1
|
Marghmaleki VS, Radahmadi M, Alaei H, Khanahmad H. Effects of prolonged escitalopram administration on long-term potentiation within the hippocampal CA1 area in rats under predictable and unpredictable chronic mild stress. Metab Brain Dis 2024; 39:1481-1494. [PMID: 39240474 DOI: 10.1007/s11011-024-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024]
Abstract
Exposure to chronic stress impairs memory. Also, escitalopram's impact on memory remains paradoxical. Therefore, this study examined how prolonged escitalopram administration affects input-output (I/O) functions, paired-pulse ratio (PPR), and long-term potentiation (LTP) in the hippocampal CA1 area in rats that underwent predictable and unpredictable chronic mild stress (PCMS and UCMS, respectively). Male rats were randomly assigned to different groups of control (Co), sham (Sh), PCMS and UCMS (PSt and USt, respectively; 2 h/day, for 21 consecutive days), escitalopram (Esc; 10 mg/kg, i.p., for 21 days), as well as PCMS and UCMS with escitalopram (PSt-Esc and USt-Esc, respectively). The fEPSP slope, amplitude, and area under the curve (AUC) were assessed in the hippocampal CA1 area using I/O functions, PP responses, and LTP. Serum corticosterone (CORT) levels were quantified in all experimental animals. The slope, amplitude, and AUC of fEPSP in the I/O functions, and all three PP phases prior and subsequent to LTP induction significantly declined in the USt and PSt groups. Escitalopram significantly enhanced these parameters in the PSt-Esc, but not in the USt-Esc group. Serum CORT levels corroborated the electrophysiological findings among experimental groups. Both PCMS and UCMS impaired neural excitability, neurotransmission, and memory within the hippocampal CA1 area. Escitalopram improved memory impairment only under PCMS, potentially attributed to reduced serum CORT levels. However, no influence on neural excitability, neurotransmission, and memory was observed under UCMS. This suggests different escitalopram doses might be required to ameliorate simultaneous mechanisms in response to various types of chronic mild stress.
Collapse
Affiliation(s)
- Vajihe Saedi Marghmaleki
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Sun W, Cao H, Liu D, Baranova A, Zhang F, Zhang X. Genetic association and drug target exploration of inflammation-related proteins with risk of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111165. [PMID: 39383931 DOI: 10.1016/j.pnpbp.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND In numerous observational studies, circulating inflammation-related proteins have been linked with major depressive disorder (MDD), yet the precise causal direction of this relationship remains unclear. This study aims to investigate the potential causal link between inflammation-related proteins and the risk of developing MDD. METHODS We utilized summary data from a genome-wide association study (GWAS) of 91 circulating inflammation-associated proteins in 14,824 individuals of European descent. Additionally, we incorporated findings from a substantial GWAS on MDD, which included 294,322 cases and 741,438 controls. Our analysis employed a two-sample bidirectional Mendelian randomization (MR) approach, with inverse variance weighting (IVW) as the primary method. We augmented this with two supplementary techniques (MR-Egger and weighted median approaches) to detect and address potential pleiotropy. Furthermore, to identify and evaluate possible drug targets, we conducted a thorough search within the Drug-Gene Interaction Database (DGIdb). RESULTS Analysis using MR unveiled significant and causative associations between genetically determined CASP-8 (odds ratio (OR): 0.97), CD40 (OR: 0.96), IL-18 (OR: 0.98), SLAMF1 (OR: 0.97), and uPA (OR: 0.98) with MDD. Conversely, reverse MR analysis indicated causal associations between MDD and CCL19 (OR: 1.15), HGF (OR: 1.15), IL-8 (OR: 1.10), IL-18 (OR: 1.11), IL20RA (OR: 1.12), TGFA (OR: 1.12) and TNFSF14 (OR: 1.16). Notably, a significant bidirectional causal link was observed between IL-18 and MDD. Gene-drug analysis identified CD40, HGF, IL-8, IL-18, SLAMF1, and TGFA as potential therapeutic targets. CONCLUSIONS We've pinpointed causal links between inflammation-related proteins and MDD, offering compelling and innovative evidence to enhance our understanding of the inflammatory mechanisms involved in MDD and to investigate potential targets for anti-MDD medications.
Collapse
Affiliation(s)
- Wenxi Sun
- Suzhou Medical College of Soochow University, Suzhou 215031, Jiangsu, China; Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008, China; Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA; Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China.
| |
Collapse
|
4
|
Xu R, Luo L, Yuan T, Chen W, Wei J, Shi C, Wang S, Liang S, Li Y, Zhong Z, Liu L, Zheng Y, Deng X, Liu T, Fan Z, Liu Y, Zhang J. Association of short-term exposure to ambient fine particulate matter and ozone with outpatient visits for anxiety disorders: A hospital-based case-crossover study in South China. J Affect Disord 2024; 361:277-284. [PMID: 38844166 DOI: 10.1016/j.jad.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 06/02/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND The short-term adverse effects of ambient fine particulate matter (PM2.5) and ozone (O3) on anxiety disorders (ADs) remained inconclusive. METHODS We applied an individual-level time-stratified case-crossover study, which including 126,112 outpatient visits for ADs during 2019-2021 in Guangdong province, China, to investigate the association of short-term exposure to PM2.5 and O3 with outpatient visits for ADs, and estimate excess outpatient visits in South China. Daily residential air pollutant exposure assessments were performed by extracting grid data (spatial resolution: 1 km × 1 km) from validated datasets. We employed the conditional logistic regression model to quantify the associations and excess outpatient visits. RESULTS The results of the single-pollutant models showed that each 10 μg/m3 increase of PM2.5 and O3 exposures was significantly associated with a 3.14 % (95 % confidence interval: 2.47 %, 3.81 %) and 0.88 % (0.49 %, 1.26 %) increase in odds of outpatient visits for ADs, respectively. These associations remained robust in 2-pollutant models. The proportion of outpatient visits attributable to PM2.5 and O3 exposures was up to 7.20 % and 8.93 %, respectively. Older adults appeared to be more susceptible to PM2.5 exposure, especially in cool season, and subjects with recurrent outpatient visits were more susceptible to O3 exposure. LIMITATION As our study subjects were from one single hospital in China, it should be cautious when generalizing our findings to other regions. CONCLUSION Short-term exposure to ambient PM2.5 and O3 was significantly associated with a higher odds of outpatient visits for ADs, which can contribute to considerable excess outpatient visits.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Yuan
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wangni Chen
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, China
| | - Sirong Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Health Department, The Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jie Zhang
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Subramaniam P, Prescot A, Yancey J, McGlade E, Renshaw P, Yurgelun-Todd D. Lower distress intolerance is associated with higher glutathione levels in adolescent cannabis users. Pharmacol Biochem Behav 2024; 245:173861. [PMID: 39168376 DOI: 10.1016/j.pbb.2024.173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Cannabis (CB) use and psychological stressors increase oxidative stress in the brain. Glutathione (GSH), the most abundant antioxidant in the brain, protects against oxidative stress. Furthermore, distress intolerance, the inability to tolerate psychological or physiological stress is a risk factor for CB use. The relationship between CB use, brain GSH levels and distress intolerance remains unknown. Therefore, we examined GSH levels in the anterior cingulate cortex (ACC), as a measure of oxidative stress, and its relationship with distress intolerance in adolescent CB users and healthy controls (HC). Sixteen HC and 17 CB-using adolescents were included in the analysis. GSH levels were measured in the ACC using a metabolite-edited proton magnetic resonance spectroscopy sequence on a 3T scanner. Distress intolerance was assessed using the Distress Intolerance Index (DII) and CB use was evaluated using a structured clinical interview. In the CB group, lower CSF-corrected GSH levels in the ACC were correlated with higher DII scores. However, no significant between group differences were observed for ACC CSF-corrected GSH levels or on DII scores. No significant correlations were observed in the HC group between GSH levels and DII. Our findings suggests that the association between lower GSH levels and greater distress intolerance in CB users might reflect alterations in the balance between protective and oxidative stress conditions linked to the ability to tolerate distress. Further examination into this relationship can provide important insights into neurobiological correlates and risk factors associated with CB use to help inform preventive and treatment targets in the future.
Collapse
Affiliation(s)
- Punitha Subramaniam
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Andrew Prescot
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA
| | - James Yancey
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Erin McGlade
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Perry Renshaw
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Deborah Yurgelun-Todd
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| |
Collapse
|
6
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2024:10.1007/s12264-024-01270-7. [PMID: 39120643 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Forghani N, Hosseinian S, Akhoond-Ali Z, Gholami AA, Assaran-Darban R, Vafaee F. Effect of acute and chronic stress on memory impairment and hippocampal oxidative stress following global cerebral ischemia in adult male rats. Res Pharm Sci 2024; 19:436-446. [PMID: 39399732 PMCID: PMC11468166 DOI: 10.4103/rps.rps_24_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/25/2023] [Accepted: 08/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Stress, especially immobility stress, is quite common and one of the most important and influential risk factors in neurological disorders. This study aimed to investigate the effect of acute and chronic immobility stress on the level of cortical and hippocampal oxidative stress indicators and memory impairment following global cerebral ischemia. Experimental approach In this study, 48 male Wistar rats were randomly divided into 6 groups: 1, sham (S); 2, sham-acute stress (SSA); 3, sham-chronic stress (SSC); 4, ischemia (IS); 5, ischemia-acute stress (ISA); 6, ischemia-chronic stress (ISC). The Morris water maze (MWM) test was performed 14 days after surgery, and cortisol levels and oxidative stress factors such as malondialdehyde MDA and total thiol were measured. Findings/Results In the MWM test, the time to find the platform (latency time) in the ISC and IS groups significantly increased compared to the S group. The time spent in the target quarter in these two groups was significantly reduced compared to the S group on the day of the probe. The results showed a significant increase in cortisol levels and malondialdehyde concentration in the ISA, ISC, and IS groups compared to the S group, but there was no significant difference in total thiol concentration. No significant difference was observed in the level of oxidative stress factors in the cortex. Conclusion and implication Chronic immobility stress could reduce antioxidant factors in the hippocampus and exacerbate memory impairment caused by global ischemia.
Collapse
Affiliation(s)
- Nafiseh Forghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Akhoond-Ali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Abroumand Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cellular Biology and Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran-Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Carr DC, Schmidt B, Schubert FT, Sachs-Ericsson N. Prospective exploration of the role of combined internalizing symptoms in self-reported memory among older adults during the COVID-19 pandemic. Aging Ment Health 2024; 28:1011-1019. [PMID: 38285681 DOI: 10.1080/13607863.2023.2297049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVES A growing literature suggests depression and anxiety increase risk of cognitive decline. However, few studies have examined their combined effects on cognition, among older adults, especially during periods of high stress. METHOD Based on a sample of community dwelling older adults (N = 576), we evaluated the effects of pre-pandemic anxiety and depressive symptoms, obtained in September 2018, to changes in self-reported memory (SRM) assessed 3 months into the COVID-19 pandemic. RESULTS In separate models, we found participants with depression scores at least 1-SD above the mean and participants with anxiety scores at least 2-SD above the mean to report a significant decline in SRM. Moderation analyses revealed those with high depressive symptoms (at or above the mean) showed a decrease in SRM regardless of anxiety. The extent to which high pre-pandemic anxiety symptoms influenced SRM is dependent on whether pre-pandemic depression was at or above the mean. CONCLUSIONS Pre-pandemic depression predicted a decline in SRM regardless of anxiety. Moderation analyses revealed that the extent to which anxiety symptoms influenced SRM was dependent on depression being at or above the mean. Those with high anxiety and depression are at highest risk of experiencing cognitive consequences related to stressful exposures like COVID-19.
Collapse
Affiliation(s)
- Dawn C Carr
- Department of Sociology, Florida State University, Tallahassee, FL, USA
| | - Brad Schmidt
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | | | | |
Collapse
|
9
|
Yadav PK, Pandey AN, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Follicular oocyte as a potential target for severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2024; 34:e2568. [PMID: 38937111 DOI: 10.1002/rmv.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.
Collapse
Affiliation(s)
- Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
11
|
Lahouel A. High sugar consumption for seven days in adult mice increased blood glucose variability, induced an anxiolytic effect and triggered oxidative stress in cerebral cortex. Metab Brain Dis 2024; 39:731-739. [PMID: 38720093 DOI: 10.1007/s11011-024-01352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/05/2024] [Indexed: 07/10/2024]
Abstract
Brain function is highly altered by glucose toxicity related to diabetes. High consumption of sugar in normal conditions is suspected to affect as well brain integrity. The present study investigates the possible effects of short-term exposure to high sugar diet on brain redox homeostasis in healthy mice. Male adult healthy mice were divided into two groups: control (CG) and sugar-exposed group (SG), that was exposed continually to 10% of glucose in drinking water for 7 days and 20% sucrose pellets food. Behavior, blood glucose variability and cerebral cortex oxidative stress biomarkers were measured at the end of exposure. Animals exposed to the high sugar diet expressed a significant increase in blood glucose levels and high glucose variability compared to control. These animals expressed as well anxiolytic behavior as revealed by the plus maze test. Exposure to the sugar diet altered redox homeostasis in the brain cortex as revealed by an increase in lipid peroxidation and the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione-s-transferase (GST). On the other hand, catalase (CAT) activity was decreased, and reduced glutathione (GSH) level was not altered compared to control. Further studies are required to understand the mechanisms trigging oxidative stress (OS) in the brain in response to short term exposure to high sugar diet and glucose fluctuations.
Collapse
Affiliation(s)
- Asma Lahouel
- Laboratory of Pharmacology and Phytochemistry, Faculty of Exact Sciences and Computer Science, University of Jijel, 18000, Jijel, Algeria.
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University of Jijel, 18000, Jijel, Algeria.
| |
Collapse
|
12
|
Berroug L, Essaidi O, Laaroussi M, Malqui H, Anarghou H, Bellali F, Fetoui H, Chigr F. Corn oil and Soybean oil effect as vehicles on behavioral and oxidative stress profiles in developmentally exposed offspring mice. Physiol Behav 2024; 280:114548. [PMID: 38615729 DOI: 10.1016/j.physbeh.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.
Collapse
Affiliation(s)
- Laila Berroug
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Fatima Bellali
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Toxicology-Micorbiology and Environmental Health Laboratory, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
13
|
Yu Y, Li X, Teng T, He Y, Jiang Y, Liu X, Zhou X, Luo Y, Xie P. Comparative analysis of the nucleus accumbens transcriptional features in multiple depressive animal models. Behav Brain Res 2024; 463:114890. [PMID: 38309372 DOI: 10.1016/j.bbr.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Chronic stress is deemed a significant clinical contributor to depression. The use of animal models of chronic stress can fully reveal the complex pathological mechanisms and their changing trends in the pathogenesis of depression, which is crucial for both disease prevention and therapy. It is also unknown how various forms of stress differ in their impact on animal physiology and behavior. The nucleus accumbens (NAc), an essential brain area for the pathophysiology of depression, and its underlying neural mechanisms remain unclear. Here, we systematically compared transcriptional signatures in the NAc of four chronic stress models in rats: chronic unpredictable mild stress (CUMS), chronic social defeat stress (CSDS), learned helplessness (LH), chronic restraint stress (CRS). The majority of differentially expressed genes (DEGs) were unique to a single depression model, while the rank-rank hypergeometric overlap analysis showed that the CSDS and CRS models had the greatest overlap, and the CRS and CUMS models had the least. Then, we performed pathway analysis of the differential genes and found that the neuroactive ligand-receptor interaction pathway was significantly enriched not only in the LH, CRS and CSDS stress models, but also significantly enriched in stress genes that were also altered in at least two stress models. Finally, we found three hub genes (Dcx, Tnc and Wdfy4) by constructing co-expression networks for stress genes. In summary, our research has the potential to offer fresh insights into the molecular mechanisms underlying depression induced by different types of stress, highlighting both their similarities and differences. It may provide valuable clues for understanding the pathogenesis of depression.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
15
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
16
|
Tang J, Chen LL, Zhang H, Wei P, Miao F. Effects of exercise therapy on anxiety and depression in patients with COVID-19: a systematic review and meta-analysis. Front Public Health 2024; 12:1330521. [PMID: 38510350 PMCID: PMC10950912 DOI: 10.3389/fpubh.2024.1330521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Objective With increasing rates of anxiety and depression during COVID-19, exercise treatment has drawn attention for its effects on COVID-19 patients with anxiety and depression. This study set out to assess the impact of exercise therapy on COVID-19 patients' anxiety and depression. Methods PubMed, EMBASE, Web of Science and Cochrane Library were used to search articles about exercise therapy as a means of treating anxiety and depression in COVID-19 patients from inception to April 30, 2023. The risk of bias was assessed by the Cochrane Collaboration bias risk tool. Data were pooled with the random effects model. RevMan version 5.4 was used for the statistical analyses. This work was registered in the PROSPERO database (registration number: CRD42023406439). Selection criteria Randomized clinical trials (RCTs) of COVID-19 patients with anxiety and depression were included to assess the impact of physical exercise on COVID-19 patients with anxiety and depression. Results 6 studies including a total of 461 COVID-19 patients were analyzed in this meta-analysis. Overall, the meta-analysis showed that compared with the control group, exercise could significantly improve anxiety (SMD = -0.76; 95%CI: -0.96, -0.55; p < 0.00001), depression level (SMD = -0.39; 95%CI: -0.70, -0.09; p = 0.01), the PHQ-9 score (MD = -1.82; 95%CI: -2.93, -0.71; p = 0.001) and the sleep quality (SMD = -0.73; 95%CI: -1.32, -0.14; p = 0.01) in COVID-19 patients. Conclusion The research provided evidence that exercise therapy is able to help COVID-19 patients experience less anxiety and depression and have better-quality sleep. Systematic review registration CRD42023406439.
Collapse
Affiliation(s)
- Ju Tang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang-Liang Chen
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongtao Zhang
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Feng Miao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
17
|
Hussenoeder FS, Conrad I, Pabst A, Engel C, Zachariae S, Zeynalova S, Yahiaoui-Doktor M, Glaesmer H, Hinz A, Witte V, Wichmann G, Kirsten T, Löffler M, Villringer A, Riedel-Heller SG. Connecting chronic stress and anxiety: a multi-dimensional perspective. PSYCHOL HEALTH MED 2024; 29:427-441. [PMID: 36106349 DOI: 10.1080/13548506.2022.2124292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Studies show a connection between anxiety and stress, but with little differentiation between different domains of stress. In this article, we utilize a multi-dimensional approach to better understand the relationship between different chronic stress domains and anxiety. This will allow researchers to identify and address those areas of stress that are most relevant with regard to anxiety. We used data from a sub sample of the LIFE-Adult-Study (n = 1085) to analyze the association between nine different areas of chronic stress (Trier Inventory for Chronic Stress, TICS) and anxiety (General Anxiety Disorder 7, GAD-7), controlling for sociodemographic variables, personality, and social support. There was a significant and positive association between Work Overload, Pressure to Perform, Social Tensions, Social Isolation, Chronic Worrying, and anxiety. After including the control variables, only Work Overload and Chronic Worrying remained significant. By focusing on Work Overload and Chronic Worrying researchers, practitioners, and policy makers can help to mitigate anxiety and related health problems in the population in an efficient way.
Collapse
Affiliation(s)
- Felix S Hussenoeder
- Institute of Social Medicine, Occupational Health and Public Health, Leipzig University, Leipzig, Germany
| | - Ines Conrad
- Institute of Social Medicine, Occupational Health and Public Health, Leipzig University, Leipzig, Germany
| | - Alexander Pabst
- Institute of Social Medicine, Occupational Health and Public Health, Leipzig University, Leipzig, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Silke Zachariae
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Samira Zeynalova
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Maryam Yahiaoui-Doktor
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Heide Glaesmer
- Department of Medical Psychology and Medical Sociology, Leipzig University, Leipzig, Germany
| | - Andreas Hinz
- Department of Medical Psychology and Medical Sociology, Leipzig University, Leipzig, Germany
| | - Veronika Witte
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gunnar Wichmann
- Department of Otorhinolaryngology, University of Leipzig, Leipzig, Germany
| | - Toralf Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
- Department for Medical Data Science, University Medical Data Center Leipzig, Leipzig, Germany
| | - Markus Löffler
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, Leipzig University, Leipzig, Germany
| |
Collapse
|
18
|
Lapmanee S, Supkamonseni N, Bhubhanil S, Treesaksrisakul N, Sirithanakorn C, Khongkow M, Namdee K, Surinlert P, Tipbunjong C, Wongchitrat P. Stress-induced changes in cognitive function and intestinal barrier integrity can be ameliorated by venlafaxine and synbiotic supplementations. PeerJ 2024; 12:e17033. [PMID: 38435986 PMCID: PMC10908264 DOI: 10.7717/peerj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Nattapon Supkamonseni
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | | | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathumthani, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
19
|
Bris ÁG, MacDowell KS, Ulecia-Morón C, Martín-Hernández D, Moreno B, Madrigal JLM, García-Bueno B, Caso JR, Leza JC. Differential regulation of innate immune system in frontal cortex and hippocampus in a "double-hit" neurodevelopmental model in rats. Neurotherapeutics 2024; 21:e00300. [PMID: 38241165 PMCID: PMC10903097 DOI: 10.1016/j.neurot.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
Neurodevelopmental disorders (NDs) are neuropsychiatric conditions affecting central nervous system development, characterized by cognitive and behavioural alterations. Inflammation has been recently linked to NDs. Animal models are essential for understanding their pathophysiology and identifying therapeutic targets. Double-hit models can reproduce neurodevelopmental and neuroinflammatory impairments. Sixty-seven newborn rats were assigned to four groups: Control, Maternal deprivation (MD, 24-h-deprivation), Isolation (Iso, 5 weeks), and Maternal deprivation + Isolation (MD + Iso, also known as double-hit). Cognitive dysfunction was assessed using behavioural tests. Inflammasome, MAPKs, and TLRs inflammatory elements expression in the frontal cortex (FC) and hippocampus (HP) was analysed through western blot and qRT-PCR. Oxidative/nitrosative (O/N) evaluation and corticosterone levels were measured in plasma samples. Double-hit group was affected in executive and working memory. Most inflammasomes and TLRs inflammatory responses were increased in FC compared to the control group, whilst MAPKs were downregulated. Conversely, hippocampal inflammasome and inflammatory components were reduced after the double-hit exposure, while MAPKs were elevated. Our findings reveal differential regulation of innate immune system components in FC and HP in the double-hit group. Further investigations on MAPKs are necessary to understand their role in regulating HP neuroinflammatory status, potentially linking our MAPKs results to cognitive impairments through their proliferative and anti-inflammatory activity.
Collapse
Affiliation(s)
- Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Beatriz Moreno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain.
| |
Collapse
|
20
|
Byun Y, Noh J. Social play exclusion model in adolescent rats: Monitoring locomotor and emotional behavior associated with social play and examining c-Fos expression in the brain. Physiol Behav 2024; 273:114379. [PMID: 37858915 DOI: 10.1016/j.physbeh.2023.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The exclusion of social play within an adolescent group interferes with learning and the acquisition of essential social behavior during development and can cause modulations in the social brain areas. However, despite the importance of social play in adolescence, an in-depth explanation of its physiological mechanisms is limited because of the lack of experimental animal models that embody social play exclusion in human society. To determine the mechanism of social play in adolescence, we identified differences in emotional behavior and brain activity in animal models of social play exclusion that mimicked human society. Emotional changes in the social play exclusion and non-exclusion groups were examined by tracking social play-related social interaction behavior, social play-related space preference, social play-related locomotor behavior, and anxiety-like behavior using a behavioral data analysis program. Differences in brain activity among groups were identified using immunohistochemical staining. During the social play exclusion model, the rats preferred the partition zone to the other areas in the test chamber. The exclusion group preferred the partition and the center zone over the non-exclusion group. When comparing before and after the social play exclusion, the exclusion group showed a decrease in mobility and an increase in anxiety-like behavior compared to the non-exclusion group. We found that c-Fos expression in the dentate gyrus (DG) of the exclusion group was lower than that in the non-exclusion group, whereas c-Fos expression in the lateral habenula (LHb) of the exclusion group was higher than that in the non-exclusion group. Taken together, in adolescence, exclusion from social play with peers can increase anxiety-like behavior in the exclusion group and change the neuronal activity of the DG and LHb, suggesting that exclusion from social play is linked to modifications in the DG and LHb, which are regions associated with mood regulation.
Collapse
Affiliation(s)
- Younsoo Byun
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea.
| |
Collapse
|
21
|
Ghaderi S, Rashno M, Sarkaki A, Khoshnam SE. Sesamin mitigates lead-induced behavioral deficits in male rats: The role of oxidative stress. Brain Res Bull 2024; 206:110852. [PMID: 38141790 DOI: 10.1016/j.brainresbull.2023.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran.
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
23
|
Zhao Y, Huang B, Yu Y, Luan J, Huang S, Liu Y, Yang H, Chen Y, Yang R, Dong J, Shi H. Exercise to prevent the negative effects of sleep deprivation: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105433. [PMID: 37898446 DOI: 10.1016/j.neubiorev.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Ample sleep is an important basis for maintaining health, however with the pace of life accelerating in modern society, more people are using sacrificial sleep to cope with these social changes. Sleep deprivation can have negative effects on cognitive performance and psychosomatic health. It is well known that exercise, as a beneficial intervention strategy for human health, has been increasingly used in the clinic. But it's not clear if it can prevent the negative effects of sleep deprivation. In this meta-analysis, we reviewed 23 articles from PubMed and Web of Science to investigate whether moderate physical exercise can prevent the negative effects of sleep deprivation in rodents. Our findings suggest that exercise can prevent sleep deprivation-induced cognitive impairment and anxiety-like behaviors through multiple pathways. We also discuss possible molecular mechanisms involved in this protective effect, highlighting the potential of exercise as a preventive or therapeutic strategy for sleep deprivation-induced negative effects.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yang Yu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiage Luan
- Nursing School, Hebei Medical University, Shijiazhuang 050017, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Ye Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Huiping Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jing Dong
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan 430000, Hubei, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
24
|
Bobba-Alves N, Sturm G, Lin J, Ware SA, Karan KR, Monzel AS, Bris C, Procaccio V, Lenaers G, Higgins-Chen A, Levine M, Horvath S, Santhanam BS, Kaufman BA, Hirano M, Epel E, Picard M. Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging. Psychoneuroendocrinology 2023; 155:106322. [PMID: 37423094 PMCID: PMC10528419 DOI: 10.1016/j.psyneuen.2023.106322] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/08/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.
Collapse
Affiliation(s)
- Natalia Bobba-Alves
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Céline Bris
- Department of Genetics, Angers Hospital, Angers, France; MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France
| | - Vincent Procaccio
- MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France
| | - Guy Lenaers
- Department of Genetics, Angers Hospital, Angers, France; MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France; Department of Neurology, Angers Hospital, Angers, France
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, United States
| | - Morgan Levine
- Altos Labs, San Diego Institute of Science, San Diego, CA United States
| | - Steve Horvath
- Altos Labs, San Diego Institute of Science, San Diego, CA United States
| | - Balaji S Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, United States
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michio Hirano
- Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, United States
| | - Elissa Epel
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States; Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|
25
|
Li H, Zhao M, Jiang C, Zhao H, Wu C, Li Y, Zhang S, Xu P, Mou T, Xu Y, Huang M. Elevated Plasma Levels of Mature Brain-Derived Neurotrophic Factor in Major Depressive Disorder Patients with Higher Suicidal Ideation. Brain Sci 2023; 13:1223. [PMID: 37626579 PMCID: PMC10452535 DOI: 10.3390/brainsci13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Several pieces of evidence show that signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB), as well as inflammation, play a crucial part in the pathophysiology of depression. The purpose of our study was to evaluate plasma levels of BDNF-TrkB signaling, which are inflammatory factors in major depressive disorder (MDD) patients, and assess their associations with clinical performance. This study recruited a total sample of 83 MDD patients and 93 healthy controls (CON). All the participants were tested with the Hamilton Depression Scale (HAMD), the Beck Scale for Suicide Ideation, and the NEO Five-Factor Inventory. The plasma level of selected BDNF-TrkB signaling components (mature BDNF (mBDNF), precursor BDNF (proBDNF), tyrosine kinase B (TrkB), and tissue plasminogen activator (tPA)) and selected inflammatory factors (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)) were measured using an enzyme-linked immunosorbent assay (ELISA). Further, we performed correlation analysis to indicate the relationship between the plasma levels of the factors and clinical characteristics. Results: (i) A higher level of mBDNF and lower openness were observed in MDD patients with higher suicidal ideation than patients with lower suicidal ideation. (ii) In MDD patients, mBDNF was positively correlated with the sum score of the Beck Scale for Suicide Ideation (BSS). (iii) The levels of mBDNF, tPA, IL-1 β and IL-6 were significantly higher in all MDD subjects compared to the healthy controls, while the levels of TrkB and proBDNF were lower in MDD subjects. Conclusion: Our study provides novel insights regarding the potential role of mBDNF in the neurobiology of the association between depression and suicidal ideation and, in particular, the relationship between BDNF-TrkB signaling, inflammatory factors, and clinical characteristics in MDD.
Collapse
Affiliation(s)
- Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (H.L.); (M.Z.); (C.J.); (H.Z.); (C.W.); (Y.L.); (S.Z.); (P.X.); (T.M.); (Y.X.)
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| |
Collapse
|
26
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
27
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Estrada-Cruz NA, Manuel-Apolinar L, Segura-Uribe JJ, Almanza-Pérez JC, Fortis-Barrera Á, Orozco-Suárez S, Bautista-Poblet G, Coyoy-Salgado A, Guerra-Araiza C. Short-term administration of tibolone reduces inflammation and oxidative stress in the hippocampus of ovariectomized rats fed high-fat and high-fructose. Nutr Neurosci 2023; 26:275-289. [PMID: 35282801 DOI: 10.1080/1028415x.2022.2046964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are critical events involved in neurodegeneration. In animal models, it has been shown that chronic consumption of a hypercaloric diet, which leads to inflammatory processes, affects the hippocampus, a brain region fundamental for learning and memory processes. In addition, advanced age and menopause are risk factors for neurodegeneration. Hormone replacement therapy (HRT) ameliorates menopause symptoms. Tibolone (TB), a synthetic hormone, exerts estrogenic, progestogenic and androgenic effects on different tissues. We aimed to determine the effect of short-term TB administration on oxidative stress and inflammation markers in the hippocampus of ovariectomized rats fed a high-fat-and-fructose diet (HFFD). Adult female rats were ovariectomized (OVX) and fed standard diet or HFFD-consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water-and administered vehicle or TB (1 mg/kg for seven days). Finally, we administered hormone receptor antagonists (MPP, RU486 or FLU) to each of the OVX + HFFD + TB groups. Bodyweight, triglycerides and cholesterol, oxidative stress and inflammation markers, and the activity and expression of antioxidant enzymes were quantified in the hippocampus of each experimental group. We observed that short-term TB administration significantly reduced body weight, AGEs, MDA levels, increased SOD and GPx activity, improved GSH/GSSG ratio, and reduced IL-6 and TNF-α. Our findings suggest that short-term administration of TB decreases oxidative stress and reduces inflammation caused by HFFD and early estrogenic decline. These effects occurred via estrogen receptor alpha.
Collapse
Affiliation(s)
- Norma A Estrada-Cruz
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Leticia Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endocrinas, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | - Julia J Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Julio C Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, UAM-I, Mexico City, Mexico
| | - Ángeles Fortis-Barrera
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, UAM-I, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | - Guadalupe Bautista-Poblet
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Angélica Coyoy-Salgado
- Cátedras CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, IMSS, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| |
Collapse
|
29
|
Mancini GF, Meijer OC, Campolongo P. Stress in adolescence as a first hit in stress-related disease development: Timing and context are crucial. Front Neuroendocrinol 2023; 69:101065. [PMID: 37001566 DOI: 10.1016/j.yfrne.2023.101065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, however, represents another highly sensitive developmental window during which exposure to stressful events may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is experienced in two different life stages.
Collapse
Affiliation(s)
- Giulia F Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
30
|
Graf A, Murray SH, Eltahir A, Patel S, Hansson AC, Spanagel R, McCormick CM. Acute and long-term sex-dependent effects of social instability stress on anxiety-like and social behaviours in Wistar rats. Behav Brain Res 2023; 438:114180. [PMID: 36349601 DOI: 10.1016/j.bbr.2022.114180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/02/2022]
Abstract
Adolescence is a critical time of social learning in which both the quantity and quality of social interactions shape adult behavior and social function. During adolescence, social instability such as disrupting or limiting social interactions can lead to negative life-long effects on mental health and well-being in humans. Animal models on social instability are critically important in understanding those underlying neurobiological mechanisms. However, studies in rats using these models have produced partly inconsistent results and can be difficult to generalize. Here we assessed in a sex and age consistent manner the long-term behavioural consequences of social instability stress (SIS - 1-hr daily isolation and change in cage mate between postnatal day (PD30-45)) in Wistar rats. Female and male rats underwent a battery of tests for anxiety-like, exploratory, and social behaviour over five days beginning either in adolescence (PD46) or in adulthood (PD70). Social instability led to reduced anxiety-like behaviour in the elevated plus maze in both sexes in adolescence and in adulthood. Social interactions were also reduced in rats that underwent SIS - an effect that was independent of sex and age when tested. SIS improved social recognition memory in both sexes whereas a sex-dependent effect was seen in the social novelty preference test where male rats that underwent SIS spent more time in social approach toward a novel peer than toward their cage mate. In comparison, control male and female groups did not differ in this test, in time spent with novel versus the cage mate. Thus, overall, social instability stress in Wistar rats altered the behavioural repertoire, with enduring alterations in social behaviour, enhanced exploratory behaviour, and reduced anxiety-like behaviour. In conclusion, the social instability stress paradigm may better be interpreted as a form of enrichment in Wistar rats than as a stressor.
Collapse
Affiliation(s)
- Akseli Graf
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shealin H Murray
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Akif Eltahir
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Smit Patel
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cheryl M McCormick
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada.
| |
Collapse
|
31
|
Myers S, McCracken K, Buck DJ, Curtis JT, Davis RL. Anti-inflammatory actions of β-funaltrexamine in a mouse model of lipopolysaccharide-induced inflammation. Inflammopharmacology 2023; 31:349-358. [PMID: 36527567 DOI: 10.1007/s10787-022-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is involved in a wide range of brain disorders, thus there is great interest in identifying novel anti-inflammatory agents to include in therapeutic strategies. Our previous in vitro studies revealed that beta-funaltrexamine (β-FNA), a well-characterized selective mu-opioid receptor (MOR) antagonist, inhibits inflammatory signaling in human astroglial cells, albeit through an apparent MOR-independent mechanism. We also previously determined that lipopolysaccharide (LPS)-induced sickness behavior and neuroinflammation in mice are prevented by pretreatment with β-FNA. Herein we investigated the temporal importance of β-FNA treatment in this pre-clinical model of LPS-induced neuroinflammation. Adult, male C57BL/6J mice were administered an i.p. injection of LPS followed by treatment (i.p. injection) with β-FNA immediately or 4 h post-LPS. Sickness behavior was assessed using an open-field test, followed by assessment of inflammatory signaling in the brain, spleen, and plasma. Levels of inflammatory chemokines/cytokines (interferon γ-induced protein, CXCL10; monocyte chemotactic protein 1, CCL2; and interleukin-6, IL-6) in tissues were measured using an enzyme-linked immunosorbent assay and nuclear factor-kappa B (NFκB), p38 mitogen activated kinase (p38 MAPK), and glial fibrillary acidic protein (GFAP) expression were measured by western blot. LPS-induced sickness behavior and chemokine expression were inhibited more effectively when β-FNA treatment occurred immediately after LPS administration, as opposed to 4 h post-LPS; and β-FNA-mediated effects were time-dependent as evidenced by inhibition at 24 h, but not at 8 h. The inhibitory effects of β-FNA on chemokine expression were more evident in the brain versus the spleen or plasma. LPS-induced NFκB-p65 and p38 MAPK expression in the brain and spleen were inhibited at 8 and 24 h post-LPS. These findings extend our understanding of the anti-inflammatory effects of β-FNA and warrant further investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Stephanie Myers
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Kelly McCracken
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Daniel J Buck
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - J Thomas Curtis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Randall L Davis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA.
| |
Collapse
|
32
|
Vastegani SM, Hajipour S, Sarkaki A, Basir Z, Farbood Y, Bavarsad K, Khoshnam SE. Curcumin Ameliorates Neurobehavioral Deficits in Ambient Dusty Particulate Matter-Exposure Rats: The Role of Oxidative Stress. Neurochem Res 2023; 48:1798-1810. [PMID: 36708454 DOI: 10.1007/s11064-023-03877-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
It has been consistently found that exposure to ambient air pollution, such as particulate matter (PM), results in cognitive impairments and mental disorders. This study aimed to investigate the possible neuroprotective effects of curcumin, a polyphenol compound, on the neurobehavioral deficits and to identify the role of oxidative stress in dusty PM exposure rats. Rats received curcumin (50 mg/kg, daily, gavage, 2 weeks) 30 min before placing animals in a clean air chamber (≤ 150 µg/m3, 60 min daily, 2 weeks) or ambient dusty PM chamber (2000-8000 µg/m3, 60 min daily, 2 weeks). Subsequently, the cognitive and non-cognitive functions of the animals were evaluated using standard behavioral tests. Moreover, blood-brain barrier (BBB) permeability, brain water content (BWC), oxidative-antioxidative status, and histological changes were determined in the cerebral cortex and hippocampal areas of the rats. Our results showed that curcumin administration in dusty PM exposure rats attenuates memory impairment, decreases anxiety-/depression-like behaviors, and improves locomotor/exploratory activities. These findings were accompanied by reduced BBB permeability and BWC, decreasing oxidative stress, and lessening neuronal loss in the cerebral cortex and different hippocampal areas. The results of this study suggest that curcumin's antioxidant properties may contribute to its efficacy in improving neurobehavioral deficits and preventing neuronal loss associated with dusty PM exposure.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
33
|
Yu Q, Liu M, Dai W, Xiong Y, Mu X, Xia M, Li Y, Ma S, Su Y, Wu J, Liu C, Xie Y, Zhao T, Lu A, Weng N, Zheng F, Sun P. The NLRP3 inflammasome is involved in resident intruder paradigm-induced aggressive behaviors in mice. Front Pharmacol 2023; 14:974905. [PMID: 36778007 PMCID: PMC9912938 DOI: 10.3389/fphar.2023.974905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Background: Aggressive behaviors are one of the most important negative behaviors that seriously endangers human health. Also, the central para-inflammation of microglia triggered by stress can affect neurological function, plasticity, and behavior. NLRP3 integrates stress-related signals and is a key driver of this neural para-inflammation. However, it is unclear whether the NLRP3 inflammasome is implicated in the development of aggressive behaviors. Methods: First, aggressive behavior model mice were established using the resident intruder paradigm. Then, aggressive behaviors were determined with open-field tests (OFT), elevated plus-maze (EPM), and aggressive behavior tests (AT). Moreover, the expression of P2X7R and NLRP3 inflammasome complexes were assessed by immunofluorescence and Western blot. The levels of NLRP3 and inflammatory cytokines were evaluated using enzyme-linked immunosorbent assay (ELISA) kits. Finally, nerve plasticity damage was observed by immunofluorescence, transmission electron microscope, and BrdU staining. Results: Overall, the resident intruder paradigm induced aggressive behaviors, activated the hippocampal P2X7R and NLRP3 inflammasome, and promoted the release of proinflammatory cytokines IL-1β in mice. Moreover, NLRP3 knockdown, administration of P2X7R antagonist (A804598), and IL-1β blocker (IL-1Ra) prevented NLRP3 inflammasome-driven inflammatory responses and ameliorated resident intruder paradigm-induced aggressive behaviors. Also, the resident intruder paradigm promoted the activation of mouse microglia, damaging synapses in the hippocampus, and suppressing hippocampal regeneration in mice. Besides, NLRP3 knockdown, administration of A804598, and IL-1Ra inhibited the activation of microglia, improved synaptic damage, and restored hippocampal regeneration. Conclusion: The NLRP3 inflammasome-driven inflammatory response contributed to resident intruder paradigm-induced aggressive behavior, which might be related to neuroplasticity. Therefore, the NLRP3 inflammasome can be a potential target to treat aggressive behavior-related mental illnesses.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Molin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiangyu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mengyao Xia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yanling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Shan Ma
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yongtao Su
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Chuanguo Liu
- Experimental center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yicheng Xie
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Aimei Lu
- Shandong Public Health Clinical Center, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Ning Weng
- Department of Traditional Chinese Medicine, Shandong Mental Health Center, Shandong University, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China,*Correspondence: Tingting Zhao, ; Aimei Lu, ; Ning Weng, ; Feng Zheng, ; Peng Sun,
| |
Collapse
|
34
|
Myers S, McCracken K, Buck DJ, Curtis JT, Davis RL. Anti-inflammatory effects of β-FNA are sex-dependent in a pre-clinical model of LPS-induced inflammation. J Inflamm (Lond) 2023; 20:4. [PMID: 36698151 PMCID: PMC9878921 DOI: 10.1186/s12950-023-00328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Inflammation is present in neurological and peripheral disorders. Thus, targeting inflammation has emerged as a viable option for treating these disorders. Previous work indicated pretreatment with beta-funaltrexamine (β-FNA), a selective mu-opioid receptor (MOR) antagonist, inhibited inflammatory signaling in vitro in human astroglial cells, as well as lipopolysaccharide (LPS)-induced neuroinflammation and sickness-like-behavior in mice. This study explores the protective effects of β-FNA when treatment occurs 10 h after LPS administration and is the first-ever investigation of the sex-dependent effects of β-FNA on LPS-induced inflammation in the brain and peripheral tissues, including the intestines. RESULTS Male and female C57BL/6J mice were administered LPS followed by treatment with β-FNA-immediately or 10 h post-LPS. Sickness- and anxiety-like behavior were assessed using an open-field test and an elevated-plus-maze test, followed by the collection of whole brain, hippocampus, prefrontal cortex, cerebellum/brain stem, plasma, spleen, liver, large intestine (colon), proximal small intestine, and distal small intestine. Levels of inflammatory chemokines/cytokines (interferon γ-induced-protein, IP-10 (CXCL10); monocyte-chemotactic-protein 1, MCP-1 (CCL2); interleukin-6, IL-6; interleukin-1β, IL-1β; and tumor necrosis factor-alpha, TNF-α) in tissues were measured using an enzyme-linked immunosorbent assay. Western blot analysis was used to assess nuclear factor-kappa B (NF-κB) expression. There were sex-dependent differences in LPS-induced inflammation across brain regions and peripheral tissues. Overall, LPS-induced CXCL10, CCL2, TNF-α, and NF-κB were most effectively downregulated by β-FNA; and β-FNA effects differed across brain regions, peripheral tissues, timing of the dose, and in some instances, in a sex-dependent manner. β-FNA reduced LPS-induced anxiety-like behavior most effectively in female mice. CONCLUSION These findings provide novel insights into the sex-dependent anti-inflammatory effects of β-FNA and advance this agent as a potential therapeutic option for reducing both neuroinflammation an intestinal inflammation.
Collapse
Affiliation(s)
- Stephanie Myers
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Kelly McCracken
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Daniel J. Buck
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - J. Thomas Curtis
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Randall L. Davis
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| |
Collapse
|
35
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
ÇİKLER E, SÖĞÜT İ, AYDOĞAN SG, KIRMIZIKAN S, HÜRDAĞ C. The Effects of Fulvic Acid Against Water Avoidance Stress-Induced Damage of Rat Colon Mucosa. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2023. [DOI: 10.33808/clinexphealthsci.1036048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Objective: Chronic stress plays an important role in the etiology of many inflammatory diseases. Reactive oxygen species (ROS), a source of free radicals, act as signaling molecules in the progression of stress-related inflammatory diseases. Oxidative stress occurs as a result of an increase in free radicals in the tissues. The damage caused by oxidative stress can be reduced by antioxidant replacement. In our study, the effect of fulvic acid, a powerful antioxidant, on the damage caused by the water avoidance stress model in the rat colon was investigated morphologically and biochemically.
Methods: Experimental groups (n=6, Sprague-Dawley male rats, 300 g): control (C), water avoidance stress (WAS), and water avoidance stress+fulvic acid (WAS+FA). Rats in the WAS + FA group were given a single dose of FA (150 mg/kg i.p.) immediately after exposure to water avoidance stress. The colons were stained with hematoxylin-eosin and toluidine blue. Total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were analyzed biochemically.
Results: Compared to the C group, the WAS group showed epithelial damage, a few empty goblet cells, inflammatory cell infiltration, and many active mast cells in the connective tissue. Mucosal integrity, the number of goblet cells, and mast cell activity improved in the WAS+FA group as compared to the WAS group. Biochemically, as compared to the C group, TAS levels decreased, and TOS and OSI levels increased in the WAS group. In the WAS+FA group, TAS levels increased, and TOS and OSI levels decreased with respect to those in the WAS group.
Conclusion: Our findings indicated that fulvic acid reduced the damage caused by chronic oxidative stress in the colon.
Collapse
Affiliation(s)
| | - İbrahim SÖĞÜT
- DEMİROĞLU BİLİM ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOKİMYA ANABİLİM DALI
| | - Sezen Gizem AYDOĞAN
- DEMİROĞLU BİLİM ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| | - Seda KIRMIZIKAN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| | - Canan HÜRDAĞ
- DEMİROĞLU BİLİM ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| |
Collapse
|
37
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
38
|
Normalization of HPA Axis, Cholinergic Neurotransmission, and Inhibiting Brain Oxidative and Inflammatory Dynamics Are Associated with The Adaptogenic-like Effect of Rutin Against Psychosocial Defeat Stress. J Mol Neurosci 2023; 73:60-75. [PMID: 36580190 DOI: 10.1007/s12031-022-02084-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Social defeat stress (SDS) due to changes in biochemical functions has been implicated in the pathogenesis of affective and cognitive disorders. Employing pharmacological approach with adaptogens in the management and treatment of psychosocial stress is increasingly receiving scientific attention. In this study, we investigated the neuroprotective effect of rutin, a bioflavonoid with neuroprotective and anti-inflammatory functions on neurobehavioral and neuro-biochemical changes in mice exposed to SDS. Groups of mice named the intruder mice received normal saline (10 mL/kg), rutin (5, 10, and 20 mg/kg, i.p.), and ginseng (50 mg/kg, i.p.) daily for 14 days, and then followed by 10 min daily SDS (physical/psychological) exposures to aggressor mice from days 7-14. Investigations consisting of neurobehavioral (locomotion, memory, anxiety, and depression) phenotypes, neuro-biochemical (oxidative, nitrergic, cholinergic, and pro-inflammatory cytokines) levels in discrete brain regions, and hypothalamic-pituitary-adrenal (HPA) axis consisting adrenal weight, corticosterone, and glucose concentrations were assessed. Rutin restored the neurobehavioral deficits and reduced the activity of acetylcholinesterase in the brains. Adrenal hypertrophy, increased serum glucose and corticosterone levels were significantly attenuated by rutin. SDS-induced release of tumor necrosis factor-alpha and interleukin-6 in the striatum, prefrontal cortex, and hippocampus were also suppressed by rutin in a brain-region-dependent manner. Moreover, SDS-induced oxidative stress characterized by low antioxidants (glutathione, superoxide-dismutase, catalase) and lipid peroxidation and nitrergic stress were reversed by rutin in discrete brain regions. Collectively, our data suggest that rutin possesses an adoptogenic potential in mice exposed to SDS via normalization of HPA, oxidative/nitrergic, and neuroinflammatory inhibitions. Thus, may be adopted in the management of neuropsychiatric syndrome due to psychosocial stress.
Collapse
|
39
|
Moheimani RS, Kajbaf J, Chang Chien GC. Patient Factors Affecting Regenerative Medicine Outcomes. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
40
|
Nacre extract from pearl oyster suppresses LPS-induced depression and anxiety. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
41
|
Wang Y, Bai Y, Xiao X, Wang L, Wei G, Guo M, Song X, Tian Y, Ming D, Yang J, Zheng C. Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress. Cereb Cortex 2022; 32:5580-5596. [PMID: 35188969 DOI: 10.1093/cercor/bhac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
The excitatory neurons of the medial prefrontal cortex (mPFC) respond to social stimuli. However, little is known about how the neural activity is altered during social avoidance, and whether it could act as a target of low-intensity focused ultrasound stimulation (LIFUS) to rescue social deficits. The present study aimed to investigate the mechanisms of neuronal activities and inflammatory responses underlying the effect of LIFUS on social avoidance. We found that chronic LIFUS stimulation can effectively improve social avoidance in the defeated mice. Calcium imaging recordings by fiber photometry in the defeated mice showed inhibited ensemble activity during social behaviors. LIFUS instantaneously triggered the mPFC neuronal activities, and chronic LIFUS significantly enhanced their neuronal excitation related to social interactions. We further found that the excessive activation of microglial cells and the overexpression of the inflammation signaling, i.e. Toll-like receptors(TLR4)/nuclear factor-kappaB(NF-КB), in mPFC were significantly inhibited by LIFUS. These results suggest that the LIFUS may inhibit social avoidance behavior by reducing activation of the inflammatory response, increasing neuronal excitation, and protecting the integrity of the neuronal structure in the mPFC. Our findings raised the possibility of LIFUS being applied as novel neuromodulation for social avoidance treatment in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xi Xiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Ling Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Ganjiang Wei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Mingkun Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Jiajia Yang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Chenguang Zheng
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
42
|
Islam Z, Islam J, Tony SR, Anjum A, Ferdous R, Roy AK, Hossain S, Salam KA, Nikkon F, Hossain K, Saud ZA. Mulberry leaves juice attenuates arsenic-induced neurobehavioral and hepatic disorders in mice. Food Sci Nutr 2022; 10:4360-4370. [PMID: 36514774 PMCID: PMC9731539 DOI: 10.1002/fsn3.3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
Arsenic (As) poisoning has caused an environmental catastrophe in Bangladesh as millions of people are exposed to As-contaminated drinking water. Chronic As-exposure causes depression, memory impairment, and liver injury in experimental animals. This study was carried out to assess the protective effect of mulberry leaves juice (Mul) against As-induced neurobehavioral and hepatic dysfunctions in Swiss albino mice. As-exposed mice spent significantly reduced time in open arms and increased time spent in closed arms in the elevated plus maze (EPM) test, whereas they took significantly longer time to find the hidden platform in the Morris water maze (MWM) test and spent significantly less time in the desired quadrant when compared to the control mice. A significant reduction in serum BChE activity, an indicator of As-induced neurotoxicity-associated behavioral changes, was noted in As-exposed mice compared to control mice. Supplementation of Mul to As-exposed mice significantly increased serum BChE activity, increased the time spent in open arms and reduced time latency to find the hidden platform, and stayed more time in the target quadrant in EPM and MWM tests, respectively, compared to As-exposed-only mice. Also, a significantly reduced activity of BChE, AChE, SOD, and GSH in brain, and elevated ALP, AST, and ALT activities in serum were noted in As-exposed mice when compared to control mice. Mul supplementation significantly restored the activity of these enzymes and also recovered As-induced alterations in hepatic tissue in As-exposed mice. In conclusion, this study suggested that mulberry leaves juice attenuates As-induced neurobehavioral and hepatic dysfunction in mice.
Collapse
Affiliation(s)
- Zohurul Islam
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Selim Reza Tony
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Adiba Anjum
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Rafia Ferdous
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Apurba Kumar Roy
- Department of Genetic Engineering & BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Kazi Abdus Salam
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Khaled Hossain
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| |
Collapse
|
43
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
44
|
Yoshida Y, Yajima Y, Kawakami K, Nakamura SI, Tsukahara T, Oishi K, Toyoda A. Salivary microRNA and Metabolic Profiles in a Mouse Model of Subchronic and Mild Social Defeat Stress. Int J Mol Sci 2022; 23:ijms232214479. [PMID: 36430957 PMCID: PMC9692636 DOI: 10.3390/ijms232214479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Identification of early biomarkers of stress is important for preventing mood and anxiety disorders. Saliva is an easy-to-collect and non-invasive diagnostic target. The aim of this study was to characterize the changes in salivary whole microRNAs (miRNAs) and metabolites in mice subjected to subchronic and mild social defeat stress (sCSDS). In this study, we identified seven upregulated and one downregulated miRNAs/PIWI-interacting RNA (piRNA) in the saliva of sCSDS mice. One of them, miR-208b-3p, which is reported as a reliable marker for myocardial infarction, was upregulated in the saliva of sCSDS mice. Histological analysis showed frequent myocardial interstitial fibrosis in the heart of such mice. In addition, gene ontology and pathway analyses suggested that the pathways related to energy metabolism, such as the oxidative phosphorylation and the pentose phosphate pathway, were significantly related to the miRNAs affected by sCSDS in saliva. In contrast, salivary metabolites were not significantly changed in the sCSDS mice, which is consistent with our previous metabolomic study on the plasma of sCSDS mice. Taken in the light of previous studies, the present study provides novel potential stress biomarkers for future diagnosis using saliva.
Collapse
Affiliation(s)
- Yuta Yoshida
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
| | - Yuhei Yajima
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kina Kawakami
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
| | | | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Atsushi Toyoda
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Correspondence: ; Tel.: +81-29-888-8584; Fax: +81-29-888-8584
| |
Collapse
|
45
|
Farré R, Almendros I, Martínez-García MÁ, Gozal D. Experimental Models to Study End-Organ Morbidity in Sleep Apnea: Lessons Learned and Future Directions. Int J Mol Sci 2022; 23:ijms232214430. [PMID: 36430904 PMCID: PMC9696027 DOI: 10.3390/ijms232214430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) is a very prevalent sleep breathing disorder mainly characterized by intermittent hypoxemia and sleep fragmentation, with ensuing systemic inflammation, oxidative stress, and immune deregulation. These perturbations promote the risk of end-organ morbidity, such that SA patients are at increased risk of cardiovascular, neurocognitive, metabolic and malignant disorders. Investigating the potential mechanisms underlying SA-induced end-organ dysfunction requires the use of comprehensive experimental models at the cell, animal and human levels. This review is primarily focused on the experimental models employed to date in the study of the consequences of SA and tackles 3 different approaches. First, cell culture systems whereby controlled patterns of intermittent hypoxia cycling fast enough to mimic the rates of episodic hypoxemia experienced by patients with SA. Second, animal models consisting of implementing realistic upper airway obstruction patterns, intermittent hypoxia, or sleep fragmentation such as to reproduce the noxious events characterizing SA. Finally, human SA models, which consist either in subjecting healthy volunteers to intermittent hypoxia or sleep fragmentation, or alternatively applying oxygen supplementation or temporary nasal pressure therapy withdrawal to SA patients. The advantages, limitations, and potential improvements of these models along with some of their pertinent findings are reviewed.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (R.F.); (D.G.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Miguel-Ángel Martínez-García
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, The University of Missouri, Columbia, MO 65201, USA
- Correspondence: (R.F.); (D.G.)
| |
Collapse
|
46
|
Barabas AJ, Soini HA, Novotny MV, Lucas JR, Erasmus MA, Cheng HW, Palme R, Gaskill BN. Assessing the effect of compounds from plantar foot sweat, nesting material, and urine on social behavior in male mice, Mus musculus. PLoS One 2022; 17:e0276844. [PMID: 36322597 PMCID: PMC9629637 DOI: 10.1371/journal.pone.0276844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Home cage aggression causes poor welfare in male laboratory mice and reduces data quality. One of the few proven strategies to reduce aggression involves preserving used nesting material at cage change. Volatile organic compounds from the nesting material and several body fluids not only correlate with less home cage aggression, but with more affiliative allo-grooming behavior. To date, these compounds have not been tested for a direct influence on male mouse social behavior. This study aimed to determine if 4 previously identified volatile compounds impact home cage interactions. A factorial design was used with cages equally split between C57BL/6N and SJL male mice (N = 40). Treatments were randomly assigned across cages and administered by spraying one compound solution on each cage's nesting material. Treatments were refreshed after day 3 and during cage change on day 7. Home cage social behavior was observed throughout the study week and immediately after cage change. Several hours after cage change, feces were collected from individual mice to measure corticosterone metabolites as an index of social stress. Wound severity was also assessed after euthanasia. Measures were analyzed with mixed models. Compound treatments did not impact most study measures. For behavior, SJL mice performed more aggression and submission, and C57BL/6N mice performed more allo-grooming. Wound severity was highest in the posterior region of both strains, and the middle back region of C57BL/6N mice. Posterior wounding also increased with more observed aggression. Corticosterone metabolites were higher in C57BL/6N mice and in mice treated with 3,4-dimethyl-1,2-cyclopentanedione with more wounding. These data confirm previous strain patterns in social behavior and further validates wound assessment as a measure of escalated aggression. The lack of observed treatment effects could be due to limitations in the compound administration procedure and/or the previous correlation study, which is further discussed.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Helena A. Soini
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Jeffrey R. Lucas
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Marisa A. Erasmus
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Heng-Wei Cheng
- USDA-ARS, Livestock Behavior Research Unit, Purdue University, West Lafayette, Indiana, United States of America
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Brianna N. Gaskill
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
47
|
Aquino GA, Sousa CNS, Medeiros IS, Almeida JC, Cysne Filho FMS, Santos Júnior MA, Vasconcelos SMM. Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice. J Basic Clin Physiol Pharmacol 2022; 33:789-801. [PMID: 34390639 DOI: 10.1515/jbcpp-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/17/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). METHODS The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. RESULTS PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001-p<0.01), and an increase in the MDA level (p<0.001-p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). CONCLUSIONS Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.
Collapse
Affiliation(s)
- Gabriel A Aquino
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caren N S Sousa
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ingridy S Medeiros
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jamily C Almeida
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco M S Cysne Filho
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Manuel A Santos Júnior
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia M M Vasconcelos
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
48
|
Ajayi AM, Ben-Azu B, Ogunkolade GE, Melete J, Oyedele AT, Umukoro S. Repeated social defeat stress exacerbates lipopolysaccharide-induced behavioural deficits in mice: ameliorative role of Chrysophyllum albidum fruit extract through anti-neuroinflammation, antioxidant and neurochemical balance. Metab Brain Dis 2022; 37:2467-2481. [PMID: 35867181 DOI: 10.1007/s11011-022-01053-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Development of neuropsychiatric disorder is associated with stress-related increase in pro-inflammatory cytokines. Chrysophyllum albidum fruit is an edible tropical fruit containing vitamins and phenolic compounds, well known for their anti-inflammatory and antioxidant activities. This study was designed to investigate the neuroprotective effect of C. albidum fruit extract (CAFE) on stress and lipopolysaccharide (LPS)-induced behavioral and neurochemical impairments in mice. Male Swiss mice were divided into 6 groups (n = 6). Groups 1-3 were orally treated daily for 14 days with normal saline (0.1 mL/10 g), CAFE (100 mg/kg) and Ferulic acid (FA, 10 mg/kg), and left in home cage as controls. Groups 4-6 were treated similarly but subjected to repeated social defeat (RSD) stress using the resident-intruder model from days 1-14. The RSD-animals were injected with LPS (125 µg/kg, i.p) 60 min after each RSD session from days 8-14. Neurobehavioral functions: locomotor, cognitive and anxiety-like behaviors were assessed 24 h after the last treatment. Pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), dopamine, acetylcholinesterase, glutamic acid decarboxylase (GAD), malondialdehyde, nitrites, and reduced glutathione (GSH) were determined in brain tissue. CAFE significantly attenuated RSD and LPS-induced hypolocomotion, cognitive impairment and anxiety-like behavior when compared to the control. Treatment with CAFE also significantly reversed the negative effects of RSD and LPS on pro-inflammatory cytokines, dopamine, acetylcholinesterase, GAD, and oxidative-nitrosative stress levels. The findings clearly indicated that Chrysophyllum albidum fruit demonstrated neuroprotective effects and can play a key role in mitigating against chronic stress and inflammation linked to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gracious E Ogunkolade
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - John Melete
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Ayomide T Oyedele
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| |
Collapse
|
49
|
Cram DL. Oxidative stress and cognition in ecology. J Zool (1987) 2022. [DOI: 10.1111/jzo.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. L. Cram
- Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
50
|
Zhang Y, Liu J, Zhang Y, Ke L, Liu R. Interactive Compensation Effects of Physical Activity and Sleep on Mental Health: A Longitudinal Panel Study among Chinese College Students during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12323. [PMID: 36231626 PMCID: PMC9566087 DOI: 10.3390/ijerph191912323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Physical activity (PA) and sleep are both important to mental health. However, their joint effects on mental distress have not been well explored. The aim of this study was to investigate the joint effects of PA and sleep on mental health, as well as the dose-response relationships between PA and mental health under different sleep health statuses. A longitudinal panel study was adopted to evaluate the relationship between PA, sleep, and mental health among 66 healthy Chinese college students with four online questionnaire surveys. A mixed-effect model with individual-level random effect was used to analyze the interactive regulation effect of PA and sleep on mental health, and a generalized additive model with splines was further fitted to analyze dose-response relationships between variables. When sleep was at a healthy level, no significant difference in mental health was observed between different levels of PA (p > 0.05). However, poor sleepers with moderate and high PA levels indicated significantly fewer negative emotions than those with low PA levels (p = 0.001, p = 0.004). Likewise, poor sleepers who engaged in more moderate intensity PA could significantly reduce negative emotions (β = -0.470, p = 0.011) in a near-linear trend. In summary, both sleep and PA benefit mental health, and they probably regulate mental health through an interactive compensation mode. For good and poor sleepers, PA plays a different role in maintaining and improving mental health. Increasing moderate intensity PA up to moderate-and-high levels is recommended for those who simultaneously suffer from sleep and psychological health problems.
Collapse
Affiliation(s)
- Yao Zhang
- Soochow College, Soochow University, Suzhou 215006, China
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
| | - Jianxiu Liu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- Department of Physical Education, Beijing Forestry University, Beijing 100083, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruidong Liu
- Sports Coaching College, Beijing Sport University, Beijing 100084, China
| |
Collapse
|