1
|
Sun X, Ni S, Zhou Q, Zou D. Exogenous NT-3 Promotes Phenotype Switch of Resident Macrophages and Improves Sciatic Nerve Injury through AMPK/NF-κB Signaling Pathway. Neurochem Res 2024; 49:2600-2614. [PMID: 38904909 DOI: 10.1007/s11064-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Neurotrophin-3 (NT-3) is an important family of neurotrophic factors with extensive neurotrophic activity, which can maintain the survival and regeneration of nerve cells. However, the mechanism of NT-3 on macrophage phenotype transformation after sciatic nerve injury is not clear. In this study, we constructed a scientific nerve compression injury animal model and administered different doses of NT-3 treatment through osmotic minipump. 7 days after surgery, we collected sciatic nerve tissue and observed the distribution of macrophage phenotype through iNOS and CD206 immunofluorescence. During the experiment, regular postoperative observations were conducted on rats. After the experiment, sciatic nerve tissue was collected for HE staining, myelin staining, immunofluorescence staining, and Western blot analysis. To verify the role of the AMPK/NF-κB pathway, we applied the AMPK inhibitor Compound C and the NF-κB inhibitor BAY11-7082 to repeat the above experiment. Our experimental results reveal that NT-3 promotes sciatic nerve injury repair and polarization of M2 macrophage phenotype, promotes AMPK activation, and inhibits NF-κB activation. The repair effect of high concentration NT-3 on sciatic nerve injury is significantly enhanced compared to low concentration. Compound C administration can weaken the effect of NT-3, while BAY 11-7082 can enhance the effect of NT-3. In short, NT-3 significantly improves sciatic nerve injury in rats, promotes sciatic nerve function repair, accelerates M2 macrophage phenotype polarization, and improves neuroinflammatory response. The protective effects of NT-3 mentioned above are partially related to the AMPK/NF-κB signal axis.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Shuqin Ni
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Qingsheng Zhou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Dexin Zou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China.
| |
Collapse
|
2
|
Liang W, Liang B, Yan K, Zhang G, Zhuo J, Cai Y. Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential. Ann Biomed Eng 2024; 52:1955-1981. [PMID: 38683473 DOI: 10.1007/s10439-024-03523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Ultrasound has expanded into the therapeutic field as a medical imaging and diagnostic technique. Low-intensity pulsed ultrasound (LIPUS) is a kind of therapeutic ultrasound that plays a vital role in promoting fracture healing, wound repair, immunomodulation, and reducing inflammation. Its anti-inflammatory effects are manifested by decreased pro-inflammatory cytokines and chemokines, accelerated regression of immune cell invasion, and accelerated damage repair. Although the anti-inflammatory mechanism of LIPUS is not very clear, many in vitro and in vivo studies have shown that LIPUS may play its anti-inflammatory role by activating signaling pathways such as integrin/Focal adhesion kinase (FAK)/Phosphatidylinositol 3-kinase (PI3K)/Serine threonine kinase (Akt), Vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS), or inhibiting signaling pathways such as Toll-like receptors (TLRs)/Nuclear factor kappa-B (NF-κB) and p38-Mitogen-activated protein kinase (MAPK). As a non-invasive physical therapy, the anti-inflammatory and immunomodulatory effects of LIPUS deserve further exploration.
Collapse
Affiliation(s)
- Wenxin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Guanxuanzi Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Jiaju Zhuo
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
3
|
Pușcașu C, Zanfirescu A, Negreș S, Șeremet OC. Exploring the Multifaceted Potential of Sildenafil in Medicine. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2190. [PMID: 38138293 PMCID: PMC10744870 DOI: 10.3390/medicina59122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Phosphodiesterase type 5 (PDE5) is pivotal in cellular signalling, regulating cyclic guanosine monophosphate (cGMP) levels crucial for smooth muscle relaxation and vasodilation. By targeting cGMP for degradation, PDE5 inhibits sustained vasodilation. PDE5 operates in diverse anatomical regions, with its upregulation linked to various pathologies, including cancer and neurodegenerative diseases. Sildenafil, a selective PDE5 inhibitor, is prescribed for erectile dysfunction and pulmonary arterial hypertension. However, considering the extensive roles of PDE5, sildenafil might be useful in other pathologies. This review aims to comprehensively explore sildenafil's therapeutic potential across medicine, addressing a gap in the current literature. Recognising sildenafil's broader potential may unveil new treatment avenues, optimising existing approaches and broadening its clinical application.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (O.C.Ș.)
| | | | | |
Collapse
|
4
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 38:295-307. [PMID: 38167268 DOI: 10.1515/dmpt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Chowdari Gurram P, Satarker S, Kumar G, Begum F, Mehta C, Nayak U, Mudgal J, Arora D, Nampoothiri M. Avanafil mediated dual inhibition of IKKβ and TNFR1 in an experimental paradigm of Alzheimer's disease: in silico and in vivo approach. J Biomol Struct Dyn 2023; 41:10659-10677. [PMID: 36533331 DOI: 10.1080/07391102.2022.2156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
In Alzheimer's disease pathology, inhibitors of nuclear factor kappa-β kinase subunit β (IKKB) and Tumor necrosis factor receptor 1 (TNFR1) signaling are linked to neuroinflammation-mediated cognitive decline. We explored the role of a phosphodiesterase 5 inhibitor (PDE5I) with dual antagonistic action on IKKB and TNFR1 to inhibit nuclear factor kappa B (NF-kB) and curb neuroinflammation. In the in silico approach, the FDA-approved Zinc 15 library was docked with IKKB and TNFR1. The top compound with dual antagonistic action on IKKB and TNFR1 was selected based on bonding and non-bonding interactions. Further, induced fit docking (IFD), molecular mechanics-generalized Born and surface area (MMGBSA), and molecular dynamic studies were carried out and evaluated. Lipopolysaccharide (LPS) administration caused a neuroinflammation-mediated cognitive decline in mice. Two doses of avanafil were administered for 28 days while LPS was administered for 10 days. Morris water maze (MWM) along with the passive avoidance test (PAT) were carried out. Concurrently brain levels of inflammatory markers, oxidative parameters, amyloid beta (Aβ), IKKB and NF-kB levels were estimated. Avanafil produced good IKKB and TNFR1 binding ability. It interacted with crucial inhibitory amino acids of IKKB and TNFR1. MD analysis predicted good stability of avanafil with TNFR1 and IKKB. Avanafil 6 mg/kg could significantly improve performance in MWM, PAT and oxidative parameters and reduce Aβ levels and inflammatory markers. As compared to avanafil 3 mg/kg, 6 mg/kg dose was found to exert better efficacy against elevated Aβ , neuroinflammatory cytokines and oxidative markers while improving behavioural parameters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Viskupicova J, Rezbarikova P, Kovacikova L, Kandarova H, Majekova M. Inhibitors of SARS-CoV-2 main protease: Biological efficacy and toxicity aspects. Toxicol In Vitro 2023; 92:105640. [PMID: 37419426 DOI: 10.1016/j.tiv.2023.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
The emergence of the highly contagious respiratory disease, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a significant global public health concern. To combat this virus, researchers have focused on developing antiviral strategies that target specific viral components, such as the main protease (Mpro), which plays a crucial role in SARS-CoV-2 replication. While many compounds have been identified as potent inhibitors of Mpro, only a few have been translated into clinical use due to the potential risk-benefit trade-offs. Development of systemic inflammatory response and bacterial co-infection in patients belong to severe, frequent complications of COVID-19. In this context, we analysed available data on the anti-inflammatory and antibacterial activities of the SARS-CoV-2 Mpro inhibitors for possible implementation in the treatment of complicated and long COVID-19 cases. Synthetic feasibility and ADME properties were calculated and included for better characterisation of the compounds' predicted toxicity. Analysis of the collected data resulted in several clusters pointing to the most prospective compounds for further study and design. The complete tables with collected data are attached in Supplementary material for use by other researchers.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Lucia Kovacikova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Magdalena Majekova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
7
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 0:dmdi-2023-0011. [PMID: 37608528 DOI: 10.1515/dmdi-2023-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Kohzadi R, Cheraghi E, Mehranjani MS, Shariatzadeh M. Sildenafil citrate ameliorates the adverse effects of cryopreservation on sperm quality in asthenozoospermic men. Cryobiology 2023:S0011-2240(23)00037-8. [PMID: 37207974 DOI: 10.1016/j.cryobiol.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
In this study, the effects of Sildenafil Citrate on the sperm quality during cryopreservation in the asthenozoospermic patients were investigated for the first time. Thirty semen samples were collected from asthenozoospermic patients and each sample was divided into 3 groups: Control (fresh), Freeze and Freeze + Sildenafil. In each groups the sperm parameters, DNA fragmentation, acrosome integrity, protamine deficiency, mitochondrial membrane potential, plasma membrane integrity, the expression of Bcl-2 and HSP70 genes, as well as the level of Tumor necrosis factor-alpha, Malondialdehyde and antioxidants (Catalase, Glutathione, and Superoxide dismutase) in sperm were assessed. Data were analyzed statistically using Repeated Measure Analysis. The level of Malondialdehyde and Tumor necrosis factor-alpha, morphological abnormalities, DNA fragmentation, protamine deficiency and the expression of Bcl-2 and HSP70 genes increased significantly in the Freeze group compared to the Control, while the level of sperm parameters and antioxidants, plasma membrane integrity, mitochondrial membrane potential and acrosomal integrity significantly decreased. In the Freeze + Sildenafil group, compared to the Freeze group, all the mentioned parameters were significantly reversed except for the acrosomal integrity (decreased even more) and the expression of Bcl-2 (increased even more) and HSP70 genes (with no change). Although adding Sildenafil to the freezing medium decreased the adverse effects of freezing on the sperm of asthenozoospermic patients and improved sperm quality, but it also caused premature acrosome reaction. Therefore, we suggest the consumption of Sildenafil along with another antioxidant, to benefit from the favorable effects of Sildenafil as well as to maintain the integrity of the sperm acrosome.
Collapse
Affiliation(s)
- Ronak Kohzadi
- Department of Biology, Faculty of Science, Arak University, Arak, 3815688138, Iran
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Science, University of Qom, Qom, 3716146611, Iran
| | | | | |
Collapse
|
9
|
Ohnishi H, Zhang Z, Yurube T, Takeoka Y, Kanda Y, Tsujimoto R, Miyazaki K, Matsuo T, Ryu M, Kumagai N, Kuroshima K, Hiranaka Y, Kuroda R, Kakutani K. Anti-Inflammatory Effects of Adiponectin Receptor Agonist AdipoRon against Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24108566. [PMID: 37239908 DOI: 10.3390/ijms24108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adiponectin, a hormone secreted by adipocytes, has anti-inflammatory effects and is involved in various physiological and pathological processes such as obesity, inflammatory diseases, and cartilage diseases. However, the function of adiponectin in intervertebral disc (IVD) degeneration is not well understood. This study aimed to elucidate the effects of AdipoRon, an agonist of adiponectin receptor, on human IVD nucleus pulposus (NP) cells, using a three-dimensional in vitro culturing system. This study also aimed to elucidate the effects of AdipoRon on rat tail IVD tissues using an in vivo puncture-induced IVD degeneration model. Analysis using quantitative polymerase chain reaction demonstrated the downregulation of gene expression of proinflammatory and catabolic factors by interleukin (IL)-1β (10 ng/mL) in human IVD NP cells treated with AdipoRon (2 μM). Furthermore, western blotting showed AdipoRon-induced suppression of p65 phosphorylation (p < 0.01) under IL-1β stimulation in the adenosine monophosphate-activated protein kinase (AMPK) pathway. Intradiscal administration of AdipoRon was effective in alleviating the radiologic height loss induced by annular puncture of rat tail IVD, histomorphological degeneration, production of extracellular matrix catabolic factors, and expression of proinflammatory cytokines. Therefore, AdipoRon could be a new therapeutic candidate for alleviating the early stage of IVD degeneration.
Collapse
Affiliation(s)
- Hiroki Ohnishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Zhongying Zhang
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kunihiko Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tomoya Matsuo
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masao Ryu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naotoshi Kumagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Kuroshima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiaki Hiranaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
10
|
Leem YH, Park JS, Park JE, Kim DY, Kim HS. Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson's disease. Neurochem Int 2023; 165:105519. [PMID: 36931345 DOI: 10.1016/j.neuint.2023.105519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Parkinson's disease (PD) belongs to an α-synucleinopathy and manifests motor dysfunction attributed to nigrostriatal dopaminergic degeneration. In clinical practice, the beneficial role of physical therapy such as motor skill learning training has been recognized in PD-linked motor defects. Nevertheless, the disease-modifying effects of motor skill learning training on PD-related pathology remain unclear. Here, we investigated the disease-modifying effects of rotarod walking exercise (RWE), a modality of motor skill learning training, in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In motor function and dopaminergic degeneration, RWE improved MPTP-induced deficits. In addition, RWE enhanced the expression of neurotrophic factors BDNF/GDNF, PGC1-α, Nurr1, and p-AMPK, thereby recovering dopaminergic neuronal cell death. Moreover, RWE inhibited microglial activation and the expression of pro-inflammatory markers, such as p-IκBα, iNOS, IL-1β, TNF-α, and cathepsin D, while elevating anti-inflammatory IL-10 and TGF-β. RWE also decreased oxidative stress markers in the substantia nigra, such as 4-HNE and 8-OHdG-positive cells, while increasing Nrf2-controlled antioxidant enzymes. Regarding the effect of RWE on α-synuclein, it reduced the monomer/oligomer forms of α-synuclein and phosphorylation at serine 129. Further mechanistic studies revealed that RWE suppressed the expression of matrix metalloproteinase-3 and p-GSK3β (Y216), which play key roles in α-synuclein aggregation. These data collectively suggest that inhibition of neuroinflammation and α-synuclein oligomerization by RWE may contribute to the improvement of PD pathology.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Do-Youn Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
11
|
Bidirectional Regulation of Sodium Acetate on Macrophage Activity and Its Role in Lipid Metabolism of Hepatocytes. Int J Mol Sci 2023; 24:ijms24065536. [PMID: 36982619 PMCID: PMC10051801 DOI: 10.3390/ijms24065536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites of the intestinal flora that are closely related to the development of non-alcoholic fatty liver disease (NAFLD). Moreover, studies have shown that macrophages have an important role in the progression of NAFLD and that a dose effect of sodium acetate (NaA) on the regulation of macrophage activity alleviates NAFLD; however, the exact mechanism of action remains unclear. This study aimed to assess the effect and mechanism of NaA on regulating the activity of macrophages. RAW264.7 and Kupffer cells cell lines were treated with LPS and different concentrations of NaA (0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, and 5 mM). Low doses of NaA (0.1 mM, NaA-L) significantly increased the expression of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1 beta (IL-1β); it also increased the phosphorylation of inflammatory proteins nuclear factor-κB p65 (NF-κB p65) and c-Jun (p < 0.05), and the M1 polarization ratio of RAW264.7 or Kupffer cells. Contrary, a high concentration of NaA (2 mM, NaA-H) reduced the inflammatory responses of macrophages. Mechanistically, high doses of NaA increased intracellular acetate concentration in macrophages, while a low dose had the opposite effect, consisting of the trend of changes in regulated macrophage activity. Besides, GPR43 and/or HDACs were not involved in the regulation of macrophage activity by NaA. NaA significantly increased total intracellular cholesterol (TC), triglycerides (TG), and lipid synthesis gene expression levels in macrophages and hepatocytes at either high or low concentrations. Furthermore, NaA regulated the intracellular AMP/ATP ratio and AMPK activity, achieving a bidirectional regulation of macrophage activity, in which the PPARγ/UCP2/AMPK/iNOS/IκBα/NF-κB signaling pathway has an important role. In addition, NaA can regulate lipid accumulation in hepatocytes by NaA-driven macrophage factors through the above-mentioned mechanism. The results revealed that the mode of NaA bi-directionally regulating the macrophages further affects hepatocyte lipid accumulation.
Collapse
|
12
|
Kukreja RC, Wang R, Koka S, Das A, Samidurai A, Xi L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine-a possible prevention strategy for COVID-19? Mol Cell Biochem 2023; 478:679-696. [PMID: 36036333 PMCID: PMC9421626 DOI: 10.1007/s11010-022-04520-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is one of the major risk factors for developing cardiovascular disease and the resultant devastating morbidity and mortality. The key features of T2D are hyperglycemia, hyperlipidemia, insulin resistance, and impaired insulin secretion. Patients with diabetes and myocardial infarction have worse prognosis than those without T2D. Moreover, obesity and T2D are recognized risk factors in developing severe form of COVID-19 with higher mortality rate. The current lines of drug therapy are insufficient to control T2D and its serious cardiovascular complications. Phosphodiesterase 5 (PDE5) is a cGMP specific enzyme, which is the target of erectile dysfunction drugs including sildenafil, vardenafil, and tadalafil. Cardioprotective effects of PDE5 inhibitors against ischemia/reperfusion (I/R) injury were reported in normal and diabetic animals. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug and its hyperglycemia-controlling effect in diabetic patients is also under investigation. This review provides our perspective of a potential use of combination therapy of PDE5 inhibitor with HCQ to reduce cardiovascular risk factors and myocardial I/R injury in T2D. We previously observed that diabetic mice treated with tadalafil and HCQ had significantly reduced fasting blood glucose and lipid levels, increased plasma insulin and insulin-like growth factor-1 levels, and improved insulin sensitivity, along with smaller myocardial infarct size following I/R. The combination treatment activated Akt/mTOR cellular survival pathway, which was likely responsible for the salutary effects. Therefore, pretreatment with PDE5 inhibitor and HCQ may be a potentially useful therapy not only for controlling T2D but also reducing the rate and severity of COVID-19 infection in the vulnerable population of diabetics.
Collapse
Affiliation(s)
- Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| | - Rui Wang
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Saisudha Koka
- Department of Microbiology, Immunology and Pharmacology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916-6024, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
13
|
Bone marrow mesenchymal stem cells alleviate stress-induced hyperalgesia via restoring gut microbiota and inhibiting neuroinflammation in the spinal cord by targeting the AMPK/NF-κB signaling pathway. Life Sci 2023; 314:121318. [PMID: 36566879 DOI: 10.1016/j.lfs.2022.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Aim Spinal neuroinflammation contributes to the mechanism of stress-induced hyperalgesia (SIH). Recent research has demonstrated that bone marrow mesenchymal stem cells (BMSCs) alleviate chronic pain. However, what remains unidentified is whether BMSCs could improve hyperalgesia induced by chronic restraint stress (CRS). In another dimension, our previous study proved that gut microbiota played an important role in CRS-induced hyperalgesia in mice. Yet, whether BMSCs treatments change gut microbiota composition in CRS mice remains unexplored. MAIN METHODS Mechanical allodynia and thermal hyperalgesia were used to assess pain behavior. Composition of fecal samples were verified by 16S rRNA analysis. Western blot was used to investigate the expression of adenosine monophosphate-activated protein kinase (AMPK)/ nuclear factor kappa B (NF-κB) signaling pathway, pro-inflammatory cytokines [interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6], and the markers of microglia and astrocytes. The morphology of glia cells was evaluated by immunofluorescence staining. KEY FINDINGS CRS down-regulated phosphorylated AMPK (p-AMPK), up-regulated phosphorylated NF-κB p65 (p-NF-κB p65), activated microglia and astrocytes and promoted the secretion of IL-1β, TNF-α and IL-6 in the spinal cord. BMSCs alleviated CRS-induced hyperalgesia by inhibiting the activation of microglia and astrocytes and by reducing neuroinflammation via improving the disrupted AMPK/NF-κB pathway. Furthermore, BMSCs also raised the relative abundance of Muribaculaceae and Lachnospiraceae in CRS mice feces, which was significantly related to its effect of relieving hyperalgesia. SIGNIFICANCE Our results support that BMSCs could alleviate CRS-induced hyperalgesia by reducing AMPK/NF-κB-dependent neuroinflammation in the spinal cord and restoring the homeostasis of gut microbiota.
Collapse
|
14
|
Fawzy MA, Nasr G, Ali FEM, Fathy M. Quercetin potentiates the hepatoprotective effect of sildenafil and/or pentoxifylline against intrahepatic cholestasis: Role of Nrf2/ARE, TLR4/NF-κB, and NLRP3/IL-1β signaling pathways. Life Sci 2023; 314:121343. [PMID: 36592787 DOI: 10.1016/j.lfs.2022.121343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
AIM Intrahepatic cholestasis is a common pathological condition of several types of liver disorders. In this study, we aimed to investigate the regulatory effects of quercetin (QU) on selected phosphodiesterase inhibitors against alpha-naphthyl isothiocyanate (ANIT)-induced acute intrahepatic cholestasis. METHODS Cholestasis was induced in Wistar albino rats by ANIT as a single dose (60 mg/kg; P·O.). QU (50 mg/kg, daily, P·O.), sildenafil (Sild; 10 mg/kg, twice daily, P·O.), and pentoxifylline (PTX; 50 mg/kg, daily, P.O.) were evaluated either alone or in combinations for 10 days for their antioxidant, anti-inflammatory, and anti-pyroptotic effects. RESULTS ANIT produced a prominent intrahepatic cholestasis as evidenced by a significant alteration in liver functions, histological structure, inflammatory response, and oxidative stress biomarkers. Furthermore, up-regulation of NF-κB-p65, TLR4, NLRP3, cleaved caspase-1, IKK-β, and IL-1β concurrently with down-regulation of Nrf-2, HO-1, and PPAR-γ expressions were observed after ANIT. QU, Sild, or PTX treatment significantly alleviated the disturbance induced by ANIT. These findings were further supported by the improvement in histopathological features. Additionally, co-administration of QU with Sild or PTX significantly improved liver defects due to ANIT as compared to the individual drugs. SIGNIFICANCE Combined QU with Sild or PTX exhibited promising hepatoprotective effects and anti-cholestatic properties through modulation of Nrf2/ARE, TLR4/NF- κB, and NLRP3/IL-1β signaling pathways.
Collapse
Affiliation(s)
- Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Gehad Nasr
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
15
|
Samidurai A, Xi L, Das A, Kukreja RC. Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annu Rev Pharmacol Toxicol 2023; 63:585-615. [PMID: 36206989 DOI: 10.1146/annurev-pharmtox-040122-034745] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| |
Collapse
|
16
|
Kluknavsky M, Micurova A, Cebova M, Şaman E, Cacanyiova S, Bernatova I. MLN-4760 Induces Oxidative Stress without Blood Pressure and Behavioural Alterations in SHRs: Roles of Nfe2l2 Gene, Nitric Oxide and Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11122385. [PMID: 36552591 PMCID: PMC9774314 DOI: 10.3390/antiox11122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Reduced angiotensin 1-7 bioavailability due to inhibition of angiotensin-converting enzyme 2 (ACE2) may contribute to increased mortality in hypertensive individuals during COVID-19. However, effects of ACE2 inhibitor MLN-4760 in brain functions remain unknown. We investigated the selected behavioural and hemodynamic parameters in spontaneously hypertensive rats (SHRs) after a 2-week s.c. infusion of MLN-4760 (dose 1 mg/kg/day). The biochemical and molecular effects of MLN-4760 were investigated in the brainstem and blood plasma. MLN-4760 had no effects on hemodynamic and behavioural parameters. However, MLN-4760 increased plasma hydrogen sulfide (H2S) level and total nitric oxide (NO) synthase activity and conjugated dienes in the brainstem. Increased NO synthase activity correlated positively with gene expression of Nos3 while plasma H2S levels correlated positively with gene expressions of H2S-producing enzymes Mpst, Cth and Cbs. MLN-4760 administration increased gene expression of Ace2, Sod1, Sod2, Gpx4 and Hmox1, which positively correlated with expression of Nfe2l2 gene encoding the redox-sensitive transcription factor NRF2. Collectively, MLN-4760 did not exacerbate pre-existing hypertension and behavioural hyperactivity/anxiety in SHRs. However, MLN-4760-induced oxidative damage in brainstem was associated with activation of NO- and H2S-mediated compensatory mechanisms and with increased gene expression of antioxidant, NO- and H2S-producing enzymes that all correlated positively with elevated Nfe2l2 expression.
Collapse
|
17
|
Jehle A, Garaschuk O. The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. Int J Mol Sci 2022; 23:7048. [PMID: 35806059 PMCID: PMC9266933 DOI: 10.3390/ijms23137048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer's disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear. Moreover, human patients and mouse models of the disease present with entangled deregulation of both cGMP and Ca2+ signaling, e.g., causing changes in cGMP-mediated Ca2+ release from the intracellular stores as well as Ca2+-mediated cGMP production. Still, the mechanisms governing such interplay are poorly understood. Here, we review the recent data on mechanisms underlying the brain cGMP signaling and its interconnection with Ca2+ signaling. We also discuss the recent evidence stressing the importance of such interplay for normal brain function as well as in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
18
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
19
|
Park JW, Arah OA, Martinez-Maza O, Dobs AS, Ho KS, Palella FJ, Seaberg EC, Detels R. Effects of Erectile Dysfunction Drugs Use on T-cells and Immune Markers on Men Who Have Sex with Men. INTERNATIONAL JOURNAL OF SEXUAL HEALTH : OFFICIAL JOURNAL OF THE WORLD ASSOCIATION FOR SEXUAL HEALTH 2022; 34:462-473. [PMID: 36387612 PMCID: PMC9665348 DOI: 10.1080/19317611.2022.2084200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Objective Examine prospective relationships between erectile dysfunction (ED) drugs EDand CD4 and CD8 T-cells, and immune markers among men who have sex with men (MSM). Methods Data from Multicenter AIDS Cohort Study, an observational prospective cohort study, with semi-annual follow-ups conducted in four U.S. centers from 1998 onwards was used. Marginal structural models using g-computation was fitted to estimate the mean differences for the effects of self-reported ED drug use on CD4 and CD8 T-cell outcomes and immune biomarkers. Results Total of 1,391 men with HIV (MWH) and 307 men without HIV (MWOH) was included. Baseline mean CD4 cell count among MWH and MWOH was 499.9 cells/μL and 966.7 cells/μL, respectively. At baseline, 41.8% of MWH were virally suppressed. ED drug users reported a mean of 44.4 months of exposure to ED drugs. ED drug use was associated with increased CD4 cell outcomes among MWH but not MWOH. Mean differences in CD4 cell counts after 1 year of ED drug use was 57.6 cells/μL and increased to 117.7 after 10 years among MWH. CD8 counts were higher in ED drug users among MWH over 10 years than non-users; no consistent differences were found among MWOH. ED drug use appeared to reduce immune marker levels, such as IL-6 and increase markers, such as IL-10. We observed similar effects of ED drug use on biomarker levels among MWOH. Conclusion Long-term use of ED drugs do not adversely affect immune function among MWH or MWOH. Future studies on the relationships between different types of ED drugs and effects on T-cell subtypes are warranted.
Collapse
Affiliation(s)
- Jee Won Park
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Onyebuchi A. Arah
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Otoniel Martinez-Maza
- David Geffen UCLA School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adrian S. Dobs
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ken S. Ho
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank J. Palella
- Division of Infectious Diseases, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Eric C. Seaberg
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Sarmah N, Nauli AM, Ally A, Nauli SM. Interactions among Endothelial Nitric Oxide Synthase, Cardiovascular System, and Nociception during Physiological and Pathophysiological States. Molecules 2022; 27:2835. [PMID: 35566185 PMCID: PMC9105107 DOI: 10.3390/molecules27092835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide synthase (NOS) plays important roles within the cardiovascular system in physiological states as well as in pathophysiologic and specific cardiovascular (CV) disease states, such as hypertension (HTN), arteriosclerosis, and cerebrovascular accidents. This review discusses the roles of the endothelial NOS (eNOS) and its effect on cardiovascular responses that are induced by nociceptive stimuli. The roles of eNOS enzyme in modulating CV functions while experiencing pain will be discussed. Nociception, otherwise known as the subjective experience of pain through sensory receptors, termed "nociceptors", can be stimulated by various external or internal stimuli. In turn, events of various cascade pathways implicating eNOS contribute to a plethora of pathophysiological responses to the noxious pain stimuli. Nociception pathways involve various regions of the brain and spinal cord, including the dorsolateral periaqueductal gray matter (PAG), rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla, and intermediolateral column of the spinal cord. These pathways can interrelate in nociceptive responses to pain stimuli. The alterations in CV responses that affect GABAergic and glutamatergic pathways will be discussed in relation to mechanical and thermal (heat and cold) stimuli. Overall, this paper will discuss the aggregate recent and past data regarding pain pathways and the CV system.
Collapse
Affiliation(s)
- Niribili Sarmah
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Andromeda M. Nauli
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA;
| | - Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Abdelzaher WY, Bahaa HA, Elkhateeb R, Atta M, Fawzy MA, Ahmed AF, Rofaeil RR. Role of JNK, ERK, and p38 MAPK signaling pathway in protective effect of sildenafil in cyclophosphamide-induced placental injury in rats. Life Sci 2022; 293:120354. [PMID: 35074407 DOI: 10.1016/j.lfs.2022.120354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023]
Abstract
AIMS Chemotherapeutic agents; cyclophosphamide (CYC) is used for treatment of cancer and autoimmune diseases. Grievously, CYC is non-selective as it affects both tumor and healthy cells resulting in systemic toxicity including placenta. The present study aimed to evaluate the effect of phosphodiesterase 5 inhibitor, sildenafil (Sild) on CYC-induced placental injury in rats. MATERIALS AND METHODS Thirty-two female Wister rats were randomly divided into 4 experimental groups. Group 1: control pregnant group; Group 2: Sild-treated pregnant rats; Group 3: pregnant rats received CYC; Group 4: pregnant rats received Sild and CYC. Placental malondialdehyde (MDA), total nitrite/nitrate (NOx), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), platelet growth factor (PlGF), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK) and cleaved caspase-3 were measured. Histological changes, Nuclear Factor kappa-light-chain-enhancer of activated B (NF-κB), Connexin 43 (GJA1) and proliferating cell nuclear antigen (PCNA) immuno-expressions were also evaluated. KEY FINDINGS CYC showed significant decrease in placental GSH, NOx, PlGF, GJA1 and PCNA immuno-expressions but significant increase in placental MDA, TNF-α, JNK, P38MAPK, ERK, caspase-3 and NF-kB immuno-expression. Sild showed significant improvement in all oxidative, inflammatory and apoptotic parameters. SIGNIFICANCE Sild is a promising protective drug against placental injury induced by CYC through antagonizing MAPK (JNK, ERK, and p38) signaling pathway with anti-oxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Haitham Ahmed Bahaa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Reham Elkhateeb
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia 61511, Egypt; Department of Pharmacology, Deraya University, New Minia, Egypt.
| |
Collapse
|
22
|
Sanati M, Aminyavari S, Mollazadeh H, Bibak B, Mohtashami E, Afshari AR. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep 2022; 74:323-339. [PMID: 35050491 DOI: 10.1007/s43440-021-00349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
23
|
Moussaoui H, Ladjel-Mendil A, Laraba-Djebari F. Neuromodulation of neurological disorders in a demyelination model: effect of a potassium channel inhibitor from Androctonus scorpion venom. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2022698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hadjila Moussaoui
- Faculty of Biological Sciences, USTHB, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| | - Amina Ladjel-Mendil
- Faculty of Biological Sciences, USTHB, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| | - Fatima Laraba-Djebari
- Faculty of Biological Sciences, USTHB, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| |
Collapse
|
24
|
Bupivacaine in combination with sildenafil (Viagra) and vitamin D3 have anti-inflammatory effects in osteoarthritic chondrocytes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100066. [PMID: 34909684 PMCID: PMC8663929 DOI: 10.1016/j.crphar.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Aims To treat osteoarthritic chondrocytes and thereby reduce the inflammation with a drug combination that primarily affects 5-HT- and ATP-evoked Ca2+ signaling. In osteoarthritic chondrocytes, Ca2+ signaling is elevated, resulting in increased production of ATP and inflammatory mediators. The expression of TLR4 and Na+/K+-ATPase was used to evaluate the inflammatory status of the cells. Main methods Equine chondrocytes were collected from joints with mild structural osteoarthritic changes and cultured in monolayers. The cells were treated with a combination of bupivacaine (1 pM) and sildenafil (1 μM) in combination with vitamin D3 (100 nM). A high-throughput screening system, the Flexstation 3 microplate reader, was used to measure intra- and extracellular Ca2+ signaling after exposure to 5-HT, glutamate, or ATP. Expression of inflammatory receptors was assessed by Western blotting. Key findings Drug treatment substantially reduced 5-HT- and ATP-evoked intracellular Ca2+ release and TLR4 expression compared to those in untreated chondrocytes. The combination of sildenafil, vitamin D3 together with metformin, as the ability to take up glucose is limited, increased Na+/K+-ATPase expression. Significance The combination of these three therapeutic substances at concentrations much lower than usually used, reduced expression of the inflammatory receptor TLR4 and increased the cell membrane enzyme Na+/K+-ATPase, which regulates cell volume and reduces increased intracellular Ca2+ concentrations. These remarkable results indicate that this drug combination has disease-modifying osteoarthritis drug (DMOAD) properties and may be a new clinical therapy for osteoarthritis (OA).
Collapse
|
25
|
Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr 2021; 8:782657. [PMID: 34888340 PMCID: PMC8650112 DOI: 10.3389/fnut.2021.782657] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat low-carbohydrate diet that has been used for decades as a non-pharmacologic approach to treat metabolic disorders and refractory pediatric epilepsy. In recent years, enthusiasm for the KD has increased in the scientific community due to evidence that the diet reduces pathology and improves various outcome measures in animal models of neurodegenerative disorders, including multiple sclerosis, stroke, glaucoma, spinal cord injury, retinal degenerations, Parkinson's disease and Alzheimer's disease. Clinical trials also suggest that the KD improved quality of life in patients with multiple sclerosis and Alzheimer's disease. Furthermore, the major ketone bodies BHB and ACA have potential neuroprotective properties and are now known to have direct effects on specific inflammatory proteins, transcription factors, reactive oxygen species, mitochondria, epigenetic modifications and the composition of the gut microbiome. Neuroprotective benefits of the KD are likely due to a combination of these cellular processes and other potential mechanisms that are yet to be confirmed experimentally. This review provides a comprehensive summary of current evidence for the effectiveness of the KD in humans and preclinical models of various neurological disorders, describes molecular mechanisms that may contribute to its beneficial effects, and highlights key controversies and current gaps in knowledge.
Collapse
Affiliation(s)
- Sarah M Gough
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alicia Casella
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kristen Jasmin Ortega
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
26
|
Rashed ER, Abdel-Rafei MK, Thabet NM. Roles of Simvastatin and Sildenafil in Modulation of Cranial Irradiation-Induced Bystander Multiple Organs Injury in Rats. Inflammation 2021; 44:2554-2579. [PMID: 34420155 DOI: 10.1007/s10753-021-01524-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023]
Abstract
In radiobiology and radiation oncology fields, the observation of a phenomenon called radiation-induced bystander effect (RIBE) has introduced the prospect of remotely located tissues' affection. This phenomenon has been broadly developed to involve the concept of RIBE, which are relevant to the radiation-induced response of a distant tissue other than the irradiated one. The current study aimed at investigating each of the RIBE of cranial irradiation on oxidative and inflammatory status in different organs such as liver, kidney, heart, lung, and spleen. Being a vital target of the cholinergic anti-inflammatory response to an inflammatory stimulus, the splenic α-7-nicotinic acetylcholine receptor (α-7nAchR) was evaluated and the hepatic contents of thioredoxin, peroxisome proliferator-activated receptor-alpha and paraoxinase-1 (Trx/PPAR-α/PON) were also assessed as indicators for the liver oxidative stress and inflammatory responses. Being reported to act as antioxidant and anti-inflammatory agents, simvastatin (SV) and/or sildenafil (SD) were investigated for their effects against RIBE on these organs. These objectives were achieved via the biochemical assessments and the histopathological tissues examinations. Five experimental groups, one sham irradiated and four irradiated groups, were exposed to cranial irradiation at dose level of 25 Gy using an experimental irradiator with a Cobalt (Co60) source, RIBE, RIBE + SV (20 mg.(kg.bw)-1 day-1), RIBE + SD (75 mg.(kg.bw)-1 day-1), and RIBE + SV + SD. Cranial irradiation induced structural, biochemical, and functional dys-regulations in non-targeted organs. RIBE-induced organs' injuries have been significantly corrected by the administration of SV and/or SD. Our results suggest the possibility of a potentiated interaction between SV and SD in the modulation of the RIBE associated with head and neck radiotherapy.
Collapse
Affiliation(s)
- Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
27
|
Salem MA, Budzyńska B, Kowalczyk J, El Sayed NS, Mansour SM. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer's disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways. Toxicol Appl Pharmacol 2021; 429:115697. [PMID: 34428446 DOI: 10.1016/j.taap.2021.115697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurodegenerative disorder. This study aimed to investigate neuroprotective potential of tadalafil (TAD) and bergapten (BG) in SAD-induced cognitive impairment in mice. SAD was induced by single injection of streptozotocin (STZ; 3 mg/kg, ICV). STZ resulted in AD-like pathologies including Aβ deposition, tau aggregation, impaired insulin and Wnt/β-catenin signaling, as well as autophagic dysfunction and neuroinflammation. Administration of TAD or BG at doses of 20 and 25 mg/kg, respectively, for 21 consecutive days attenuated STZ-induced hippocampal insult, preserved neuronal integrity, and improved cognitive function in the Morris water maze and object recognition tests paralleled by reduction in Aβ expression by 79 and 89% and tau hyperphosphorylation by 60 and 61%, respectively. TAD and BG also enhanced protein expression of pAkt, pGSK-3β, beclin-1 and methylated protein phosphatase 2A (PP2A) and gene expression of cyclin D1, while raised BDNF immunoreactivity. Furthermore, TAD and BG boosted hippocampal levels of cGMP, PKG, Wnt3a, and AMPK and reduced expression of β-catenin and mTOR by 74% and 51%, respectively. TAD and BG also halted neuroinflammation by reducing IL-23 and IL-27 levels, as well as protein expression of NF-κB by 62% & 61%, respectively. In conclusion, this study offers novel insights on the neuroprotective effects of TAD or BG in the management of SAD as evidenced by improved cognitive function and histological architecture. This could be attributed to modulation of the crosstalk among PI3K/Akt/GSK-3β, PP2A, mTOR/autophagy, cGMP/PKG, and Wnt/β-catenin signaling cascades and mitigation of neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | - Joanna Kowalczyk
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland; Chair and Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
28
|
Shirvaliloo M. Targeting the SARS-CoV-2 3CL pro and NO/cGMP/PDE5 pathway in COVID-19: a commentary on PDE5 inhibitors. Future Cardiol 2021; 17:765-768. [PMID: 33576273 PMCID: PMC7885524 DOI: 10.2217/fca-2020-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Atcı T, Alagöz E, Yaprak Saraç E, Özbay H, Daşcı MF, Acar A, Karabulut D, Güleç MA. Effects of different vardenafil doses on bone healing in a rat fracture model. Jt Dis Relat Surg 2021; 32:313-322. [PMID: 34145806 PMCID: PMC8343867 DOI: 10.52312/jdrs.2021.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives
We aimed to investigate the radiological, biomechanical, histopathological, histomorphometric, and immunohistochemical effects of different doses of vardenafil on fracture healing. Materials and methods
Fifty-one rats were divided into three groups. Group V5 was given 5 mg/kg/day of vardenafil; Group V10 was given 10 mg/kg/day of vardenafil; and the control group was given the same volume of saline. Six rats from each group were sacrificed on Day 14 (early period) and the remaining rats were sacrificed on Day 42 (late period). Callus/femoral volume and bone mineral density were measured using micro- computed tomography. Five femurs from each group in the late period were examined by biomechanical tests. In addition to the histopathological and histomorphometric evaluations, immunohistochemical analyses were performed to examine the levels of inducible nitric oxide synthase (iNOS), transforming growth factor-3 (TGF-β3), and nuclear factor kappa B (NF-κB) proteins. Results
Both doses of vardenafil increased primary bone volume and maximal bone fracture strength in late period, compared to the control group (p<0.05). Histological healing scores of vardenafil groups were significantly higher in early period (p<0.001). While cartilaginous callus/total callus ratio in early period was higher, callus diameter/femoral diameter ratio in late period was lower in vardenafil groups (p<0.01). The NF-κB immunopositivity in V10 group decreased in early period, compared to control group (p<0.001). The TGF-β3 and iNOS immunopositivity increased in both V5 and V10 groups, compared to the control group in early period, but returned to normal in late period. Conclusion
During the first period of fracture healing process in which vasodilation is mostly required with increasing inflammation, vardenafil has ameliorating effects on the bone union and supports fracture healing.
Collapse
Affiliation(s)
| | - Ender Alagöz
- SBÜ Bağcılar Eğitim ve Araştırma Hastanesi Ortopedi ve Travmatoloji Kliniği, 34200 Bağcılar, İstanbul, Türkiye.
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang LQ, Zhang W, Li T, Yang T, Yuan X, Zhou Y, Zou Q, Yang H, Gao F, Tian Y, Mei W, Tian XB. GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-κB pathway in neuropathic pain mice. Neurobiol Learn Mem 2021; 182:107463. [PMID: 34015440 DOI: 10.1016/j.nlm.2021.107463] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023]
Abstract
Growing evidences indicate that neuropathic pain is frequently accompanied with cognitive impairments, which aggravate the decrease in the quality of life of chronic pain patients. Furthermore, it has been shown that the activation of Glucagon-like-peptide-1receptor (GLP-1R) improved memory deficit in multiple diseases, including Alzheimer's disease (AD), stroke. However, whether GLP-1R activation could improve memory impairment induced by neuropathic pain and the mechanisms underlying the effect of the activation of GLP-1R on memory protection have not yet been established. The spared nerve injury (SNI) model was established as a kind of neuropathic pain. And novel-object recognition memory (hippocampus-dependent memory) was tested by the novel object recognition test (NORT). The expression levels of GLP-1, GLP-1R, adenosine monophosphate-activated protein kinase (AMPK), p-AMPKThr172, nuclear factor κ B p65 (NF-κB p65), interleukin-1beta (IL-1β), IL-1β p17 (mature IL-1β), tumor necrosis factor-alpha (TNF-α) and the synaptic proteins were tested in the murine hippocampus with memory deficits caused by neuropathic pain. Then, exenatide acetate (Ex-4, a GLP-1R agonist), exendin (9-39) (Ex(9-39), a GLP-1R antagonist) and Compound C dihydrochloride (CC, an AMPK inhibitor) were used to test the effects of the activation of GLP-1R in the mice with neuropathic pain. First, we uncovered that neuropathic pain could inhibit GLP-1/GLP-R axis, disturb inflammatory signaling pathway, increase the expression of IL-1β, IL-1β p17 and TNF-α, downregulate the synaptic proteins (postsynaptic density protein 95 (PSD95) and Arc). Subsequently, we reported that Ex-4 treatment could improve recognition memory impairment, increase the ratio of p-AMPKThr172/AMPK, inhibit the phosphorylation NF-κB p65 and decrease the expression of IL-1β, IL-1β p17 and TNF-α, upregulate the levels of PSD95 and Arc. Moreover, we found that Ex(9-39) and CC treatment could abrogate the memory protection of activation of GLP-1R in mice with neuropathic pain. The results indicated that the activation of GLP-1R could improve recognition memory impairment via regulating AMPK/NF-κB pathway, improving neuroinflammation, reversing the decreased level of synaptic proteins in neuropathic pain mice.
Collapse
Affiliation(s)
- Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - YuKe Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Duarte-Silva E, Meiry da Rocha Araújo S, Oliveira WH, Lós DB, Bonfanti AP, Peron G, de Lima Thomaz L, Verinaud L, Peixoto CA. Sildenafil Alleviates Murine Experimental Autoimmune Encephalomyelitis by Triggering Autophagy in the Spinal Cord. Front Immunol 2021; 12:671511. [PMID: 34054847 PMCID: PMC8156813 DOI: 10.3389/fimmu.2021.671511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory and chronic Central Nervous System (CNS) disease that affects millions of people worldwide. The search for more promising drugs for the treatment of MS has led to studies on Sildenafil, a phosphodiesterase type 5 Inhibitor (PDE5I) that has been shown to possess neuroprotective effects in the Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. We have previously shown that Sildenafil improves the clinical score of EAE mice via modulation of apoptotic pathways, but other signaling pathways were not previously covered. Therefore, the aim of the present study was to further investigate the effects of Sildenafil treatment on autophagy and nitrosative stress signaling pathways in EAE. 24 female C57BL/6 mice were divided into the following groups: (A) Control - received only water; (B) EAE - EAE untreated mice; (C) SILD - EAE mice treated with 25mg/kg of Sildenafil s.c. The results showed that EAE mice presented a pro-nitrosative profile characterized by high tissue nitrite levels, lowered levels of p-eNOS and high levels of iNOS. Furthermore, decreased levels of LC3, beclin-1 and ATG5, suggests impaired autophagy, and decreased levels of AMPK in the spinal cord were also detected in EAE mice. Surprisingly, treatment with Sildenafil inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK. In conclusion, we propose that Sildenafil alleviates EAE by activating autophagy via the eNOS-NO-AMPK-mTOR-LC3-beclin1-ATG5 and eNOS-NO-AMPK-mTOR-CREB-BDNF pathways in the spinal cord.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Shyrlene Meiry da Rocha Araújo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Wilma Helena Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Jo S, Kim S, Yoo J, Kim MS, Shin DH. A Study of 3CLpros as Promising Targets against SARS-CoV and SARS-CoV-2. Microorganisms 2021; 9:756. [PMID: 33916747 PMCID: PMC8065850 DOI: 10.3390/microorganisms9040756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in serious chaos all over the world. In addition to the available vaccines, the development of treatments to cure COVID-19 should be done quickly. One of the fastest strategies is to use a drug-repurposing approach. To provide COVID-19 patients with useful information about medicines currently being used in clinical trials, twenty-four compounds, including antiviral agents, were selected and assayed. These compounds were applied to verify the inhibitory activity for the protein function of 3CLpros (main proteases) of SARS-CoV and SARS-CoV-2. Among them, viral reverse-transcriptase inhibitors abacavir and tenofovir revealed a good inhibitory effect on both 3CLpros. Intriguingly, sildenafil, a cGMP-specific phosphodiesterase type 5 inhibitor also showed significant inhibitory function against them. The in silico docking study suggests that the active-site residues located in the S1 and S2 sites play key roles in the interactions with the inhibitors. The result indicates that 3CLpros are promising targets to cope with SAR-CoV-2 and its variants. The information can be helpful to design treatments to cure patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Dong Hae Shin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seoul 03760, Korea; (S.J.); (S.K.); (J.Y.); (M.-S.K.)
| |
Collapse
|
33
|
Ala M, Mohammad Jafari R, Dehpour AR. Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: Thinking about new indications. Fundam Clin Pharmacol 2020; 35:235-259. [PMID: 33226665 DOI: 10.1111/fcp.12633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Sildenafil, approved two decades ago, is the inhibitor of phosphodiesterase 5 (PDE5). First of all, it was designated for angina pectoris, but soon it showed a wonderful efficacy in erectile dysfunction (ED) and then pulmonary arterial hypertension (PAH). Due to the distribution of phosphodiesterase (PDE) in almost all organs, maybe it effects other diseases. Hence, a great number of investigations began to understand the role of PDEi in different organs. Preliminary research on sildenafil in cell culture and animal models has yielded promising results. Soon, a greater number of animal researches and clinical trials joined them. The results disclosed sildenafil can have beneficial effects in each organ such as heart, liver, kidney, brain, and intestines. Furthermore, it has significantly improved the prognosis of organ ischemia in various animal models. Clinical trials in several diseases, such as recurrent spontaneous miscarriage, fatty liver disease, bronchopulmonary dysplasia (BPD), heart failure, and premature ejaculation (PE) brought promising results. Although some clinical trials are available on the effects of sildenafil on various diseases, further studies on humans are needed to consolidate the ultimate effects of sildenafil. The aim of this review was to describe the effects of sildenafil on each organ and explain its mechanisms of action. Further, other PDE inhibitors such as tadalafil and vardenafil have been briefly discussed in parts of this review.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| |
Collapse
|
34
|
Lv J, Wang W, Zhu X, Xu X, Yan Q, Lu J, Shi X, Wang Z, Zhou J, Huang X, Wang J, Duan W, Shen X. DW14006 as a direct AMPKα1 activator improves pathology of AD model mice by regulating microglial phagocytosis and neuroinflammation. Brain Behav Immun 2020; 90:55-69. [PMID: 32739363 DOI: 10.1016/j.bbi.2020.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressively neurodegenerative disease with typical hallmarks of amyloid β (Aβ) plaque accumulation, neurofibrillary tangle (NFT) formation and neuronal death extension. In AD brain, activated microglia phagocytose Aβ and neuronal debris, but also aggravate inflammation stress by releasing inflammatory factors and cytotoxins. Improving microglia on Aβ catabolism and neuroinflammatory intervention is thus believed to be a promising therapeutic strategy for AD. AMP-activated protein kinase (AMPK) is highly expressed in microglia with AMPKα1 being tightly implicated in neuroinflammatory events. Since indirect AMPKα1 activators may cause side effects with undesired intracellular AMP/ATP ratio, we focused on direct AMPKα1 activator study by exploring its potential function in ameliorating AD-like pathology of AD model mice. Here, we reported that direct AMPKα1 activator DW14006 (2-(3-(7-chloro-6-(2'-hydroxy-[1,1'-biphenyl]-4-yl)-2-oxo-1,2-dihydroquinolin-3-yl)phenyl)acetic acid) effectively improved learning and memory impairments of APP/PS1 mice, and the underlying mechanisms have been intensively investigated. DW14006 reduced amyloid plaque deposition by promoting microglial o-Aβ42 phagocytosis and ameliorated innate immune response by polarizing microglia to an anti-inflammatory phenotype. It selectively enhanced microglial phagocytosis of o-Aβ42 by upgrading scavenger receptor CD36 through AMPKα1/PPARγ/CD36 signaling and suppressed inflammation by AMPKα1/IκB/NFκB signaling. Together, our work has detailed the crosstalk between AMPKα1 and microglia in AD model mice, and highlighted the potential of DW14006 in the treatment of AD.
Collapse
Affiliation(s)
- Jianlu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaofan Shi
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhengyu Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
35
|
Effect of sildenafil on neuroinflammation and synaptic plasticity pathways in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 85:106581. [PMID: 32442900 DOI: 10.1016/j.intimp.2020.106581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic immuno-inflammatory disease of the central nervous system characterized by demyelination and axonal damage. Cognitive changes are common in individuals with MS since inflammatory molecules secreted by microglia interfere with the physiological mechanisms of synaptic plasticity. According to previous data, inhibition of PDE5 promotes the accumulation of cGMP, which inhibits neuroinflammation and seems to improve synaptic plasticity and memory. The present study aimed to evaluate the effect of sildenafil on the signaling pathways of neuroinflammation and synaptic plasticity in experimental autoimmune encephalomyelitis (EAE). C57BL/6 mice were divided into three experimental groups (n = 10/group): (a) Control; (b) EAE; (c) EAE + sild (25 mg/kg/21 days). Sildenafil was able to delay the onset and attenuate the severity of the clinical symptoms of EAE. The drug also reduced the infiltration of CD4+ T lymphocytes and their respective IL-17 and TNF-α cytokines. Moreover, sildenafil reduced neuroinflammation in the hippocampus (assessed by the reduction of inflammatory markers IL-1β, pIKBα and pNFkB and reactive gliosis, as well as elevating the inhibitory cytokines TGF-β and IL-10). Moreover, sildenafil induced increased levels of NeuN, BDNF and pCREB, protein kinases (PKA, PKG, and pERK) and synaptophysin, and modulated the expression of the glutamate receptors AMPA and NMDA. The present findings demonstrated that sildenafil has therapeutic potential for cognitive deficit associated with multiple sclerosis.
Collapse
|
36
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
37
|
Duarte-Silva E, Filho AJMC, Barichello T, Quevedo J, Macedo D, Peixoto C. Phosphodiesterase-5 inhibitors: Shedding new light on the darkness of depression? J Affect Disord 2020; 264:138-149. [PMID: 32056743 DOI: 10.1016/j.jad.2019.11.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Phosphodiesterase-5 inhibitors (PDE5Is) are used to treat erectile dysfunction (ED). Recently, the antidepressant-like effect of PDE5Is was demonstrated in animal models of depression. In clinical settings, PDE5Is were studied only for ED associated depression. Hence, there are no studies evaluating the effects of PDE5Is for the treatment of major depressive disorder (MDD) without ED. In this review article, we aimed to discuss the use of PDE5Is in the context of MDD, highlighting the roles of PDE genes in the development of MDD, the potential mechanisms by which PDE5Is can be beneficial for MDD and the potentials and limitations of PDE5Is repurposing to treat MDD. METHODS We used PubMed (MEDLINE) database to collect the studies cited in this review. Papers written in English language regardless the year of publication were selected. RESULTS A few preclinical studies support the antidepressant-like activity of PDE5Is. Clinical studies in men with ED and depression suggest that PDE5Is improve depressive symptoms. No clinical studies were conducted in subjects suffering from depression without ED. Antidepressant effect of PDE5Is may be explained by multiple mechanisms including inhibition of brain inflammation and modulation of neuroplasticity. LIMITATIONS The low number of preclinical and absence of clinical studies to support the antidepressant effect of PDE5Is. CONCLUSIONS No clinical trial was conducted to date evaluating PDE5Is in depressed patients without ED. PDE5Is' anti-inflammatory and neuroplasticity mechanisms may justify the potential antidepressant effect of these drugs. Despite this, clinical trials evaluating their efficacy in depressed patients need to be conducted.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; Graduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - João Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Diosmin enhances the anti-angiogenic activity of sildenafil and pentoxifylline against hepatopulmonary syndrome via regulation of TNF-α/VEGF, IGF-1/PI3K/AKT, and FGF-1/ANG-2 signaling pathways. Eur J Pharmacol 2020; 873:173008. [PMID: 32050083 DOI: 10.1016/j.ejphar.2020.173008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Hepatopulmonary syndrome (HPS) is a severe complication of hepatic cirrhosis, which is characterized by hypoxia, intrapulmonary vasodilation, inflammation, and angiogenesis. In this study, we aimed to investigate the regulatory effects of diosmin (DS) on selected phosphodiesterase inhibitors against chronic bile duct ligation (CBDL)-induced HPS. Experimentally, Wistar Albino rats were used and HPS was induced by CBDL for 28 days. DS (100 mg/kg, daily, P.O.), sildenafil (Sild; 10 mg/kg, twice daily, P.O.), and pentoxifylline (PTX; 50 mg/kg, daily, P.O.) were evaluated either alone or in combinations for their anti-angiogenic activity. CBDL significantly altered oxidative stress biomarkers and up-regulated pulmonary mRNA expressions of VEGF, IGF-1, ET-1, iNOS, eNOS, and ANG-2 as well as the protein expressions of vWF, FGF-1, PI3K, AKT, p-AKT, TGF-β, HYP, MPO activity and circulating TNF-α. Treatment with DS, Sild, PTX, and their combinations significantly attenuated molecular and cellular changes due to CBDL. Improvement of histopathological changes was also observed after drug treatment which further supported our results. Furthermore, DS combination with Sild or PTX exhibited an improvement in HPS in comparison to each drug alone. Collectively, DS can augment the anti-angiogenic activity of Sild and PTX during HPS through regulation of TNF-α/VEGF, IGF-1/PI3K/AKT, and FGF-1/ANG-2 signaling pathways.
Collapse
|
39
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
40
|
Freihat LA, Wheeler JI, Wong A, Turek I, Manallack DT, Irving HR. IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity. Sci Rep 2019; 9:15468. [PMID: 31664109 PMCID: PMC6820782 DOI: 10.1038/s41598-019-51913-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Interleukin-1 receptor associated kinase 3 (IRAK3) is a cytoplasmic homeostatic mediator of inflammatory responses and is potentially useful as a prognostic marker in inflammation. IRAK3 inhibits signalling cascades downstream of myddosome complexes associated with toll like receptors. IRAK3 contains a death domain that interacts with other IRAK family members, a pseudokinase domain and a C-terminus domain involved with tumour necrosis factor receptor associated factor 6 (TRAF6). Previous bioinformatic studies revealed that IRAK3 contained a guanylate cyclase centre in its pseudokinase domain but its role in IRAK3 action is unresolved. We demonstrate that wildtype IRAK3 is capable of producing cGMP. Furthermore, we show that a specific point mutation in the guanylate cyclase centre reduced cGMP production. Cells containing toll like receptor 4 and a nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB) reporter system were transfected with IRAK3 or mutant IRAK3 proteins. Cell-permeable cGMP treatment of untransfected control cells suppresses downstream signalling through modulation of the NFĸB in the presence of lipopolysaccharides. Cells transfected with wildtype IRAK3 also suppress lipopolysaccharide induced NFĸB activity in the absence of exogenous cGMP. Lipopolysaccharide induced NFĸB activity was not suppressed in cells transfected with the IRAK3 mutant with reduced cGMP-generating capacity. Whereas in the presence of exogenously applied cell-permeable cGMP the IRAK3 mutant was able to retain its function by suppressing lipopolysaccharide induced NFĸB activity. Furthermore, increasing the amount of membrane permeable cGMP did not affect IRAK3's ability to reduce NFĸB activity. These results suggest that cGMP generated by IRAK3 may be involved in regulatory function of the protein where the presence of cGMP may selectively affect downstream signalling pathway(s) by modulating binding and/or activity of nearby proteins that interact in the inflammatory signalling cascade.
Collapse
Affiliation(s)
- L A Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia
| | - J I Wheeler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- AgriBio, La Trobe University, Bundoora, VIC, 3083, Australia
| | - A Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - I Turek
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia
| | - D T Manallack
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - H R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia.
| |
Collapse
|
41
|
Hansson E, Skiöldebrand E. Anti-inflammatory effects induced by ultralow concentrations of bupivacaine in combination with ultralow concentrations of sildenafil (Viagra) and vitamin D3 on inflammatory reactive brain astrocytes. PLoS One 2019; 14:e0223648. [PMID: 31596904 PMCID: PMC6785114 DOI: 10.1371/journal.pone.0223648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022] Open
Abstract
Network coupled cells, such as astrocytes, regulate their cellular homeostasis via Ca2+ signals spread between the cells through gap junctions. Intracellular Ca2+ release is controlled by different signaling pathways that can be stimulated by ATP, glutamate and serotonin (5-HT). Based on our findings, all these pathways are influenced by inflammatory agents and must be restored to fully recover the Ca2+ signaling network. An ultralow concentration of the local anesthetic agent bupivacaine reduced 5-HT-evoked intracellular Ca2+ release, and an ultralow concentration of the phosphodiesterase-5 inhibitor sildenafil in combination with vitamin D3 reduced ATP-evoked intracellular Ca2+ release. Combinations of these three substances downregulated 5-HT-, glutamate- and ATP-evoked intracellular Ca2+ release to a more normal Ca2+ signaling state. Furthermore, inflammatory Toll-like receptor 4 expression decreased with a combination of these three substances. Substance P receptor neurokinin (NK)-1 expression was reduced by ultralow concentrations of bupivacaine. Here, bupivacaine and sildenafil (at extremely low concentrations) combined with vitamin D3 have potential anti-inflammatory properties. According to the present study, drug combinations at the right concentrations, especially extremely low concentrations of bupivacaine and sildenafil, affect different cellular biochemical mechanisms and represent a potential solution for downregulating inflammatory parameters, thereby restoring cells or networks to normal physiological homeostasis.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
42
|
Cabrera‐Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro‐Gonzalez L, García‐García R, Mangas‐Losada A, Izquierdo‐Altarejos P, Arenas YM, Leone P, Felipo V. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 2019; 226:e13270. [PMID: 30830722 DOI: 10.1111/apha.13270] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Several million patients with liver cirrhosis suffer minimal hepatic encephalopathy (MHE), with mild cognitive and coordination impairments that reduce their quality of life and life span. Hyperammonaemia and peripheral inflammation act synergistically to induce these neurological alterations. We propose that MHE appearance is because of the changes in peripheral immune system, which are transmitted to brain, leading to neuroinflammation that alters neurotransmission leading to cognitive and motor alterations. We summarize studies showing that MHE in cirrhotic patients is associated with alterations in the immune system and that patients died with HE show neuroinflammation in cerebellum, with microglial and astrocytic activation and Purkinje cell loss. We also summarize studies in animal models of MHE on the role of peripheral inflammation in neuroinflammation induction, how neuroinflammation alters neurotransmission and how this leads to cognitive and motor alterations. These studies identify therapeutic targets and treatments that improve cognitive and motor function. Rats with MHE show neuroinflammation in hippocampus and altered NMDA and AMPA receptor membrane expression, which impairs spatial learning and memory. Neuroinflammation in cerebellum is associated with altered GABA transporters and extracellular GABA, which impair motor coordination and learning in a Y maze. These alterations are reversed by treatments that reduce peripheral inflammation (anti-TNFα, ibuprofen), neuroinflammation (sulphoraphane, p38 inhibitors), GABAergic tone (bicuculline, pregnenolone sulphate) or increase extracellular cGMP (sildenafil or cGMP). The mechanisms identified would also occur in other chronic diseases associated with inflammation, aging and some mental and neurodegenerative diseases. Treatments that improve MHE may also be beneficial to treat these pathologies.
Collapse
Affiliation(s)
- Andrea Cabrera‐Pastor
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | - Marta Llansola
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | - Michele Malaguarnera
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Lucas Taoro‐Gonzalez
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Raquel García‐García
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Alba Mangas‐Losada
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | | | - Yaiza M. Arenas
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Paola Leone
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Vicente Felipo
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| |
Collapse
|
43
|
Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Gao H, Wei MJ. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol Res 2019; 145:104253. [PMID: 31059788 DOI: 10.1016/j.phrs.2019.104253] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of structure and function of neurons most common in elderly population, mainly including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Neuroinflammation caused by microglia as the resident macrophages of the central nervous system (CNS) plays a contributory role in the onset and progression of NDs. Activated microglia, as in macrophages, to be heterogeneous, can polarize into M1 (pro-inflammatory) and M2 (anti-inflammatory) functional phenotypes. The former elaborate pro-inflammatory mediators promoting neuroinflammation and neuronal damage. In contrast, the latter generate anti-inflammatory mediators and neurotrophins that inhibit neuroinflammation and promote neuronal healing. Consistently, the regulation of microglial polarization from M1 to M2 phenotype appears as an outstanding therapeutic and preventive approach for NDs treatment. Although non-steroidal anti-inflammatory drugs (NSAIDs) currently used to alleviate M1 microglia-associated neuroinflammation responsible for the development of NDs, these drugs have different degrees of adverse effects and limited efficacy. As the advantages of novel structure, multi-target, high efficiency and low toxicity, natural products as the modulators of microglial polarization have attracted considerable concerns in the therapeutic areas of NDs. In this review, we mainly summarized the therapeutic potential of natural products and their various molecular mechanisms for NDs treatment through modulating microglial polarization. The aim of the current review is expected to be useful to develop innovative modulators of microglial polarization from natural products for the amelioration and treatment of NDs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Qian
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China.
| |
Collapse
|
44
|
Xiang HC, Lin LX, Hu XF, Zhu H, Li HP, Zhang RY, Hu L, Liu WT, Zhao YL, Shu Y, Pan HL, Li M. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J Neuroinflammation 2019; 16:34. [PMID: 30755236 PMCID: PMC6373126 DOI: 10.1186/s12974-019-1411-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic pain is a major clinical problem with limited treatment options. Previous studies have demonstrated that activation of adenosine monophosphate-activated protein kinase (AMPK) can attenuate neuropathic pain. Inflammation/immune response at the site of complete Freund's adjuvant (CFA) injection is known to be a critical trigger of the pathological changes that produce inflammatory pain. However, whether activation of AMPK produces an analgesic effect through inhibiting the proinflammatory cytokines, including interleukin-1β (IL-1β), in inflammatory pain remains unknown. METHODS Inflammatory pain was induced in mice injected with CFA. The effects of AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside, an AMPK activator), Compound C (an AMPK inhibitor), and IL-1ra (an IL-1 receptor antagonist) were tested at day 4 after CFA injection. Inflammatory pain was assessed with von Frey filaments and hot plate. Immunoblotting, hematoxylin and eosin (H&E) staining, and immunofluorescence were used to assess inflammation-induced biochemical changes. RESULTS The AMPK activator AICAR produced an analgesic effect and inhibited the level of proinflammatory cytokine IL-1β in the inflamed skin in mice. Moreover, activation of AMPK suppressed CFA-induced NF-κB p65 translocation from the cytosol to the nucleus in activated macrophages (CD68+ and CX3CR1+) of inflamed skin tissues. Subcutaneous injection of IL-1ra attenuated CFA-induced inflammatory pain. The AMPK inhibitor Compound C and AMPKα shRNA reversed the analgesic effect of AICAR and the effects of AICAR on IL-1β and NF-κB activation in inflamed skin tissues. CONCLUSIONS Our study provides new information that AMPK activation produces the analgesic effect by inhibiting NF-κB activation and reducing the expression of IL-1β in inflammatory pain.
Collapse
Affiliation(s)
- Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ru-Yue Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yi-Lin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
45
|
Hansson E, Björklund U, Skiöldebrand E, Rönnbäck L. Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes-promising treatment of neuroinflammation. J Neuroinflammation 2018; 15:321. [PMID: 30447700 PMCID: PMC6240424 DOI: 10.1186/s12974-018-1361-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Pharmaceutical treatment with probable anti-inflammatory substances that attack cells in various ways including receptors, ion channels, or transporter systems may slow down the progression of inflammatory conditions. Astrocytes and microglia are the most prominent target cells for inflammation in the central nervous system. Their responses upon inflammatory stimuli work through the NO/cyclic GMP/protein kinase G systems that can downregulate the ATP-induced Ca2+ signaling, as well as G protein activities which alter Na+ transporters including Na+/K+-ATPase pump activity, Toll-like receptor 4 (TLR4), glutamate-induced Ca2+ signaling, and release of pro-inflammatory cytokines. The rationale for this project was to investigate a combination of pharmaceutical substances influencing the NO and the Gi/Gs activations of inflammatory reactive cells in order to make the cells return into a more physiological state. The ATP-evoked Ca2+ signaling is important maybe due to increased ATP release and subsequent activation of purinergic receptors. A balance between intercellular Ca2+ signaling through gap junctions and extracellular signaling mediated by extracellular ATP may be important for physiological function. Methods Astrocytes in primary cultures were incubated with lipopolysaccharide in a physiological glucose concentration for 24 h to induce inflammatory reactivity. The probable anti-inflammatory substances sildenafil and 1α,25-Dihydroxyvitamin D3 together with endomorphin-1, naloxone, and levetiracetam, were used in the presence of high glucose concentration in the medium to restore the cells. Glutamate-, 5-HT-, and ATP-evoked intracellular Ca2+ release, Na+/K+-ATPase expression, expression of inflammatory receptors, and release of tumor necrosis factor alpha were measured. Results Sildenafil in ultralow concentration together with 1α,25-Dihydroxyvitamin D3 showed most prominent effects on the ATP-evoked intracellular Ca2+ release. The μ-opioid agonist endomorphin-1, the μ-opioid antagonist naloxone in ultralow concentration, and the antiepileptic agent levetiracetam downregulated the glutamate-evoked intracellular Ca2+ release and TLR4. The combination of the pharmaceutical substances in high glucose concentration downregulated the glutamate- and ATP-evoked Ca2+ signaling and the TLR4 expression and upregulated the Na+/K+-ATPase pump. Conclusion Pharmaceutical treatment with the combination of substances that have potential anti-inflammatory effects, which attack different biochemical mechanisms in the cells may exert decisive effects to downregulate neuroinflammation in the nervous system.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden.
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Lars Rönnbäck
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
46
|
Ali BH, Al Za'abi M, Adham SA, Al Suleimani Y, Karaca T, Manoj P, Al Kalbani J, Yasin J, Nemmar A. The effect of sildenafil on rats with adenine-Induced chronic kidney disease. Biomed Pharmacother 2018; 108:391-402. [PMID: 30236848 DOI: 10.1016/j.biopha.2018.09.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The erectile dysfunction drug sildenafil has cardiopulmonary protective actions, and a nephroprotective action in cisplatin and ischemia-reperfusion-induced acute kidney injury. Here, we assessed its possible ameliorative action in a model of chronic kidney disease (CKD) using adenine feeding. Eight groups of rats were treated with saline (controls), adenine (0.25% w/w in feed daily for 5 weeks), and oral sildenafil (0.1, 0.5 or 2.5 mg/kg), either alone, or concomitantly with adenine. Urine was collected 24 h after the end of the treatments from all rats and blood pressure measured, followed by collection of blood and kidneys for the measurement of several functional, biochemical and histopathological parameters. Adenine treatment reduced body weight, creatinine renal clearance, and increased water intake and urine output, as well as the plasma concentrations of urea and creatinine, neutrophil gelatinase-associated lipocalin, and N-acetyl-β-D-glucosaminidase activity, and albumin in urine. Adenine also increased the concentrations of the uremic toxins indoxyl sulfate, uric acid and phosphate, and a number of proteins and inflammatory cytokines, and decreased that of several anti - oxidant indices. Renal histopathological markers of damage (inflammation and fibrosis) were significantly increased by adenine. Sildenafil, given simultaneously with adenine, induced a dose - dependent improvements in most of the above parameters, suggesting its possible use as adjunct treatment for CKD in humans.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Turan Karaca
- Department of Histology-Embryology, Faculty of Medicine, University of Trakya, Balkan Campus, 22030, Edirne, Turkey
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jamila Al Kalbani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Javid Yasin
- Department of Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
47
|
Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: A pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-κB signalling pathway modulation. Toxicol Appl Pharmacol 2018; 352:153-161. [DOI: 10.1016/j.taap.2018.05.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
|
48
|
Duarte-Silva E, Araújo SMDR, Oliveira WH, Lós DBD, França MERD, Bonfanti AP, Peron G, Thomaz LDL, Verinaud L, Nunes AKDS, Peixoto CA. Sildenafil ameliorates EAE by decreasing apoptosis in the spinal cord of C57BL/6 mice. J Neuroimmunol 2018; 321:125-137. [DOI: 10.1016/j.jneuroim.2018.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|
49
|
Moon KH, Park SY, Kim YW. Obesity and Erectile Dysfunction: From Bench to Clinical Implication. World J Mens Health 2018; 37:138-147. [PMID: 30079640 PMCID: PMC6479091 DOI: 10.5534/wjmh.180026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity is a major public health issue worldwide and is frequently associated with erectile dysfunction (ED). Both conditions may share an internal pathologic environment, also known as common soil. Their main pathophysiologic processes are oxidative stress, inflammation, and resultant insulin and leptin resistance. Moreover, the severity of ED is correlated with comorbid medical conditions, including obesity. Therefore, amelioration of these comorbidities may increase the efficacy of ED treatment with phosphodiesterase 5 inhibitors, the first-line medication for patients with ED. Although metformin was originally developed as an insulin sensitizer six decades ago, it has also been shown to improve leptin resistance. In addition, metformin has been reported to reduce oxidative stress, inflammatory response, and body weight, as well as improve ED, in animal and human studies. Moreover, administration of a combination of metformin and phosphodiesterase 5 inhibitors improves erectile function in patients with ED who have a poor response to sildenafil and are insulin resistant. Thus, concomitant treatment of metabolic derangements associated with obesity in patients with ED who are obese would improve the efficacy and reduce the refractory response to penile vasodilators. In this review, we discuss the connecting factors between obesity and ED and the possible combined treatment modalities.
Collapse
Affiliation(s)
- Ki Hak Moon
- Department of Urology, Yeungnam University College of Medicine, Daegu, Korea
| | - So Young Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
50
|
Imai Y, Kariya T, Iwakiri M, Yamada Y, Takimoto E. Sildenafil ameliorates right ventricular early molecular derangement during left ventricular pressure overload. PLoS One 2018; 13:e0195528. [PMID: 29621314 PMCID: PMC5886579 DOI: 10.1371/journal.pone.0195528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) dysfunction following left ventricular (LV) failure is associated with poor prognosis. RV remodeling is thought initiated by the increase in the afterload of RV due to secondary pulmonary hypertension (PH) to impaired LV function; however, RV molecular changes might occur in earlier stages of the disease. cGMP (cyclic guanosine monophosphate)-phosphodiesterase 5 (PDE5) inhibitors, widely used to treat PH through their pulmonary vasorelaxation properties, have shown direct cardiac benefits, but their impacts on the RV in LV diseases are not fully determined. Here we show that RV molecular alterations occur early in the absence of RV hemodynamic changes during LV pressure-overload and are ameliorated by PDE5 inhibition. Two-day moderate LV pressure-overload (transverse aortic constriction) neither altered RV pressure/ function nor RV weight in mice, while it induced only mild LV hypertrophy. Importantly, pathological molecular features were already induced in the RV free wall myocardium, including up-regulation of gene markers for hypertrophy and inflammation, and activation of extracellular signal-regulated kinase (ERK) and calcineurin. Concomitant PDE5 inhibition (sildenafil) prevented induction of such pathological genes and activation of ERK and calcineurin in the RV as well as in the LV. Importantly, dexamethasone also prevented these RV molecular changes, similarly to sildenafil treatment. These results suggest the contributory role of inflammation to the early pathological interventricular interaction between RV and LV. The current study provides the first evidence for the novel early molecular cross-talk between RV and LV, preceding RV hemodynamic changes in LV disease, and supports the therapeutic strategy of enhancing cGMP signaling pathway to treat heart diseases.
Collapse
Affiliation(s)
- Yousuke Imai
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taro Kariya
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Iwakiri
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Yamada
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: ,
| |
Collapse
|