex, two primary loci of dysfunction in HD, were assessed by using a label-free approach based on calibrations to internal standards. In total, assignments were made for approximately 400 proteins. A set of criteria was used to establish 160 high confidence assignments, approximately 30% of which appear to show differences in expression relative to wild type (WT) animals. Many of the proteins that were differentially expressed are known to be associated with neurotransmission and likely play key roles in HD etiology. This study is the first to report that the majority of differentially expressed proteins in the striatum are up-regulated, while the majority of the expressed proteins in the cortex are down-regulated. The differentially expressed proteins identified in this proteomic screen may be potential biomarkers and drug targets for HD and may further our understanding of the disease pathology.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
43
|
Cha JHJ. Transcriptional signatures in Huntington's disease. Prog Neurobiol 2007; 83:228-48. [PMID: 17467140 PMCID: PMC2449822 DOI: 10.1016/j.pneurobio.2007.03.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/08/2007] [Accepted: 03/22/2007] [Indexed: 11/17/2022]
Abstract
While selective neuronal death has been an influential theme in Huntington's disease (HD), there is now a preponderance of evidence that significant neuronal dysfunction precedes frank neuronal death. The best evidence for neuronal dysfunction is the observation that gene expression is altered in HD brain, suggesting that transcriptional dysregulation is a central mechanism. Studies of altered gene expression began with careful observations of postmortem human HD brain and subsequently were accelerated by the development of transgenic mouse models. The application of DNA microarray technology has spurred tremendous progress with respect to the altered transcriptional processes that occur in HD, through gene expression studies of both transgenic mouse models as well as cellular models of HD. Gene expression profiles are remarkably comparable across these models, bolstering the idea that transcriptional signatures reflect an essential feature of disease pathogenesis. Finally, gene expression studies have been applied to human HD, thus not only validating the approach of using model systems, but also solidifying the idea that altered transcription is a key mechanism in HD pathogenesis. In the future, gene expression profiling will be used as a readout in clinical trials aimed at correcting transcriptional dysregulation in Huntington's disease.
Collapse
Affiliation(s)
- Jang-Ho J Cha
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street/B114-2000, Charlestown, MA 02129-4404, USA.
| |
Collapse
|