1
|
Labounek R, Bondy MT, Paulson AL, Bédard S, Abramovic M, Alonso-Ortiz E, Atcheson NT, Barlow LR, Barry RL, Barth M, Battiston M, Büchel C, Budde MD, Callot V, Combes A, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak AV, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers JM, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Laganà MM, Laule C, Law CSW, Leutritz T, Liu Y, Llufriu S, Mackey S, Martin AR, Martinez-Heras E, Mattera L, O’Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley GW, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J, Cohen-Adad J, Lenglet C, Nestrašil I. Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591421. [PMID: 38746371 PMCID: PMC11092490 DOI: 10.1101/2024.04.29.591421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Monica T. Bondy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Amy L. Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicole T Atcheson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Laura R. Barlow
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Markus Barth
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veteran’s Affairs Medical Center, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna Combes
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam V. Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jürgen Finsterbusch
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - GianCarlo Germani
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Haleh Karbasforoushan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Joo-won Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Nawal Kinany
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Science, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Petr Kudlička
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | | | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, China
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Allan R. Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Eloy Martinez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Geneva, Genève, Switzerland
| | - Kristin P. O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Todd B. Parrish
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, University College London, London, UK
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rebecca S. Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele (MI), Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano (MI), Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alex K. Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Zachary A. Smith
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Yuichi Suzuki
- The University of Tokyo Hospital, Radiology Center, Tokyo, Japan
| | - George W Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Kenneth A. Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Patrik O. Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Ghosh T, Almeida RG, Zhao C, Mannioui A, Martin E, Fleet A, Chen CZ, Assinck P, Ellams S, Gonzalez GA, Graham SC, Rowitch DH, Stott K, Adams I, Zalc B, Goldman N, Lyons DA, Franklin RJM. A retroviral link to vertebrate myelination through retrotransposon-RNA-mediated control of myelin gene expression. Cell 2024; 187:814-830.e23. [PMID: 38364788 DOI: 10.1016/j.cell.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/12/2023] [Accepted: 01/07/2024] [Indexed: 02/18/2024]
Abstract
Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.
Collapse
Affiliation(s)
- Tanay Ghosh
- Altos Labs-Cambridge Institute of Science, Cambridge CB21 6GP, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, MS society Edinburgh Centre for MS Research, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Chao Zhao
- Altos Labs-Cambridge Institute of Science, Cambridge CB21 6GP, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK
| | - Abdelkrim Mannioui
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, 75005 Paris, France
| | - Elodie Martin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Alex Fleet
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK
| | - Civia Z Chen
- Altos Labs-Cambridge Institute of Science, Cambridge CB21 6GP, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK
| | - Peggy Assinck
- Altos Labs-Cambridge Institute of Science, Cambridge CB21 6GP, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sophie Ellams
- Altos Labs-Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Ginez A Gonzalez
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - David H Rowitch
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ian Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Bernard Zalc
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome, Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, MS society Edinburgh Centre for MS Research, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Robin J M Franklin
- Altos Labs-Cambridge Institute of Science, Cambridge CB21 6GP, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
3
|
Elbaz B, Darwish A, Vardy M, Isaac S, Tokars HM, Dzhashiashvili Y, Korshunov K, Prakriya M, Eden A, Popko B. The bone transcription factor Osterix controls extracellular matrix- and node of Ranvier-related gene expression in oligodendrocytes. Neuron 2024; 112:247-263.e6. [PMID: 37924811 PMCID: PMC10843489 DOI: 10.1016/j.neuron.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Oligodendrocytes are the primary producers of many extracellular matrix (ECM)-related proteins found in the CNS. Therefore, oligodendrocytes play a critical role in the determination of brain stiffness, node of Ranvier formation, perinodal ECM deposition, and perineuronal net formation, all of which depend on the ECM. Nevertheless, the transcription factors that control ECM-related gene expression in oligodendrocytes remain unknown. Here, we found that the transcription factor Osterix (also known as Sp7) binds in proximity to genes important for CNS ECM and node of Ranvier formation and mediates their expression. Oligodendrocyte-specific ablation of Sp7 changes ECM composition and brain stiffness and results in aberrant node of Ranvier formation. Sp7 is known to control osteoblast maturation and bone formation. Our comparative analyses suggest that Sp7 plays a conserved biological role in oligodendrocytes and in bone-forming cells, where it mediates brain and bone tissue stiffness by controlling expression of ECM components.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Alaa Darwish
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maia Vardy
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sara Isaac
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haley Margaret Tokars
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yulia Dzhashiashvili
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirill Korshunov
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amir Eden
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Tornini VA, Miao L, Lee HJ, Gerson T, Dube SE, Schmidt V, Kroll F, Tang Y, Du K, Kuchroo M, Vejnar CE, Bazzini AA, Krishnaswamy S, Rihel J, Giraldez AJ. linc-mipep and linc-wrb encode micropeptides that regulate chromatin accessibility in vertebrate-specific neural cells. eLife 2023; 12:e82249. [PMID: 37191016 PMCID: PMC10188112 DOI: 10.7554/elife.82249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Thousands of long intergenic non-coding RNAs (lincRNAs) are transcribed throughout the vertebrate genome. A subset of lincRNAs enriched in developing brains have recently been found to contain cryptic open-reading frames and are speculated to encode micropeptides. However, systematic identification and functional assessment of these transcripts have been hindered by technical challenges caused by their small size. Here, we show that two putative lincRNAs (linc-mipep, also called lnc-rps25, and linc-wrb) encode micropeptides with homology to the vertebrate-specific chromatin architectural protein, Hmgn1, and demonstrate that they are required for development of vertebrate-specific brain cell types. Specifically, we show that NMDA receptor-mediated pathways are dysregulated in zebrafish lacking these micropeptides and that their loss preferentially alters the gene regulatory networks that establish cerebellar cells and oligodendrocytes - evolutionarily newer cell types that develop postnatally in humans. These findings reveal a key missing link in the evolution of vertebrate brain cell development and illustrate a genetic basis for how some neural cell types are more susceptible to chromatin disruptions, with implications for neurodevelopmental disorders and disease.
Collapse
Affiliation(s)
| | - Liyun Miao
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Ho-Joon Lee
- Department of Genetics, Yale UniversityNew HavenUnited States
- Yale Center for Genome Analysis, Yale UniversityNew HavenUnited States
| | - Timothy Gerson
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Sarah E Dube
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Valeria Schmidt
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - François Kroll
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Yin Tang
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Katherine Du
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Computer Science, Yale UniversityNew HavenUnited States
| | - Manik Kuchroo
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Computer Science, Yale UniversityNew HavenUnited States
| | | | - Ariel Alejandro Bazzini
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular & Integrative Physiology, University of Kansas School of MedicineKansas CityUnited States
| | - Smita Krishnaswamy
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Computer Science, Yale UniversityNew HavenUnited States
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Antonio J Giraldez
- Department of Genetics, Yale UniversityNew HavenUnited States
- Yale Stem Cell Center, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Center, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
5
|
Djannatian M, Radha S, Weikert U, Safaiyan S, Wrede C, Deichsel C, Kislinger G, Rhomberg A, Ruhwedel T, Campbell DS, van Ham T, Schmid B, Hegermann J, Möbius W, Schifferer M, Simons M. Myelination generates aberrant ultrastructure that is resolved by microglia. J Biophys Biochem Cytol 2023; 222:213804. [PMID: 36637807 PMCID: PMC9856851 DOI: 10.1083/jcb.202204010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one "eat me" signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.
Collapse
Affiliation(s)
- Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Minou Djannatian:
| | - Swathi Radha
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ulrich Weikert
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shima Safaiyan
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christoph Wrede
- https://ror.org/00f2yqf98Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Cassandra Deichsel
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Agata Rhomberg
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Torben Ruhwedel
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Douglas S. Campbell
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Tjakko van Ham
- https://ror.org/018906e22Department of Clinical Genetics, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bettina Schmid
- https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jan Hegermann
- https://ror.org/00f2yqf98Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Wiebke Möbius
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martina Schifferer
- https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany,Correspondence to Mikael Simons:
| |
Collapse
|
6
|
Bigbee JW. Cells of the Central Nervous System: An Overview of Their Structure and Function. ADVANCES IN NEUROBIOLOGY 2023; 29:41-64. [PMID: 36255671 DOI: 10.1007/978-3-031-12390-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The central nervous system is the last major organ system in the vertebrate body to yield its cellular structure, due to the complexity of its cells and their interactions. The fundamental unit of the nervous system is the neuron, which forms complex circuits that receive and integrate information and generate adaptive responses. Each neuron is composed of an input domain consisting of multiple dendrites along with the cell body, which is also responsible for the majority of macromolecule synthesis for the cell. The output domain is the axon which is a singular extension from the cell body that propagates the action potential to the synapse, where signals pass from one neuron to another. Facilitating these functions are cohorts of supporting cells consisting of astrocytes, oligodendrocytes and microglia along with NG2 cells and ependymal cells. Astrocytes have a dazzling array of functions including physical support, maintenance of homeostasis, development and integration of synaptic activity. Oligodendrocytes form the myelin sheath which surrounds axons and enables rapid conduction of the nerve impulse. Microglia are the resident immune cells, providing immune surveillance and remodeling of neuronal circuits during development and trauma. All these cells function in concert with each other, producing the remarkably diverse functions of the nervous system.
Collapse
Affiliation(s)
- John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Barnes JN, Burns JM, Bamman MM, Billinger SA, Bodine SC, Booth FW, Brassard P, Clemons TA, Fadel PJ, Geiger PC, Gujral S, Haus JM, Kanoski SE, Miller BF, Morris JK, O’Connell KM, Poole DC, Sandoval DA, Smith JC, Swerdlow RH, Whitehead SN, Vidoni ED, van Praag H. Proceedings from the Albert Charitable Trust Inaugural Workshop on 'Understanding the Acute Effects of Exercise on the Brain'. Brain Plast 2022; 8:153-168. [PMID: 36721393 PMCID: PMC9837736 DOI: 10.3233/bpl-220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
An inaugural workshop supported by "The Leo and Anne Albert Charitable Trust," was held October 4-7, 2019 in Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases. In particular, research topics included the links between cardiorespiratory fitness, the cerebrovasculature, energy metabolism, peripheral organs, and cognitive function, which are all highly relevant to understanding the effects of acute and chronic exercise on the brain. The Albert Trust workshop participants addressed these and related topics, as well as how other lifestyle interventions, such as diet, affect age-related cognitive decline associated with Alzheimer's and other neurodegenerative diseases. This report provides a synopsis of the presentations and discussions by the participants, and a delineation of the next steps towards advancing our understanding of the effects of exercise on the aging brain.
Collapse
Affiliation(s)
- Jill N. Barnes
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Marcas M. Bamman
- UAB Center for Exercise Medicine, University of Alabama, Birmingham, AL, USA
| | | | - Sue C. Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, and Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec city, QC, Canada
| | - Tameka A. Clemons
- Department of Professional and Medical Education, Meharry Medical College, Nashville, TN, USA
| | - Paul J. Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Paige C. Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Swathi Gujral
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsrife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | | | - David C. Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | | | - J. Carson Smith
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | | | - Shawn N. Whitehead
- Vulnerable Brain Laboratory, Department Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter FL, USA
| |
Collapse
|
8
|
Spencer SA, Suárez-Pozos E, Verdugo JS, Wang H, Afshari FS, Li G, Manam S, Yasuda D, Ortega A, Lister JA, Ishii S, Zhang Y, Fuss B. Lysophosphatidic acid signaling via LPA 6 : A negative modulator of developmental oligodendrocyte maturation. J Neurochem 2022; 163:478-499. [PMID: 36153691 PMCID: PMC9772207 DOI: 10.1111/jnc.15696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
The developmental process of central nervous system (CNS) myelin sheath formation is characterized by well-coordinated cellular activities ultimately ensuring rapid and synchronized neural communication. During this process, myelinating CNS cells, namely oligodendrocytes (OLGs), undergo distinct steps of differentiation, whereby the progression of earlier maturation stages of OLGs represents a critical step toward the timely establishment of myelinated axonal circuits. Given the complexity of functional integration, it is not surprising that OLG maturation is controlled by a yet fully to be defined set of both negative and positive modulators. In this context, we provide here first evidence for a role of lysophosphatidic acid (LPA) signaling via the G protein-coupled receptor LPA6 as a negative modulatory regulator of myelination-associated gene expression in OLGs. More specifically, the cell surface accessibility of LPA6 was found to be restricted to the earlier maturation stages of differentiating OLGs, and OLG maturation was found to occur precociously in Lpar6 knockout mice. To further substantiate these findings, a novel small molecule ligand with selectivity for preferentially LPA6 and LPA6 agonist characteristics was functionally characterized in vitro in primary cultures of rat OLGs and in vivo in the developing zebrafish. Utilizing this approach, a negative modulatory role of LPA6 signaling in OLG maturation could be corroborated. During development, such a functional role of LPA6 signaling likely serves to ensure timely coordination of circuit formation and myelination. Under pathological conditions as seen in the major human demyelinating disease multiple sclerosis (MS), however, persistent LPA6 expression and signaling in OLGs can be seen as an inhibitor of myelin repair. Thus, it is of interest that LPA6 protein levels appear elevated in MS brain samples, thereby suggesting that LPA6 signaling may represent a potential new druggable pathway suitable to promote myelin repair in MS.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jazmín Soto Verdugo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Fatemah S Afshari
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Guo Li
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Susmita Manam
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - James A Lister
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
9
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
10
|
Rey S, Ohm H, Klämbt C. Axonal ion homeostasis and glial differentiation. FEBS J 2022. [PMID: 35943294 DOI: 10.1111/febs.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
The brain is the ultimate control unit of the body. It conducts accurate, fast and reproducible calculations to control motor actions affecting mating, foraging and flight or fight decisions. Therefore, during evolution, better and more efficient brains have emerged. However, even simple brains are complex organs. They are formed by glial cells and neurons that establish highly intricate networks to enable information collection, processing and eventually, a precise motor control. Here, we review and connect some well-established and some hidden pieces of information to set the focus on ion homeostasis as a driving force in glial differentiation promoting signalling speed and accuracy.
Collapse
Affiliation(s)
- Simone Rey
- Institut für Neuro‐ und Verhaltensbiologie Münster Germany
| | - Henrike Ohm
- Institut für Neuro‐ und Verhaltensbiologie Münster Germany
| | | |
Collapse
|
11
|
|
12
|
Hines JH. Evolutionary Origins of the Oligodendrocyte Cell Type and Adaptive Myelination. Front Neurosci 2021; 15:757360. [PMID: 34924932 PMCID: PMC8672417 DOI: 10.3389/fnins.2021.757360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates.
Collapse
Affiliation(s)
- Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
13
|
The oligodendrocyte-enriched orphan G protein-coupled receptor Gpr62 is dispensable for central nervous system myelination. Neural Dev 2021; 16:6. [PMID: 34844642 PMCID: PMC8630896 DOI: 10.1186/s13064-021-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelination is a highly regulated process in the vertebrate central nervous system (CNS) whereby oligodendrocytes wrap axons with multiple layers of insulating myelin in order to allow rapid electrical conduction. Establishing the proper pattern of myelin in neural circuits requires communicative axo-glial interactions, however, the molecular interactions that occur between oligodendrocytes and axons during developmental myelination and myelin maintenance remain to be fully elucidated. Our previous work identified G protein-coupled receptor 62 (Gpr62), an uncharacterized orphan g-protein coupled receptor, as being selectively expressed by mature oligodendrocytes within the CNS, suggesting a potential role in myelination or axoglial interactions. However, no studies to date have assessed the functional requirement for Gpr62 in oligodendrocyte development or CNS myelination. METHODS To address this, we generated a knockout mouse strain lacking the Gpr62 gene. We assessed CNS myelination during both postnatal development and adulthood using immunohistochemistry, electron microscopy and western blot. In addition, we utilized AAV-mediated expression of a tagged Gpr62 in oligodendrocytes to determine the subcellular localization of the protein in vivo. RESULTS We find that virally expressed Gpr62 protein is selectively expressed on the adaxonal myelin layer, suggestive of a potential role for Gpr62 in axo-myelinic signaling. Nevertheless, Gpr62 knockout mice display normal oligodendrocyte numbers and apparently normal myelination within the CNS during both postnatal development and adulthood. CONCLUSIONS We conclude that in spite of being well-placed to mediate neuronal-oligodendrocyte communications, Gpr62 is overall dispensable for CNS myelination.
Collapse
|
14
|
Farías-Serratos BM, Lazcano I, Villalobos P, Darras VM, Orozco A. Thyroid hormone deficiency during zebrafish development impairs central nervous system myelination. PLoS One 2021; 16:e0256207. [PMID: 34403440 PMCID: PMC8370640 DOI: 10.1371/journal.pone.0256207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf. These observations were confirmed in 3 dpf mbp:egfp transgenic zebrafish, showing that the administration of IOP reduced the fluorescent signal in the brain. T3 rescue treatment restored brain myelination and reversed the changes in myelin-related gene expression induced by IOP exposure. NG2 immunostaining revealed that T3 deficiency reduced the amount of oligodendrocyte precursor cells in 3 dpf IOP-treated larvae. Altogether, the present results show that inhibition of T4 to T3 conversion results in hypomyelination, suggesting that THs are part of the key signaling molecules that control the timing of oligodendrocyte differentiation and myelin synthesis from very early stages of brain development.
Collapse
Affiliation(s)
| | - Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
| | - Patricia Villalobos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
| | - Veerle M. Darras
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
- Biology Department, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
- * E-mail:
| |
Collapse
|
15
|
Pantazou V, Roux T, Oliveira Moreira V, Lubetzki C, Desmazières A. Interaction between Neurons and the Oligodendroglial Lineage in Multiple Sclerosis and Its Preclinical Models. Life (Basel) 2021; 11:231. [PMID: 33799653 PMCID: PMC7999210 DOI: 10.3390/life11030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.
Collapse
Affiliation(s)
- Vasiliki Pantazou
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois, 46 Rue du Bugnon, 1011 Lausanne, Switzerland
| | - Thomas Roux
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Vanessa Oliveira Moreira
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| | - Catherine Lubetzki
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Anne Desmazières
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| |
Collapse
|
16
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
17
|
Tuckman H, Kim J, Rangan A, Lei H, Patel M. Dynamics of sensory integration of olfactory and mechanical stimuli within the response patterns of moth antennal lobe neurons. J Theor Biol 2020; 509:110510. [PMID: 33022286 DOI: 10.1016/j.jtbi.2020.110510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022]
Abstract
Odors emanating from a biologically relevant source are rapidly embedded within a windy, turbuluent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and tracking an odor source. In insects, who employ olfactory navigation as their primary means of foraging for food and finding mates, the antennal lobe (AL) is the first brain structure that processes sensory odor information. Although the importance of chemosensory and mechanosensory integration is widely recognized, the AL itself has traditionally been viewed purely from the perspective of odor encoding, with little attention given to its role as a bimodal integrator. In this work, we seek to explore the AL as a model for studying sensory integration - it boasts well-understood architecture, well-studied olfactory responses, and easily measurable cells. Using a moth model, we present experimental data that clearly demonstrates that AL neurons respond, in dynamically distinct ways, to both chemosensory and mechanosensory input; mechanosensory responses are transient and temporally precise, while olfactory responses are long-lasting but lack temporal precision. We further develop a computational model of the AL, show that our model captures odor response dynamics reported in the literature, and examine the dynamics of our model with the inclusion of mechanosensory input; we then use our model to pinpoint dynamical mechanisms underlying the bimodal AL responses revealed in our experimental work. Finally, we propose a novel hypothesis about the role of mechanosensory input in sculpting AL dynamics and the implications for biological odor tracking.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA
| | - Jungmin Kim
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Aaditya Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Mainak Patel
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA.
| |
Collapse
|
18
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
19
|
Domingues HS, Urbanski MM, Macedo-Ribeiro S, Almaktari A, Irfan A, Hernandez Y, Wang H, Relvas JB, Rubinstein B, Melendez-Vasquez CV, Pinto IM. Pushing myelination - developmental regulation of myosin expression drives oligodendrocyte morphological differentiation. J Cell Sci 2020; 133:jcs232264. [PMID: 32620697 PMCID: PMC7426197 DOI: 10.1242/jcs.232264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2020] [Indexed: 01/26/2023] Open
Abstract
Oligodendrocytes are the central nervous system myelin-forming cells providing axonal electrical insulation and higher-order neuronal circuitry. The mechanical forces driving the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes are largely unknown, but likely require the spatiotemporal regulation of the architecture and dynamics of the actin and actomyosin cytoskeletons. In this study, we analyzed the expression pattern of myosin motors during oligodendrocyte development. We report that oligodendrocyte differentiation is regulated by the synchronized expression and non-uniform distribution of several members of the myosin network, particularly non-muscle myosins 2B and 2C, which potentially operate as nanomechanical modulators of cell tension and myelin membrane expansion at different cell stages.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Helena Sofia Domingues
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Mateusz M Urbanski
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Amr Almaktari
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Azka Irfan
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Yamely Hernandez
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Haibo Wang
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Carmen V Melendez-Vasquez
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
- The Graduate Center, City University of New York (CUNY), New York, NY 10016, USA
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| |
Collapse
|
20
|
Blanco-Sánchez B, Clément A, Stednitz SJ, Kyle J, Peirce JL, McFadden M, Wegner J, Phillips JB, Macnamara E, Huang Y, Adams DR, Toro C, Gahl WA, Malicdan MCV, Tifft CJ, Zink EM, Bloodsworth KJ, Stratton KG, Koeller DM, Metz TO, Washbourne P, Westerfield M. yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development. PLoS Genet 2020; 16:e1008841. [PMID: 32544203 PMCID: PMC7319359 DOI: 10.1371/journal.pgen.1008841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 06/26/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.
Collapse
Affiliation(s)
| | - Aurélie Clément
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sara J. Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jennifer Kyle
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Judy L. Peirce
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Marcie McFadden
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jennifer B. Phillips
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ellen Macnamara
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Huang
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. Adams
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Camilo Toro
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - May Christine V. Malicdan
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia J. Tifft
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erika M. Zink
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kent J. Bloodsworth
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kelly G. Stratton
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | | | - David M. Koeller
- Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Thomas O. Metz
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
21
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
22
|
Rey S, Zalc B, Klämbt C. Evolution of glial wrapping: A new hypothesis. Dev Neurobiol 2020; 81:453-463. [PMID: 32133794 DOI: 10.1002/dneu.22739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Animals are able to move and react in numerous ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed and finally an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. In the last decades, a neurono-centric view on nervous system function channeled most of the scientific interest toward the analysis of neurons and neuronal functions. Neurons appeared early in animal evolution and the main principles of neuronal function from synaptic transmission to propagation of action potentials are conserved during evolution. In contrast, not much is known on the evolution of glial cells that were initially considered merely as static support cells. Although it is now accepted that glial cells have an equally important contribution as their neuronal counterpart to nervous system function, their evolutionary origin is unknown. Did glial cells appear several times during evolution? What were the first roles glial cells had to fulfil in the nervous system? What triggered the formation of the amazing diversity of glial morphologies and functions? Is there a possible mechanism that might explain the appearance of complex structures such as myelin in vertebrates? Here, we postulate a common evolutionary origin of glia and depict a number of selective forces that might have paved the way from a simple supporting cell to a wrapping and myelin forming glial cell.
Collapse
Affiliation(s)
- Simone Rey
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Bernard Zalc
- Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
23
|
|
24
|
Nagarajan B, Harder A, Japp A, Häberlein F, Mingardo E, Kleinert H, Yilmaz Ö, Zoons A, Rau B, Christ A, Kubitscheck U, Eiberger B, Sandhoff R, Eckhardt M, Hartmann D, Odermatt B. CNS myelin protein 36K regulates oligodendrocyte differentiation through Notch. Glia 2019; 68:509-527. [PMID: 31702067 DOI: 10.1002/glia.23732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
In contrast to humans and other mammals, zebrafish can successfully regenerate and remyelinate central nervous system (CNS) axons following injury. In addition to common myelin proteins found in mammalian myelin, 36K protein is a major component of teleost fish CNS myelin. Although 36K is one of the most abundant proteins in zebrafish brain, its function remains unknown. Here we investigate the function of 36K using translation-blocking Morpholinos. Morphant larvae showed fewer dorsally migrated oligodendrocyte precursor cells as well as upregulation of Notch ligand. A gamma secretase inhibitor, which prevents activation of Notch, could rescue oligodendrocyte precursor cell numbers in 36K morphants, suggesting that 36K regulates initial myelination through inhibition of Notch signaling. Since 36K like other short chain dehydrogenases might act on lipids, we performed thin layer chromatography and mass spectrometry of lipids and found changes in lipid composition in 36K morphant larvae. Altogether, we suggest that during early development 36K regulates membrane lipid composition, thereby altering the amount of transmembrane Notch ligands and the efficiency of intramembrane gamma secretase processing of Notch and thereby influencing oligodendrocyte precursor cell differentiation and further myelination. Further studies on the role of 36K short chain dehydrogenase in oligodendrocyte precursor cell differentiation during remyelination might open up new strategies for remyelination therapies in human patients.
Collapse
Affiliation(s)
- Bhuvaneswari Nagarajan
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Alexander Harder
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Anna Japp
- Institute of Neuropathology, University Clinics, University of Bonn, Bonn, Germany
| | - Felix Häberlein
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany.,Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Enrico Mingardo
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Henning Kleinert
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Öznur Yilmaz
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Angelika Zoons
- Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Birgit Rau
- Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Andrea Christ
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Britta Eiberger
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Centre, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany.,Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Foster AY, Bujalka H, Emery B. Axoglial interactions in myelin plasticity: Evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia 2019; 67:2038-2049. [PMID: 31038804 DOI: 10.1002/glia.23629] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/10/2022]
Abstract
Myelin is a critical component of the vertebrate nervous system, both increasing the conduction velocity of myelinated axons and allowing for metabolic coupling between the myelinating cells and axons. An increasing number of studies demonstrate that myelination is not simply a developmentally hardwired program, but rather that new myelinating oligodendrocytes can be generated throughout life. The generation of these oligodendrocytes and the formation of myelin are influenced both during development and adulthood by experience and levels of neuronal activity. This led to the concept of adaptive myelination, where ongoing activity-dependent changes to myelin represent a form of neural plasticity, refining neuronal functioning, and circuitry. Although human neuroimaging experiments support the concept of dynamic changes within specific white matter tracts relevant to individual tasks, animal studies have only just begun to probe the extent to which neuronal activity may alter myelination at the level of individual circuits and axons. Uncovering the role of adaptive myelination requires a detailed understanding of the localized interactions that occur between active axons and myelinating cells. In this review, we focus on recent animal studies that have begun to investigate the interactions between active axons and myelinating cells and review the evidence for-and against-the ability of neuronal activity to alter myelination at an axon-specific level.
Collapse
Affiliation(s)
- Antoinette Y Foster
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Helena Bujalka
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Garcia-Pradas L, Gleiser C, Wizenmann A, Wolburg H, Mack AF. Glial Cells in the Fish Retinal Nerve Fiber Layer Form Tight Junctions, Separating and Surrounding Axons. Front Mol Neurosci 2018; 11:367. [PMID: 30364233 PMCID: PMC6192225 DOI: 10.3389/fnmol.2018.00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023] Open
Abstract
In the retina of teleost fish, cell addition continues throughout life involving proliferation and axonal growth. To study how this is achieved in a fully functioning retina, we investigated the nerve fiber layer (NFL) of the cichlid fish Astatotilapia burtoni for components that might regulate the extracellular environment. We hypothesized that growing axons are surrounded by different cell structures than signal conducting axons. Using immunohistochemistry and freeze fracture electron microscopy we found that the endfeet of Müller cells (MCs) expressed aquaporin-4 but not in high densities as in mammals. The presence of this water channel indicates the involvement of MCs in water homeostasis. Remarkably, we discovered conspicuous tight junctions in the retinal NFL. These tight junctions formed branching strands between myelin-like wrappings of ganglion cell axons that differed morphologically from any known myelin, and also an elaborate meshwork on large membrane faces between axons. We speculated that these tight junctions have additional functions than solely facilitating nerve conductance. Immunostainings against the adaptor protein ZO-1 labeled the NFL as did antibodies against the mammalian claudin-1, 3, and 19. Performing PCR analysis, we showed expression of claudin-1, 3, 5a, 5b, 9, 11, and 19 in the fish retina, claudins that typically occur at brain barriers or myelin. We could show by immunostains for doublecortin, a marker for differentiating neurons, that new axons are not surrounded by the myelin-like wrappings but only by the endfeet of MCs. We hypothesize that the tight junctions in the NFL of fish might contribute to the separation of an extracellular space around axons facilitating conductance, from a growth-promoting environment. For a functional test we applied Evans Blue dye to eye cup preparations which showed a retention of the dye in the NFL. This indicates that these remarkable tight junctions can indeed act as a diffusion barrier.
Collapse
Affiliation(s)
- Lidia Garcia-Pradas
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Corinna Gleiser
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Andrea Wizenmann
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institut für Pathologie und Neuropathologie, Universität Tübingen, Tübingen, Germany
| | - Andreas F Mack
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Fontenas L, Kucenas S. Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin. Front Cell Neurosci 2018; 12:333. [PMID: 30356886 PMCID: PMC6190867 DOI: 10.3389/fncel.2018.00333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes (OLs) and Schwann cells (SCs) have traditionally been thought of as the exclusive myelinating glial cells of the central and peripheral nervous systems (CNS and PNS), respectively, for a little over a century. However, recent studies demonstrate the existence of a novel, centrally-derived peripheral glial population called motor exit point (MEP) glia, which myelinate spinal motor root axons in the periphery. Until recently, the boundaries that exist between the CNS and PNS, and the cells permitted to cross them, were mostly described based on fixed histological collections and static lineage tracing. Recent work in zebrafish using in vivo, time-lapse imaging has shed light on glial cell interactions at the MEP transition zone and reveals a more complex picture of myelination both centrally and peripherally.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
28
|
To Be or Not to Be: Environmental Factors that Drive Myelin Formation during Development and after CNS Trauma. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are specialized glial cells that myelinate central nervous system (CNS) axons. Historically, it was believed that the primary role of myelin was to compactly ensheath axons, providing the insulation necessary for rapid signal conduction. However, mounting evidence demonstrates the dynamic importance of myelin and oligodendrocytes, including providing metabolic support to neurons and regulating axon protein distribution. As such, the development and maintenance of oligodendrocytes and myelin are integral to preserving CNS homeostasis and supporting proper functioning of widespread neural networks. Environmental signals are critical for proper oligodendrocyte lineage cell progression and their capacity to form functional compact myelin; these signals are markedly disturbed by injury to the CNS, which may compromise endogenous myelin repair capabilities. This review outlines some key environmental factors that drive myelin formation during development and compares that to the primary factors that define a CNS injury milieu. We aim to identify developmental factors disrupted after CNS trauma as well as pathogenic factors that negatively impact oligodendrocyte lineage cells, as these are potential therapeutic targets to promote myelin repair after injury or disease.
Collapse
|
29
|
Losada-Perez M. Glia: from 'just glue' to essential players in complex nervous systems: a comparative view from flies to mammals. J Neurogenet 2018; 32:78-91. [PMID: 29718753 DOI: 10.1080/01677063.2018.1464568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last years, glial cells have emerged as central players in the development and function of complex nervous systems. Therefore, the concept of glial cells has evolved from simple supporting cells to essential actors. The molecular mechanisms that govern glial functions are evolutionarily conserved from Drosophila to mammals, highlighting genetic similarities between these groups, as well as the great potential of Drosophila research for the understanding of human CNS. These similarities would imply a common phylogenetic origin of glia, even though there is a controversy at this point. This review addresses the existing literature on the evolutionary origin of glia and discusses whether or not insect and mammalian glia are homologous or analogous. Besides, this manuscript summarizes the main glial functions in the CNS and underscores the evolutionarily conserved molecular mechanisms between Drosophila and mammals. Finally, I also consider the current nomenclature and classification of glial cells to highlight the need for a consensus agreement and I propose an alternative nomenclature based on function that unifies Drosophila and mammalian glial types.
Collapse
|
30
|
|
31
|
Abstract
Every cell within living organisms actively maintains an intracellular Na+ concentration that is 10-12 times lower than the extracellular concentration. The cells then utilize this transmembrane Na+ concentration gradient as a driving force to produce electrical signals, sometimes in the form of action potentials. The protein family comprising voltage-gated sodium channels (NaVs) is essential for such signaling and enables cells to change their status in a regenerative manner and to rapidly communicate with one another. NaVs were first predicted in squid and were later identified through molecular biology in the electric eel. Since then, these proteins have been discovered in organisms ranging from bacteria to humans. Recent research has succeeded in decoding the amino acid sequences of a wide variety of NaV family members, as well as the three-dimensional structures of some. These studies and others have uncovered several of the major steps in the functional and structural transition of NaV proteins that has occurred along the course of the evolutionary history of organisms. Here we present an overview of the molecular evolutionary innovations that established present-day NaV α subunits and discuss their contribution to the evolutionary changes in animal bodies.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
32
|
Abstract
Myelin is a key evolutionary acquisition that underlay the development of the large, complex nervous systems of all hinged-jaw vertebrates. By promoting rapid, efficient nerve conduction, myelination also made possible the development of the large body size of these vertebrates. In addition to increasing the speed of nerve conduction, myelination has emerged as a source of plasticity in neural circuits that is crucial for proper timing and function. Here, we briefly describe the organization of myelin and of myelinated axons, as well as the functions of myelin in nerve conduction and neural circuits, and consider its potential evolutionary origins.
Collapse
Affiliation(s)
- J L Salzer
- New York University School of Medicine, Neuroscience Institute, Departments of Physiology and Neuroscience, NYU School of Medicine, New York, NY 10016, USA.
| | - B Zalc
- Sorbonne Universités, UPMC Paris06, Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), GH Pitie-Salpêtrière, 75651 Paris cedex 13, France.
| |
Collapse
|
33
|
Turnescu T, Arter J, Reiprich S, Tamm ER, Waisman A, Wegner M. Sox8 and Sox10 jointly maintain myelin gene expression in oligodendrocytes. Glia 2017; 66:279-294. [PMID: 29023979 DOI: 10.1002/glia.23242] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 11/08/2022]
Abstract
In Schwann cells of the vertebrate peripheral nervous system, induction of myelination and myelin maintenance both depend on the HMG-domain-containing transcription factor Sox10. In oligodendrocytes of the central nervous system, Sox10 is also essential for the induction of myelination. Its role in late phases of myelination and myelin maintenance has not been studied so far. Here, we show that these processes are largely unaffected in mice that lack Sox10 in mature oligodendrocytes. As Sox10 is co-expressed with the related Sox8, we also analyzed oligodendrocytes and myelination in Sox8-deficient mice. Again, we could not detect any major abnormalities. Expression of many myelin genes was only modestly reduced in both mouse mutants. Dramatic reductions in expression levels and phenotypic disturbances became only apparent once Sox8 and Sox10 were both absent. This argues that Sox8 and Sox10 are jointly required for myelin maintenance and impact myelin gene expression. One direct target gene of both Sox proteins is the late myelin gene Mog. Our results point to at least partial functional redundancy between both related Sox proteins in mature oligodendrocytes and are the first report of a substantial function of Sox8 in the oligodendroglial lineage.
Collapse
Affiliation(s)
- Tanja Turnescu
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Arter
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Domingues HS, Cruz A, Chan JR, Relvas JB, Rubinstein B, Pinto IM. Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 2017; 66:5-14. [PMID: 28940651 DOI: 10.1002/glia.23206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
In the central nervous system, oligodendrocyte precursor cells are exclusive in their potential to differentiate into myelinating oligodendrocytes. Oligodendrocyte precursor cells migrate within the parenchyma and extend cell membrane protrusions that ultimately evolve into myelinating sheaths able to wrap neuronal axons and significantly increase their electrical conductivity. The subcellular force generating mechanisms driving morphological and functional transformations during oligodendrocyte differentiation and myelination remain elusive. In this review, we highlight the mechanical processes governing oligodendrocyte plasticity in a dynamic interaction with the extracellular matrix.
Collapse
Affiliation(s)
| | - Andrea Cruz
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, United States of America
| | - João B Relvas
- Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - I3S, Universidade do Porto, Porto, Portugal
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| |
Collapse
|
35
|
Correlated Disorder in Myelinated Axons Orientational Geometry and Structure. CONDENSED MATTER 2017. [DOI: 10.3390/condmat2030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Evolution of rapid nerve conduction. Brain Res 2016; 1641:11-33. [PMID: 26879248 DOI: 10.1016/j.brainres.2016.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/29/2023]
Abstract
Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|