1
|
Lee Y, English EL, Schwartzmann CM, Liu Y, Krueger JM. Sleep loss-induced oncogenic pathways are mediated via the neuron-specific interleukin-1 receptor accessory protein (AcPb). Brain Behav Immun 2024; 123:411-421. [PMID: 39343106 DOI: 10.1016/j.bbi.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Interleukin-1β (IL1), a pleiotropic cytokine, is involved in sleep regulation, tumor ontogeny, and immune responses. IL1 receptor adaptor proteins, including the IL1 receptor accessory protein (AcP), and its neuron-specific isoform, AcPb, are required for IL1 signaling. The AcPb isoform is resultant from alternate splicing of the AcP transcript. Our previous studies using AcPb null (AcPb-/-) mice characterized its participation in sleep regulation and emergent neuronal/glial network properties. Here, we investigated the impact of acute sleep disruption (SD) on brain cancer-related pathways in wild-type (WT) and AcPb-/- mice, employing RNA sequencing methods. In WT mice, SD increased AcPb mRNA levels, but not AcP mRNA, confirming prior similar work in rats. Transcriptome and pathway enrichment analyses demonstrated significant alterations in cancer, immune, and viral disease-related pathways in WT mice after SD, which were attenuated in AcPb-/- mice including multiple upregulated Src phosphorylation-signaling-dependent genes associated with cancer progression and metastasis. Our RNAseq findings, were analyzed within the context of The Cancer Genome Atlas Program (TCGA) data base; revealing an upregulation of sleep- and cancer-linked genes (e.g., IL-17B, IL-17RA, LCN2) across various tumors, including brain tumors, compared to normal tissues. Sleep-linked factors, identified through TCGA analyses, significantly impact patient prognosis and survival, particularly in low-grade glioma (LGG) and glioblastoma multiforme (GBM) patients. Overall, our findings suggest that SD promotes a pro-tumor environment through AcPb-modulated pathways.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA; Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA.
| | - Erika L English
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Catherine M Schwartzmann
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; Genomics Core, Washington State University, Spokane, WA, USA
| | - James M Krueger
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
2
|
Krueger JM. Tripping on the edge of consciousness. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad039. [PMID: 37954093 PMCID: PMC10632728 DOI: 10.1093/sleepadvances/zpad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 11/14/2023]
Abstract
Herein the major accomplishments, trials and tribulations, and epiphanies experienced by James M. Krueger over the course of his career in sleep research are presented. They include the characterization of a) the supranormal EEG delta waves occurring during NREMS post sleep loss, b) Factor S as a muramyl peptide, c) the physiological roles of cytokines in sleep regulation, d) multiple other sleep regulatory substances, e) the dramatic changes in sleep over the course of infectious diseases, and f) sleep initiation within small neuronal/glial networks. The theory that the preservation of brain plasticity is the primordial sleep function is briefly discussed. These accomplishments resulted from collaborations with many outstanding scientists including James M. Krueger's mentors (John Pappenheimer and Manfred Karnovsky) and collaborators later in life, including Charles Dinarello, Louis Chedid, Mark Opp, Ferenc Obal jr., Dave Rector, Ping Taishi, Linda Toth, Jeannine Majde, Levente Kapas, Eva Szentirmai, Jidong Fang, Chris Davis, Sandip Roy, Tetsuya Kushikata, Fabio Garcia-Garcia, Ilia Karatsoreos, Mark Zielinski, and Alok De, plus many students, e.g. Jeremy Alt, Kathryn Jewett, Erika English, and Victor Leyva-Grado.
Collapse
Affiliation(s)
- James M Krueger
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, USA
| |
Collapse
|
3
|
Pinto MJ, Cottin L, Dingli F, Laigle V, Ribeiro LF, Triller A, Henderson F, Loew D, Fabre V, Bessis A. Microglial TNFα orchestrates protein phosphorylation in the cortex during the sleep period and controls homeostatic sleep. EMBO J 2023; 42:e111485. [PMID: 36385434 PMCID: PMC9811617 DOI: 10.15252/embj.2022111485] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep intensity is adjusted by the length of previous awake time, and under tight homeostatic control by protein phosphorylation. Here, we establish microglia as a new cellular component of the sleep homeostasis circuit. Using quantitative phosphoproteomics of the mouse frontal cortex, we demonstrate that microglia-specific deletion of TNFα perturbs thousands of phosphorylation sites during the sleep period. Substrates of microglial TNFα comprise sleep-related kinases such as MAPKs and MARKs, and numerous synaptic proteins, including a subset whose phosphorylation status encodes sleep need and determines sleep duration. As a result, microglial TNFα loss attenuates the build-up of sleep need, as measured by electroencephalogram slow-wave activity and prevents immediate compensation for loss of sleep. Our data suggest that microglia control sleep homeostasis by releasing TNFα which acts on neuronal circuitry through dynamic control of phosphorylation.
Collapse
Affiliation(s)
- Maria J Pinto
- Institut de Biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Léa Cottin
- Institut de Biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Florent Dingli
- Centre de Recherche, Laboratoire de Spectrométrie de Masse ProtéomiqueInstitut Curie, PSL Research UniversityParisFrance
| | - Victor Laigle
- Centre de Recherche, Laboratoire de Spectrométrie de Masse ProtéomiqueInstitut Curie, PSL Research UniversityParisFrance
| | - Luís F Ribeiro
- Center for Neuroscience and Cell Biology (CNC), Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Antoine Triller
- Institut de Biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine (NPS – IBPS)ParisFrance
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse ProtéomiqueInstitut Curie, PSL Research UniversityParisFrance
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine (NPS – IBPS)ParisFrance
| | - Alain Bessis
- Institut de Biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| |
Collapse
|
4
|
Anwar MM. Brain-printing biometrics underlying mechanism as an early diagnostic technique for Alzheimer's disease neurodegenerative type. Curr Res Physiol 2021; 4:216-222. [PMID: 34746841 PMCID: PMC8562242 DOI: 10.1016/j.crphys.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 10/29/2022] Open
Abstract
Early diagnosis of neurodegenerative diseases, especially Alzheimer's disease (AD), is essential for implementing the appropriate treatment protocols and controlling disease progression. Early AD diagnosis helps patients achieve the best therapeutic outcomes, lessening irreversible neurodegenerative damage and severe cognitive decline. The measurement of brain waves and structural modifications, including gray/white matter and brain volume, have recently been considered a promising approach for brain biometrics because of the inherent specificity, degree of confidentiality, and reproducibility. Brain printing biometrics (BPB) is thus becoming more commonly considered as tool for early AD detection. This review proposes using BPB as a tool for the detection of AD prior to the appearance of persistent hallmark depositions, including Aβ and tau protein aggregations in different brain regions. It also describes BPB authentication, a method of implementation, as well as potential outcomes.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.,Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
5
|
Dykstra-Aiello C, Koh KMS, Nguyen J, Xue M, Roy S, Krueger JM. A wake-like state in vitro induced by transmembrane TNF/soluble TNF receptor reverse signaling. Brain Behav Immun 2021; 94:245-258. [PMID: 33571627 PMCID: PMC8058269 DOI: 10.1016/j.bbi.2021.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) has sleep regulatory and brain development roles. TNF promotes sleep in vivo and in vitro while TNF inhibition diminishes sleep. Transmembrane (tm) TNF and the tmTNF receptors (Rs), are cleaved by tumor necrosis factor alpha convertase to produce soluble (s) TNF and sTNFRs. Reverse signaling occurs in cells expressing tmTNF upon sTNFR binding. sTNFR administration in vivo inhibits sleep, thus we hypothesized that a wake-like state in vitro would be induced by sTNFR-tmTNF reverse signaling. Somatosensory cortical neuron/glia co-cultures derived from male and female mice lacking both TNFRs (TNFRKO), or lacking TNF (TNFKO) and wildtype (WT) mice were plated onto six-well multi-electrode arrays. Daily one-hour electrophysiological recordings were taken on culture days 4 through 14. sTNFR1 (0.0, 0.3, 3, 30, 60, and 120 ng/µL) was administered on day 14. A final one-hour recording was taken on day 15. Four measures were characterized that are also used to define sleep in vivo: action potentials (APs), burstiness index (BI), synchronization of electrical activity (SYN), and slow wave power (SWP; 0.25-3.75 Hz). Development rates of these emergent electrophysiological properties increased in cells from mice lacking TNF or both TNFRs compared to cells from WT mice. Decreased SWP, after the three lowest doses (0.3, 3 and 30 ng/µL) of the sTNFR1, indicate a wake-like state in cells from TNFRKO mice. A wake-like state was also induced after 3 ng/µl sTNFR1 treatment in cells from TNFKO mice, which express the TNFR1 ligand, lymphotoxin alpha. Cells from WT mice showed no treatment effects. Results are consistent with prior studies demonstrating involvement of TNF in brain development, TNF reverse signaling, and sleep regulation in vivo. Further, the current demonstration of sTNFR1 induction of a wake-like state in vitro is consistent with the idea that small neuronal/glial circuits manifest sleep- and wake-like states analogous to those occurring in vivo. Finally, that sTNF forward signaling enhances sleep while sTNFR1 reverse signaling enhances a wake-like state is consistent with other sTNF/tmTNF/sTNFR1 brain actions having opposing activities.
Collapse
Affiliation(s)
- Cheryl Dykstra-Aiello
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States.
| | - Khia Min Sabrina Koh
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Joseph Nguyen
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Mengran Xue
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - James M Krueger
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| |
Collapse
|
6
|
Sultan ZW, Jaeckel ER, Krause BM, Grady SM, Murphy CA, Sanders RD, Banks MI. Electrophysiological signatures of acute systemic lipopolysaccharide-induced inflammation: potential implications for delirium science. Br J Anaesth 2021; 126:996-1008. [PMID: 33648701 PMCID: PMC8132883 DOI: 10.1016/j.bja.2020.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Novel preventive therapies are needed for postoperative delirium, which especially affects older patients. A mouse model is presented that captures inflammation-associated cortical slow wave activity (SWA) observed in patients, allowing exploration of the mechanistic role of prostaglandin-adenosine signalling. METHODS EEG and cortical cytokine measurements (interleukin 6, monocyte chemoattractant protein-1) were obtained from adult and aged mice. Behaviour, SWA, and functional connectivity were assayed before and after systemic administration of lipopolysaccharide (LPS)+piroxicam (cyclooxygenase inhibitor) or LPS+caffeine (adenosine receptor antagonist). To avoid the confounder of inflammation-driven changes in movement which alter SWA and connectivity, electrophysiological recordings were classified as occurring during quiescence or movement, and propensity score matching was used to match distributions of movement magnitude between baseline and post-LPS administration. RESULTS LPS produces increases in cortical cytokines and behavioural quiescence. In movement-matched data, LPS produces increases in SWA (likelihood-ratio test: χ2(4)=21.51, P<0.001), but not connectivity (χ2(4)=6.39, P=0.17). Increases in SWA associate with interleukin 6 (P<0.001) and monocyte chemoattractant protein-1 (P=0.001) and are suppressed by piroxicam (P<0.001) and caffeine (P=0.046). Aged animals compared with adult animals show similar LPS-induced SWA during movement, but exaggerated cytokine response and increased SWA during quiescence. CONCLUSIONS Cytokine-SWA correlations during wakefulness are consistent with observations in patients with delirium. Absence of connectivity effects after accounting for movement changes suggests decreased connectivity in patients is a biomarker of hypoactivity. Exaggerated effects in quiescent aged animals are consistent with increased hypoactive delirium in older patients. Prostaglandin-adenosine signalling may link inflammation to neural changes and hence delirium.
Collapse
Affiliation(s)
- Ziyad W Sultan
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bryan M Krause
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin A Murphy
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert D Sanders
- Specialty of Anaesthetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Oles V, Koh KMS, Dykstra-Aiello CJ, Savenkova M, Gibbons CM, Nguyen JT, Karatsoreos I, Panchenko A, Krueger JM. Sleep- and time of day-linked RNA transcript expression in wild-type and IL1 receptor accessory protein-null mice. J Appl Physiol (1985) 2020; 128:1506-1522. [PMID: 32324480 DOI: 10.1152/japplphysiol.00839.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sleep regulation involves interleukin-1β (IL1) family members, TNF, and circadian clock genes. Previously, we characterized spontaneous sleep and sleep after 8 h of sleep deprivation (SD) ending at zeitgeber time (ZT)4 and ZT16 in wild-type (WT) and IL1 receptor accessory protein (AcP)- and brain-specific AcP (AcPb)-knockout (KO) mice. Here, we applied quantitative reverse transcriptase polymerase chain reaction and Spearman gene pair expression correlation methods to characterize IL1, IL1 receptor 1 (IL1R1), AcP, AcPb, Period 1 (Per1), Clock, adenosine deaminase (Ada), peptidoglycan recognition protein 1 (Pglyrp1), and TNF mRNA expressions under conditions with distinct sleep phenotypes. In WT mice, IL1, IL1R1, AcP, Ada, and Clock mRNAs were higher at ZT4 (mid-sleep period) than at ZT16. mRNA expressions differed substantially in AcP and AcPb KO mice at those times. After SD ending at ZT4, only WT mice had a non-rapid eye movement sleep (NREMS) rebound, and AcPb and IL1R1 mRNA increases were unique to WT mice. In AcPb KO mice, which have spontaneous high EEG slow wave power, AcP and Pglyrp1 mRNAs were elevated relative to WT mice at ZT4. At ZT4, the AcPb KO - WT Spearman correlation difference networks showed high positive correlations between IL1R1 and IL1, Per1, and Clock and high negative correlations between TNF and Pglyrp1 and Ada. At ZT16, the WT mice gene pair expression network was mostly negative, whereas in AcP KO mice, which have substantially more rapid eye movement sleep than WT mice, it was all positive. We conclude that gene pair expression correlations depend on the presence of AcP and AcPb.NEW & NOTEWORTHY Spearman gene pair expression correlations depend upon the presence or absence of interleukin-1 receptor accessory protein and upon sleep phenotype.
Collapse
Affiliation(s)
- Vladyslav Oles
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - Khia Min Sabrina Koh
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | | | - Marina Savenkova
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Cody M Gibbons
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.,University of Washington School of Medicine, Seattle, Washington
| | - Joseph T Nguyen
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Ilia Karatsoreos
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Alexander Panchenko
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - James M Krueger
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
9
|
Decoeur F, Benmamar-Badel A, Leyrolle Q, Persillet M, Layé S, Nadjar A. Dietary N-3 PUFA deficiency affects sleep-wake activity in basal condition and in response to an inflammatory challenge in mice. Brain Behav Immun 2020; 85:162-169. [PMID: 31100369 DOI: 10.1016/j.bbi.2019.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 05/11/2019] [Indexed: 12/22/2022] Open
Abstract
Essential polyunsaturated fatty acids (PUFA) from the n-3 and n-6 series constitute the building blocks of brain cell membranes where they regulate most aspects of cell physiology. They are either biosynthesized from their dietary precursors or can be directly sourced from the diet. An overall increase in the dietary n-6/n-3 PUFA ratio, as observed in the Western diet, leads to reduced n-3 PUFAs in tissues that include the brain. Some clinical studies have shown a positive correlation between dietary n-3 PUFA intake and sleep quantity, yet evidence is still sparse. We here used a preclinical model of dietary n-3 PUFA deficiency to assess the precise relationship between dietary PUFA intake and sleep/wake activity. Using electroencephalography (EEG)/electromyography (EMG) recordings on n-3 PUFA deficient or sufficient mice, we showed that dietary PUFA deficiency affects the architecture of sleep-wake activity and the oscillatory activity of cortical neurons during sleep. In a second part of the study, and since PUFAs are a potent modulator of inflammation, we assessed the effect of dietary n-3 PUFA deficiency on the sleep response to an inflammatory stimulus known to modulate sleep/wake activity. We injected mice with the endotoxin lipopolysaccharide (LPS) and quantified the sleep response across the following 12 h. Our results revealed that n-3 PUFA deficiency affects the sleep response in basal condition and after a peripheral immune challenge. More studies are now required aimed at deciphering the molecular mechanisms underlying the intimate relationship between n-3 PUFAs and sleep/wake activity.
Collapse
Affiliation(s)
- F Decoeur
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A Benmamar-Badel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Q Leyrolle
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - M Persillet
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - S Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A Nadjar
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| |
Collapse
|
10
|
Peña-Ortega F. Brain Arrhythmias Induced by Amyloid Beta and Inflammation: Involvement in Alzheimer’s Disease and Other Inflammation-related Pathologies. Curr Alzheimer Res 2020; 16:1108-1131. [DOI: 10.2174/1567205017666191213162233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
A variety of neurological diseases, including Alzheimer’s disease (AD), involve amyloid beta (Aβ) accumulation and/or neuroinflammation, which can alter synaptic and neural circuit functions. Consequently, these pathological conditions induce changes in neural network rhythmic activity (brain arrhythmias), which affects many brain functions. Neural network rhythms are involved in information processing, storage and retrieval, which are essential for memory consolidation, executive functioning and sensory processing. Therefore, brain arrhythmias could have catastrophic effects on circuit function, underlying the symptoms of various neurological diseases. Moreover, brain arrhythmias can serve as biomarkers for a variety of brain diseases. The aim of this review is to provide evidence linking Aβ and inflammation to neural network dysfunction, focusing on alterations in brain rhythms and their impact on cognition and sensory processing. I reviewed the most common brain arrhythmias characterized in AD, in AD transgenic models and those induced by Aβ. In addition, I reviewed the modulations of brain rhythms in neuroinflammatory diseases and those induced by immunogens, interleukins and microglia. This review reveals that Aβ and inflammation produce a complex set of effects on neural network function, which are related to the induction of brain arrhythmias and hyperexcitability, both closely related to behavioral alterations. Understanding these brain arrhythmias can help to develop therapeutic strategies to halt or prevent these neural network alterations and treat not only the arrhythmias but also the symptoms of AD and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiologia del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Queretaro, Qro., 76230, Mexico
| |
Collapse
|
11
|
Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020; 45:141-165. [PMID: 31234199 PMCID: PMC6879503 DOI: 10.1038/s41386-019-0446-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022]
Abstract
The development of alcohol use disorder (AUD) involves binge or heavy drinking to high levels of intoxication that leads to compulsive intake, the loss of control in limiting intake, and a negative emotional state when alcohol is removed. This cascade of events occurs over an extended period within a three-stage cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These three heuristic stages map onto the dysregulation of functional domains of incentive salience/habits, negative emotional states, and executive function, mediated by the basal ganglia, extended amygdala, and frontal cortex, respectively. Sleep disturbances, alterations of sleep architecture, and the development of insomnia are ubiquitous in AUD and also map onto the three stages of the addiction cycle. During the binge/intoxication stage, alcohol intoxication leads to a faster sleep onset, but sleep quality is poor relative to nights when no alcohol is consumed. The reduction of sleep onset latency and increase in wakefulness later in the night may be related to the acute effects of alcohol on GABAergic systems that are associated with sleep regulation and the effects on brain incentive salience systems, such as dopamine. During the withdrawal/negative affect stage, there is a decrease in slow-wave sleep and some limited recovery in REM sleep when individuals with AUD stop drinking. Limited recovery of sleep disturbances is seen in AUD within the first 30 days of abstinence. The effects of withdrawal on sleep may be related to the loss of alcohol as a positive allosteric modulator of GABAA receptors, a decrease in dopamine function, and the overactivation of stress neuromodulators, including hypocretin/orexin, norepinephrine, corticotropin-releasing factor, and cytokines. During the preoccupation/anticipation stage, individuals with AUD who are abstinent long-term present persistent sleep disturbances, including a longer latency to fall asleep, more time awake during the night, a decrease in slow-wave sleep, decreases in delta electroencephalogram power and evoked delta activity, and an increase in REM sleep. Glutamatergic system dysregulation that is observed in AUD is a likely substrate for some of these persistent sleep disturbances. Sleep pathology contributes to AUD pathology, and vice versa, possibly as a feed-forward drive to an unrecognized allostatic load that drives the addiction process.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 6700B Rockledge Drive, Room 1209, MSC 6902, Bethesda, MD, 20892-6902, USA.
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892-6902, USA.
| | - Ian M Colrain
- SRI Biosciences, SRI International, Menlo Park, CA, USA
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Cui X, Zhang Y. Neuropharmacological Effect and Clinical Applications of Ganoderma (Lingzhi). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:143-157. [PMID: 31777017 DOI: 10.1007/978-981-32-9421-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ganoderma lucidum (G. lucidum, Lingzhi) is a kind of medical mushroom with various pharmacological compounds. It has been used for clinical applications for thousands of years as a highly nutritious and significantly effective medicinal herb. Compared with its immunomodulatory effect, there are a few studies on the neuropharmacological actions of Ganoderma, and the mechanism has not been fully elucidated. As far as we know, Ganoderma regulate the central nervous system (CNS) at least in part through its immunomodulatory activity. The neuropharmacological effects of G. lucidum mainly include but not limited to sedative and hypnotic, neuroprotective, antinociceptive and analgesic, antiepileptic, and antidepressant effects. Clinical trials of G. lucidum in the patients with these disorders are still rare. To date, there are no Ganoderma-related drugs approved by the US Food and Drug Administration (FDA). In this chapter, we will summarize and elucidate recent progress of such effects of Ganoderma and its ingredients from both the preclinical and clinical points of view.
Collapse
Affiliation(s)
- Xiangyu Cui
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yonghe Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. Local sleep. Sleep Med Rev 2018; 43:14-21. [PMID: 30502497 DOI: 10.1016/j.smrv.2018.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The historic sleep regulatory paradigm invokes "top-down" imposition of sleep on the brain by sleep regulatory circuits. While remaining conceptually useful, many sleep phenomena are difficult to explain using that paradigm, including, unilateral sleep, sleep-walking, and poor performance after sleep deprivation. Further, all animals sleep after non-lethal brain lesions, regardless of whether the lesion includes sleep regulatory circuits, suggesting that sleep is a fundamental property of small viable neuronal/glial networks. That small areas of the brain can exhibit non-rapid eye movement sleep-like states is summarized. Further, sleep-like states in neuronal/glial cultures are described. The local sleep states, whether in vivo or in vitro, share electrophysiological properties and molecular regulatory components with whole animal sleep and exhibit sleep homeostasis. The molecular regulatory components of sleep are also involved in plasticity and inflammation. Like sleep, these processes, are initiated by local cell-activity dependent events, yet have at higher levels of tissue organization whole body functions. While there are large literatures dealing with local initiation and regulation of plasticity and inflammation, the literature surrounding local sleep is in its infancy and clinical applications of the local sleep concept are absent. Regardless, the local use-dependent sleep paradigm can advise and advance future research and clinical applications.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA.
| | - Joseph T Nguyen
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Cheryl J Dykstra-Aiello
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| |
Collapse
|
14
|
Tumor necrosis factor alpha in sleep regulation. Sleep Med Rev 2017; 40:69-78. [PMID: 29153862 DOI: 10.1016/j.smrv.2017.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
This review details tumor necrosis factor alpha (TNF) biology and its role in sleep, and describes how TNF medications influence sleep/wake activity. Substantial evidence from healthy young animals indicates acute enhancement or inhibition of endogenous brain TNF respectively promotes and inhibits sleep. In contrast, the role of TNF in sleep in most human studies involves pathological conditions associated with chronic elevations of systemic TNF and disrupted sleep. Normalization of TNF levels in such patients improves sleep. A few studies involving normal healthy humans and their TNF levels and sleep are consistent with the animal studies but are necessarily more limited in scope. TNF can act on established sleep regulatory circuits to promote sleep and on the cortex within small networks, such as cortical columns, to induce sleep-like states. TNF affects multiple synaptic functions, e.g., its role in synaptic scaling is firmly established. The TNF-plasticity actions, like its role in sleep, can be local network events suggesting that sleep and plasticity share biochemical regulatory mechanisms and thus may be inseparable from each other. We conclude that TNF is involved in sleep regulation acting within an extensive tightly orchestrated biochemical network to niche-adapt sleep in health and disease.
Collapse
|
15
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
16
|
Zhao Z, Zhao X, Veasey SC. Neural Consequences of Chronic Short Sleep: Reversible or Lasting? Front Neurol 2017; 8:235. [PMID: 28620347 PMCID: PMC5449441 DOI: 10.3389/fneur.2017.00235] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022] Open
Abstract
Approximately one-third of adolescents and adults in developed countries regularly experience insufficient sleep across the school and/or work week interspersed with weekend catch up sleep. This common practice of weekend recovery sleep reduces subjective sleepiness, yet recent studies demonstrate that one weekend of recovery sleep may not be sufficient in all persons to fully reverse all neurobehavioral impairments observed with chronic sleep loss, particularly vigilance. Moreover, recent studies in animal models demonstrate persistent injury to and loss of specific neuron types in response to chronic short sleep (CSS) with lasting effects on sleep/wake patterns. Here, we provide a comprehensive review of the effects of chronic sleep disruption on neurobehavioral performance and injury to neurons, astrocytes, microglia, and oligodendrocytes and discuss what is known and what is not yet established for reversibility of neural injury. Recent neurobehavioral findings in humans are integrated with animal model research examining long-term consequences of sleep loss on neurobehavioral performance, brain development, neurogenesis, neurodegeneration, and connectivity. While it is now clear that recovery of vigilance following short sleep requires longer than one weekend, less is known of the impact of CSS on cognitive function, mood, and brain health long term. From work performed in animal models, CSS in the young adult and short-term sleep loss in critical developmental windows can have lasting detrimental effects on neurobehavioral performance.
Collapse
Affiliation(s)
- Zhengqing Zhao
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiangxiang Zhao
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Yang X, Li S, Zhong J, Zhang W, Hua X, Li B, Sun H. CD151 mediates netrin-1-induced angiogenesis through the Src-FAK-Paxillin pathway. J Cell Mol Med 2016; 21:72-80. [PMID: 27558487 PMCID: PMC5192806 DOI: 10.1111/jcmm.12939] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
Crosstalk between the nervous and vascular systems is important during development and in response to injury, and the laminin-like axonal guidance protein netrin-1 has been studied for its involvement in angiogenesis and vascular remodelling. In this study, we examined the role of netrin-1 in angiogenesis and explored the underlying mechanisms. The effect of netrin-1 on brain tissues and endothelial cells was examined by immunohistochemistry and western blotting in a middle cerebral artery occlusion model and in human umbilical vein endothelial cells. Cell proliferation and cell cycle progression were assessed by the MTT assay and flow cytometry, and the Transwell and tube formation assays were used to examine endothelial cell motility and function. Netrin-1 up-regulated CD151 and VEGF concomitant with the activation of focal adhesion kinase (FAK), Src and Paxillin in vitro and in vivo and the induction of cell proliferation, migration and tube formation in vitro. Silencing of CD151 abolished the effects of netrin-1 on promoting cell migration and tube formation mediated by the activation of FAK/Src signalling. Netrin-1 promoted angiogenesis in vitro and in vivo by activating the FAK/Src/Paxillin signalling pathway through a mechanism dependent on the expression of the CD151 tetraspanin, suggesting the existence of a netrin-1/FAK/Src/CD151 signalling axis involved in the modulation of angiogenesis.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun Zhong
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xuming Hua
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 2015; 156:1320-1333. [PMID: 25851457 PMCID: PMC4474806 DOI: 10.1097/j.pain.0000000000000181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a chronic pain syndrome that arises from nerve injury. Current treatments only offer limited relief, clearly indicating the need for more effective therapeutic strategies. Previously, we demonstrated that proinflammatory tumor necrosis factor-alpha (TNF) is a key mediator of neuropathic pain pathogenesis; TNF is elevated at sites of neuronal injury, in the spinal cord, and supraspinally during the initial development of pain. The inhibition of TNF action along pain pathways outside higher brain centers results in transient decreases in pain perception. The objective of this study was to determine whether specific blockade of TNF in the hippocampus, a site of pain integration, could prove efficacious in reducing sciatic nerve chronic constriction injury (CCI)-induced pain behavior. Small inhibitory RNA directed against TNF mRNA was complexed to gold nanorods (GNR-TNF siRNA; TNF nanoplexes) and injected into the contralateral hippocampus of rats 4 days after unilateral CCI. Withdrawal latencies to a noxious thermal stimulus (hyperalgesia) and withdrawal to innocuous forces (allodynia) were recorded up to 10 days and compared with baseline values and sham-operated rats. Thermal hyperalgesia was dramatically decreased in CCI rats receiving hippocampal TNF nanoplexes; and mechanical allodynia was transiently relieved. TNF levels (bioactive protein, TNF immunoreactivity) in hippocampal tissue were decreased. The observation that TNF nanoplex injection into the hippocampus alleviated neuropathic pain-like behavior advances our previous findings that hippocampal TNF levels modulate pain perception. These data provide evidence that targeting TNF in the brain using nanoparticle-protected siRNA may be an effective strategy for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Elizabeth Gerard
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
| | | | - Adela C. Bonoiu
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University at Buffalo, The State University of New York
| | - Bruce A. Davidson
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
| | - Hong Ding
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Rajiv Kumar
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Paras N. Prasad
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Chemistry, University at Buffalo, The State University of New York
| | - Paul R. Knight
- NanoAxis, LLC, Clarence, New York 14031
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York
| | - Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Program for Neuroscience, University at Buffalo, The State University of New York
| |
Collapse
|
19
|
Davis CJ, Dunbrasky D, Oonk M, Taishi P, Opp MR, Krueger JM. The neuron-specific interleukin-1 receptor accessory protein is required for homeostatic sleep and sleep responses to influenza viral challenge in mice. Brain Behav Immun 2015; 47:35-43. [PMID: 25449578 PMCID: PMC4418942 DOI: 10.1016/j.bbi.2014.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Interleukin-1β (IL1) is involved in sleep regulation and sleep responses induced by influenza virus. The IL1 receptor accessory protein (AcP) and an alternatively spliced isoform of AcP found primarily in neurons, AcPb, form part of the IL1 signaling complex. IL1-induced sleep responses depend on injection time. In rat cortex, both IL1 mRNA and AcPb mRNA peak at Zeitgeber Time (ZT) 0 then decline over the daylight hours. Sleep deprivation enhances cortical IL1 mRNA and AcPb mRNA levels, but not AcP mRNA. We used wild type (WT) and AcPb knockout (KO) mice and performed sleep deprivation between ZT10 and 20 or between ZT22 and 8 based on the time of day expression profiles of AcPb and IL1. We hypothesized that the magnitude of the responses to sleep loss would be strain- and time of day-dependent. In WT mice, NREMS and REMS rebounds occurred regardless of when they were deprived of sleep. In contrast, when AcPbKO mice were sleep deprived from ZT10 to 20 NREMS and REMS rebounds were absent. The AcPbKO mice expressed sleep rebound if sleep loss occurred from ZT22 to 8 although the NREMS responses were not as robust as those that occurred in WT mice. We also challenged mice with intranasal H1N1 influenza virus. WT mice exhibited the expected enhanced sleep responses. In contrast, the AcPbKO mice had less sleep after influenza challenge compared to their own baseline values and compared to WT mice. Body temperature and locomotor activity responses after viral challenge were lower and mortality was higher in AcPbKO than in WT mice. We conclude that neuron-specific AcPb plays a critical role in host defenses and sleep homeostasis.
Collapse
Affiliation(s)
- Christopher J. Davis
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210,Corresponding Author: Christopher J. Davis, P.O. Box 1495, Spokane, WA 99202, Phone No. 509-358-7820,
| | - Danielle Dunbrasky
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Marcella Oonk
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Ping Taishi
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Mark R. Opp
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98104
| | - James M. Krueger
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| |
Collapse
|
20
|
Abstract
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Collapse
Affiliation(s)
- Géraldine M Mang
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne-Dorigny, Switzerland,
| | | |
Collapse
|
21
|
Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med 2014; 46:62-72. [PMID: 24428734 DOI: 10.3109/07853890.2013.866439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sleep parallels brain functioning and mental health. Neuronal activity during wakefulness leads to a subsequent increase in sleep intensity as measured using electroencephalographic slow-wave activity (SWA; index of neuronal synchrony in the low-frequency range). Wakefulness, and particularly prolonged wakefulness, also drives important changes in brain gene expression and changes in protein regulation. The role of these two cellular mechanisms in sleep-wake regulation has typically been studied independently, and their exact contribution to SWA remains poorly defined. In this review, we highlight that many transcriptional pathways driven by sleep deprivation are associated to protein regulation. We first describe the relationship between cytokines, clock genes, and markers of sleep need with an emphasis on transcriptional processes. Observations regarding the role of protein metabolism in sleep-wake regulation are then depicted while presenting interconnections between transcriptional and translational responses driven by sleep loss. Lastly, a manner by which this integrated response can feed back on neuronal network activity to determine sleep intensity is proposed. Overall, the literature supports that a complex cross-talk between transcriptional and translational regulation during prolonged wakefulness drives the changes in sleep intensity as a function of the sleep/wake history.
Collapse
Affiliation(s)
- Adeline Rachalski
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal , Montréal, QC , Canada
| | | | | |
Collapse
|
22
|
Suppression of titanium particle-induced TNF-alpha expression and apoptosis in human U937 macrophages by siRNA silencing. Int J Artif Organs 2013; 36:522-7. [PMID: 23661556 DOI: 10.5301/ijao.5000218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
Aseptic loosening of joint prosthetics is one of the most frequent reasons for the failure of total joint replacement surgeries. A major cause of the aseptic loosening is osteolysis caused by a periprosthetic inflammatory response to wear particles released from implanted prosthetics. Tumor necrosis factor (TNF)-α is thought to play a dominant role in wear-induced inflammation. It was shown previously by our group, as well as by other researchers, that macrophages produce abundant TNF-α when exposed to particulate titanium (Ti), which is widely used as a biomaterial in arthroplastic surgery. In the present study, we have tested the feasibility of using siRNA as a therapeutic intervention against wear-induced TNF-α production. Our data show that transfection of U937 macrophage cells with TNF-α siRNA inhibits Ti particle-induced expression of TNF-α mRNA and protein by >65%. Moreover, U937 cells transfected with TNF-α siRNA were significantly more resistant to Ti particle-induced apoptosis (>60%, p<0.05) and caspase-3 activation (>50%, p<0.05) compared with normal U937 cells. Collectively, our data show that siRNA can be an effective way to inhibit Ti particle-induced TNF-α expression and the activation of downstream pathways such as apoptosis in macrophages. These data provide a foundation for future studies to investigate the use of siRNA targeting inflammatory cytokines as a therapeutic modality for the treatment of aseptic loosening of prosthetic materials used in arthroplastic surgery.
Collapse
|
23
|
Krueger JM, Huang YH, Rector DM, Buysse DJ. Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci 2013; 38:2199-209. [PMID: 23651209 DOI: 10.1111/ejn.12238] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/14/2022]
Abstract
We posit a bottom-up sleep-regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole-organism sleep onset. Within the brain we posit that small networks of highly interconnected neurons and glia, for example cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks and regional areas of the brain share sleep-like properties with whole-animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep-regulatory substances and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions, such as insomnia.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, Washington State University, Pullman, WA, USA.
| | | | | | | |
Collapse
|
24
|
Porkka-Heiskanen T. Sleep homeostasis. Curr Opin Neurobiol 2013; 23:799-805. [PMID: 23510741 DOI: 10.1016/j.conb.2013.02.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Research on sleep homeostasis aims to answer the question: how does the brain measure the duration and intensity of previous wakefulness in order to increase the duration and intensity of subsequent sleep? The search of regulatory factors has identified a number of potential molecules that increase their concentration in waking and decrease it during sleep. These factors regulate many physiological functions, including energy metabolism, neural plasticity and immune functions and one molecule may participate in the regulation of all these functions. The method to study regulation of sleep homeostasis is experimental prolongation of waking, which is used also to address the question of physiological purpose of sleep: prolonging wakefulness provokes symptoms that tell us what goes wrong during lack of sleep. The interpretation of the role of each identified factor in the regulation of sleep/sleep homeostasis reflects the theoretical background concept of the research. Presently three main concepts are being actively studied: the energy (depletion) hypothesis, the neural plasticity hypothesis and the (immune) defense hypothesis.
Collapse
Affiliation(s)
- Tarja Porkka-Heiskanen
- University of Helsinki, Institute of Biomedicine, Department of Physiology, PO Box 63, 00014 University of Helsinki, Finland.
| |
Collapse
|
25
|
Gast H, Müller A, Lopez M, Meier D, Huber R, Dechent F, Prinz M, Emmenegger Y, Franken P, Birchler T, Fontana A. CD40 activation induces NREM sleep and modulates genes associated with sleep homeostasis. Brain Behav Immun 2013; 27:133-44. [PMID: 23072727 DOI: 10.1016/j.bbi.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 01/26/2023] Open
Abstract
The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.
Collapse
Affiliation(s)
- Heidemarie Gast
- Department of Neurology, Inselspital, University Hospital Berne, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davis CJ, Clinton JM, Krueger JM. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol (1985) 2012; 113:1756-62. [PMID: 23104698 DOI: 10.1152/japplphysiol.00940.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sleep deprivation was previously reported to alter microRNA (miRNA) levels in the brain; however, the direct effects of any miRNA on sleep have only been described recently. We determined miRNA 138 (miR-138), miRNA let-7b (let-7b), and miRNA 125a-5p (miR-125a) levels in different brain areas at the transitions between light and dark. In addition, we examined the extent to which inhibiting these miRNAs affects sleep and EEG measures. We report that the levels of multiple miRNAs differ at the end of the sleep-dominant light period vs. the end of the wake-dominant dark period in cortical areas, hippocampus, and hypothalamus. For instance, in multiple regions of the cortex, miR-138, let-7b, and miR-125a expression was higher at the end of the dark period compared with the end of the light period. Intracerebroventricular injection of a specific inhibitor (antiMIR) to miR-138 suppressed sleep and nonrapid eye movement sleep (NREMS) EEG delta power. The antiMIR to let-7b did not affect time in state but decreased NREMS EEG delta power, whereas the antiMIR to miR-125a failed to affect sleep until after 3 days and did not affect EEG delta power on any day. We conclude that miRNAs are uniquely expressed at different times and in different structures in the brain and have discrete effects and varied timings on several sleep phenotypes and therefore, likely play a role in the regulation of sleep.
Collapse
Affiliation(s)
- Christopher J Davis
- WWAMI Medical Education Program, Washington State University, Spokane, Washington 99210, USA.
| | | | | |
Collapse
|
27
|
Kaushal N, Ramesh V, Gozal D. TNF-α and temporal changes in sleep architecture in mice exposed to sleep fragmentation. PLoS One 2012; 7:e45610. [PMID: 23029133 PMCID: PMC3448632 DOI: 10.1371/journal.pone.0045610] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
TNF-α plays critical roles in host-defense, sleep-wake regulation, and the pathogenesis of various disorders. Increases in the concentration of circulating TNF-α after either sleep deprivation or sleep fragmentation (SF) appear to underlie excessive daytime sleepiness in patients with sleep apnea (OSA). Following baseline recordings, mice were subjected to 15 days of SF (daily for 12 h/day from 07.00 h to 19.00 h), and sleep parameters were recorded on days1, 7 and 15. Sleep architecture and sleep propensity were assessed in both C57BL/6J and in TNF-α double receptor KO mice (TNFR KO). To further confirm the role of TNF-α, we also assessed the effect of treatment with a TNF- α neutralizing antibody in C57BL/6J mice. SF was not associated with major changes in global sleep architecture in C57BL/6J and TNFR KO mice. TNFR KO mice showed higher baseline SWS delta power. Further, following 15 days of SF, mice injected with TNF-α neutralizing antibody and TNFR KO mice showed increased EEG SWS activity. However, SWS latency, indicative of increased propensity to sleep, was only decreased in C57BL/6J, and was unaffected in TNFR KO mice as well as in C57BL/6J mice exposed to SF but treated with TNF-α neutralizing antibody. Taken together, our findings show that the excessive sleepiness incurred by recurrent arousals during sleep may be due to activation of TNF-alpha-dependent inflammatory pathways, despite the presence of preserved sleep duration and global sleep architecture.
Collapse
Affiliation(s)
| | | | - David Gozal
- Department of Pediatrics, Section of Pediatric Sleep Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
28
|
Affiliation(s)
- Christopher J. Davis
- Sleep and Performance Research Center, WWAMI Medical Education and Program in Neuroscience, Washington State University, 412 E Spokane Falls Boulevard, Spokane, WA 99210-1495, USA
| | - James M. Krueger
- Sleep and Performance Research Center, WWAMI Medical Education and Program in Neuroscience, Washington State University, 412 E Spokane Falls Boulevard, Spokane, WA 99210-1495, USA
| |
Collapse
|
29
|
|
30
|
Clinton JM, Davis CJ, Zielinski MR, Jewett KA, Krueger JM. Biochemical regulation of sleep and sleep biomarkers. J Clin Sleep Med 2012; 7:S38-42. [PMID: 22003330 DOI: 10.5664/jcsm.1360] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Symptoms commonly associated with sleep loss and chronic inflammation include sleepiness, fatigue, poor cognition, enhanced sensitivity to pain and kindling stimuli, excess sleep and increases in circulating levels of tumor necrosis factor α (TNF) in humans and brain levels of interleukin-1 β (IL1) and TNF in animals. Cytokines including IL1 and TNF partake in non-rapid eye movement sleep (NREMS) regulation under physiological and inflammatory conditions. Administration of exogenous IL1 or TNF mimics the accumulation of these cytokines occurring during sleep loss to the extent that it induces the aforementioned symptoms. Extracellular ATP associated with neuro- and glio-transmission, acting via purine type 2 receptors, e.g., the P2X7 receptor, has a role in glia release of IL1 and TNF. These substances in turn act on neurons to change their intrinsic membrane properties and sensitivities to neurotransmitters and neuromodulators such as adenosine, glutamate and GABA. These actions change the network input-output properties, i.e., a state shift for the network. State oscillations occur locally within cortical columns and are defined using evoked response potentials. One such state, so defined, shares properties with whole animal sleep in that it is dependent on prior cellular activity--it shows homeostasis. The cortical column sleep-like state is induced by TNF and is associated with experimental performance detriments. ATP released extracellularly as a consequence of cellular activity is posited to initiate a mechanism by which the brain tracks its prior sleep-state history to induce/prohibit sleep. Thus, sleep is an emergent property of populations of local neural networks undergoing state transitions. Specific neuronal groups participating in sleep depend upon prior network use driving local network state changes via the ATP-cytokine-adenosine mechanism. Such considerations add complexity to finding biochemical markers for sleepiness.
Collapse
Affiliation(s)
- James M Clinton
- Sleep and Performance Research Center, WWAMI Medical Education Program, WA State University, Spokane, WA 99164, USA.
| | | | | | | | | |
Collapse
|
31
|
Taishi P, Davis CJ, Bayomy O, Zielinski MR, Liao F, Clinton JM, Smith DE, Krueger JM. Brain-specific interleukin-1 receptor accessory protein in sleep regulation. J Appl Physiol (1985) 2012; 112:1015-22. [PMID: 22174404 PMCID: PMC3311656 DOI: 10.1152/japplphysiol.01307.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-1β is involved in several brain functions, including sleep regulation. It promotes non-rapid eye movement (NREM) sleep via the IL-1 type I receptor. IL-1β/IL-1 receptor complex signaling requires adaptor proteins, e.g., the IL-1 receptor brain-specific accessory protein (AcPb). We have cloned and characterized rat AcPb, which shares substantial homologies with mouse AcPb and, compared with AcP, is preferentially expressed in the brain. Furthermore, rat somatosensory cortex AcPb mRNA varied across the day with sleep propensity, increased after sleep deprivation, and was induced by somnogenic doses of IL-1β. Duration of NREM sleep was slightly shorter and duration of REM sleep was slightly longer in AcPb knockout than wild-type mice. In response to lipopolysaccharide, which is used to induce IL-1β, sleep responses were exaggerated in AcPb knockout mice, suggesting that, in normal mice, inflammation-mediated sleep responses are attenuated by AcPb. We conclude that AcPb has a role in sleep responses to inflammatory stimuli and, possibly, in physiological sleep regulation.
Collapse
Affiliation(s)
- Ping Taishi
- Sleep and Performance Research Center, WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cui XY, Cui SY, Zhang J, Wang ZJ, Yu B, Sheng ZF, Zhang XQ, Zhang YH. Extract of Ganoderma lucidum prolongs sleep time in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:796-800. [PMID: 22207209 DOI: 10.1016/j.jep.2011.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Ling Zhi) is a basidiomycete white-rot macrofungus that has been used as a tranquilizing agent (i.e., An-Shen effect) for the treatment of restlessness, insomnia, and palpitation in China for hundreds of years. AIM OF THE STUDY The present study aimed to investigate whether Ganoderma lucidum extract (GLE) influences the sleep of freely moving rats and the potential mechanism. MATERIALS AND METHODS Ganoderma lucidum extract was extracted from fruiting bodies of Ganoderma lucidum. Rats were treated with GLE orally for 3 days, and on the third day, electroencephalographic and electromyographic recordings were made for 6h from 9:00 p.m. to 3:00 a.m. in freely moving rats. Sleep parameters were analyzed using SleepSign software. Tumor necrosis factor-α (TNF-α) levels were measured using the enzyme-linked immunosorbent assay. RESULTS Three-day administration of GLE significantly increased total sleep time and non-rapid eye movement (NREM) sleep time at a dose of 80 mg/kg (i.g.) without influencing slow-wave sleep or REM sleep in freely moving rats. TNF-α levels were significantly increased concomitantly in serum, the hypothalamus, and dorsal raphe nucleus. The hypnotic effect of GLE (80 mg/kg, i.g.) was significantly inhibited by intracerebroventricular injection of TNF-α antibody (2.5 μg/rat). Co-administration of GLE (40 mg/kg, i.g.) and TNF-α (12.5 ng/rat, i.c.v.), both at ineffective doses, revealed an additive hypnotic effect. CONCLUSION These results suggest that GLE has hypnotic effects in freely moving rats. The mechanism by which the extract promoted sleep remains unclear, but this effect appears to be primarily related to the modulation of cytokines such as TNF-α. Furthermore, these data at least partially support the ethnomedical use of Ganoderma lucidum.
Collapse
Affiliation(s)
- Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jewett KA, Krueger JM. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. VITAMINS AND HORMONES 2012; 89:241-57. [PMID: 22640617 PMCID: PMC4030541 DOI: 10.1016/b978-0-12-394623-2.00013-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two substances, the cytokines interleukin-1 beta (IL1β) and tumor necrosis factor alpha (TNFα), known for their many physiological roles, for example, cognition, synaptic plasticity, and immune function, are also well characterized in their actions of sleep regulation. These substances promote non-rapid eye movement sleep and can induce symptoms associated with sleep loss such as sleepiness, fatigue, and poor cognition. IL1β and TNFα are released from glia in response to extracellular ATP. They bind to their receptors on neurons resulting in neuromodulator and neurotransmitter receptor up/downregulation (e.g., adenosine and glutamate receptors) leading to altered neuronal excitability and function, that is, a state change in the local network. Synchronization of state between local networks leads to emergent whole brain oscillations, such as sleep/wake cycles.
Collapse
Affiliation(s)
- Kathryn A Jewett
- WWAMI Medical Education Program, Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | | |
Collapse
|
34
|
Abstract
RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.
Collapse
|
35
|
Bonoiu AC, Bergey EJ, Ding H, Hu R, Kumar R, Yong KT, Prasad PN, Mahajan S, Picchione KE, Bhattacharjee A, Ignatowski TA. Gold nanorod--siRNA induces efficient in vivo gene silencing in the rat hippocampus. Nanomedicine (Lond) 2011; 6:617-30. [PMID: 21718174 DOI: 10.2217/nnm.11.20] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Gold nanorods (GNRs), cellular imaging nanoprobes, have been used for drug delivery therapy to immunologically privileged regions in the brain. We demonstrate that nanoplexes formed by electrostatic binding between negatively charged RNA and positively charged GNRs, silence the expression of the target housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) within the CA1 hippocampal region of the rat brain, without showing cytotoxicity. MATERIALS & METHODS Fluorescence imaging with siRNA(Cy3)GAPDH and dark-field imaging using plasmonic enhanced scattering from GNRs were used to monitor the distribution of the nanoplexes within different neuronal cell types present in the targeted hippocampal region. RESULTS & CONCLUSION Our results show robust nanoplex uptake and slow release of the fluorescent gene silencer with significant impact on the suppression of GAPDH gene expression (70% gene silencing, >10 days postinjection). The observed gene knockdown using nanoplexes in targeted regions of the brain opens a new era of drug treatment for neurological disorders.
Collapse
Affiliation(s)
- Adela C Bonoiu
- State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Davis CJ, Clinton JM, Taishi P, Bohnet SG, Honn KA, Krueger JM. MicroRNA 132 alters sleep and varies with time in brain. J Appl Physiol (1985) 2011; 111:665-72. [PMID: 21719725 DOI: 10.1152/japplphysiol.00517.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA) levels in brain are altered by sleep deprivation; however, the direct effects of any miRNA on sleep have not heretofore been described. We report herein that intracerebroventricular application of a miRNA-132 mimetic (preMIR-132) decreased duration of non-rapid-eye-movement sleep (NREMS) while simultaneously increasing duration of rapid eye movement sleep (REMS) during the light phase. Further, preMIR-132 decreased electroencephalographic (EEG) slow-wave activity (SWA) during NREMS, an index of sleep intensity. In separate experiments unilateral supracortical application of preMIR-132 ipsilaterally decreased EEG SWA during NREMS but did not alter global sleep duration. In addition, after ventricular or supracortical injections of preMIR-132, the mimetic-induced effects were state specific, occurring only during NREMS. After local supracortical injections of the mimetic, cortical miRNA-132 levels were higher at the time sleep-related EEG effects were manifest. We also report that spontaneous cortical levels of miRNA-132 were lower at the end of the sleep-dominant light period compared with at the end of the dark period in rats. Results suggest that miRNAs play a regulatory role in sleep and provide a new tool for investigating sleep regulation.
Collapse
Affiliation(s)
- Christopher J Davis
- Washington State University-Spokane, Health Sciences Bldg. 280E, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Regions of the neocortex most strongly activated during waking exhibit increased sleep intensity during subsequent sleep. The novel concept that aspects of sleep homeostasis are determined locally in the cortex contrasts with the established views that global changes in neocortical activity during sleep are achieved through inhibition of ascending arousal systems that originate in the brainstem and hypothalamus. RECENT FINDINGS Experiments in animals and humans document asymmetries in neocortical electroencephalogram (EEG) slow-wave activity (SWA), a marker of homeostatic sleep need, as a result of functional activity during waking. In addition to local, use-dependent augmentation of EEG SWA and evoked potentials, expression of plasticity-related genes and of sleep-regulatory cytokines and neuromodulators have been shown to be elevated in a use-dependent manner in neocortex. The functional consequences of local sleep are hypothesized to involve regulation of synaptic plasticity, synaptic homeostasis and energy balance. SUMMARY The evidence for use-dependent modulation of neocortical activity during sleep is compelling and provides novel insights into sleep function. However, local changes in neocortex are generally expressed on a background of global sleep. It remains to be determined if events initiated in the cortex have global sleep-promoting effects and how neocortical and hypothalamic mechanisms of sleep control interact.
Collapse
|
38
|
Muresanu DF, Alvarez XA, Moessler H, Novak PH, Stan A, Buzoianu A, Bajenaru O, Popescu BO. Persistence of the effects of Cerebrolysin on cognition and qEEG slowing in vascular dementia patients: Results of a 3-month extension study. J Neurol Sci 2010; 299:179-83. [DOI: 10.1016/j.jns.2010.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
39
|
Faraguna U, Nelson A, Vyazovskiy VV, Cirelli C, Tononi G. Unilateral cortical spreading depression affects sleep need and induces molecular and electrophysiological signs of synaptic potentiation in vivo. Cereb Cortex 2010; 20:2939-47. [PMID: 20348156 PMCID: PMC2978242 DOI: 10.1093/cercor/bhq041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cortical spreading depression (CSD) is an electrophysiological phenomenon first described by Leao in 1944 as a suppression of spontaneous electroencephalographic activity, traveling across the cerebral cortex. In vitro studies suggest that CSD may induce synaptic potentiation. One recent study also found that CSD is followed by a non-rapid eye movement (NREM) sleep duration increase, suggesting an increased need for sleep. Recent experiments in animals and humans show that the occurrence of synaptic potentiation increases subsequent sleep need as measured by larger slow wave activity (SWA) during NREM sleep, prompting the question whether CSD can affect NREM SWA. Here, we find that, in freely moving rats, local CSD induction increases corticocortical evoked responses and strongly induces brain derived neurotrophic factor (BDNF) in the affected cortical hemisphere but not in the contralateral one, consistent with synaptic potentiation in vivo. Moreover, for several hours after CSD, large slow waves occur in the affected hemisphere during rapid eye movement sleep and quiet waking but disappear during active exploration. Finally, we find that CSD increases NREM sleep duration and SWA, the latter specifically in the affected hemisphere. These effects are consistent with an increase in synaptic strength triggered by CSD, although nonphysiological phenomena associated with CSD may also play a role.
Collapse
Affiliation(s)
| | - Aaron Nelson
- Department of Psychiatry
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53719, USA
| | | | | | | |
Collapse
|
40
|
Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, McCarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur J Neurosci 2010; 32:1528-36. [PMID: 21089218 PMCID: PMC3058252 DOI: 10.1111/j.1460-9568.2010.07401.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The locus coeruleus (LC) regulates sleep/wakefulness and is densely innervated by orexinergic neurons in the lateral hypothalamus. Here we used small interfering RNAs (siRNAs) to test the role of LC orexin type 1 receptor (OxR1) in sleep–wake control. In sleep studies, bilateral OxR1 siRNA injections led to an increase of time spent in rapid eye movement (REM) sleep, which was selective for the dark (active) period, peaked at approximately 30% of control during the second dark period after injection and then disappeared after 4 days. Cataplexy-like episodes were not observed. The percentage time spent in wakefulness and non-REM (NREM) sleep and the power spectral profile of NREM and REM sleep were unaffected. Control animals, injected with scrambled siRNA, had no sleep changes after injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR1 into the rat LC on two consecutive days induced a 45.5% reduction of OxR1 mRNA in the LC 2 days following the injections when compared with the contralateral side receiving injections of control (scrambled) siRNAs. This reduction disappeared 4 days after injection. Similarly, unilateral injection of OxR1 siRNA into the LC revealed a marked (33.5%) reduction of OxR1 staining 2 days following injections. In contrast, both the mRNA level and immunohistochemical staining for tyrosine hydroxylase were unaffected. The results indicate that a modest knockdown of OxR1 is sufficient to induce observable sleep changes. Moreover, orexin neurons, by acting on OxR1 in the LC, play a role in the diurnal gating of REM sleep.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Brockton, MA 02301,USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves. J Neurosci 2010; 30:4151-9. [PMID: 20237285 DOI: 10.1523/jneurosci.6047-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS), in part via a well characterized hypothalamic sleep-promoting site. However, GHRH may also act in the cortex to influence sleep. Application of GHRH to the surface of the cortex changes electroencephalographic (EEG) delta power. GHRH and the GHRH receptor (GHRHR) mRNAs are detectable in the rat cortex, and the expression of cortical GHRHR is activity dependent. Here, we microinjected a GHRH antagonist or GHRHR small interfering RNA (siGHRHR) onto the somatosensory cortex surface in rats. The unilateral application of the GHRH antagonist ipsilaterally decreased EEG delta wave power during NREMS, but not wakefulness, during the initial 40 min after injection. Similarly, the injection of siGHRHR reduced cortical expression of GHRHR and suppressed NREMS EEG delta wave power during 20-24 h after injection. Using the fura-2 calcium imaging technique, cultured cortical cells responded to GHRH by increasing intracellular calcium. Approximately 18% of the GHRH-responsive cells were GABAergic as illustrated by glutamic acid decarboxylase-67 (GAD67) immunostaining. Double labeling for GAD67 and GHRHR in vitro and in vivo indicated that only a minority of cortical GHRHR-containing cells were GABAergic. Our data suggest that endogenous cortical GHRH activates local cortical cells to affect EEG delta wave power state-specifically. Results are also consistent with the hypothesis that GHRH contributes to local network state regulation.
Collapse
|
42
|
Leyva-Grado VH, Churchill L, Wu M, Williams TJ, Taishi P, Majde JA, Krueger JM. Influenza virus- and cytokine-immunoreactive cells in the murine olfactory and central autonomic nervous systems before and after illness onset. J Neuroimmunol 2009; 211:73-83. [PMID: 19410300 DOI: 10.1016/j.jneuroim.2009.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/02/2009] [Accepted: 03/25/2009] [Indexed: 01/12/2023]
Abstract
Influenza virus invades the olfactory bulb (OB) and enhances cytokine mRNAs therein at the time of illness onset. Here we show that viral antigen immunoreactivity co-localized with glial markers in the OB but could not be detected in other brain areas. Interleukin 1beta- and tumor necrosis factor alpha-immunoreactivity co-localized with neuronal markers in olfactory and central autonomic systems, and the number of cytokine-immunoreactive neurons increased at the time of illness onset [15 h post-inoculation (PI)] but not before (10 h PI). These results suggest that the OB virus influences the brain cytokines and therefore the onset of illness.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, United States
| | | | | | | | | | | | | |
Collapse
|
43
|
Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 2009; 106:3354-9. [PMID: 19208810 DOI: 10.1073/pnas.0802864106] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with increased risk for developing pancreatic cancer, and it is suggested that insulin resistance provides the missing link. Here we demonstrate that under the context of genetic susceptibility, a high fat diet (HFD) predisposes mice with oncogenic K-ras activation to accelerated pancreatic intraepithelial neoplasm (PanIN) development. Tumor promotion is closely associated with increased inflammation and abrogation of TNFR1 signaling significantly blocks this process underlining a central role for TNFalpha in obesity-mediated enhancement of PanIN lesions. Interestingly, however, despite increased TNFalpha levels, mice remain insulin sensitive. We show that, while aggravating tumor promotion, a HFD exerts dramatic changes in energy metabolism through enhancement of pancreatic exocrine insufficiency, metabolic rates, and expression of genes involved in mitochondrial fatty acid (FA) beta-oxidation that collectively contribute to improved glucose tolerance in these mice. While on one hand these findings provide significant evidence that obesity is linked to tumor promotion in the pancreas, on the other it suggests alterations in inflammatory responses and bioenergetic pathways as the potential underlying cause.
Collapse
|
44
|
Krueger JM, Rector DM, Roy S, Van Dongen HPA, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 2008; 9:910-9. [PMID: 18985047 PMCID: PMC2586424 DOI: 10.1038/nrn2521] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sleep is vital to cognitive performance, productivity, health and well-being. Earlier theories of sleep presumed that it occurred at the level of the whole organism and that it was governed by central control mechanisms. However, evidence now indicates that sleep might be regulated at a more local level in the brain: it seems to be a fundamental property of neuronal networks and is dependent on prior activity in each network. Such local-network sleep might be initiated by metabolically driven changes in the production of sleep-regulatory substances. We discuss a mathematical model which illustrates that the sleep-like states of individual cortical columns can be synchronized through humoral and electrical connections, and that whole-organism sleep occurs as an emergent property of local-network interactions.
Collapse
Affiliation(s)
- James M Krueger
- Department of VCAPP, College of Veterinary Medicine, Washington State University, PO BOX 646520, Pullman, Washington 99164-6520, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Clark IA, Budd AC, Alleva LM. Sickness behaviour pushed too far--the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma. Malar J 2008; 7:208. [PMID: 18854046 PMCID: PMC2576339 DOI: 10.1186/1475-2875-7-208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/14/2008] [Indexed: 12/03/2022] Open
Abstract
Certain distinctive components of the severe systemic inflammatory syndrome are now well-recognized to be common to malaria, sepsis, viral infections, and post-trauma illness. While their connection with cytokines has been appreciated for some time, the constellation of changes that comprise the syndrome has simply been accepted as an empirical observation, with no theory to explain why they should coexist. New data on the effects of the main pro-inflammatory cytokines on the genetic control of sickness behaviour can be extended to provide a rationale for why this syndrome contains many of its accustomed components, such as reversible encephalopathy, gene silencing, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia. It is thus proposed that the pattern of pathology that comprises much of the systemic inflammatory syndrome occurs when one of the usually advantageous roles of pro-inflammatory cytokines – generating sickness behaviour by moderately repressing genes (Dbp, Tef, Hlf, Per1, Per2 and Per3, and the nuclear receptor Rev-erbα) that control circadian rhythm – becomes excessive. Although reversible encephalopathy and gene silencing are severe events with potentially fatal consequences, they can be viewed as having survival advantages through lowering energy demand. In contrast, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia may best be viewed as unfortunate consequences of extreme repression of these same genetic controls when the pro-inflammatory cytokines that cause sickness behaviour are produced excessively. As well as casting a new light on the previously unrationalized coexistence of these aspects of systemic inflammatory diseases, this concept is consistent with the case for a primary role for inflammatory cytokines in their pathogenesis across this range of diseases.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
46
|
Churchill L, Rector DM, Yasuda K, Fix C, Rojas MJ, Yasuda T, Krueger JM. Tumor necrosis factor alpha: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 2008; 156:71-80. [PMID: 18694809 PMCID: PMC2654198 DOI: 10.1016/j.neuroscience.2008.06.066] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/06/2008] [Accepted: 06/28/2008] [Indexed: 11/23/2022]
Abstract
Cortical surface evoked potentials (SEPs) are larger during sleep and characterize a sleep-like state in cortical columns. Since tumor necrosis factor alpha (TNF) may be involved in sleep regulation and is produced as a consequence of waking activity, we tested the hypothesis that direct application of TNF to the cortex will induce a sleep-like state within cortical columns and enhance SEP amplitudes. We found that microinjection of TNF onto the surface of the rat somatosensory cortex enhanced whisker stimulation-induced SEP amplitude relative to a control heat-inactivated TNF microinjection. We also determined if whisker stimulation enhanced endogenous TNF expression. TNF immunoreactivity (IR) was visualized after 2 h of deflection of a single whisker on each side. The number of TNF-IR cells increased in layers II-IV of the activated somatosensory barrel column. In two separate studies, unilateral deflection of multiple whiskers for 2 h increased the number of TNF-IR cells in layers II-V in columns that also exhibited enhanced cellular ongogene (Fos-IR). TNF-IR also colocalized with NeuN-IR suggesting that TNF expression was in neurons. Collectively these data are consistent with the hypotheses that TNF is produced in response to neural activity and in turn enhances the probability of a local sleep-like state as determined by increases in SEP amplitudes.
Collapse
Affiliation(s)
- L Churchill
- Department of VCAPP, Program in Neuroscience, College of Veterinary Medicine, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kapás L, Bohnet SG, Traynor TR, Majde JA, Szentirmai E, Magrath P, Taishi P, Krueger JM. Spontaneous and influenza virus-induced sleep are altered in TNF-alpha double-receptor deficient mice. J Appl Physiol (1985) 2008; 105:1187-98. [PMID: 18687977 DOI: 10.1152/japplphysiol.90388.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is associated with sleep regulation in health and disease. Previous studies assessed sleep in mice genetically deficient in the TNF-alpha 55-kDa receptor. In this study, spontaneous and influenza virus-induced sleep profiles were assessed in mice deficient in both the 55-kDa and 75-kDa TNF-alpha receptors [TNF-2R knockouts (KO)] and wild-type (WT) strain controls. Under baseline conditions the TNF-2R KO mice had less non-rapid eye movement sleep (NREMS) than WTs during the nighttime and more rapid eye movement sleep (REMS) than controls during the daytime. The differences between nighttime maximum and daytime minimum values of electroencephalogram (EEG) delta power during NREMS were greater in the TNF-2R KO mice than in WTs. Viral challenge (mouse-adapted influenza X-31) enhanced NREMS and decreased REMS in both strains roughly to the same extent. EEG delta power responses to viral challenge differed substantially between strains; the WT animals increased, whereas the TNF-2R KO mice decreased their EEG delta wave power during NREMS. There were no differences between strains in body temperatures or locomotor activity in uninfected mice or after viral challenge. Analyses of cortical mRNAs confirmed that the TNF-2R KO mice lacked both TNF-alpha receptors; these mice also had higher levels of orexin mRNA and reduced levels of the purine P2X7 receptor compared with WTs. Results reinforce the hypothesis that TNF-alpha is involved in physiological sleep regulation but plays a limited role in the acute-phase response induced by influenza virus.
Collapse
Affiliation(s)
- Levente Kapás
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett 2007; 422:68-73. [PMID: 17597302 PMCID: PMC2041960 DOI: 10.1016/j.neulet.2007.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/30/2007] [Accepted: 06/03/2007] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small ( approximately 22 nucleotides) non-coding RNA strands that base pair with mRNA to degrade it or inhibit its translation. Because sleep and sleep loss induce changes in many mRNA species, we hypothesized that sleep loss would also affect miRNA levels in the brain. Rats were sleep-deprived for 8h then decapitated; hippocampus, prefrontal and somatosensory cortices and hypothalamus tissues were harvested and frozen in liquid nitrogen. miRNA was extracted and then characterized using microarrays. Several let-7 miRNA microarray results using hippocampus and prefrontal cortex samples were verified by PCR. From the array data it was determined that about 50 miRNA species were affected by sleep loss. For example, in the hippocampus of sleep-deprived rats, miRNA expression increased compared to cage control samples. In contrast, the majority of miRNA species in the somatosensory and prefrontal cortices decreased, while in the hypothalamus miRNA species were both up- and down-regulated after sleep deprivation. The number of miRNA species affected by sleep loss, their differential expression in separate brain structures and their predicted targets suggest that they have a role in site-specific sleep mechanisms. Current results are, to our knowledge, the first demonstration of the homeostatic process, sleep, altering brain miRNA levels.
Collapse
Affiliation(s)
- Christopher J Davis
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology and Program in Neuroscience, Washington State University, Pullman, WA 99164-6520, United States.
| | | | | | | |
Collapse
|