1
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024; 187:6649-6668.e35. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
3
|
Cong M, Li J, Wang L, Liu C, Zheng M, Zhou Q, Du M, Ye X, Feng M, Ye Y, Zhang S, Xu W, Lu Y, Wang C, Xia Y, Xie H, Zhang Y, He Q, Gong L, Gu Y, Sun H, Zhang Q, Zhao J, Ding F, Gu X, Zhou S. MircoRNA-25-3p in skin precursor cell-induced Schwann cell-derived extracellular vesicles promotes axon regeneration by targeting Tgif1. Exp Neurol 2024; 376:114750. [PMID: 38492636 DOI: 10.1016/j.expneurol.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.
Collapse
Affiliation(s)
- Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lijuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Mingzhi Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Xinli Ye
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Min Feng
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yujiao Ye
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Shuyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Wenqing Xu
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yi Lu
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Cheng Wang
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yingjie Xia
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Huimin Xie
- The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong 226007, China
| | - Yide Zhang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Jian Zhao
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China.
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Clarin JD, Reddy N, Alexandropoulos C, Gao WJ. The role of cell adhesion molecule IgSF9b at the inhibitory synapse and psychiatric disease. Neurosci Biobehav Rev 2024; 156:105476. [PMID: 38029609 PMCID: PMC10842117 DOI: 10.1016/j.neubiorev.2023.105476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Understanding perturbations in synaptic function between health and disease states is crucial to the treatment of neuropsychiatric illness. While genome-wide association studies have identified several genetic loci implicated in synaptic dysfunction in disorders such as autism and schizophrenia, many have not been rigorously characterized. Here, we highlight immunoglobulin superfamily member 9b (IgSF9b), a cell adhesion molecule thought to localize exclusively to inhibitory synapses in the brain. While both pre-clinical and clinical studies suggest its association with psychiatric diseases, our understanding of IgSF9b in synaptic maintenance, neural circuits, and behavioral phenotypes remains rudimentary. Moreover, these functions wield undiscovered influences on neurodevelopment. This review evaluates current literature and publicly available gene expression databases to explore the implications of IgSF9b dysfunction in rodents and humans. Through a focused analysis of one high-risk gene locus, we identify areas requiring further investigation and unearth clues related to broader mechanisms contributing to the synaptic etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Natasha Reddy
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
5
|
Ma Y, Fan C, Wang Y, Li W, Jiang H, Yang W. Comprehensive analysis of mRNAs in the cerebral cortex in APP/PS1 double-transgenic mice with Alzheimer's disease based on high-throughput sequencing of N4-acetylcytidine. Funct Integr Genomics 2023; 23:267. [PMID: 37548859 DOI: 10.1007/s10142-023-01192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
N4-acetylcytidine (ac4C), a significant modified nucleoside, participates in the development of many diseases. Messenger RNAs (mRNAs) contain most of the information of the genome and are the molecules that transmit information from genes to proteins. Alzheimer's disease (AD) is a progressive neurodegenerative disease in which fibrillar amyloid plaques are present. However, it remains unknown how mRNA ac4C modification affects the development of AD. In the current study, ac4C-modified mRNAs were comprehensively analyzed in AD mice by ac4C-RIP-seq and RNA-seq. Next, a protein-protein interaction (PPI) network was constructed to examine the relationships between the genes with differential ac4C modification levels and their RNA expression levels. The differentially expressed genes (DEGs) acquired above were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to further analyze the molecular mechanisms in AD. In total, 3312 significant ac4C peaks were found on 2512 mRNAs, 1241 of which were hyperacetylated and 1271 of which were hypoacetylated. In addition, 956 mRNAs with differential expression were found, including 520 upregulated mRNAs and 436 downregulated mRNAs. Overall, 134 mRNAs with simultaneous changes at the ac4C levels as well as RNA expression levels were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 37 key mRNAs were screened, which were predominantly enriched in GABAergic synapses and the PI3K/AKT signaling pathway. The significant difference in the abundance of mRNA ac4C modification indicates that this modification is associated with AD progression, which may provide insight for more investigations of the potential mechanisms.
Collapse
Affiliation(s)
- Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
| |
Collapse
|
6
|
Song J, Zhao G, Li H, Yang Y, Yu Y, Hu Y, Li Y, Li J, Hu Y. Tandem mass tag (TMT) labeling-based quantitative proteomic analysis reveals the cellular protein characteristics of 16HBE cells infected with coxsackievirus A10 and the potential effect of HMGB1 on viral replication. Arch Virol 2023; 168:217. [PMID: 37524962 DOI: 10.1007/s00705-023-05821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 08/02/2023]
Abstract
Coxsackievirus A10 (CV-A10) is recognized as one of the most important pathogens associated with hand, foot, and mouth disease (HFMD) in young children under 5 years of age worldwide, and it can lead to fatal neurological complications. However, available commercial vaccines fail to protect against CV-A10. Therefore, there is an urgent need to study new protein targets of CV-A10 and develop novel vaccine-based therapeutic strategies. Advances in proteomics in recent years have enabled a comprehensive understanding of host pathogen interactions. Here, to study CV-A10-host interactions, a global quantitative proteomic analysis was conducted to investigate the molecular characteristics of host cell proteins and identify key host proteins involved in CV-A10 infection. Using tandem mass tagging (TMT)-based mass spectrometry, a total of 6615 host proteins were quantified, with 293 proteins being differentially regulated. To ensure the validity and reliability of the proteomics data, three randomly selected proteins were verified by Western blot analysis, and the results were consistent with the TMT results. Further functional analysis showed that the upregulated and downregulated proteins were associated with diverse biological activities and signaling pathways, such as metabolic processes, biosynthetic processes, the AMPK signaling pathway, the neurotrophin signaling pathway, the MAPK signaling pathway, and the GABAergic synaptic signaling. Moreover, subsequent bioinformatics analysis demonstrated that these differentially expressed proteins contained distinct domains, were localized in different subcellular components, and generated a complex network. Finally, high-mobility group box 1 (HMGB1) might be a key host factor involved in CV-A10 replication. In summary, our findings provide comprehensive insights into the proteomic profile during CV-A10 infection, deepen our understanding of the relationship between CV-A10 and host cells, and establish a proteomic signature for this viral infection. Moreover, the observed effect of HMGB1 on CV-A10 replication suggests that it might be a potential therapeutic target treatment of CV-A10 infection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Guifang Zhao
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Yang
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yue Yu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunguang Hu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yadong Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
7
|
Moreno-Jiménez EP, Flor-García M, Hernández-Vivanco A, Terreros-Roncal J, Rodríguez-Moreno CB, Toni N, Méndez P, Llorens-Martín M. GSK-3β orchestrates the inhibitory innervation of adult-born dentate granule cells in vivo. Cell Mol Life Sci 2023; 80:225. [PMID: 37481766 PMCID: PMC10363517 DOI: 10.1007/s00018-023-04874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Adult hippocampal neurogenesis enhances brain plasticity and contributes to the cognitive reserve during aging. Adult hippocampal neurogenesis is impaired in neurological disorders, yet the molecular mechanisms regulating the maturation and synaptic integration of new neurons have not been fully elucidated. GABA is a master regulator of adult and developmental neurogenesis. Here we engineered a novel retrovirus encoding the fusion protein Gephyrin:GFP to longitudinally study the formation and maturation of inhibitory synapses during adult hippocampal neurogenesis in vivo. Our data reveal the early assembly of inhibitory postsynaptic densities at 1 week of cell age. Glycogen synthase kinase 3 Beta (GSK-3β) emerges as a key regulator of inhibitory synapse formation and maturation during adult hippocampal neurogenesis. GSK-3β-overexpressing newborn neurons show an increased number and altered size of Gephyrin+ postsynaptic clusters, enhanced miniature inhibitory postsynaptic currents, shorter and distanced axon initial segments, reduced synaptic output at the CA3 and CA2 hippocampal regions, and impaired pattern separation. Moreover, GSK-3β overexpression triggers a depletion of Parvalbumin+ interneuron perineuronal nets. These alterations might be relevant in the context of neurological diseases in which the activity of GSK-3β is dysregulated.
Collapse
Affiliation(s)
- E P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - J Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - C B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - N Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, , Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - P Méndez
- Cajal Institute, CSIC, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Anchesi I, Schepici G, Chiricosta L, Gugliandolo A, Salamone S, Caprioglio D, Pollastro F, Mazzon E. Δ 8-THC Induces Up-Regulation of Glutamatergic Pathway Genes in Differentiated SH-SY5Y: A Transcriptomic Study. Int J Mol Sci 2023; 24:ijms24119486. [PMID: 37298437 DOI: 10.3390/ijms24119486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways. The aim of our work was to evaluate the effects of Δ8-THC on differentiated SH-SY5Y human neuroblastoma cells. Using next generation sequencing (NGS), we investigated whether Δ8-THC could modify the transcriptomic profile of genes involved in synapse functions. Our results showed that Δ8-THC upregulates the expression of genes involved in the glutamatergic pathway and inhibits gene expression at cholinergic synapses. Conversely, Δ8-THC did not modify the transcriptomic profile of genes involved in the GABAergic and dopaminergic pathways.
Collapse
Affiliation(s)
- Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
9
|
Zhou L, Sun X, Duan J. NMDARs regulate the excitatory-inhibitory balance within neural circuits. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2022.9050020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Excitatory-inhibitory (E/I) balance is essential for normal neural development, behavior and cognition. E/I imbalance leads to a variety of neurological disorders, such as autism and schizophrenia. NMDA receptors (NMDARs) regulate AMPAR-mediated excitatory and GABAAR-mediated inhibitory synaptic transmission, suggesting that NMDARs play an important role in the establishment and maintenance of the E/I balance. In this review, we briefly introduced NMDARs, AMPARs and GABAARs, summarized the current studies on E/I balance mediated by NMDARs, and discussed the current advances in NMDAR-mediated AMPAR and GABAAR development. Specifically, we analyzed the role of NMDAR subunits in the establishment and maintenance of E/I balance, which may provide new therapeutic strategies for the recovery of E/I imbalance in neurological disorders.
Collapse
Affiliation(s)
- Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaohui Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
10
|
Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals (Basel) 2022; 12:ani12182410. [PMID: 36139269 PMCID: PMC9495000 DOI: 10.3390/ani12182410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
An auditory ability is essential for communication in vertebrates, and considerable attention has been paid to auditory sensitivity in mammals, birds, and frogs. Turtles were thought to be deaf for a long time; however, recent studies have confirmed the presence of an auditory ability in Trachemys scripta elegans as well as sex-related differences in hearing sensitivity. Earlier studies mainly focused on the morphological and physiological functions of the hearing organ in turtles; thus, the gene expression patterns remain unclear. In this study, 36 transcriptomes from six tissues (inner ear, tympanic membrane, brain, eye, lung, and muscle) were sequenced to explore the gene expression patterns of the hearing system in T. scripta elegans. A weighted gene co-expression network analysis revealed that hub genes related to the inner ear and tympanic membrane are involved in development and signal transduction. Moreover, we identified six differently expressed genes (GABRA1, GABRG2, GABBR2, GNAO1, SLC38A1, and SLC12A5) related to the GABAergic synapse pathway as candidate genes to explain the differences in sexually dimorphic hearing sensitivity. Collectively, this study provides a critical foundation for genetic research on auditory functions in turtles.
Collapse
|
11
|
Cheng S, Butrus S, Tan L, Xu R, Sagireddy S, Trachtenberg JT, Shekhar K, Zipursky SL. Vision-dependent specification of cell types and function in the developing cortex. Cell 2022; 185:311-327.e24. [PMID: 35063073 PMCID: PMC8813006 DOI: 10.1016/j.cell.2021.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023]
Abstract
The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.
Collapse
Affiliation(s)
- Sarah Cheng
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Runzhe Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Srikant Sagireddy
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Miller DS, Wright KM. Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural Dev 2021; 16:4. [PMID: 34362433 PMCID: PMC8349015 DOI: 10.1186/s13064-021-00153-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background The development of functional neural circuits requires the precise formation of synaptic connections between diverse neuronal populations. The molecular pathways that allow GABAergic interneuron subtypes in the mammalian brain to initially recognize their postsynaptic partners remain largely unknown. The transmembrane glycoprotein Dystroglycan is localized to inhibitory synapses in pyramidal neurons, where it is required for the proper function of CCK+ interneurons. However, the precise temporal requirement for Dystroglycan during inhibitory synapse development has not been examined. Methods In this study, we use NEXCre or Camk2aCreERT2 to conditionally delete Dystroglycan from newly-born or adult pyramidal neurons, respectively. We then analyze forebrain development from postnatal day 3 through adulthood, with a particular focus on CCK+ interneurons. Results In the absence of postsynaptic Dystroglycan in developing pyramidal neurons, presynaptic CCK+ interneurons fail to elaborate their axons and largely disappear from the cortex, hippocampus, amygdala, and olfactory bulb during the first two postnatal weeks. Other interneuron subtypes are unaffected, indicating that CCK+ interneurons are unique in their requirement for postsynaptic Dystroglycan. Dystroglycan does not appear to be required in adult pyramidal neurons to maintain CCK+ interneurons. Bax deletion did not rescue CCK+ interneurons in Dystroglycan mutants during development, suggesting that they are not eliminated by canonical apoptosis. Rather, we observed increased innervation of the striatum, suggesting that the few remaining CCK+ interneurons re-directed their axons to neighboring areas where Dystroglycan expression remained intact. Conclusion Together these findings show that Dystroglycan functions as part of a synaptic partner recognition complex that is required early for CCK+ interneuron development in the forebrain. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00153-1.
Collapse
Affiliation(s)
- Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, VIB 3435A, 3181 SW Sam Jackson Park Road, L474, Portland, OR, 97239-3098, USA.
| |
Collapse
|
13
|
Lee SE, Lee GH. Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons. Int J Mol Sci 2021; 22:ijms22147510. [PMID: 34299127 PMCID: PMC8305533 DOI: 10.3390/ijms22147510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/26/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Reelin is a secretory protein involved in a variety of processes in forebrain development and function, including neuronal migration, dendrite growth, spine formation, and synaptic plasticity. Most of the function of Reelin is focused on excitatory neurons; however, little is known about its effects on inhibitory neurons and inhibitory synapses. In this study, we investigated the phosphatidylinositol 3-kinase/Akt pathway of Reelin in primary cortical and hippocampal neurons. Individual neurons were visualized using immunofluorescence to distinguish inhibitory neurons from excitatory neurons. Reelin-rich protein supplementation significantly induced the phosphorylation of Akt and ribosomal S6 protein in excitatory neurons, but not in most inhibitory neurons. In somatostatin-expressing inhibitory neurons, one of major subtypes of inhibitory neurons, Reelin-rich protein supplementation induced the phosphorylation of S6. Subsequently, we investigated whether or not Reelin-rich protein supplementation affected dendrite development in cultured inhibitory neurons. Reelin-rich protein supplementation did not change the total length of dendrites in inhibitory neurons in vitro. Finally, we examined the development of inhibitory synapses in primary hippocampal neurons and found that Reelin-rich protein supplementation significantly reduced the density of gephyrin-VGAT-positive clusters in the dendritic regions without changing the expression levels of several inhibitory synapse-related proteins. These findings indicate a new role for Reelin in specific groups of inhibitory neurons and the development of inhibitory synapses, which may contribute to the underlying cellular mechanisms of RELN-associated neurological disorders.
Collapse
|
14
|
Nayeri T, Sarvi S, Sharif M, Daryani A. Toxoplasma gondii: A possible etiologic agent for Alzheimer's disease. Heliyon 2021; 7:e07151. [PMID: 34141920 PMCID: PMC8187970 DOI: 10.1016/j.heliyon.2021.e07151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most pervasive neurotropic pathogens causing different lesions in a wide variety of mammals as intermediate hosts, including humans. It is estimated that one-third of the world population is infected with T. gondii; however, for a long time, there has been much interest in the examination of the possible role of this parasite in the development of mental disorders, such as Alzheimer's disease (AD). T. gondii may play a role in the progression of AD using mechanisms, such as the induction of the host's immune responses, inflammation of the central nervous system (CNS), alteration in the levels of neurotransmitters, and activation of indoleamine-2,3-dyoxigenase. This paper presents an appraisal of the literature, reports, and studies that seek to the possible role of T. gondii in the development of AD. For achieving the purpose of the current study, a search of six English databases (PubMed, ScienceDirect, Web of Science, Scopus, ProQuest, and Google Scholar) was performed. The results support the involvement of T. gondii in the induction and development of AD. Indeed, T. gondii can be considered a risk factor for the development of AD and requires the special attention of specialists and patients. Furthermore, the results of this study may contribute to prevent or delay the progress of AD worldwide. Therefore, it is required to carry out further studies in order to better perceive the parasitic mechanisms in the progression of AD.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Castellano D, Shepard RD, Lu W. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABA ARs and Their Implications in Receptor Pharmacology. Front Neurosci 2021; 14:616298. [PMID: 33519367 PMCID: PMC7841293 DOI: 10.3389/fnins.2020.616298] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Syed P, Durisic N, Harvey RJ, Sah P, Lynch JW. Effects of GABA A Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Front Mol Neurosci 2020; 13:602559. [PMID: 33328885 PMCID: PMC7714833 DOI: 10.3389/fnmol.2020.602559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Missense mutations T166M, Q242L, T336M, and Y474C in the GABAA receptor (GABAAR) α3 subunit gene are associated with epileptic seizures, dysmorphic features, intellectual disability, and developmental delay. When incorporated into GABAARs expressed in oocytes, all mutations are known to reduce GABA-evoked whole-cell currents. However, their impact on the properties of inhibitory synaptic currents (IPSCs) is unknown, largely because it is difficult to establish, much less control, the stoichiometry of GABAAR expressed in native neuronal synapses. To circumvent this problem, we employed a HEK293 cell-neuron co-culture expression system that permits the recording of IPSCs mediated by a pure population of GABAARs with a defined stoichiometry. We first demonstrated that IPSCs mediated by α3-containing GABAARs (α3β3γ2) decay significantly slower than those mediated by α1-containing isoforms (α1β2γ2 or α1β3γ2). GABAAR α3 mutations did not affect IPSC peak amplitudes or 10-90% rise times, but three of the mutations affected IPSC decay. T336M significantly accelerated the IPSC decay rate whereas T166M and Y474C had the opposite effect. The acceleration of IPSC decay kinetics caused by the T366M mutation was returned to wild-type-like values by the anti-epileptic medication, midazolam. Quantification experiments in HEK293 cells revealed a significant reduction in cell-surface expression for all mutants, in agreement with previous oocyte data. Taken together, our results show that impaired surface expression and altered IPSC decay rates could both be significant factors underlying the pathologies associated with these mutations.
Collapse
Affiliation(s)
- Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Department of Biology, Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Li J, Han W, Wu K, Li YD, Liu Q, Lu W. A Conserved Tyrosine Residue in Slitrk3 Carboxyl-Terminus Is Critical for GABAergic Synapse Development. Front Mol Neurosci 2019; 12:213. [PMID: 31551708 PMCID: PMC6746929 DOI: 10.3389/fnmol.2019.00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Single-passing transmembrane protein, Slitrk3 (Slit and Trk-like family member 3, ST3), is a synaptic cell adhesion molecule highly expressed at inhibitory synapses. Recent studies have shown that ST3, through its extracellular domain, selectively regulates inhibitory synapse development via the trans-synaptic interaction with presynaptic cell adhesion molecule, receptor protein tyrosine phosphatase δ (PTPδ) and the cis-interaction with postsynaptic cell adhesion molecule, Neuroligin 2 (NL2). However, little is known about the physiological function of ST3 intracellular, carboxyl (C)-terminal region. Here we report that in heterologous cells, ST3 C-terminus is not required for ST3 homo-dimerization and trafficking to the cell surface. In contrast, in hippocampal neurons, ST3 C-terminus, more specifically, the conserved tyrosine Y969 (in mice), is critical for GABAergic synapse development. Indeed, overexpression of ST3 Y969A mutant markedly reduced the gephyrin puncta density and GABAergic transmission in hippocampal neurons. In addition, single-cell genetic deletion of ST3 strongly impaired GABAergic transmission. Importantly, wild-type (WT) ST3, but not the ST3 Y969A mutant, could fully rescue GABAergic transmission deficits in neurons lacking endogenous ST3, confirming a critical role of Y969 in the regulation of inhibitory synapses. Taken together, our data identify a single critical residue in ST3 C-terminus that is important for GABAergic synapse development and function.
Collapse
Affiliation(s)
- Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kunwei Wu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yuping Derek Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Qun Liu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Khayenko V, Maric HM. Targeting GABA AR-Associated Proteins: New Modulators, Labels and Concepts. Front Mol Neurosci 2019; 12:162. [PMID: 31293385 PMCID: PMC6606717 DOI: 10.3389/fnmol.2019.00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
γ-aminobutyric acid type A receptors (GABAARs) are the major mediators of synaptic inhibition in the brain. Aberrant GABAAR activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer’s and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABAARs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABAAR subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABAAR-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABAAR numbers and clustering, modifying neuronal transmission. Interference with GABAAR trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABAAR to AP2 increase the surface concentration of GABAAR clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABAAR accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABAAR modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, Tian Q, Lu W. Genetic Deletion of GABA A Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci 2019; 13:217. [PMID: 31231192 PMCID: PMC6558517 DOI: 10.3389/fncel.2019.00217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
In the adult brain GABAA receptors (GABAARs) mediate the majority of synaptic inhibition that provides inhibitory balance to excitatory drive and controls neuronal output. In the immature brain GABAAR signaling is critical for neuronal development. However, the cell-autonomous role of GABAARs in synapse development remains largely unknown. We have employed the CRISPR-CAS9 technology to genetically eliminate GABAARs in individual hippocampal neurons and examined GABAergic and glutamatergic synapses. We found that development of GABAergic synapses, but not glutamatergic synapses, critically depends on GABAARs. By combining different genetic approaches, we have also removed GABAARs and two ionotropic glutamate receptors, AMPA receptors (AMPARs) and NMDA receptors (NMDARs), in single neurons and discovered a striking dichotomy. Indeed, while development of glutamatergic synapses and spines does not require signaling mediated by these receptors, inhibitory synapse formation is crucially dependent on them. Our data reveal a critical cell-autonomous role of GABAARs in inhibitory synaptogenesis and demonstrate distinct molecular mechanisms for development of inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- Jingjing Duan
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Saurabh Pandey
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tianming Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - David Castellano
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Xinglong Gu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Qingjun Tian
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Semaphorin4D Induces Inhibitory Synapse Formation by Rapid Stabilization of Presynaptic Boutons via MET Coactivation. J Neurosci 2019; 39:4221-4237. [PMID: 30914448 DOI: 10.1523/jneurosci.0215-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 11/21/2022] Open
Abstract
Changes in inhibitory connections are essential for experience-dependent circuit adaptations. Defects in inhibitory synapses are linked to neurodevelopmental disorders, but the molecular processes underlying inhibitory synapse formation are not well understood. Here we use high-resolution two-photon microscopy in organotypic hippocampal slices from GAD65-GFP mice of both sexes to examine the signaling pathways induced by the postsynaptic signaling molecule Semaphorin4D (Sema4D) during inhibitory synapse formation. By monitoring changes in individual GFP-labeled presynaptic boutons, we found that the primary action of Sema4D is to induce stabilization of presynaptic boutons within tens of minutes. Stabilized boutons rapidly recruited synaptic vesicles, followed by accumulation of postsynaptic gephyrin and were functional after 24 h, as determined by electrophysiology and immunohistochemistry. Inhibitory boutons are only sensitive to Sema4D at a specific stage during synapse formation and sensitivity to Sema4D is regulated by network activity. We further examined the intracellular signaling cascade triggered by Sema4D and found that bouton stabilization occurs through rapid remodeling of the actin cytoskeleton. This could be mimicked by the actin-depolymerizing drug latrunculin B or by reducing ROCK activity. We discovered that the intracellular signaling cascade requires activation of the receptor tyrosine kinase MET, which is a well known autism risk factor. By using a viral approach to reduce MET levels specifically in inhibitory neurons, we found that their axons are no longer sensitive to Sema4D signaling. Together, our data yield important insights into the molecular pathway underlying activity-dependent Sema4D-induced synapse formation and reveal a novel role for presynaptic MET at inhibitory synapses.SIGNIFICANCE STATEMENT GABAergic synapses provide the main inhibitory control of neuronal activity in the brain. We wanted to unravel the sequence of molecular events that take place when formation of inhibitory synapses is triggered by a specific signaling molecule, Sema4D. We find that this signaling pathway depends on network activity and involves specific remodeling of the intracellular actin cytoskeleton. We also reveal a previously unknown role for MET at inhibitory synapses. Our study provides novel insights into the dynamic process of inhibitory synapse formation. As defects in GABAergic synapses have been implied in many brain disorders, and mutations in MET are strong risk factors for autism, our findings urge for a further investigation of the role of MET at inhibitory synapses.
Collapse
|
22
|
Chen J, Niu Q, Xia T, Zhou G, Li P, Zhao Q, Xu C, Dong L, Zhang S, Wang A. ERK1/2-mediated disruption of BDNF-TrkB signaling causes synaptic impairment contributing to fluoride-induced developmental neurotoxicity. Toxicology 2018; 410:222-230. [PMID: 30130557 DOI: 10.1016/j.tox.2018.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022]
Abstract
Excessive exposure to fluoride has adverse effects on neurodevelopment, but the mechanisms remain unclear. This study aimed to investigate the effects of fluoride exposure on synaptogenesis, and focused on the role of brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling in these effects. Using Sprague-Dawley rats developmentally exposed to sodium fluoride (NaF) from pregnancy until 6 months of delivery as in vivo model, we showed that fluoride impaired the cognitive abilities of offspring rats, decreased the density of dendritic spines and the expression of synapse proteins synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) in hippocampus, suggesting fluoride-induced cognitive deficit associates with synaptic impairment. Consistently, NaF treatment reduced dendritic outgrowth and expression of SYN and PSD-95 in human neuroblastoma SH-SY5Y cells. Further studies demonstrated that the BDNF-TrkB axis was disrupted in vivo and in vitro, as manifested by BDNF accumulation and TrkB reduction. Importantly, fluoride treatment increased phospho-extracellular signal-regulated kinases 1 and 2 (p-ERK1/2) expression, while inhibition of p-ERK1/2 significantly attenuated the effects of NaF, indicating a regulating role of p-ERK1/2 in BDNF-TrkB signaling disruption. Collectively, these data suggest that the developmental neurotoxicity of fluoride is associated with the impairment of synaptogenesis, which is caused by ERK1/2-mediated BDNF-TrkB signaling disruption.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Qiang Niu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Tao Xia
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Guoyu Zhou
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Pei Li
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Qian Zhao
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Chunyan Xu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Lixin Dong
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Torres L, Robinson SA, Kim DG, Yan A, Cleland TA, Bynoe MS. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer's disease in wild-type, C57BL/6 mice. J Neuroinflammation 2018; 15:57. [PMID: 29471842 PMCID: PMC5824585 DOI: 10.1186/s12974-018-1086-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with cognitive decline and complete loss of basic functions. The ubiquitous apicomplexan parasite Toxoplasma gondii (T. gondii) infects up to one third of the world's population and is implicated in AD. METHODS We infected C57BL/6 wild-type male and female mice with 10 T. gondii ME49 cysts and assessed whether infection led to behavioral and anatomical effects using immunohistochemistry, immunofluorescence, Western blotting, cell culture assays, as well as an array of mouse behavior tests. RESULTS We show that T. gondii infection induced two major hallmarks of AD in the brains of C57BL/6 male and female mice: beta-amyloid (Aβ) immunoreactivity and hyperphosphorylated Tau. Infected mice showed significant neuronal death, loss of N-methyl-D-aspartate receptor (NMDAR) expression, and loss of olfactory sensory neurons. T. gondii infection also caused anxiety-like behavior, altered recognition of social novelty, altered spatial memory, and reduced olfactory sensitivity. This last finding was exclusive to male mice, as infected females showed intact olfactory sensitivity. CONCLUSIONS These results demonstrate that T. gondii can induce advanced signs of AD in wild-type mice and that it may induce AD in some individuals with underlying health problems.
Collapse
Affiliation(s)
- Luisa Torres
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sudie-Ann Robinson
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Do-Geun Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Angela Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Margaret S Bynoe
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Gu X, Lu W. Genetic deletion of NMDA receptors suppresses GABAergic synaptic transmission in two distinct types of central neurons. Neurosci Lett 2018; 668:147-153. [PMID: 29355693 DOI: 10.1016/j.neulet.2018.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/23/2017] [Accepted: 01/12/2018] [Indexed: 01/30/2023]
Abstract
NMDA-type ionotropic glutamate receptors (NMDARs) play an important role in the regulation of synapse development and function in the brain. Recently we have shown that NMDARs are critical for GABAergic synapse development in developing hippocampal neurons. However, it remains unclear whether NMDARs are important for establishment of GABAergic synaptic transmission in other types of neurons in the brain. Here we report that in both cortical pyramidal neurons and midbrain dopamine neurons in ventral tegmental area (VTA), genetic deletion of the GluN1 subunit, which is required for assembly of functional NMDARs, leads to a strong reduction of GABAergic synaptic transmission. These data demonstrate that NMDARs play an important role in the development of GABAergic synaptic transmission in two types of neurons with distinct developmental origins, and suggest that NMDARs are commonly involved in development of GABAergic synaptic transmission in different types of neurons in the brain.
Collapse
Affiliation(s)
- Xinglong Gu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Li J, Han W, Pelkey KA, Duan J, Mao X, Wang YX, Craig MT, Dong L, Petralia RS, McBain CJ, Lu W. Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development. Neuron 2017; 96:808-826.e8. [PMID: 29107521 PMCID: PMC5957482 DOI: 10.1016/j.neuron.2017.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development.
Collapse
Affiliation(s)
- Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingjing Duan
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xia Mao
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael T Craig
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Cho CH. Commentary: GARLH Family Proteins Stabilize GABAA Receptors at Synapses. Front Mol Neurosci 2017; 10:169. [PMID: 28611592 PMCID: PMC5447330 DOI: 10.3389/fnmol.2017.00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
|
27
|
Lu W, Chen Y. Development of fast neurotransmitter synapses: General principle and recent progress. Brain Res Bull 2017; 129:1-2. [PMID: 27894823 PMCID: PMC6148346 DOI: 10.1016/j.brainresbull.2016.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiueyue Road, B6, Pudongxinqu, Shanghai 201203, China.
| |
Collapse
|
28
|
The Purkinje cell as a model of synaptogenesis and synaptic specificity. Brain Res Bull 2016; 129:12-17. [PMID: 27721030 DOI: 10.1016/j.brainresbull.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
Abstract
Since the groundbreaking work of Ramon y Cajal, the cerebellar Purkinje cell has always represented an ideal model for studying the organization, development and function of synaptic circuits. Purkinje cells receive distinct types of glutamatergic and GABAergic synapses, each characterized by exquisite sub-cellular and molecular specificity. The formation and refinement of these connections results from a temporally-regulated sequence of events that involves molecular interactions between distinct sets of secreted and surface proteins, as well as activity-dependent competition between converging inputs. Insights into the mechanisms controlling synaptic specificity in Purkinje cells may help understand synapse development also in other brain regions and disclose circuit abnormalities that underlie neurodevelopmental disorders.
Collapse
|
29
|
Wierenga CJ. Live imaging of inhibitory axons: Synapse formation as a dynamic trial-and-error process. Brain Res Bull 2016; 129:43-49. [PMID: 27720814 DOI: 10.1016/j.brainresbull.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
In this review I discuss recent live imaging studies that demonstrate that synapses, and in particular inhibitory synapses, are highly dynamic structures. The ongoing changes of presynaptic boutons within axons emphasize the stochastic aspect of inhibitory synapse formation and paint a picture of a dynamic trial-and-error process. Furthermore, I discuss recent and previous insights in the molecular and mechanistic pathways that underlie synapse formation, with a specific focus on the formation of inhibitory presynaptic boutons.
Collapse
Affiliation(s)
- Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|