1
|
Yuan YX, Liu Y, Zhang J, Bing YH, Chen CY, Li GG, Chu CP, Yin MJ, Qiu DL. Gestational valproic acid exposure enhances facial stimulation-evoked cerebellar mossy fiber-granule cell transmission via GluN2A subunit-containing NMDA receptor in offspring mice. Transl Psychiatry 2024; 14:272. [PMID: 38961057 PMCID: PMC11222518 DOI: 10.1038/s41398-024-02990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.
Collapse
Affiliation(s)
- Yong-Xue Yuan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, 133000, Jilin, China
| | - Yang Liu
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Yan-Hua Bing
- Functional Experiment Center, College of Medicine, Yanbian University, Yanji City, 133000, Jilin, China
| | - Chao-Yue Chen
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Guang-Gao Li
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, 133000, Jilin, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Ming-Ji Yin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji City, 133000, Jilin, China.
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China.
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China.
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, 132013, Jilin, China.
| |
Collapse
|
2
|
Soltani Z, Shariatpanahi M, Aghsami M, Owliaey H, Kheradmand A. Investigating the effect of exposure to monosodium glutamate during pregnancy on development of autism in male rat offspring. Food Chem Toxicol 2024; 185:114464. [PMID: 38244665 DOI: 10.1016/j.fct.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
In present study, we investigated the relationship between the pregnancy exposure to monosodium glutamate (MSG) and autism development in male offspring of rats. Pregnant Wistar rats were allocated into five groups. The first group was control group that pregnant animals received normal saline orally from day 1-18 of pregnancy. Group 2, 3 and 4 pregnant rats received different doses (1.5, 5 and 10 g/kg) of MSG by the same way respectively. Group 5 received 500 mg/kg of Valproic acid (VPA) on the 12.5th day of pregnancy. Different behavioral tests including marble burying, self-grooming, and Barnes maze test were performed on offspring. The levels of glutamate and GSH markers were also measured. The results showed that MSG similar to VPA led to induction of autistic anxiety and repetitive behaviors. It could also deteriorate the spatial memory. Besides we found that behavioral symptoms potentiated with increasing the MSG dosage. Similarly, we had an increase in glutamate and a reduction in GSH levels in offspring. Findings indicated that MSG was able to induce autism in offspring of rats in a dose-dependent way. This effect could be through increasing of glutamate and reduction of GSH. Consequently, MSG should be avoided during pregnancy.
Collapse
Affiliation(s)
- Zohreh Soltani
- School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Owliaey
- Department of Forensic Medicine & Clinical Toxicology, Yazd Branch, Islamic Azad University, Yaz, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sabet N, Abadi B, Moslemizadeh A, Rajizadeh MA, Arabzadeh F, Vakili Shahrbabaki SS, Soltani Z, Rafie F, Bashiri H. The effect of low- and moderate-intensity interval training on cognitive behaviors of male and female rats with VPA-induced autism. Heliyon 2023; 9:e20641. [PMID: 37867791 PMCID: PMC10589787 DOI: 10.1016/j.heliyon.2023.e20641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction This study was performed to evaluate the effects of low and moderate treadmill exercise for one month on social interaction, anxiety-like behaviors, and spatial learning and memory in male and female autistic rats. Methods Pregnant rats received valproic acid (VPA) (600 mg/kg/i.p) once on gestational day 12.5 to induce autism-like symptoms in the offspring. After delivery, the offspring were divided into six main groups, each with male and female subgroups: Control (CTL, prenatal normal saline), autism (prenatal VPA), low-intensity training (LIT,normal saline + low treadmill exercise), moderate -intensity training (MIT, normal saline + moderate treadmill exercise), VPA + LIT, and VPA + MIT. On the 60th day, the offspring were tested by the elevated plus maze (EPM), open field test (OFT), social interaction test (SIT), and Morris water maze (MWM). Results The results showed that both LIT and MIT could partly alleviate anxiety-like behaviors induced by prenatal VPA exposure in two sexes. Social impairment was observed in the autistic rats and was improved by LIT in both sexes and MIT in females. No significant change was seen in the spatial learning and memory of autistic rats by exercise. Conclusion The findings suggest that treadmill exercise can be helpful for improving some autism-like behaviors. Further studies are needed to investigate the involved mechanisms.
Collapse
Affiliation(s)
- Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Amirhossein Moslemizadeh
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | | | - Fatemeh Arabzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Soltani
- Department of Biology, University of Turku, Turku 20014, Finland
| | - Forouzan Rafie
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Visiting fellow Department of Medicine Division of Geriatrics and Gerontology Emory University School of Medicine
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Bashiri H, Rostamzadeh F, Sabet N, Moslemizadeh A, Rajizadeh MA, Jafari E. Sex-related beneficial effects of exercise on cardiac function and rhythm in autistic rats. Birth Defects Res 2023; 115:1486-1499. [PMID: 37522293 DOI: 10.1002/bdr2.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cardiovascular diseases are prevalent in autistic patients. As exercise is useful in the treatment of medical conditions, this study aimed to identify the effect of low-intensity endurance exercise (LIEE) and moderate-intensity endurance exercise (MIEE) on cardiovascular events in autistic rats. METHODS Valproic acid (VPA) was administrated once on gestational day 12.5 to pregnant rats to produce autism-like symptoms in offspring. Thirty-day-old offspring were divided into 12 groups: Male-CTL, Male-VPA, Male-CTL + LIEE, Male-CTL + MIEE, Male-VPA + LIEE, Male-VPA + MIEE, Female-CTL, Female-VPA, Female-CTL + LIEE, Female-CTL + MIEE, Female-VPA + LIEE, and Female-VPA + MIEE. LIEE and MIEE were performed 5 days a week for 30 days. Twenty-four hours after the last exercise session, electrocardiogram and hemodynamic and cardiac function indices were recorded. RESULTS The results indicated that +dp/dt max and contractility index (CI) decreased in the Female-VPA group compared to the Female-CTL group. LIEE increased these parameters in the Female-VPA + LIEE group. However, MIEE normalized CI in the Male-VPA + MIEE compared to the Male-VPA group. Tau increased in the Female-VPA group compared to the Female-CTL group and it decreased in the Female-VPA + MIEE group compared to the Female-VPA group. LIEE and MIEE recovered the reduction of heart rate and the increase in P, R, and T amplitudes in Male-VPA group. LIEE and MIEE increased heart rate variability in the Male-VPA and Female-VPA groups. CONCLUSIONS The findings showed that LIEE and MIEE alleviated cardiac dysfunction and disturbances in heart rhythm in the autistic offspring. Exercise may be recommended as a routine program for autistic patients to prevent and treat the harmful cardiovascular consequences of autism.
Collapse
Affiliation(s)
- Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
5
|
Caires CRS, Bossolani-Martins AL. Which form of environmental enrichment is most effective in rodent models of autism? Behav Processes 2023; 211:104915. [PMID: 37451559 DOI: 10.1016/j.beproc.2023.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Environmental enrichment (EE) is known to produce experience-dependent changes in the brains and behaviors of rodents, and it has therefore been widely used to study neurodevelopmental disorders, including autism. Current studies show significant protocol variation, such as the presence of running wheels, number of cagemates, duration of enrichment, and the age of the animals at the beginning and end of the enrichment interventions. EE has been shown to have prominent positive effects in animal models of idiopathic and syndromic autism, but little is known about the ideal type of EE and the most efficient protocols for reversing autism spectrum disorder (ASD) behaviors modeled in rodents. This review presents evidence that social enrichment is the most effective way to rescue typical behaviors, and that variables such as onset, duration, and type of induction in the ASD model are important for EE success. Understanding which EE protocols are most beneficial for reversing ASD behaviors modeled in rodents opens up possibilities for the potential treatment of neuropsychiatric disorders characterized by behavioral deficits, such as autism.
Collapse
Affiliation(s)
- Cássia Regina Suzuki Caires
- Laboratory of Experimental Physiology, Faculty of Medicine of São Jose do Rio Preto - FAMERP, Av. Brg. Faria Lima, 5416 - Vila São Pedro, São José do Rio Preto, SP, Brazil.
| | - Ana Luiza Bossolani-Martins
- Federal University of Mato Grosso do Sul - UFMS, Av. Pedro Pedrossian, 725 - Universitário, Paranaíba, MS, Brazil.
| |
Collapse
|
6
|
Briend F, Barantin L, Cléry H, Cottier JP, Bonnet-Brilhault F, Houy-Durand E, Gomot M. Glutamate levels of the right and left anterior cingulate cortex in autistics adults. Prog Neuropsychopharmacol Biol Psychiatry 2023:110801. [PMID: 37245585 DOI: 10.1016/j.pnpbp.2023.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The neurobiology of Autism Spectrum Disorder (ASD) is still unknown. Alteration in glutamate metabolism might translate into an imbalance of the excitation/inhibition equilibrium of cortical networks that in turn are related to autistic symptoms, but previous studies using voxel located in bilateral anterior cingulate cortex (ACC) failed to show abnormalities in total glutamate level. Due to the functional differences in the right and left ACC, we sought to determine whether a difference between right and left ACC glutamate levels could be found when comparing ASD patients and control subjects. METHODS Using single-voxel proton magnetic resonance spectroscopy (1H-MRS), we analyzed the glutamate + glutamine (Glx) concentrations in the left and right ACC of 19 ASD patients with normal IQs and 25 matched control subjects. RESULTS No overall group differences in Glx were shown, in the left ACC (p = 0.24) or in the right ACC (p = 0.11). CONCLUSIONS No significant alterations in Glx levels were detected in the left and right ACC in high-functioning autistic adults. In the excitatory/inhibitory imbalance framework, our data reinforce the critical need to analyze the GABAergic pathway, for better understanding of basic neuropathology in autism.
Collapse
Affiliation(s)
- Frédéric Briend
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| | - Laurent Barantin
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Department of Radiology, Tours Hospital, Tours, France
| | - Helen Cléry
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France
| | - Jean-Philippe Cottier
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Department of Radiology, Tours Hospital, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | - Marie Gomot
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| |
Collapse
|
7
|
Haratizadeh S, Ranjbar M, Basiri M, Nozari M. Astrocyte responses to postnatal erythropoietin and nano-erythropoietin treatments in a valproic acid-induced animal model of autism. J Chem Neuroanat 2023; 130:102257. [PMID: 36918074 DOI: 10.1016/j.jchemneu.2023.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Despite ample evidence of the potential protective effects of erythropoietin (EPO) on the developing brain, no study has addressed the effects of postnatal EPO on behaviors and brain tissue of animal models of autism. In the present study, we examined the therapeutic effects of postnatal erythropoietin on stereotypic behaviors and astrocyte responses via glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) immunohistochemistry in a valproic acid (VPA) animal model of autism. Also, we compared the effects of EPO with EPO-loaded solid lipid nanoparticles (NEPO) because the blood-brain barrier has limited permeability to EPO. METHODS Pregnant rats received a single dose of VPA (600mg/kg) at gestational day 12.5. EPO (2000U/kg) and EPO-loaded solid lipid nanoparticles (NEPO1000 and 2000U/kg) were injected intraperitoneally from postnatal days 1-5. Repetitive behaviors in male offspring were assessed by a marble burying test. The immune-staining method was performed to evaluate S100B and GFAP-positive cells in the prefrontal cortex and hippocampal CA1 region. RESULTS VPA animal models revealed more repetitive behavior and displayed higher astrogliosis in the prefrontal cortex (PFC) and hippocampus (CA1) regions. The repetitive behaviors were ameliorated relatively in VPA groups with NEPO2000 treatment, and astrogliosis was reduced even when VPA rats were treated with a lower dosage of NEPO. CONCLUSION Our results indicate beneficial effects of postnatal NEPO exposure in the VPA animal model of autism, which proposes it as an early treatment in infants with, or at risk of, autism.
Collapse
Affiliation(s)
- Sara Haratizadeh
- Student Research Committee, Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Zohny SM, Habib MZ, Mohamad MI, Elayat WM, Elhossiny RM, El-Salam MFA, Hassan GAM, Aboul-Fotouh S. Memantine/Aripiprazole Combination Alleviates Cognitive Dysfunction in Valproic Acid Rat Model of Autism: Hippocampal CREB/BDNF Signaling and Glutamate Homeostasis. Neurotherapeutics 2023; 20:464-483. [PMID: 36918475 PMCID: PMC10121975 DOI: 10.1007/s13311-023-01360-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Significant efforts are increasingly directed towards identifying novel therapeutic targets for autism spectrum disorder (ASD) with a rising role of aberrant glutamatergic transmission in the pathogenesis of ASD-associated cellular and behavioral deficits. This study aimed at investigating the role of chronic memantine (20 mg/kg/day) and aripiprazole (3 mg/kg/day) combination therapy in the management of prenatal sodium valproate (VPA)-induced autistic-like/cognitive deficits in male Wistar rats. Pregnant female rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like behaviors in their offspring. Prenatal VPA induced autistic-like symptoms (decreased social interaction and the appearance of stereotyped behavior) with deficits in spatial learning (in Morris water maze) and cognitive flexibility (in the attentional set-shifting task) in addition to decreased hippocampal protein levels of phosphorylated cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and gene expression of glutamate transporter-1 (Glt-1) with a decline in GABA/glutamate ratio (both measured by HPLC). These were accompanied by the appearance of numerous neurofibrillary tangles (NFTs) with enhanced apoptosis in hippocampal sections. Memantine/aripiprazole combination increased the protein levels of p-CREB, BDNF, and Glt-1 gene expression with restoration of GABA/glutamate balance, attenuation of VPA-induced neurodegenerative changes and autistic-like symptoms, and improvement of cognitive performance. This study draws attention to the favorable cognitive effects of memantine/aripiprazole combination in autistic subjects which could be mediated via enhancing CREB/BDNF signaling with increased expression of astrocytic Glt-1 and restoration of GABA/glutamate balance, leading to inhibition of hippocampal NFTs formation and neuronal apoptosis.
Collapse
Affiliation(s)
- Sohir M Zohny
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Magda I Mohamad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wael M Elayat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Ghada A M Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Al Galala, Egypt
- Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023; 41:103-117. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in most of the central nervous system functions. Its main components, namely receptors, ion channels, and transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for the development of novel strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México.
| |
Collapse
|
10
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
11
|
Alijanpour S, Miryounesi M, Ghafouri-Fard S. The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders. Metab Brain Dis 2023; 38:1-16. [PMID: 36173507 DOI: 10.1007/s11011-022-01091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.
Collapse
Affiliation(s)
- Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Vakilzadeh G, Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr Dis Treat 2023; 19:841-850. [PMID: 37077706 PMCID: PMC10106330 DOI: 10.2147/ndt.s390053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 04/21/2023] Open
Abstract
A distinct pathology for autism spectrum disorder (ASD) remains elusive. Human and animal studies have focused on investigating the role of neurons in ASD. However, recent studies have hinted that glial cell pathology could be a characteristic of ASD. Astrocytes are the most abundant glial cell in the brain and play an important role in neuronal function, both during development and in adult. They regulate neuronal migration, dendritic and spine development, and control the concentration of neurotransmitters at the synaptic cleft. They are also responsible for synaptogenesis, synaptic development, and synaptic function. Therefore, any change in astrocyte number and/or function could contribute to the impairment of connectivity that has been reported in ASD. Data available to date is scarce but indicates that while the number of astrocytes is reduced, their state of activation and their GFAP expression is increased in ASD. Disruption of astrocyte function in ASD may affect proper neurotransmitter metabolism, synaptogenesis, and the state of brain inflammation. Astrocytes alterations are common to ASD and other neurodevelopmental disorders. Future studies about the role of astrocytes in ASD are required to better understand this disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Correspondence: Veronica Martinez-Cerdeño, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA, Tel +916 453-2163, Email
| |
Collapse
|
13
|
Continuous Exposure to Alpha-Glycosyl Isoquercitrin from Gestation Ameliorates Disrupted Hippocampal Neurogenesis in Rats Induced by Gestational Injection of Valproic Acid. Neurotox Res 2022; 40:2278-2296. [PMID: 36094739 DOI: 10.1007/s12640-022-00574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
This study examined the ameliorating effect of alpha-glycosyl isoquercitrin (AGIQ), an antioxidant, on disrupted hippocampal neurogenesis in the dentate gyrus (DG) in a rat model of autism spectrum disorder induced by prenatal valproic acid (VPA) exposure. Dams were intraperitoneally injected with 500 mg/kg VPA on gestational day 12. AGIQ was administered in the diet at 0.25 or 0.5% to dams from gestational day 13 until weaning at postnatal day (PND) 21 and then to pups until PND 63. At PND 21, VPA-exposed offspring showed decreased numbers of type-2a and type-3 neural progenitor cells (NPCs) among granule cell lineage subpopulations. AGIQ treatment at both doses rescued the reduction in type-3 NPCs. AGIQ upregulated Reln and Vldlr transcript levels in the DG at 0.5% and ≥ 0.25%, respectively, and increased the number of reelin+ interneurons in the DG hilus at 0.5%. AGIQ at 0.25% and/or 0.5% also upregulated Ntrk2, Cntf, Igf1, and Chrnb2. At PND 63, there were no changes in the granule cell lineage subpopulations in response to VPA or AGIQ. AGIQ at 0.25% increased the number of FOS+ granule cells, accompanied by Gria2 and Gria3 upregulation and increasing trend in the number of FOS+ granule cells at 0.5%. There was no definitive evidence of VPA-induced oxidative stress in the hippocampus throughout postnatal life. These results indicate that AGIQ ameliorates the VPA-induced disruption of hippocampal neurogenesis at weaning involving reelin, BDNF-TrkB, CNTF, and IGF1 signaling, and enhances FOS-mediated synaptic plasticity in adulthood, potentially through AMPA-receptor upregulation. The ameliorating effects of AGIQ may involve direct interactions with neural signaling cascades rather than antioxidant capacity.
Collapse
|
14
|
Mohammadkhani R, Ghahremani R, Salehi I, Safari S, Karimi SA, Zarei M. Impairment in social interaction and hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in a prenatal valproic acid-induced rat model of autism. Brain Commun 2022; 4:fcac221. [PMID: 36092302 PMCID: PMC9453432 DOI: 10.1093/braincomms/fcac221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/02/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
It is well established that prenatal valproic acid exposure in rats leads to autism-like behaviours and social deficits. Long-term potentiation changes in the brain have been proposed as a potential mechanism in the development of autistic behaviour. However, there are controversies regarding the effect of in utero valproic acid exposure on long-term potentiation. This study examined the social interaction and long-term potentiation induction in perforant pathway-dentate gyrus synapses in male offspring of a rat model of autism induced by prenatal exposure to valproic acid. On Embryonic Day 12.5, the pregnant dams received an injection of 500 mg/kg valproic acid (intraperitoneal) to produce the autism model. The sociability test was performed between Postnatal Days 37 and 40. The offsprings were urethane-anaesthetized and placed into a stereotaxic apparatus for surgery, electrode implantation and field potential recording on Postnatal Days 45–55. In the dentate gyrus region, excitatory postsynaptic potential slope and population spike amplitude were measured. Valproic acid-exposed offspring showed significantly impaired social interaction. The birth weight in valproic acid-exposed rats was significantly lower than in control rats. The ability of dentate gyrus synapses to induce long-term potentiation was hampered by valproic acid exposure. The decreasing excitatory postsynaptic potential slope and population spike amplitude of long-term potentiation provide evidence in favour of this notion. It is widely supposed that the hippocampus plays a central role in the process of learning and memory as well as social interaction and social memory. Therefore, deficiencies in hippocampal synaptic plasticity may be responsible, at least in part, for the social interaction deficits in valproic acid-exposed rats.
Collapse
Affiliation(s)
- Reihaneh Mohammadkhani
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand , Birjand 9717434765 , Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Samaneh Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| |
Collapse
|
15
|
A CCR5 antagonist, maraviroc, alleviates neural circuit dysfunction and behavioral disorders induced by prenatal valproate exposure. J Neuroinflammation 2022; 19:195. [PMID: 35906621 PMCID: PMC9335995 DOI: 10.1186/s12974-022-02559-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Valproic acid (VPA) is a clinically used antiepileptic drug, but it is associated with a significant risk of a low verbal intelligence quotient (IQ) score, attention-deficit hyperactivity disorder and autism spectrum disorder in children when it is administered during pregnancy. Prenatal VPA exposure has been reported to affect neurogenesis and neuronal migration and differentiation. In addition, growing evidence has shown that microglia and brain immune cells are activated by VPA treatment. However, the role of VPA-activated microglia remains unclear. METHODS Pregnant female mice received sodium valproate on E11.5. A microglial activation inhibitor, minocycline or a CCR5 antagonist, maraviroc was dissolved in drinking water and administered to dams from P1 to P21. Measurement of microglial activity, evaluation of neural circuit function and expression analysis were performed on P10. Behavioral tests were performed in the order of open field test, Y-maze test, social affiliation test and marble burying test from the age of 6 weeks. RESULTS Prenatal exposure of mice to VPA induced microglial activation and neural circuit dysfunction in the CA1 region of the hippocampus during the early postnatal periods and post-developmental defects in working memory and social interaction and repetitive behaviors. Minocycline, a microglial activation inhibitor, clearly suppressed the above effects, suggesting that microglia elicit neural dysfunction and behavioral disorders. Next-generation sequencing analysis revealed that the expression of a chemokine, C-C motif chemokine ligand 3 (CCL3), was upregulated in the hippocampi of VPA-treated mice. CCL3 expression increased in microglia during the early postnatal periods via an epigenetic mechanism. The CCR5 antagonist maraviroc significantly suppressed neural circuit dysfunction and post-developmental behavioral disorders induced by prenatal VPA exposure. CONCLUSION These findings suggest that microglial CCL3 might act during development to contribute to VPA-induced post-developmental behavioral abnormalities. CCR5-targeting compounds such as maraviroc might alleviate behavioral disorders when administered early.
Collapse
|
16
|
Bove M, Schiavone S, Tucci P, Sikora V, Dimonte S, Colia AL, Morgese MG, Trabace L. Ketamine administration in early postnatal life as a tool for mimicking Autism Spectrum Disorders core symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110560. [PMID: 35460811 DOI: 10.1016/j.pnpbp.2022.110560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
Abstract
Autism Spectrum Disorders (ASD) core symptoms include deficits of social interaction, stereotyped behaviours, dysfunction in language and communication. Beyond them, several additional symptoms, such as cognitive impairment, anxiety-like states and hyperactivity are often occurring, mainly overlapping with other neuropsychiatric diseases. To untangle mechanisms underlying ASD etiology, and to identify possible pharmacological approaches, different factors, such as environmental, immunological and genetic ones, need to be considered. In this context, ASD animal models, aiming to reproduce the wide range of behavioural phenotypes of this uniquely human disorder, represent a very useful tool. Ketamine administration in early postnatal life of mice has already been studied as a suitable animal model resembling psychotic-like symptoms. Here, we investigated whether ketamine administration, at postnatal days 7, 9 and 11, might induce behavioural features able to mimic ASD typical symptoms in adult mice. To this aim, we developed a 4-days behavioural tests battery, including Marble Burying, Hole Board, Olfactory and Social tests, to assess repetitive and stereotyped behaviour, social deficits and anxiety-like symptoms. Moreover, by using this mouse model, we performed neurochemical and biomolecular analyses, quantifying neurotransmitters belonging to excitatory-inhibitory pathways, such as glutamate, glutamine and gamma-aminobutyric acid (GABA), as well as immune activation biomarkers related to ASD, such as CD11b and glial fibrillary acidic protein (GFAP), in the hippocampus and amygdala. Possible alterations in levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus and amygdala were also evaluated. Our results showed an increase in stereotyped behaviours, together with social impairments and anxiety-like behaviour in adult mice, receiving ketamine administration in early postnatal life. In addition, we found decreased BDNF and enhanced GFAP hippocampal expression levels, accompanied by elevations in glutamate amount, as well as reduction in GABA content in amygdala and hippocampus. In conclusion, early ketamine administration may represent a suitable animal model of ASD, exhibiting face validity to mimic specific ASD symptoms, such as social deficits, repetitive repertoire and anxiety-like behaviour.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Department of Pathology, Sumy State University, Sumy, Ukraine
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
17
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
18
|
Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling. Stem Cell Rev Rep 2022; 18:2494-2512. [PMID: 35488987 PMCID: PMC9489586 DOI: 10.1007/s12015-022-10376-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
The generation of astrocytes from human induced pluripotent stem cells has been hampered by either prolonged differentiation—spanning over two months—or by shorter protocols that generate immature astrocytes, devoid of salient mature astrocytic traits pivotal for central nervous system (CNS) modeling. We directed stable hiPSC-derived neuroepithelial stem cells to human iPSC-derived Astrocytes (hiAstrocytes) with a high percentage of star-shaped cells by orchestrating an astrocytic-tuned culturing environment in 28 days. We employed RT-qPCR and ICC to validate the astrocytic commitment of the neuroepithelial stem cells. To evaluate the inflammatory phenotype, we challenged the hiAstrocytes with the pro-inflammatory cytokine IL-1β (interleukin 1 beta) and quantitatively assessed the secretion profile of astrocyte-associated cytokines and the expression of intercellular adhesion molecule 1 (ICAM-1). Finally, we quantitatively assessed the capacity of hiAstrocytes to synthesize and export the antioxidant glutathione. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of GFAP, AQP4 and ALDH1L1. In addition, the notion of a mature phenotype is reinforced by the expression of both astrocytic glutamate transporters EAAT1 and EAAT2. Thus, hiAstrocytes have a mature phenotype that encompasses traits critical in CNS modeling, including glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile on a par with human fetal astrocytes. This protocol generates a multifaceted astrocytic model suitable for in vitro CNS disease modeling and personalized medicine.
Collapse
|
19
|
Ghahremani R, Mohammadkhani R, Salehi I, Karimi SA, Zarei M. Sex Differences in Spatial Learning and Memory in Valproic Acid Rat Model of Autism: Possible Beneficial Role of Exercise Interventions. Front Behav Neurosci 2022; 16:869792. [PMID: 35548693 PMCID: PMC9084280 DOI: 10.3389/fnbeh.2022.869792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the current study, we first tried to determine sex differences in spatial learning and memory in the valproic acid (VPA) rat model of autism. Second, the effects of interval training (IT) and continuous training (CT) exercises were examined in male and female offsprings. To induce autism-like animal model, the pregnant rats were injected 500 mg/kg NaVPA (intraperitoneal) at the embryonic day 12.5. IT and CT aerobic exercises were started at postnatal day 56. Then, on postnatal days 84–89, a Morris water maze (MWM) test was conducted on the separate groups of offsprings. Aerobic training was performed on a rodent treadmill with 0% slope for 8 weeks, 5 days/week, and 50 min/day. Unlike control animals, VPA-exposed female offspring had a better performance than VPA-exposed male offspring in MWM acquisition. In the case of MWM reference memory, we did not observe a sex difference between VPA-exposed male and VPA-exposed female offspring. Both IT and CT exercises in both control and VPA-exposed male rats significantly improved MWM acquisition. Moreover, both IT and CT exercises significantly improved MWM acquisition in control female rats. In addition, IT exercise (but not CT) significantly improved MWM acquisition in VPA-exposed female offsprings. Both IT and CT exercises in VPA-exposed that male and female offsprings improved the MWM reference memory. In conclusion, our observation demonstrated that prenatal exposure to VPA affects the spatial learning and memory in a sex dependent manner. We have shown that both IT and CT exercises are able to improve cognitive function in healthy and autistic rat offsprings.
Collapse
Affiliation(s)
- Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | | | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- *Correspondence: Seyed Asaad Karimi, , , ,
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Adil KJ, Gonzales EL, Remonde CG, Boo KJ, Jeon SJ, Shin CY. Autism-Like Behavioral Phenotypes in Mice Treated with Systemic N-Methyl-D-Aspartate. Biomol Ther (Seoul) 2021; 30:232-237. [PMID: 34702791 PMCID: PMC9047488 DOI: 10.4062/biomolther.2021.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
Autism spectrum disorder (ASD) having core characteristics of social interaction problems and repetitive behaviors and interests affects individuals at varying degrees and comorbidities, making it difficult to determine the precise etiology underlying the symptoms. Given its heterogeneity, ASD is difficult to treat and the development of therapeutics is slow due to the scarcity of animal models that are easy to produce and screen with. Based on the theory of excitation/inhibition imbalance in the brain with ASD which involves glutamatergic and/or GABAergic neurotransmission, a pharmacologic agent to modulate these receptors might be a good starting point for modeling. N-methyl-D-aspartic acid (NMDA) is an amino acid derivative acting as a specific agonist at the NMDA receptor and therefore imitates the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA selectively binds to and regulates the NMDA receptor, but not other glutamate receptors such as AMPA and kainite receptors. Given this role, we aimed to determine whether NMDA administration could result in autistic-like behavior in adolescent mice. Both male and female mice were treated with saline or NMDA (50 and 75 mg/kg) and were tested on various behavior experiments. Interestingly, acute NMDA-treated mice showed social deficits and repetitive behavior similar to ASD phenotypes. These results support the excitation/inhibition imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model of ASD-like behaviors.
Collapse
Affiliation(s)
- Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Bauer-Negrini G, Deckmann I, Schwingel GB, Hirsch MM, Fontes-Dutra M, Carello-Collar G, Halliwell DE, Paraskevaidi M, Morais CLM, Martin FL, Riesgo R, Gottfried C, Bambini-Junior V. The role of T-cells in neurobehavioural development: Insights from the immunodeficient nude mice. Behav Brain Res 2021; 418:113629. [PMID: 34656692 DOI: 10.1016/j.bbr.2021.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/20/2021] [Accepted: 10/09/2021] [Indexed: 11/02/2022]
Abstract
Mice homozygous for the nude mutation (Foxn1nu) are hairless and exhibit congenital dysgenesis of the thymic epithelium, resulting in a primary immunodeficiency of mature T-cells, and have been used for decades in research with tumour grafts. Early studies have already demonstrated social behaviour impairments and central nervous system (CNS) alterations in these animals, but did not address the complex interplay between CNS, immune system and behavioural alterations. Here we investigate the impact of T-cell immunodeficiency on behaviours relevant to the study of neurodevelopmental and neuropsychiatric disorders. Moreover, we aimed to characterise in a multidisciplinary manner the alterations related to those findings, through evaluation of the excitatory/inhibitory synaptic proteins, cytokines expression and biological spectrum signature of different biomolecules in nude mice CNS. We demonstrate that BALB/c nude mice display sociability impairments, a complex pattern of repetitive behaviours and higher sensitivity to thermal nociception. These animals also have a reduced IFN-γ gene expression in the prefrontal cortex and an absence of T-cells in meningeal tissue, both known modulators of social behaviour. Furthermore, excitatory synaptic protein PSD-95 immunoreactivity was also reduced in the prefrontal cortex, suggesting an intricate involvement of social behaviour related mechanisms. Lastly, employing biospectroscopy analysis, we have demonstrated that BALB/c nude mice have a different CNS spectrochemical signature compared to their heterozygous littermates. Altogether, our results show a comprehensive behavioural analysis of BALB/c nude mice and potential neuroimmunological influences involved with the observed alterations.
Collapse
Affiliation(s)
- Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Mauro Mozael Hirsch
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Giovanna Carello-Collar
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil.
| | - Diane E Halliwell
- Alliance Manchester Business School, University of Manchester, Booth St W, M15 6PB, UK.
| | - Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire. Marsh Ln, PR1 2HE. Preston, Lancashire, UK.
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire. Marsh Ln, PR1 2HE. Preston, Lancashire, UK.
| | - Francis L Martin
- Biocel UK Ltd., 15 Riplingham Road, West Ella, Hull, HU10 6TS, UK.
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, CEP: 90035-007, Rio Grande do Sul, Brazil.
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; School of Pharmacy and Biomedical Sciences, University of Central Lancashire. Marsh Ln, PR1 2HE. Preston, Lancashire, UK.
| |
Collapse
|
22
|
Santos-Terra J, Deckmann I, Schwingel GB, Paz AVC, Gama CS, Bambini-Junior V, Fontes-Dutra M, Gottfried C. Resveratrol prevents long-term structural hippocampal alterations and modulates interneuron organization in an animal model of ASD. Brain Res 2021; 1768:147593. [PMID: 34331907 DOI: 10.1016/j.brainres.2021.147593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in both communication and social interaction, besides repetitive or stereotyped behavior. Although the etiology is unknown, environmental factors such as valproic acid (VPA) increase the risk of ASD onset. Resveratrol (RSV), a neuroprotective molecule, has been shown to counteract the effects of intrauterine exposure to VPA. We aimed to evaluate histological parameters related to hippocampal morphology and to the distribution of parvalbumin- (PV), calbindin- (CB), and somatostatin-positive (SOM) interneurons sub-populations, in addition to evaluate the total/phosphorylation levels of PTEN, AKT, GSK3β and total CK2 in the animal model of autism induced by VPA, as well as addressing the potential protective effect of RSV. On postnatal day 120, histological analysis showed a loss in total neurons in the dentate gyrus (DG) and decreased CB+ neurons in DG and CA1 in VPA animals, both prevented by RSV. In addition, PV+ neurons were diminished in CA1, CA2, and CA3, and SOM+ were interestingly increased in DG (prevented by RSV) and decreased in CA1 and CA2. A hippocampal lesion similar to sclerosis was also observed in the samples from the VPA group. Besides that, VPA reduced AKT and PTEN immunocontent, and VPA increased CK2 immunocontent. Thus, this work demonstrated long-term effects of prenatal exposure to ASD in different sub-populations of interneurons, structural damage of hippocampus, and also alteration in proteins associated with pivotal cell signaling pathways, highlighting the role of RSV as a tool for understanding the pathophysiology of ASD.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil.
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - André Vinicius Contri Paz
- Laboratory of Molecular Psychiatry, National Science and Technology Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Clarissa S Gama
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Laboratory of Molecular Psychiatry, National Science and Technology Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil; School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil.
| |
Collapse
|
23
|
Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, Riesgo R, Bambini-Junior V, Gottfried C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021; 81:579-604. [PMID: 34196408 DOI: 10.1002/jdn.10137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Marília Körbes-Rockenbach
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,Department of Pediatrics, Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| |
Collapse
|
24
|
Puig-Lagunes ÁA, Rocha L, Morgado-Valle C, BeltrÁn-Parrazal L, LÓpez-Meraz ML. Brain and plasma amino acid concentration in infant rats prenatally exposed to valproic acid. AN ACAD BRAS CIENC 2021; 93:e20190861. [PMID: 33729379 DOI: 10.1590/0001-3765202120190861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/19/2019] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder is associated with alterations in GABAergic and glutamatergic neurotransmission. Here, we aimed to determine the concentration of GABA, glutamate, glutamine, aspartate, taurine, and glycine in brain tissue and plasma of rats prenatally exposed to valproic acid (VPA), a well-characterized experimental model of autism. Pregnant rats were injected with VPA (600mg/Kg) during the twelfth-embryonic-day. Control rats were injected with saline. On the fourteen-postnatal-day, rats from both groups (males and females) were anesthetized, euthanized by decapitation and their brain dissected out. The frontal cortex, hippocampus, amygdala, brain stem and cerebellum were dissected and homogenized. Homogenates were centrifuged and supernatants were used to quantify amino acid concentrations by HPLC coupled with fluorometric detection. Blood samples were obtained by a cardiac puncture; plasma was separated and deproteinized to quantify amino acid concentration by HPLC. We found that, in VPA rats, glutamate and glutamine concentrations were increased in hippocampus and glycine concentration was increased in cortex. We did not find changes in other regions or in plasma amino acid concentration in the VPA group with respect to control group. Our results suggest that VPA exposure in utero may impair inhibitory and excitatory amino acid transmission in the infant brain.
Collapse
Affiliation(s)
- Ángel Alberto Puig-Lagunes
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios, 235, 14330 Col. Granjas Coapa, Ciudad de México, México
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Luis BeltrÁn-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - MarÍa-Leonor LÓpez-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| |
Collapse
|
25
|
Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed Pharmacother 2021; 137:111322. [PMID: 33761592 DOI: 10.1016/j.biopha.2021.111322] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a sort of mental disorder marked by deficits in cognitive and communication abilities. To date no effective cure for this pernicious disease has been available. Valproic acid (VPA) is a broad-spectrum, antiepileptic drug, and it is also a potent teratogen. Epidemiological studies have shown that children exposed to VPA are at higher risk for ASD during the first trimester of their gestational development. Several animal and human studies have demonstrated important behavioral impairments and morphological changes in the brain following VPA treatment. However, the mechanism of VPA exposure-induced ASD remains unclear. Several factors are involved in the pathological phase of ASD, including aberrant excitation/inhibition of synaptic transmission, neuroinflammation, diminished neurogenesis, oxidative stress, etc. In this review, we aim to outline the current knowledge of the critical pathophysiological mechanisms underlying VPA exposure-induced ASD. This review will give insight toward understanding the complex nature of VPA-induced neuronal toxicity and exploring a new path toward the development of novel pharmacological treatment against ASD.
Collapse
|
26
|
Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021; 166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
This paper reviews the potential role of glutathione (GSH) in autism spectrum disorder (ASD). GSH plays a key role in the detoxification of xenobiotics and maintenance of balance in intracellular redox pathways. Recent data showed that imbalances in the GSH redox system are an important factor in the pathophysiology of ASD. Furthermore, ASD is accompanied by decreased concentrations of reduced GSH in part caused by oxidation of GSH into glutathione disulfide (GSSG). GSSG can react with protein sulfhydryl (SH) groups, thereby causing proteotoxic stress and other abnormalities in SH-containing enzymes in the brain and blood. Moreover, alterations in the GSH metabolism via its effects on redox-independent mechanisms are other processes associated with the pathophysiology of ASD. GSH-related regulation of glutamate receptors such as the N-methyl-D-aspartate receptor can contribute to glutamate excitotoxicity. Synergistic and antagonistic interactions between glutamate and GSH can result in neuronal dysfunction. These interactions can involve transcription factors of the immune pathway, such as activator protein 1 and nuclear factor (NF)-κB, thereby interacting with neuroinflammatory mechanisms, ultimately leading to neuronal damage. Neuronal apoptosis and mitochondrial dysfunction are recently outlined as significant factors linking GSH impairments with the pathophysiology of ASD. Moreover, GSH regulates the methylation of DNA and modulates epigenetics. Existing data support a protective role of the GSH system in ASD development. Future research should focus on the effects of GSH redox signaling in ASD and should explore new therapeutic approaches by targeting the GSH system.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University of Constanta, Campus, 900470, Constanta, Romania.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
27
|
Takeda K, Watanabe T, Oyabu K, Tsukamoto S, Oba Y, Nakano T, Kubota K, Katsurabayashi S, Iwasaki K. Valproic acid-exposed astrocytes impair inhibitory synapse formation and function. Sci Rep 2021; 11:23. [PMID: 33420078 PMCID: PMC7794250 DOI: 10.1038/s41598-020-79520-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.
Collapse
Affiliation(s)
- Kotomi Takeda
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan. .,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kohei Oyabu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shuntaro Tsukamoto
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Yuki Oba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takafumi Nakano
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
28
|
Badawy AA, Elghaba R, Soliman M, Hussein AM, AlSadrah SA, Awadalla A, Abulseoud OA. Chronic Valproic Acid Administration Increases Plasma, Liver, and Brain Ammonia Concentration and Suppresses Glutamine Synthetase Activity. Brain Sci 2020; 10:brainsci10100759. [PMID: 33096612 PMCID: PMC7589689 DOI: 10.3390/brainsci10100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023] Open
Abstract
Asymptomatic valproic acid (VPA)-induced hyperammonemia in the absence of liver impairment is fairly common. However, the underlying mechanisms through which VPA causes elevation in plasma ammonia (NH4) remains under investigation. Male Sprague Dawley rats (n = 72) were randomly allocated to receive VPA 400 mg/kg, 200 mg/kg, or vehicle IP daily for either 8, 14, or 28 consecutive days. The behavioral effects of VPA were assessed. Plasma, liver, and prefrontal cortex (PFC), striatum (Str), and cerebellum (Cere) were collected 1 h post last injection and assayed for NH4 concentration and glutamine synthetase (GS) enzyme activity. Chronic VPA treatment caused attenuation of measured behavioral reflexes (p < 0.0001) and increase in plasma NH4 concentration (p < 0.0001). The liver and brain also showed significant increase in tissue NH4 concentrations (p < 0.0001 each) associated with significant reduction in GS activity (p < 0.0001 and p = 0.0003, respectively). Higher tissue NH4 concentrations correlated with reduced GS activity in the liver (r = −0.447, p = 0.0007) but not in the brain (r = −0.058, p = 0.4). Within the brain, even though NH4 concentrations increased in the PFC (p = 0.001), Str (p < 0.0001), and Cere (p = 0.01), GS activity was reduced only in the PFC (p < 0.001) and not in Str (p = 0.2) or Cere (p = 0.1). These results suggest that VPA-induced elevation in plasma NH4 concentration could be related, at least in part, to the suppression of GS activity in liver and brain tissues. However, even though GS is the primary mechanism in brain NH4 clearance, the suppression of brain GS does not seem to be the main factor in explaining the elevation in brain NH4 concentration. Further research is urgently needed to investigate brain NH4 dynamics under chronic VPA treatment and whether VPA clinical efficacy in treating seizure disorders and bipolar mania is impacted by its effect on GS activity or other NH4 metabolizing enzymes.
Collapse
Affiliation(s)
- Abdelnaser A. Badawy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia;
- Department of Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Elghaba
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia;
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Correspondence: (A.M.H.); (O.A.A.)
| | - Sana A. AlSadrah
- Department of Preventive Medicine, Governmental Hospital Khobar, Health Centers in Khobar, Ministry of Health, Khobar 34446, Saudi Arabia;
| | - Amira Awadalla
- Center of Excellence and Cancer Genome, Mansoura Urology and Nephrology Center, Mansoura 35516, Egypt;
| | - Osama A. Abulseoud
- Neuroimaging Research Branch, IRP, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224, USA
- Correspondence: (A.M.H.); (O.A.A.)
| |
Collapse
|
29
|
Lee DW, Woo CW, Woo DC, Kim JK, Kim KW, Lee DH. Regional Mapping of Brain Glutamate Distributions Using Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging. Diagnostics (Basel) 2020; 10:E571. [PMID: 32784483 PMCID: PMC7459654 DOI: 10.3390/diagnostics10080571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To investigate glutamate signal distributions in multiple brain regions of a healthy rat brain using glutamate-weighted chemical exchange saturation transfer (GluCEST) imaging. METHOD The GluCEST data were obtained using a 7.0 T magnetic resonance imaging (MRI) scanner, and all data were analyzed using conventional magnetization transfer ratio asymmetry in eight brain regions (cortex, hippocampus, corpus callosum, and rest of midbrain in each hemisphere). GluCEST data acquisition was performed again one month later in five randomly selected rats to evaluate the stability of the GluCEST signal. To evaluate glutamate level changes calculated by GluCEST data, we compared the results with the concentration of glutamate acquired from 1H magnetic resonance spectroscopy (1H MRS) data in the cortex and hippocampus. RESULTS GluCEST signals showed significant differences (all p ≤ 0.001) between the corpus callosum (-1.71 ± 1.04%; white matter) and other brain regions (3.59 ± 0.41%, cortex; 5.47 ± 0.61%, hippocampus; 4.49 ± 1.11%, rest of midbrain; gray matter). The stability test of GluCEST findings for each brain region was not significantly different (all p ≥ 0.263). In line with the GluCEST results, glutamate concentrations measured by 1H MRS also appeared higher in the hippocampus (7.30 ± 0.16 μmol/g) than the cortex (6.89 ± 0.72 μmol/g). CONCLUSION Mapping of GluCEST signals in the healthy rat brain clearly visualize glutamate distributions. These findings may yield a valuable database and insights for comparing glutamate signal changes in pre-clinical brain diseases.
Collapse
Affiliation(s)
- Do-Wan Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-W.L.); (J.K.K.); (K.W.K.)
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (C.-W.W.); (D.-C.W.)
| | - Dong-Cheol Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (C.-W.W.); (D.-C.W.)
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-W.L.); (J.K.K.); (K.W.K.)
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-W.L.); (J.K.K.); (K.W.K.)
| | - Dong-Hoon Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
30
|
Calcineurin Controls Expression of EAAT1/GLAST in Mouse and Human Cultured Astrocytes through Dynamic Regulation of Protein Synthesis and Degradation. Int J Mol Sci 2020; 21:ijms21062213. [PMID: 32210081 PMCID: PMC7139922 DOI: 10.3390/ijms21062213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023] Open
Abstract
Alterations in the expression of glutamate/aspartate transporter (GLAST) have been associated with several neuropathological conditions including Alzheimer's disease and epilepsy. However, the mechanisms by which GLAST expression is altered are poorly understood. Here we used a combination of pharmacological and genetic approaches coupled with quantitative PCR and Western blot to investigate the mechanism of the regulation of GLAST expression by a Ca2+/calmodulin-activated phosphatase calcineurin (CaN). We show that treatment of cultured hippocampal mouse and fetal human astrocytes with a CaN inhibitor FK506 resulted in a dynamic modulation of GLAST protein expression, being downregulated after 24-48 h, but upregulated after 7 days of continuous FK506 (200 nM) treatment. Protein synthesis, as assessed by puromycin incorporation in neo-synthesized polypeptides, was inhibited already after 1 h of FK506 treatment, while the use of a proteasome inhibitor MG132 (1 μM) shows that GLAST protein degradation was only suppressed after 7 days of FK506 treatment. In astrocytes with constitutive genetic ablation of CaN both protein synthesis and degradation were significantly inhibited. Taken together, our data suggest that, in cultured astrocytes, CaN controls GLAST expression at a posttranscriptional level through regulation of GLAST protein synthesis and degradation.
Collapse
|
31
|
Matsuo K, Yabuki Y, Fukunaga K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats. Neuropharmacology 2020; 168:107975. [PMID: 31991146 DOI: 10.1016/j.neuropharm.2020.107975] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) constitute a neurodevelopmental disorder characterized by social deficits, repetitive behaviors, and learning disability. Oxidative stress and mitochondrial dysfunction are associated with ASD brain pathology. Here, we used oxidative stress in prenatal valproic acid (VPA)-exposed rats as an ASD model. After maternal VPA exposure (600 mg/kg, p.o.) on embryonic day (E) 12.5, temporal analyses of oxidative stress in the brain using an anti-4-hydroxy-2-nonenal antibody revealed that oxidative stress was increased in the hippocampus after birth. This was accompanied by aberrant enzymatic activity in the mitochondrial electron transport chain and reduced adenosine triphosphate (ATP) levels in the hippocampus. VPA-exposed rats exhibited impaired spatial reference and object recognition memory alongside impaired social behaviors and repetitive behaviors. ASD-like behaviors including learning and memory were rescued by chronic oral administration of 5-aminolevulinic acid (5-ALA; 30 mg/kg/day) and intranasal administration of oxytocin (OXT; 12 μg/kg/day), a neuropeptide that improves social behavior in ASD patients. 5-ALA but not OXT treatment ameliorated oxidative stress and mitochondrial dysfunction in the hippocampus of VPA-exposed rats. Fewer parvalbumin-positive interneurons were observed in VPA-exposed rats. Both 5-ALA and OXT treatments augmented the number of parvalbumin-positive interneurons. Collectively, our results indicate that oral 5-ALA administration ameliorated oxidative stress and mitochondrial dysfunction, suggesting that 5-ALA administration improves ASD-like neuropathology and behaviors via mechanisms different to those of OXT.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
32
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
33
|
SAKADE Y, YAMANAKA K, SOUMIYA H, FURUKAWA S, FUKUMITSU H. Exposure to valproic acid during middle to late-stage corticogenesis induces learning and social behavioral abnormalities with attention deficit/hyperactivity in adult mice. Biomed Res 2019; 40:179-188. [DOI: 10.2220/biomedres.40.179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuki SAKADE
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University
| | - Kumiko YAMANAKA
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University
| | - Hitomi SOUMIYA
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University
| | - Shoei FURUKAWA
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University
| | - Hidefumi FUKUMITSU
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University
| |
Collapse
|
34
|
Marshall BL, Liu Y, Farrington MJ, Mao J, Helferich WG, Schenk AK, Bivens NJ, Sarma SJ, Lei Z, Sumner LW, Joshi T, Rosenfeld CS. Early genistein exposure of California mice and effects on the gut microbiota-brain axis. J Endocrinol 2019; 242:139-157. [PMID: 31189133 PMCID: PMC6885123 DOI: 10.1530/joe-19-0214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Yang Liu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Michelle J Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri, USA
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA
- Genetics Area Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
35
|
Wang R, Tan J, Guo J, Zheng Y, Han Q, So KF, Yu J, Zhang L. Aberrant Development and Synaptic Transmission of Cerebellar Cortex in a VPA Induced Mouse Autism Model. Front Cell Neurosci 2018; 12:500. [PMID: 30622458 PMCID: PMC6308145 DOI: 10.3389/fncel.2018.00500] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Autistic spectral disorder (ASD) is a prevalent neurodevelopmental disease that affects multiple brain regions. Both clinical and animal studies have revealed the possible involvement of the cerebellum in ASD pathology. In this study, we generated a rodent ASD model through a single prenatal administration of valproic acid (VPA) into pregnant mice, followed by cerebellar morphological and functional studies of the offspring. Behavioral studies showed that VPA exposure led to retardation of critical motor reflexes in juveniles and impaired learning in a tone-conditioned complex motor task in adults. These behavioral phenotypes were associated with premature migration and excess apoptosis of the granular cell (GC) precursor in the cerebellar cortex during the early postnatal period, and the decreased cell density and impaired dendritic arborization of the Purkinje neurons. On acute cerebellar slices, suppressed synaptic transmission of the Purkinje cells were reported in the VPA-treated mice. In summary, converging evidence from anatomical, electrophysiological and behavioral abnormalities in the VPA-treated mice suggest cerebellar pathology in ASD and indicate the potential values of motor dysfunction in the early diagnosis of ASD.
Collapse
Affiliation(s)
- Ruanna Wang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiahui Tan
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junxiu Guo
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuhan Zheng
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qing Han
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiandong Yu
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
37
|
Common functional variants of the glutamatergic system in Autism spectrum disorder with high and low intellectual abilities. J Neural Transm (Vienna) 2017; 125:259-271. [PMID: 29147782 DOI: 10.1007/s00702-017-1813-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
Abstract
The genetic architecture underlying Autism spectrum disorder (ASD) has been suggested to differ between individuals with lower (IQ ≤ 70; LIQ) and higher intellectual abilities (IQ > 70; HIQ). Among the identified pathomechanisms, the glutamatergic signalling pathway is of specific interest in ASD. We investigated 187 common functional variants of this neurotransmitter system for association with ASD and with symptom severity in two independent samples, a German (German-ALL: N = 583 families) and the Autism Genome Project cohort (AGP-ALL: N = 2001 families), split into HIQ, and LIQ subgroups. We did not identify any association withstanding correction for multiple testing. However, we report a replicated nominal significant under-transmission (OR < 0.79, p < 0.04) of the AKAP13 rs745191-T allele in both LIQ cohorts, but not in the much larger HIQ cohorts. At the phenotypic level, we nominally replicated associations of CAMK2A-rs2241694 with non-verbal communication in both combined LIQ and HIQ ASD cohorts. Variants PLD1-rs2124147 and ADCY1-rs2461127 were nominally associated with impaired non-verbal abilities and AKAP2-rs3739456 with repetitive behaviour in both LIQ cohorts. All four LIQ-associated genes are involved in G-protein coupled signal transduction, a downstream pathway of metabotropic glutamate receptor activation. We conclude that functional common variants of glutamatergic genes do not have a strong impact on ASD, but seem to moderately affect ASD risk and phenotypic expression. Since most of our nominally replicated hits were identified in the LIQ cohort, further investigation of the glutamatergic system in this subpopulation might be warranted.
Collapse
|
38
|
Kim KC, Choi CS, Gonzales ELT, Mabunga DFN, Lee SH, Jeon SJ, Hwangbo R, Hong M, Ryu JH, Han SH, Bahn GH, Shin CY. Valproic Acid Induces Telomerase Reverse Transcriptase Expression during Cortical Development. Exp Neurobiol 2017; 26:252-265. [PMID: 29093634 PMCID: PMC5661058 DOI: 10.5607/en.2017.26.5.252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 01/11/2023] Open
Abstract
The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both Pax6 and Tert genes. Interestingly, the VPA-induced TERT overexpression resulted to sequential upregulations of glutamatergic markers such as Ngn2 and NeuroD1, and inter-synaptic markers such as PSD-95, α-CaMKII, vGluT1 and synaptophysin. Transfection of Tert siRNA reversed the effects of VPA in cultured NPCs confirming the direct involvement of TERT in the expression of those markers. This study suggests the involvement of TERT in the VPA-induced autistic phenotypes and has important implications for the role of TERT as a modulator of balanced neuronal development and transmission in the brain.
Collapse
Affiliation(s)
- Ki Chan Kim
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Chang Soon Choi
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Edson Luck T Gonzales
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Darine Froy N Mabunga
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang Univeristy, Seoul 06974, Korea
| | - Se Jin Jeon
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Ram Hwangbo
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Minha Hong
- Department of Psychiatry, Seonam University, College of Medicine, Myongji Hospital, Goyang 10475, Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Seol-Heui Han
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
39
|
Zhang Y, Cui W, Zhai Q, Zhang T, Wen X. N-acetylcysteine ameliorates repetitive/stereotypic behavior due to its antioxidant properties without activation of the canonical Wnt pathway in a valproic acid-induced rat model of autism. Mol Med Rep 2017. [PMID: 28627665 DOI: 10.3892/mmr.2017.6787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-acetylcysteine (NAC) is widely used as an antioxidant, and previous studies have suggested that it may have potential as an alternative therapeutic strategy for the treatment of patients with autism. However, the exact effects of NAC administration on the development of autism, as well as the molecular mechanisms underlying its actions, have yet to be fully elucidated. The present study aimed to investigate the effects of NAC on the oxidative status of rats in a valproic acid (VPA)‑induced model of autism, and to examine the involvement of the canonical Wnt signaling pathway in the actions of NAC. Rats exposed to VPA were monitored for behavioral changes, and oxidative stress indicators and key molecules of the canonical Wnt pathway were investigated using colorimetric and western blot analysis, respectively. The present results demonstrated that NAC ameliorated repetitive and stereotypic activity in autism model rats. Furthermore, NAC was revealed to relieve oxidative stress, as demonstrated by the increased glutathione and reduced malondialdehyde levels compared with VPA‑treated rats. However, NAC did not appear to affect the activity of the canonical Wnt signaling pathway. The present findings suggested that the beneficial effects of NAC in autism may be associated with its antioxidative properties, and may not be mediated by the canonical Wnt pathway. However, it may be hypothesized that the canonical Wnt pathway can be indirectly regulated by NAC through the activation of other signaling pathways or upstream factors. Taken together, the present study has contributed to the elucidation of the molecular mechanisms that underlie the actions of NAC in autism, suggesting its potential for the development of novel therapeutic strategies for the treatment of patients with autism.
Collapse
Affiliation(s)
- Yinghua Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Weigang Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Qianqian Zhai
- Department of Endocrinology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Tianran Zhang
- Undergraduate Student of Basic Medicine School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaojun Wen
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
40
|
Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A. Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:259. [PMID: 28486989 PMCID: PMC5424332 DOI: 10.1186/s12906-017-1763-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Background Valproic acid (VPA) is used as a first-line antiepileptic agent and is undergoing clinical trials for use as a treatment for many disorders. Mothers undergoing VPA treatment during early pregnancy reportedly show increased rates of autism among their offspring. The benefits of curcumin supplementation were investigated using an animal model of VPA-induced autism. Methods The study was performed using a rodent model of autism by exposing rat fetuses to valproic acid (VPA) on the 12.5th day of gestation. At 7 days from their birth, the animals were supplemented with a specific dose of curcumin. Forty neonatal male Western Albino rats were divided into four groups. Rats in group I received only phosphate-buffered saline, rats in group II were the prenatal VPA exposure newborns, rats in group III underwent prenatal VPA exposure supplemented with postnatal curcumin, and rats in group IV were given only postnatal curcumin supplements. Results VPA rats exhibited delayed maturation and lower body and brain weights with numerous signs of brain toxicity, such as depletion of IFN-γ, serotonin, glutamine, reduced glutathione, glutathione S-transferase, lipid peroxidase with an increase in CYP450, IL-6, glutamate, and oxidized glutathione. A curcumin supplement moderately corrected these dysfunctions and was especially noticeable in improving delayed maturation and abnormal weight. Conclusions Curcumin plays a significant therapeutic role in attenuating brain damage that has been induced by prenatal VPA exposure in rats; however, its therapeutic role as a dietary supplement still must be certified for use in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1763-7) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Zhang J, Liu LM, Ni JF. Rapamycin modulated brain-derived neurotrophic factor and B-cell lymphoma 2 to mitigate autism spectrum disorder in rats. Neuropsychiatr Dis Treat 2017; 13:835-842. [PMID: 28360521 PMCID: PMC5365326 DOI: 10.2147/ndt.s125088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The number of children suffered from autism spectrum disorder (ASD) is increasing dramatically. However, the etiology of ASD is not well known. This study employed mammalian target of rapamycin inhibitor rapamycin to explore its effect on ASD and provided new therapeutic strategies for ASD. ASD rat model was constructed and valproic acid (VPA) was injected intraperitoneally into rats on pregnancy day 12.5. Offspring from VPA group were divided into ASD group and ASD + rapamycin (ASD + RAPA) group. Compared with normal group, the frequency and duration of social behavior and straight times of ASD group were shortened, but the grooming times were extended. Meanwhile, in ASD group, the average escape latency and the frequency of crossing plates were decreased, the apoptotic index (AI) detected by TUNEL assay was increased, and the expression of brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) analyzed was decreased with great difference compared with normal group (P<0.01). However, rapamycin treatment in ASD rats mitigated the ASD-like social behavior, such as the frequencies of straight and grooming. Furthermore, rapamycin shortened the average escape latency, but increased the frequency of crossing plates of ASD rats. In hippocampus, rapamycin decreased the AI, but increased the levels of BDNF and Bcl-2 (P<0.01) of ASD rats. These findings revealed that rapamycin significantly mitigated the social behavior by enhancing the expression of BDNF and Bcl-2 to suppress the hippocampus apoptosis in VPA-induced ASD rats.
Collapse
Affiliation(s)
| | | | - Jin-Feng Ni
- Department of Pediatrics, Maternal and Children Hospital of Tangshan City, Tangshan, Hebei, People's Republic of China
| |
Collapse
|
42
|
Puig-Lagunes AA, Manzo J, Beltrán-Parrazal L, Morgado-Valle C, Toledo-Cárdenas R, López-Meraz ML. Pentylenetetrazole-induced seizures in developing rats prenatally exposed to valproic acid. PeerJ 2016; 4:e2709. [PMID: 27917314 PMCID: PMC5131616 DOI: 10.7717/peerj.2709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Epidemiological evidence indicates epilepsy is more common in patients with autism spectrum disorders (ASD) (20-25%) than in the general population. The aim of this project was to analyze seizure susceptibility in developing rats prenatally exposed to valproic acid (VPA) as autism model. METHODS Pregnant females were injected with VPA during the twelfth embryonic day. Seizures were induced in fourteen-days-old rat pups using two models of convulsions: pentylenetetrazole (PTZ) and lithium-pilocarpine (Li-Pilo). RESULTS Two subgroups with different PTZ-induced seizure susceptibility in rats exposed to VPA were found: a high susceptibility (VPA+) (28/42, seizure severity 5) and a low susceptibility (VPA-) (14/42, seizure severity 2). The VPA+ subgroup exhibited an increased duration of the generalized tonic-clonic seizure (GTCS; 45 ± 2.7 min), a higher number of rats showed several GTCS (14/28) and developed status epilepticus (SE) after PTZ injection (19/27) compared with control animals (36.6 ± 1.9 min; 10/39; 15/39, respectively). No differences in seizure severity, latency or duration of SE induced by Li-Pilo were detected between VPA and control animals. DISCUSSION Prenatal VPA modifies the susceptibility to PTZ-induced seizures in developing rats, which may be linked to an alteration in the GABAergic transmission. These findings contribute to a better understanding of the comorbidity between autism and epilepsy.
Collapse
Affiliation(s)
- Angel A. Puig-Lagunes
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Luis Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | | |
Collapse
|
43
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
44
|
Gonzales ELT, Jang JH, Mabunga DFN, Kim JW, Ko MJ, Cho KS, Bahn GH, Hong M, Ryu JH, Kim HJ, Cheong JH, Shin CY. Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism. Food Nutr Res 2016; 60:29245. [PMID: 26837496 PMCID: PMC4737717 DOI: 10.3402/fnr.v60.29245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is heterogeneous neurodevelopmental disorders that primarily display social and communication impairments and restricted/repetitive behaviors. ASD prevalence has increased in recent years, yet very limited therapeutic targets and treatments are available to counteract the incapacitating disorder. Korean Red Ginseng (KRG) is a popular herbal plant in South Korea known for its wide range of therapeutic effects and nutritional benefits and has recently been gaining great scientific attention, particularly for its positive effects in the central nervous system. Objectives Thus, in this study, we investigated the therapeutic potential of KRG in alleviating the neurobehavioral deficits found in the valproic acid (VPA)-exposed mice models of ASD. Design Starting at 21 days old (P21), VPA-exposed mice were given daily oral administrations of KRG solution (100 or 200 mg/kg) until the termination of all experiments. From P28, mice behaviors were assessed in terms of social interaction capacity (P28–29), locomotor activity (P30), repetitive behaviors (P32), short-term spatial working memory (P34), motor coordination (P36), and seizure susceptibility (P38). Results VPA-exposed mice showed sociability and social novelty preference deficits, hyperactivity, increased repetitive behavior, impaired spatial working memory, slightly affected motor coordination, and high seizure susceptibility. Remarkably, long-term KRG treatment in both dosages normalized all the ASD-related behaviors in VPA-exposed mice, except motor coordination ability. Conclusion As a food and herbal supplement with various known benefits, KRG demonstrated its therapeutic potential in rescuing abnormal behaviors related to autism caused by prenatal environmental exposure to VPA.
Collapse
Affiliation(s)
- Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan, Korea
| | - Darine Froy N Mabunga
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Ji-Woon Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Mee Jung Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Kyu Suk Cho
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Minha Hong
- Department of Psychiatry, School of Medicine, Dankook University Hospital, Cheonan, Korea
| | - Jong Hoon Ryu
- Department of Oriental Medicine, Kyung Hee University, Seoul, Korea
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Seoul, Korea
| | | | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea;
| |
Collapse
|
45
|
Dubiel A, Kulesza RJ. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem. Neuroscience 2016; 324:511-23. [PMID: 27094734 DOI: 10.1016/j.neuroscience.2016.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD.
Collapse
Affiliation(s)
- A Dubiel
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, United States
| | - R J Kulesza
- Auditory Research Center, Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, United States.
| |
Collapse
|
46
|
Jayakumar AR, Norenberg MD. Glutamine Synthetase: Role in Neurological Disorders. ADVANCES IN NEUROBIOLOGY 2016; 13:327-350. [PMID: 27885636 DOI: 10.1007/978-3-319-45096-4_13] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.
Collapse
Affiliation(s)
| | - Michael D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA.
- Departments of Pathology, University of Miami School of Medicine, 016960, Miami, FL, 33101, USA.
- Departments of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
47
|
Dubiel A, Kulesza RJ. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem. Neuroscience 2015; 311:349-61. [PMID: 26518464 DOI: 10.1016/j.neuroscience.2015.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Additionally, the vast majority of subjects with ASD suffer some degree of auditory dysfunction and we have previously identified significant hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is utilized as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology in the auditory brainstem. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4 or 16 kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these sound exposures, we found significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Further, we found a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD.
Collapse
Affiliation(s)
- A Dubiel
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, United States
| | - R J Kulesza
- Auditory Research Center, Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, United States.
| |
Collapse
|
48
|
Cheaha D, Bumrungsri S, Chatpun S, Kumarnsit E. Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb. Neurosci Res 2015; 98:28-34. [DOI: 10.1016/j.neures.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
49
|
Ruiz-Perera L, Muniz M, Vierci G, Bornia N, Baroncelli L, Sale A, Rossi FM. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex. Sci Rep 2015. [PMID: 26205348 PMCID: PMC4513348 DOI: 10.1038/srep12517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain.
Collapse
Affiliation(s)
- L Ruiz-Perera
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - M Muniz
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - G Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - N Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - L Baroncelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - A Sale
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - F M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|
50
|
Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front Mol Neurosci 2015; 8:17. [PMID: 26074764 PMCID: PMC4444740 DOI: 10.3389/fnmol.2015.00017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/09/2015] [Indexed: 12/12/2022] Open
Abstract
Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits.
Collapse
Affiliation(s)
- Jaeseung Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, Korea ; Center for Synaptic Brain Dysfunctions, Institute for Basic Science Daejeon, Korea
| |
Collapse
|