1
|
Soma C, Hitomi S, Oshima E, Hayashi Y, Soma K, Shibuta I, Tsuboi Y, Shirakawa T, Kikuiri T, Iwata K, Shinoda M. Involvement of oxidative stress in orofacial mechanical pain hypersensitivity following neonatal maternal separation in rats. Sci Rep 2023; 13:22760. [PMID: 38123836 PMCID: PMC10733350 DOI: 10.1038/s41598-023-50116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Patients with persistent pain have sometimes history of physical abuse or neglect during infancy. However, the pathogenic mechanisms underlying orofacial pain hypersensitivity associated with early-life stress remain unclear. The present study focused on oxidative stress and investigated its role in pain hypersensitivity in adulthood following early-life stress. To establish an early-life stress model, neonatal pups were separated with their mother in isolated cages for 2 weeks. The mechanical head-withdrawal threshold (MHWT) in the whisker pad skin of rats received maternal separation (MS) was lower than that of non-MS rats at postnatal week 7. In MS rats, the expression of 8-hydroxy-deoxyguanosine, a marker of DNA oxidative damage, was enhanced, and plasma antioxidant capacity, but not mitochondrial complex I activity, decreased compared with that in non-MS rats. Reactive oxygen species (ROS) inactivation and ROS-sensitive transient receptor potential ankyrin 1 (TRPA1) antagonism in the whisker pad skin at week 7 suppressed the decrease of MHWT. Corticosterone levels on day 14 increased in MS rats. Corticosterone receptor antagonism during MS periods suppressed the reduction in antioxidant capacity and MHWT. The findings suggest that early-life stress potentially induces orofacial mechanical pain hypersensitivity via peripheral nociceptor TRPA1 hyperactivation induced by oxidative stress in the orofacial region.
Collapse
Affiliation(s)
- Chihiro Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Takashi Kikuiri
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
2
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Atta AA, Ibrahim WW, Mohamed AF, Abdelkader NF. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacology 2023; 31:1053-1067. [PMID: 37069462 DOI: 10.1007/s10787-023-01216-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Nociplastic pain is the third classification of pain as described by the International Association for the Study of Pain (IASP), in addition to the neuropathic and nociceptive pain classes. The main pathophysiological mechanism for developing nociplastic pain is central sensitization (CS) in which pain amplification and hypersensitivity occur. Fibromyalgia is the prototypical nociplastic pain disorder, characterized by allodynia and hyperalgesia. Much scientific data suggest that classical activation of microglia in the spinal cord mediates neuroinflammation which plays an essential role in developing CS. In this review article, we discuss the impact of microglia activation and M1/M2 polarization on developing neuroinflammation and nociplastic pain, besides the molecular mechanisms engaged in this process. In addition, we mention the impact of microglial modulators on M1/M2 microglial polarization that offers a novel therapeutic alternative for the management of nociplastic pain disorders. Illustrating the mechanisms underlying microglia activation in central sensitization and nociplastic pain. LPS lipopolysaccharide, TNF-α tumor necrosis factor-α, INF-γ Interferon gamma, ATP adenosine triphosphate, 49 P2Y12/13R purinergic P2Y 12/13 receptor, P2X4/7R purinergic P2X 4/7 receptor, SP Substance P, NK-1R Neurokinin 1 receptor, CCL2 CC motif ligand 2, CCR2 CC motif ligand 2 receptor, CSF-1 colony-stimulating factor 1, CSF-1R colony-stimulating factor 1 receptor, CX3CL1 CX3C motif ligand 1, CX3XR1 CX3C motif ligand 1 receptor, TLR toll-like receptor, MAPK mitogen-activated protein kinases, JNK jun N-terminal kinase, ERK extracellular signal-regulated kinase, iNOS Inducible nitric oxide synthase, IL-1β interleukin-1β, IL-6 interleukin-6, BDNF brain-derived neurotrophic factor, GABA γ-Aminobutyric acid, GABAR γ-Aminobutyric acid receptor, NMDAR N-methyl-D-aspartate receptor, AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-onic acid receptor, IL-4 interleukin-4, IL-13 interleukin-13, IL-10 interleukin-10, Arg-1 Arginase 1, FGF fibroblast growth factor, GDNF glial cell-derived neurotrophic factor, IGF-1 insulin-like growth factor-1, NGF nerve growth factor, CD Cluster of differentiation.
Collapse
Affiliation(s)
- Ahd A Atta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
4
|
Spinal P2X4 Receptors Involved in Visceral Hypersensitivity of Neonatal Maternal Separation Rats. Purinergic Signal 2023; 19:113-122. [PMID: 35648361 PMCID: PMC9984581 DOI: 10.1007/s11302-022-09868-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022] Open
Abstract
Recent studies have demonstrated the vital role of P2X4 receptors (a family of ATP-gated non-selective cation channels) in the transmission of neuropathic and inflammatory pain. In this study, we investigated the role of spinal P2X4 receptors in chronic functional visceral hypersensitivity of neonatal maternal separation (NMS) rats. A rat model of irritable bowel syndrome was established by neonatal maternal separation. Visceral sensitivity was assessed by recording the response of the external oblique abdominal muscle to colorectal distension. P2X4 receptor antagonist and agonist were administrated intrathecally. The expression of P2X4 receptor was examined by Western Blot and immunofluorescence. The effect of P2X4 receptor antagonist on expression of brain-derived neurotrophic factor (BDNF) was assessed by Western Blot. We found neonatal maternal separation enhanced visceral hypersensitivity and increased the expression of P2X4 receptor in spinal thoracolumbar and lumbosacral segments of rats. Pharmacological results showed that visceral sensitivity was attenuated after intrathecal injection of P2X4 receptor antagonist, 5-BDBD, at doses of 10 nM or 100 nM, while visceral sensitivity was enhanced after intrathecal injection of P2X4 receptor agonist C5-TDS at doses of 10 μM or 15 μM. In addition, the spinal expression of BDNF significantly increased in NMS rats and intrathecal injection of 5-BDBD significantly decreased the expression of BDNF especially in NMS rats. C5-TDS failed to increase EMG amplitude in the presence of ANA-12 in control rats. Our results suggested the spinal P2X4 receptors played an important role in visceral hypersensitivity of NMS rats through BDNF.
Collapse
|
5
|
Peng HR, Zhang YK, Zhou JW. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci Bull 2023; 39:531-540. [PMID: 36481974 PMCID: PMC10043088 DOI: 10.1007/s12264-022-00992-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022] Open
Abstract
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Choi S, Kim K, Kwon M, Bai SJ, Cha M, Lee BH. Modulation of Neuropathic Pain by Glial Regulation in the Insular Cortex of Rats. Front Mol Neurosci 2022; 15:815945. [PMID: 35493331 PMCID: PMC9043281 DOI: 10.3389/fnmol.2022.815945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The insular cortex (IC) is known to process pain information. However, analgesic effects of glial inhibition in the IC have not yet been explored. The aim of this study was to investigate pain alleviation effects after neuroglia inhibition in the IC during the early or late phase of pain development. The effects of glial inhibitors in early or late phase inhibition in neuropathic pain were characterized in astrocytes and microglia expressions in the IC of an animal model of neuropathic pain. Changes in withdrawal responses during different stages of inhibition were compared, and morphological changes in glial cells with purinergic receptor expressions were analyzed. Inhibition of glial cells had an analgesic effect that persisted even after drug withdrawal. Both GFAP and CD11b/c expressions were decreased after injection of glial inhibitors. Morphological alterations of astrocytes and microglia were observed with expression changes of purinergic receptors. These findings indicate that inhibition of neuroglia activity in the IC alleviates chronic pain, and that purinergic receptors in glial cells are closely related to chronic pain development.
Collapse
Affiliation(s)
- Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Sun Joon Bai
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Myeounghoon Cha,
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Bae Hwan Lee,
| |
Collapse
|
7
|
Domoto R, Sekiguchi F, Kamaguchi R, Iemura M, Yamanishi H, Tsubota M, Wang D, Nishibori M, Kawabata A. Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. J Pharmacol Sci 2021; 148:156-161. [PMID: 34924121 DOI: 10.1016/j.jphs.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.
Collapse
Affiliation(s)
- Risa Domoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Riki Kamaguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maiko Iemura
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Hiroki Yamanishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
8
|
Zarei M, Sahebi Vaighan N, Ziai SA. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacol Immunotoxicol 2021; 43:633-643. [PMID: 34647511 PMCID: PMC8544669 DOI: 10.1080/08923973.2021.1988102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
11
|
Design and synthesis of the first indole-based blockers of Panx-1 channel. Eur J Med Chem 2021; 223:113650. [PMID: 34174741 DOI: 10.1016/j.ejmech.2021.113650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Panx-1 is a membrane channel protein involved in some pathologies such as ischemic stroke, cancer and neuropathic pain, thus representing a promising therapeutic target. We present here a study aimed at obtaining the first class of selective Panx-1 blockers, a new topic for pharmaceutical chemistry, since all compounds used so far for the study of this channel have different primary targets. Among various scaffolds analyzed, the indole nucleous emerged, whose elaboration yielded interesting Panx-1 blockers, such as the potent 5-sulfamoyl derivatives 14c and 15b (I% = 100 at 50 μM). In vivo tests performed in the mouse model of oxaliplatin-induced neuropathy, demonstrated that the hypersensitivity was completely reverted by treatment with 15b (1 nmol, administered intrathecally), suggesting a relationship between this effect and the channel blocking ability. Finally, we decided to perform a virtual screening study on compounds 5b, 6l and 14c using a recently resolved cryo-EM structure of hPanx-1 channel, to try to relate the potency of our new inhibitors.
Collapse
|
12
|
Shen D, Zheng YW, Zhang D, Shen XY, Wang LN. Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signal 2021; 17:411-424. [PMID: 33934245 DOI: 10.1007/s11302-021-09777-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms transduction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during its analgesia process. Male Sprague-Dawley rats underwent acute inflammatory pain by injecting Complete Freund's Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acupuncture research.
Collapse
Affiliation(s)
- Dan Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- School of Traditional Chinese Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Ya-Wen Zheng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433, China
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
13
|
Lu MX, Liu ZX. The role of the P2X4 receptor in trigeminal neuralgia, a common neurological disorder. Neuroreport 2021; 32:407-413. [PMID: 33661807 DOI: 10.1097/wnr.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurological disorders, which include various types of diseases with complex pathological mechanisms, are more common in the elderly and have shown increased prevalence, morbidity and mortality worldwide. Unfortunately, current therapies for these diseases are usually suboptimal or have undesirable side effects. This necessitates the development of new potential targets for disease-modifying therapies. P2X4R, a type of purinergic receptor, has multiple roles in neurological disorders. In this review, we briefly introduce a neurological disorder, trigeminal neuralgia and its' symptoms, etiology and pathology. Moreover, we focused on the role of P2X4R in neurological disorders and their related pathophysiologic mechanisms. Further studies of P2X4R are required to determine potential therapeutic effects for these pathophysiologies.
Collapse
Affiliation(s)
- Ming-Xin Lu
- The Second Clinical Medical College of Nanchang University
| | - Zeng-Xu Liu
- Department of Anatomy, Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
14
|
Lv ZY, Yang YQ, Yin LM. Role of Purinergic Signaling in Acupuncture Therapeutics. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:645-659. [PMID: 33641652 DOI: 10.1142/s0192415x21500294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture is a therapeutic treatment that is well recognized in many countries. However, the initiation mechanisms of acupuncture are not well understood. Purinergic signaling has been considered a key signaling pathway in acupuncture in recent years. Acupuncture-induced ATP is mainly produced by mast cells and fibroblasts, and ATP is gradually hydrolyzed into adenosine. ATP and adenosine further participate in the process of acupuncture information transmission to the nervous and immune systems through specific purine receptors. Acupuncture initiates analgesia via the down-regulation of the expression of P2 receptors or up-regulation of the expression of adenosine A1 receptors on nerve fibers. ATP also promotes the proliferation of immune cells through P2 receptors and A3 receptors, causing inflammation. In contrast, adenosine activates A2 receptors, promotes the production and infiltration of immunosuppressive cells, and causes an anti-inflammatory response. In summary, we described the role of purinergic signaling as a general signaling pathway in the initiation of acupuncture and the influence of purinergic signaling on the neuroimmune network to lay the foundation for future systematic research on the mechanisms of acupuncture therapeutics.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China.,Shanghai Innovation Center of Traditional Chinese Medicine, Health Service, Shanghai 201203, P. R. China
| |
Collapse
|
15
|
Wei ZY, Qu HL, Dai YJ, Wang Q, Ling ZM, Su WF, Zhao YY, Shen WX, Chen G. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells. Neural Regen Res 2021; 16:899-904. [PMID: 33229726 PMCID: PMC8178772 DOI: 10.4103/1673-5374.290911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pannexin 1 (Panx 1), as a large-pore membrane channel, is highly permeable to ATP and other signaling molecules. Previous studies have demonstrated the expression of Panx 1 in the nervous system, including astrocytes, microglia, and neurons. However, the distribution and function of Panx 1 in the peripheral nervous system are not clear. Blocking the function of Panx 1 pharmacologically (carbenoxolone and probenecid) or with small interfering RNA targeting pannexins can greatly reduce hypotonicity-induced ATP release. Treatment of Schwann cells with a Ras homolog family member (Rho) GTPase inhibitor and small interfering RNA targeting Rho or cytoskeleton disrupting agents, such as nocodazole or cytochalasin D, revealed that hypotonicity-induced ATP release depended on intracellular RhoA and the cytoskeleton. These findings suggest that Panx 1 participates in ATP release in Schwann cells by regulating RhoA and the cytoskeleton arrangement. This study was approved by the Animal Ethics Committee of Nantong University, China (No. S20180806-002) on August 5, 2018.
Collapse
Affiliation(s)
- Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui-Lin Qu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Juan Dai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Wei-Xing Shen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University; Medical School of Nantong University; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
16
|
Abstract
Brain functional network properties are globally disrupted in multiple musculoskeletal chronic pain conditions. Back pain with lumbar disk herniation (LDH) is highly prevalent and a major route for progression to chronic back pain. However, brain functional network properties remain unknown in such patients. Here, we examined resting-state functional magnetic resonance imaging-based functional connectivity networks in chronic back pain patients with clear evidence for LDH (LDH-chronic pain n = 146), in comparison to healthy controls (HCs, n = 165). The study was conducted in China, thus providing the opportunity to also examine the influence of culture on brain functional reorganization with chronic pain. The data were equally subdivided into discovery and validation subgroups (n = 68 LDH-chronic pain and n = 68 HC, for each subgroup), and contrasted to an off-site data set (n = 272, NITRC 1000). Graph disruption indices derived from 3 network topological measurements, degree, clustering coefficient, and efficiency, which respectively represent network hubness, segregation, and integration, were significantly decreased compared with HC, across all predefined link densities, in both discovery and validation groups. However, global mean clustering coefficient and betweenness centrality were decreased in the discovery group and showed trend in the validation group. The relationship between pain and graph disruption indices was limited to males with high education. These results deviate somewhat from recent similar analysis for other musculoskeletal chronic pain conditions, yet we cannot determine whether the differences are due to types of pain or also to cultural differences between patients studied in China and the United States.
Collapse
|
17
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
18
|
Ruan Z, Orozco IJ, Du J, Lü W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 2020; 584:646-651. [PMID: 32494015 PMCID: PMC7814660 DOI: 10.1038/s41586-020-2357-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation1, apoptotic cell clearance2 and human oocyte development3. Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angström, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.
Collapse
Affiliation(s)
- Zheng Ruan
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
19
|
Ifenprodil Reduced Expression of Activated Microglia, BDNF and DREAM Proteins in the Spinal Cord Following Formalin Injection During the Early Stage of Painful Diabetic Neuropathy in Rats. J Mol Neurosci 2020; 71:379-393. [PMID: 32671697 DOI: 10.1007/s12031-020-01661-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins.
Collapse
|
20
|
Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, Ji RR. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics 2020; 17:846-860. [PMID: 32820378 PMCID: PMC7609632 DOI: 10.1007/s13311-020-00905-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interactions between central glial cells and neurons in the pain circuitry are critical contributors to the pathogenesis of chronic pain. In the central nervous system (CNS), two major glial cell types predominate: astrocytes and microglia. Injuries or pathological conditions which evoke pain are concurrently associated with the presence of a reactive microglia or astrocyte state, which is characterized by a variety of changes in the morphological, molecular, and functional properties of these cells. In this review, we highlight the changes that reactive microglia and astrocytes undergo following painful injuries and insults and discuss the critical and interactive role these two cell types play in the initiation and maintenance of chronic pain. Additionally, we focus on several crucial mechanisms by which microglia and astrocytes contribute to chronic pain and provide commentary on the therapeutic promise of targeting these pathways. In particular, we discuss how the inflammasome in activated microglia drives maturation and release of key pro-inflammatory cytokines, which drive pain through neuronal- and glial regulations. Moreover, we highlight several potentially-druggable hemichannels and proteases produced by reactive microglia and astrocytes in pain states and discuss how these pathways regulate distinct phases during pain pathogenesis. We also review two emerging areas in chronic pain research: 1) sexually dimorphic glial cell signaling and 2) the role of oligodendrocytes. Finally, we highlight important considerations for potential pain therapeutics targeting glial cell mediators as well as questions that remain in our conceptual understanding of glial cell activation in pain states.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Amanda S Andriessen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kaiyuan Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
21
|
Drosophila taste neurons as an agonist-screening platform for P2X receptors. Sci Rep 2020; 10:8292. [PMID: 32427920 PMCID: PMC7237442 DOI: 10.1038/s41598-020-65169-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/28/2020] [Indexed: 11/24/2022] Open
Abstract
The P2X receptor family of ATP-gated cation channels are attractive drug targets for pain and inflammatory disease, but no subtype-selective agonists, and few partially selective agonists have been described to date. As proof-of-concept for the discovery of novel P2X receptor agonists, here we demonstrate the use of Drosophila taste neurons heterologously expressing rat P2X2 receptors as a screening platform. We demonstrate that wild-type rat P2X2 expressed in Drosophila is fully functional (ATP EC50 8.7 µM), and that screening of small (2 µl) volumes of a library of 80 adenosine nucleotide analogues is rapid and straightforward. We have determined agonist potency and specificity profiles for rat P2X2 receptors; triphosphate-bearing analogues display broad activity, tolerating a number of substitutions, and diphosphate and monophosphate analogues display very little activity. While several ATP analogues gave responses of similar magnitude to ATP, including the previously identified agonists ATPγS and ATPαS, we were also able to identify a novel agonist, the synthetic analogue 2-fluoro-ATP, and to confirm its agonist activity on rat P2X2 receptors expressed in human cells. These data validate our Drosophila platform as a useful tool for the analysis of agonist structure-activity relationships, and for the screening and discovery of novel P2X receptor agonists.
Collapse
|
22
|
Coccurello R, Volonté C. P2X7 Receptor in the Management of Energy Homeostasis: Implications for Obesity, Dyslipidemia, and Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:199. [PMID: 32528404 PMCID: PMC7247848 DOI: 10.3389/fendo.2020.00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Whole-body energy metabolism entails the highly regulated balance between food intake, nutrient breakdown, energy generation (ATP), and energy storage for the preservation of vital functions and body mass. Purinergic signaling has attracted increasing attention in the regulatory mechanisms not only for the reverse processes of white adipose tissue lipogenesis and lipolysis, but also for brown adipocyte-dependent thermogenesis and leptin production. This regulatory role has remarkable implications in the handling of body's energy expenditure and energy reservoir. Hence, selected purinergic receptors can play a relevant function in lipid metabolism, endocrine activity, glucose uptake, ATP-dependent increased expression of uncoupling protein 1, and browning of adipose tissue. Indeed, purinergic P2 receptors regulate adipogenesis and lipid metabolism and are involved in adipogenic differentiation. In particular, the ionotropic ATP-activated P2X7 subtype is involved in fat distribution, as well as in the modulation of inflammatory pathways in white adipose tissue. Within this context, very recent evidence has established a direct function of P2X7 in energy metabolism. Specifically, either genetic deletion (P2X7 knockout mice) or subchronic pharmacological inhibition of the receptor produces a decrease of whole-body energy expenditure and, concurrently, an increase of carbohydrate oxidation. As further evidence, lipid accumulation, increased fat mass distribution, and weight gain are reported in P2X7-depleted mice. Conversely, the stimulation of P2X7 enhances energy expenditure. Altogether, this knowledge supports the role of P2X7 signaling in the fight against obesity and insulin resistance, as well as in the promotion of adaptive thermogenesis.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex System (ISC), National Research Council (CNR), Rome, Italy
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR), Rome, Italy
| |
Collapse
|
23
|
Dal Ben D, Antonioli L, Lambertucci C, Spinaci A, Fornai M, D'Antongiovanni V, Pellegrini C, Blandizzi C, Volpini R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin Drug Discov 2020; 15:687-703. [PMID: 32228110 DOI: 10.1080/17460441.2020.1743673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Purines finely modulate physiological motor, secretory, and sensory functions in the gastrointestinal tract. Their activity is mediated by the purinergic signaling machinery, including receptors and enzymes regulating their synthesis, release, and degradation. Several gastrointestinal dysfunctions are characterized by alterations affecting the purinergic system. AREAS COVERED The authors provide an overview on the purinergic receptor signaling machinery, the molecules and proteins involved, and a summary of medicinal chemistry efforts aimed at developing novel compounds able to modulate the activity of each player involved in this machinery. The involvement of purinergic signaling in gastrointestinal motor, secretory, and sensory functions and dysfunctions, and the potential therapeutic applications of purinergic signaling modulators, are then described. EXPERT OPINION A number of preclinical and clinical studies demonstrate that the pharmacological manipulation of purinergic signaling represents a viable way to counteract several gastrointestinal diseases. At present, the paucity of purinergic therapies is related to the lack of receptor-subtype-specific agonists and antagonists that are effective in vivo. In this regard, the development of novel therapeutic strategies should be focused to include tools able to control the P1 and P2 receptor expression as well as modulators of the breakdown or transport of purines.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| |
Collapse
|
24
|
Sophocleous RA, Berg T, Finol-Urdaneta RK, Sluyter V, Keshiya S, Bell L, Curtis SJ, Curtis BL, Seavers A, Bartlett R, Dowton M, Stokes L, Ooi L, Sluyter R. Pharmacological and genetic characterisation of the canine P2X4 receptor. Br J Pharmacol 2020; 177:2812-2829. [PMID: 32017039 DOI: 10.1111/bph.15009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE P2X4 receptors are emerging therapeutic targets for treating chronic pain and cardiovascular disease. Dogs are well-recognised natural models of human disease, but information regarding P2X4 receptors in dogs is lacking. To aid the development and validation of P2X4 receptor ligands, we have characterised and compared canine and human P2X4 receptors. EXPERIMENTAL APPROACH Genomic DNA was extracted from whole blood samples from 101 randomly selected dogs and sequenced across the P2RX4 gene to identify potential missense variants. Recombinant canine and human P2X4 receptors tagged with Emerald GFP were expressed in 1321N1 and HEK293 cells and analysed by immunoblotting and confocal microscopy. In these cells, receptor pharmacology was characterised using nucleotide-induced Fura-2 AM measurements of intracellular Ca2+ and known P2X4 receptor antagonists. P2X4 receptor-mediated inward currents in HEK293 cells were assessed by automated patch clamp. KEY RESULTS No P2RX4 missense variants were identified in any canine samples. Canine and human P2X4 receptors were localised primarily to lysosomal compartments. ATP was the primary agonist of canine P2X4 receptors with near identical efficacy and potency at human receptors. 2'(3')-O-(4-benzoylbenzoyl)-ATP, but not ADP, was a partial agonist with reduced potency for canine P2X4 receptors compared to the human orthologues. Five antagonists inhibited canine P2X4 receptors, with 1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea displaying reduced sensitivity and potency at canine P2X4 receptors. CONCLUSION AND IMPLICATIONS P2X4 receptors are highly conserved across dog pedigrees and display expression patterns and pharmacological profiles similar to human receptors, supporting validation and use of therapeutic agents for P2X4 receptor-related disease onset and management in dogs and humans.
Collapse
Affiliation(s)
- Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW, Australia
| | - Vanessa Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Shikara Keshiya
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Lachlan Bell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | | | - Aine Seavers
- Oak Flats Veterinary Clinic, Oak Flats, NSW, Australia
| | - Rachael Bartlett
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Mark Dowton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
25
|
Nishihara T, Tanaka J, Sekiya K, Nishikawa Y, Abe N, Hamada T, Kitamura S, Ikemune K, Ochi S, Choudhury ME, Yano H, Yorozuya T. Chronic constriction injury of the sciatic nerve in rats causes different activation modes of microglia between the anterior and posterior horns of the spinal cord. Neurochem Int 2020; 134:104672. [PMID: 31926989 DOI: 10.1016/j.neuint.2020.104672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023]
Abstract
Chronic constriction injury of the sciatic nerve is frequently considered as a cause of chronic neuropathic pain. Marked activation of microglia in the posterior horn (PH) has been well established with regard to this pain. However, microglial activation in the anterior horn (AH) is also strongly induced in this process. Therefore, in this study, we compared the differential activation modes of microglia in the AH and PH of the lumbar cord 7 days after chronic constriction injury of the left sciatic nerve in Wistar rats. Microglia in both the ipsilateral AH and PH demonstrated increased immunoreactivity of the microglial markers Iba1 and CD11b. Moreover, abundant CD68+ phagosomes were observed in the cytoplasm. Microglia in the AH displayed elongated somata with tightly surrounding motoneurons, whereas cells in the PH displayed a rather ameboid morphology and were attached to myelin sheaths rather than to neurons. Microglia in the AH strongly expressed NG2 chondroitin sulfate proteoglycan. Despite the tight attachment to neurons in the AH, a reduction in synaptic proteins was not evident, suggesting engagement of the activated microglia in synaptic stripping. Myelin basic protein immunoreactivity was observed in the phagosomes of activated microglia in the PH, suggesting the phagocytic removal of myelin. CCI caused both motor deficit and hyperalgesia that were evaluated by applying BBB locomotor rating scale and von Frey test, respectively. Motor defict was the most evident at postoperative day1, and that became less significant thereafter. By contrast, hyperalgesia was not severe at day 1 but it became worse at least by day 7. Collectively, the activation modes of microglia were different between the AH and PH, which may be associated with the difference in the course of motor and sensory symptoms.
Collapse
Affiliation(s)
- Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Yuki Nishikawa
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan; Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Sakiko Kitamura
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Keizo Ikemune
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
26
|
High-resolution detection of ATP release from single cultured mouse dorsal horn spinal cord glial cells and its modulation by noradrenaline. Purinergic Signal 2019; 15:403-420. [PMID: 31444738 DOI: 10.1007/s11302-019-09673-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 12/30/2022] Open
Abstract
Human embryonic kidney 293 (HEK293) cells stably transfected with the rat P2X2 receptor subunit were preincubated with 200 nM progesterone (HEK293-P2X2-PROG), a potent positive allosteric modulator of homomeric P2X2 receptors, and used to detect low nanomolar concentrations of extracellular ATP. Fura-2-loaded HEK293-P2X2-PROG cells were acutely plated on top of cultured DH glial cells to quantify ATP release from single DH glial cells. Application of the α1 adrenoceptor agonist phenylephrine (PHE, 20 μM) or of a low K+ (0.2 mM) solution evoked reversible increases in the intracellular calcium concentration ([Ca2+]i) in the biosensor cells. A reversible increase in [Ca2+]i was also detected in half of the biosensor cells following the interruption of general extracellular perfusion. All increases in [Ca2+]i were blocked in the presence of the P2X2 antagonist PPADS or after preloading the glial cells with the calcium chelator BAPTA, indicating that they were due to calcium-dependent ATP release from the glial cells. ATP release induced by PHE was blocked by -L-phenylalanine 2-naphtylamide (GPN) that permeabilizes secretory lysosomes and bafilomycin A1 (Baf A1), an inhibitor of the H+-pump of acidic secretory vesicles. By contrast, ATP release induced by application of a low-K+ solution was abolished by Baf A1 but not by GPN. Finally, spontaneous ATP release observed after interrupting general perfusion was insensitive to both GPN and Baf A1 pretreatment. Our results indicate that ATP is released in a calcium-dependent manner from two distinct vesicular pools and one non-vesicular pool coexisting in DH glial cells and that noradrenaline and PHE selectively target the secretory lysosome pool.
Collapse
|
27
|
Faria RX, de Jesus Hiller N, Salles JP, Resende JALC, Diogo RT, von Ranke NL, Bello ML, Rodrigues CR, Castro HC, de Luna Martins D. Arylboronic acids inhibit P2X7 receptor function and the acute inflammatory response. J Bioenerg Biomembr 2019; 51:277-290. [PMID: 31256283 DOI: 10.1007/s10863-019-09802-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
The P2X7 receptor (P2X7R) is an ion channel which is activated by interactions with the extracellular ATP molecules. The molecular complex P2X7R/ATP induces conformational changes in the protein subunits, opening a pore in the ion channel macromolecular structure. Currently, the P2X7R has been studied as a potential therapeutic target of anti-inflammatory drugs. Based on this, a series of eight boronic acids (NO) analogs were evaluated on the biologic effect of this pharmacophoric group on the human and murine P2X7R. The boronic acids derivatives NO-01 and NO-12 inhibited in vitro human and murine P2X7R function. These analogs compounds showed effect better than compound BBG and similar to inhibitor A740003 for inhibiting dye uptake, in vitro IL-1β release and ATP-induced paw edema in vivo. In both, in vitro and in vivo assays the compound NO-01 showed to be the hit compound in the present series of the arylboronic acids analogs. The molecular docking suggests that the NO derivatives bind into the upper body domain of the P2X7 pore and that the main intermolecular interaction with the two most active NO derivatives occur with the residues Phe 95, 103 and 293 by hydrophobic interactions and with Leu97, Gln98 and Ser101 by hydrogen bonds.. These results indicate that the boronic acid derivative NO-01 shows the lead compound characteristics to be used as a scaffold structure to the development of new P2X7R inhibitors with anti-inflammatory action.
Collapse
Affiliation(s)
- Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil. .,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Noemi de Jesus Hiller
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Juliana Pimenta Salles
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil
| | | | - Roberta Tosta Diogo
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Natalia Lidmar von Ranke
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.,Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Murilo Lamim Bello
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Helena Carla Castro
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
28
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
29
|
Wei Z, Fei Y, Su W, Chen G. Emerging Role of Schwann Cells in Neuropathic Pain: Receptors, Glial Mediators and Myelination. Front Cell Neurosci 2019; 13:116. [PMID: 30971897 PMCID: PMC6445947 DOI: 10.3389/fncel.2019.00116] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain caused by nerve injury or disease remains a major challenge for modern medicine worldwide. Most of the pathogenic mechanisms underlying neuropathic pain are centered on neuronal mechanisms. Accumulating evidence suggests that non-neuronal cells, especially glial cells, also play active roles in the initiation and resolution of pain. The preponderance of evidence has implicated central nervous system (CNS) glial cells, i.e., microglia and astrocytes, in the control of pain. The role of Schwann cells in neuropathic pain remains poorly understood. Schwann cells, which detect nerve injury and provide the first response, play a critical role in the development and maintenance of neuropathic pain. The cells respond to nerve injury by changing their phenotype, proliferating and interacting with nociceptive neurons by releasing glial mediators (growth factors, cytokines, chemokines, and biologically active small molecules). In addition, receptors expressed in active Schwann cells have the potential to regulate different pain conditions. In this review article, we will provide and discuss emerging evidence by integrating recent advances related to Schwann cells and neuropathic pain.
Collapse
Affiliation(s)
- Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
30
|
Erb L, Woods LT, Khalafalla MG, Weisman GA. Purinergic signaling in Alzheimer's disease. Brain Res Bull 2018; 151:25-37. [PMID: 30472151 DOI: 10.1016/j.brainresbull.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by three major histopathological markers: amyloid-β (Aβ) plaques, neurofibrillary tangles and gliosis in the central nervous system (CNS). It is now accepted that neuroinflammatory events in the CNS play a crucial role in the development of AD. This review focuses on neuroinflammatory signaling mediated by purinergic receptors (P1 adenosine receptors, P2X ATP-gated ion channels and G protein-coupled P2Y nucleotide receptors) and how therapeutic modulation of purinergic signaling influences disease progression in AD patients and animal models of AD.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Mahmoud G Khalafalla
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
31
|
Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 2018; 205:16-24. [PMID: 30439478 DOI: 10.1016/j.imlet.2018.11.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, mainly ATP, but also ADP, UTP, UDP and UDP-sugars, adenosine, and adenine base participate in the "purinergic signalling" pathway, an ubiquitous system of cell-to-cell communication. Fundamental pathophysiological processes such as tissue homeostasis, wound healing, neurodegeneration, immunity, inflammation and cancer are modulated by purinergic signalling. Nucleotides can be released from cells via unspecific or specific mechanisms. A non-regulated nucleotide release can occur from damaged or dying cells, whereas exocytotic granules, plasma membrane-derived microvesicles, membrane channels (connexins, pannexins, calcium homeostasis modulator (CALHM) channels and P2X7 receptor) or specific ATP binding cassette (ABC) transporters are involved in the controlled release. Four families of specific receptors, i.e. nucleotide P2X and P2Y receptors, adenosine P1 receptors, and the adenine-selective P0 receptor, and several ecto- nucleotidases are essential components of the "purinergic signalling" pathway. Thanks to the activity of ecto-nucleotidases, ATP (and possibly other nucleotides) are degraded into additional messenger molecules with specific action. The final biological effects depend on the type and amount of released nucleotides, their modification by ecto-nucleotidases, and their possible cellular re-uptake. Overall, these processes confer a remarkable level of selectivity and plasticity to purinergic signalling that makes this network one of the most relevant extracellular messenger systems in higher organisms.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy.
| |
Collapse
|
32
|
Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018; 129:343-366. [PMID: 29462012 PMCID: PMC6051899 DOI: 10.1097/aln.0000000000002130] [Citation(s) in RCA: 755] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pain is maintained in part by central sensitization, a phenomenon of synaptic plasticity, and increased neuronal responsiveness in central pain pathways after painful insults. Accumulating evidence suggests that central sensitization is also driven by neuroinflammation in the peripheral and central nervous system. A characteristic feature of neuroinflammation is the activation of glial cells, such as microglia and astrocytes, in the spinal cord and brain, leading to the release of proinflammatory cytokines and chemokines. Recent studies suggest that central cytokines and chemokines are powerful neuromodulators and play a sufficient role in inducing hyperalgesia and allodynia after central nervous system administration. Sustained increase of cytokines and chemokines in the central nervous system also promotes chronic widespread pain that affects multiple body sites. Thus, neuroinflammation drives widespread chronic pain via central sensitization. We also discuss sex-dependent glial/immune signaling in chronic pain and new therapeutic approaches that control neuroinflammation for the resolution of chronic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
33
|
New Insights into Microglia-Neuron Interactions: A Neuron's Perspective. Neuroscience 2018; 405:103-117. [PMID: 29753862 DOI: 10.1016/j.neuroscience.2018.04.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research.
Collapse
|
34
|
Sjögren E, Kullenberg T, Jonzon B, Segerdahl M, Stålberg O, Halldin M, Sundgren-Andersson A. Clinical testing of three novel transient receptor potential cation channel subfamily V member 1 antagonists in a pharmacodynamic intradermal capsaicin model. Eur J Pain 2018; 22:1214-1228. [DOI: 10.1002/ejp.1209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- E. Sjögren
- Department of Pharmacy; Uppsala University; Sweden
| | | | - B. Jonzon
- Medical Products Agency; Uppsala Sweden
| | - M. Segerdahl
- Lundbeck A/S, Valby, Denmark and Karolinska Institute; Stockholm Sweden
| | - O. Stålberg
- Division of Analytical Pharmaceutical Chemistry; Department of Medicinal Chemistry; Uppsala University; Sweden
| | - M.M. Halldin
- AlzeCure Foundation; Karolinska Institute Science Park; Huddinge Sweden
| | | |
Collapse
|
35
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
36
|
Shima K, Nemoto W, Tsuchiya M, Tan-No K, Takano-Yamamoto T, Sugawara S, Endo Y. The Bisphosphonates Clodronate and Etidronate Exert Analgesic Effects by Acting on Glutamate- and/or ATP-Related Pain Transmission Pathways. Biol Pharm Bull 2017; 39:770-7. [PMID: 27150146 DOI: 10.1248/bpb.b15-00882] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphosphonates (BPs) are typical anti-bone-resorptive drugs, with nitrogen-containing BPs (N-BPs) being stronger than non-nitrogen-containing BPs (non-N-BPs). However, N-BPs have inflammatory/necrotic effects, while the non-N-BPs clodronate and etidronate lack such side effects. Pharmacological studies have suggested that clodronate and etidronate can (i) prevent the side effects of N-BPs in mice via inhibition of the phosphate transporter families SLC20 and/or SLC34, through which N-BPs enter soft-tissue cells, and (ii) also inhibit the phosphate transporter family SLC17. Vesicular transporters for the pain transmitters glutamate and ATP belong to the SLC17 family. Here, we examined the hypothesis that clodronate and etidronate may enter neurons through SLC20/34, then inhibit SLC17-mediated transport of glutamate and/or ATP, resulting in their decrease, and thereby produce analgesic effects. We analyzed in mice the effects of various agents [namely, intrathecally injected clodronate, etidronate, phosphonoformic acid (PFA; an inhibitor of SLC20/34), and agonists of glutamate and ATP receptors] on the nociceptive responses to intraplantar injection of capsaicin. Clodronate and etidronate produced analgesic effects, and these effects were abolished by PFA. The analgesic effects were reduced by N-methyl-D-aspartate (agonist of the NMDA receptor, a glutamate receptor) and α,β-methylene ATP (agonist of the P2X-receptor, an ATP receptor). SLC20A1, SLC20A2, and SLC34A1 were detected within the mouse lumbar spinal cord. Although we need direct evidence, these results support the above hypothesis. Clodronate and etidronate may be representatives of a new type of analgesic drug. Such drugs, with both anti-bone-resorptive and unique analgesic effects without the adverse effects associated with N-BPs, might be useful for osteoporosis.
Collapse
Affiliation(s)
- Kazuhiro Shima
- Division of Oral Molecular Regulation, Graduate School of Dentistry, Tohoku University
| | | | | | | | | | | | | |
Collapse
|
37
|
Gao YH, Li CW, Wang JY, Tan LH, Duanmu CL, Jing XH, Chang XR, Liu JL. Effect of electroacupuncture on the cervicospinal P2X7 receptor/fractalkine/CX3CR1 signaling pathway in a rat neck-incision pain model. Purinergic Signal 2016; 13:215-225. [PMID: 28028627 DOI: 10.1007/s11302-016-9552-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence supports that acupuncture intervention is an effective approach for intraoperative and postoperative pain. Neuron-microglia crosstalk, mediated by the purinergic P2X7 receptor (R)/fractalkine/CX3CR1 cascade in the spinal cord dorsal horn, plays a pivotal role in pain processing. However, its involvement in the analgesic effect of electroacupuncture (EA) remains unclear. In this study, a rat neck-incision pain model was established by making a longitudinal incision along the midline of the neck and subsequent repeated mechanical stimulation. EA stimulation was applied to bilateral LI18, LI4-PC6, or ST36-GB34. The thermal pain threshold, cervicospinal ATP concentration, expression levels of purinergic P2XR and P2YR subunits mRNAs, and fractalkine, CX3CR1 and p38 MAPK proteins, were detected separately. The neck incision induced strong thermal hyperalgesia and upregulation of spinal ATP within 48 h. No significant change was found in thermal hyperalgesia after a single session of EA intervention. However, a single session of EA dramatically enhanced the neck incision-induced upregulation of ATP and upregulated the expression of P2X7R, which was reversed by two sessions of EA. Two sessions of EA at bilateral LI18 or LI4-PC6 attenuated hyperalgesia significantly, accompanied with downregulation of P2X7R/fractalkine/ CX3CR1 signaling after three sessions of EA. EA stimulation of LI18 or LI4-PC6 alleviates thermal hyperalgesia in neck-incision pain rats, which may be associated with its effects in regulating the neck incision-induced increase of ATP and P2X7R and subsequently suppressing fractalkine/CX3CR1 signaling in the cervical spinal cord.
Collapse
Affiliation(s)
- Y H Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - C W Li
- College of Acupuncture and Moxibustion and Tui-na, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China.,First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan Province, 412012, China
| | - J Y Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - L H Tan
- Department of Biochemistry and Moleculobiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - C L Duanmu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - X H Jing
- Meridian Research Center, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - X R Chang
- College of Acupuncture and Moxibustion and Tui-na, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - J L Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
38
|
Podvin S, Yaksh T, Hook V. The Emerging Role of Spinal Dynorphin in Chronic Pain: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2016; 56:511-33. [PMID: 26738478 DOI: 10.1146/annurev-pharmtox-010715-103042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notable findings point to the significance of the dynorphin peptide neurotransmitter in chronic pain. Spinal dynorphin neuropeptide levels are elevated during development of chronic pain and sustained during persistent chronic pain. Importantly, knockout of the dynorphin gene prevents development of chronic pain in mice, but acute nociception is unaffected. Intrathecal (IT) administration of opioid and nonopioid dynorphin peptides initiates allodynia through a nonopioid receptor mechanism; furthermore, antidynorphin antibodies administered by the IT route attenuate chronic pain. Thus, this review presents the compelling evidence in the field that supports the role of dynorphin in facilitating the development of a persistent pain state. These observations illustrate the importance of elucidating the control mechanisms responsible for the upregulation of spinal dynorphin in chronic pain. Also, spinal dynorphin regulation of downstream signaling molecules may be implicated in hyperpathic states. Therapeutic strategies to block the upregulation of spinal dynorphin may provide a nonaddictive approach to improve the devastating condition of chronic pain that occurs in numerous human diseases.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093;
| | | | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; .,Department of Neurosciences, and.,Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
39
|
Wu CH, Ho WY, Lee YC, Lin CL, Hsieh YL. EXPRESS: NGF-trkA signaling modulates the analgesic effects of prostatic acid phosphatase in resiniferatoxin-induced neuropathy. Mol Pain 2016; 12:12/0/1744806916656846. [PMID: 27306411 PMCID: PMC4956004 DOI: 10.1177/1744806916656846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Neuropathic pain in small-fiber neuropathy results from injury to and sensitization of nociceptors. Functional prostatic acid phosphatase (PAP) acts as an analgesic effector. However, the mechanism responsible for the modulation of PAP neuropathology, which leads to loss of the analgesic effect after small-fiber neuropathy, remains unclear. Results We used a resiniferatoxin (RTX)-induced small-fiber neuropathy model to examine whether functional PAP(+) neurons are essential to maintain the analgesic effect. PAP(+) neurons were categorized into small to medium neurons (25th–75th percentile: 17.1–23.7 µm); these neurons were slightly reduced by RTX (p = 0.0003). By contrast, RTX-induced activating transcription factor 3 (ATF3), an injury marker, in PAP(+) neurons (29.0% ± 5.6% vs. 0.2% ± 0.2%, p = 0.0043), indicating PAP neuropathology. Moreover, the high-affinity nerve growth factor (NGF) receptor (trkA) colocalized with PAP and showed similar profiles after RTX-induced neuropathy, and the PAP/trkA ratios correlated with the degree of mechanical allodynia (r = 0.62, p = 0.0062). The NGF inducer 4-methylcatechol (4MC) normalized the analgesic effects of PAP; specifically, it reversed the PAP and trkA profiles and relieved mechanical allodynia. Administering 2.5S NGF showed similar results to those of administering 4MC. This finding suggests that the analgesic effect of functional PAP is mediated by NGF-trkA signaling, which was confirmed by NGF neutralization. Conclusions This study revealed that functional PAP(+) neurons are essential for the analgesic effect, which is mediated by NGF-trkA signaling.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Kaohsiung Medical University Chung Ho Memorial Hospital
| | | | | | | | - Yu-Lin Hsieh
- Kaohsiung Medical University Chung Ho Memorial HospitalKaohsiung Medical UniversityKaohsiung Medical UniversityKaohsiung Medical University Hospital
| |
Collapse
|
40
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
42
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
43
|
Rajasekhar P, Poole DP, Liedtke W, Bunnett NW, Veldhuis NA. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells. J Biol Chem 2015; 290:29051-62. [PMID: 26475857 DOI: 10.1074/jbc.m115.689729] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca(2+) ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4(-/-) mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca(2+)]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia.
Collapse
Affiliation(s)
- Pradeep Rajasekhar
- From the Monash Institute of Pharmaceutical Sciences, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, and
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Departments of Anatomy and Neuroscience
| | - Wolfgang Liedtke
- the Department of Neurology, School of Medicine, Duke University, Durham, North Carolina 27710
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Anaesthesia and Peri-operative Medicine, Monash University, Victoria 3052, Australia, Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Nicholas A Veldhuis
- From the Monash Institute of Pharmaceutical Sciences, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, and Genetics, and
| |
Collapse
|
44
|
Lee SM, Cho JH, Lee SD, Kim YC. Nanoparticle-encapsulated P2X7 receptor antagonist in a pH-sensitive polymer as a potential local drug delivery system to acidic inflammatory environments. Bioorg Med Chem Lett 2015; 25:4197-202. [DOI: 10.1016/j.bmcl.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/01/2022]
|
45
|
Gregory NS, Whitley PE, Sluka KA. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats. PLoS One 2015; 10:e0138576. [PMID: 26378796 PMCID: PMC4574767 DOI: 10.1371/journal.pone.0138576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022] Open
Abstract
Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.
Collapse
Affiliation(s)
- Nicholas S. Gregory
- Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Kathleen A. Sluka
- Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
46
|
Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J Neurosci 2015; 35:7950-63. [PMID: 25995479 DOI: 10.1523/jneurosci.5250-14.2015] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence suggests that activation of spinal microglia contributes to the development of inflammatory and neuropathic pain. However, the role of spinal microglia in the maintenance of chronic pain remains controversial. Bone cancer pain shares features of inflammatory and neuropathic pain, but the temporal activation of microglia and astrocytes in this model is not well defined. Here, we report an unconventional role of spinal microglia in the maintenance of advanced-phase bone cancer pain in a female rat model. Bone cancer elicited delayed and persistent microglial activation in the spinal dorsal horn on days 14 and 21, but not on day 7. In contrast, bone cancer induced rapid and persistent astrocytic activation on days 7-21. Spinal inhibition of microglia by minocycline at 14 d effectively reduced bone cancer-induced allodynia and hyperalgesia. However, pretreatment of minocycline in the first week did not affect the development of cancer pain. Bone cancer increased ATP levels in CSF, and upregulated P2X7 receptor, phosphorylated p38, and IL-18 in spinal microglia. Spinal inhibition of P2X7/p-38/IL-18 pathway reduced advanced-phase bone cancer pain and suppressed hyperactivity of spinal wide dynamic range (WDR) neurons. IL-18 induced allodynia and hyperalgesia after intrathecal injection, elicited mechanical hyperactivity of WDR neurons in vivo, and increased the frequency of mEPSCs in spinal lamina IIo nociceptive synapses in spinal cord slices. Together, our findings demonstrate a novel role of microglia in maintaining advanced phase cancer pain in females via producing the proinflammatory cytokine IL-18 to enhance synaptic transmission of spinal cord nociceptive neurons.
Collapse
|
47
|
Di Cesare Mannelli L, Marcoli M, Micheli L, Zanardelli M, Maura G, Ghelardini C, Cervetto C. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: A pain mechanism mediated by Pannexin 1. Neuropharmacology 2015; 97:133-41. [PMID: 26071109 DOI: 10.1016/j.neuropharm.2015.05.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 01/29/2023]
Abstract
Anticancer therapy based on the repeated administration of oxaliplatin is limited by the development of a neuropathic syndrome difficult to treat. Oxaliplatin neurotoxicity is based on complex nervous mechanisms, the comprehension of the role of single neurotransmitters and the knowledge of the signal flow among cells is matter of importance to improve therapeutic chances. In a rat model of oxaliplatin-induced neuropathy, we report increased P2X7-evoked glutamate release from cerebrocortical synaptosomes. The release was abolished by the P2X7 receptor (P2X7R) antagonists Brilliant-Blue-G (BBG) and A-438079, and significantly reduced by Carbenoxolone and the Pannexin 1 (Panx1) selective inhibitors Erioglaucine and (10)Panx suggesting the recruitment of Panx1. Aimed to evaluate the significance of P2X7R-Panx1 system activation in pain generated by oxaliplatin, pharmacological modulators were spinally infused by intrathecal catheter in oxaliplatin-treated animals. BBG, Erioglaucine and (10)Panx reverted oxaliplatin-dependent pain. Finally, the influence of the P2X7R-Panx1 system blockade on oxaliplatin anticancer activity was evaluated on the human colon cancer cell line HT-29. Prevention of HT-29 apoptosis and mortality was dependent by kind and concentration of P2X7R antagonists. On the contrary, the inhibition of Panx1 did not alter oxaliplatin lethality in tumor cells. It is concluded that glutamate release dependent on P2X7R is increased in cerebrocortical nerve terminals from oxaliplatin-treated rats; the increase is mediated by functional recruitment of Panx1; P2X7R antagonists and Panx1 inhibitors revert oxaliplatin-induced neuropathic pain; Panx1 inhibitors do not alter the oxaliplatin-induced mortality of cancer cells HT-29. The inhibition of Panx1 channel is suggested as a new and safe pharmacological target.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genova, Genova, Italy.
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Guido Maura
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genova, Genova, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genova, Genova, Italy
| |
Collapse
|
48
|
Austin PJ, Bembrick AL, Denyer GS, Keay KA. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat. PLoS One 2015; 10:e0124755. [PMID: 25905723 PMCID: PMC4408097 DOI: 10.1371/journal.pone.0124755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022] Open
Abstract
Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four ‘disability-specific’ genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways.
Collapse
Affiliation(s)
- Paul J. Austin
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Alison L. Bembrick
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Gareth S. Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Kevin A. Keay
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
49
|
Su J, Gao T, Shi T, Xiang Q, Xu X, Wiesenfeld-Hallin Z, Hökfelt T, Svensson CI. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model. J Comp Neurol 2015; 523:1505-28. [DOI: 10.1002/cne.23749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/26/2014] [Accepted: 01/24/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Tianle Gao
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Tiejun Shi
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Qiong Xiang
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Xiaojun Xu
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| |
Collapse
|
50
|
|