1
|
Lai C, Zhang J, Lai G, He L, Xu H, Li S, Che J, Wang Q, Guan X, Huang J, Lai P, Chen G. Targeted regulation of 5-aminolevulinic acid enhances flavonoids, anthocyanins and proanthocyanidins accumulation in Vitis davidii callus. BMC PLANT BIOLOGY 2024; 24:944. [PMID: 39385100 PMCID: PMC11465859 DOI: 10.1186/s12870-024-05667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Spine grape (Vitis davidii) is a promising source of high-quality anthocyanins, with vast potential for application in food, pharmaceutical, and cosmetic industries. However, their availability is limited by resource constraints. Plant cell culture has emerged as a valuable approach for anthocyanin production and serves as an ideal model to investigate the regulation of anthocyanin biosynthesis. Elicitors are employed to achieve targeted enhancement of anthocyanin biosynthesis. The present study investigated the impact of 5-aminolevulinic acid (ALA) as an elicitor on the accumulation of anthocyanins and flavonoids during spine grape callus growth. Specifically, we examined the effects of ALA on anthocyanin and its component accumulation in callus, and biosynthetic anthocyanin gene expression. RESULTS ALA at 25 µg/L increased the biomass of spine grape callus. ALA induction enhanced the levels of flavonoids, anthocyanins and proanthocyanidins in callus, with maximum values reaching 911.11 mg/100 g DW, 604.60 mg/100 g DW, and 5357.00 mg/100 g DW, respectively, after callus culture for 45 days. Notably, those levels were 1.47-, 1.93- and 1.83-fold higher than controls. ALA induction modulated the flavonoid profile, and among 97 differential flavonoid metabolites differing from controls, 77 were upregulated and 20 were downregulated. Six kinds of anthocyanins, namely cyanidin (8), delphinidin (6), peonidin (5), malvidin (4), petunidin (3) and pelargonidin (3), were detected in callus, with peonidin most abundant. Compared with controls, anthocyanin components were increased in ALA-treated callus. The key genes PAL1, PAL2, PAL4, CHI, CHS3, F3'H, F3H, FLS, DFR, UFGT, MYBA1, LDOX, OMT3, GT1 and ACT involved in anthocyanin biosynthesis were upregulated following ALA treatment, resulting in anthocyanin accumulation. CONCLUSION This study revealed a novel mode of ALA-mediated promotion of plant anthocyanin biosynthesis and accumulation at the cellular level, and a strategy for enhancing anthocyanin content in spine grape callus. The findings advance commercial-scale production of anthocyanins via spine grape callus culture. we also explored the accumulation patterns of flavonoids and anthocyanins under ALA treatment. Augmentation of anthocyanins coincided with elevated expression levels of most genes involved in anthocyanin biosynthesis within spine grape callus following ALA treatment.
Collapse
Affiliation(s)
- Chengchun Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China.
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China.
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China.
| | - Jing Zhang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Gongti Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Liyuan He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Heng Xu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Siyu Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Jianmei Che
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences Fuzhou, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
| | - Qi Wang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Xuefang Guan
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Juqing Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Pufu Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China.
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China.
| | - Guixin Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
2
|
Zubova MY, Goncharuk EA, Nechaeva TL, Aksenova MA, Zaitsev GP, Katanskaya VM, Kazantseva VV, Zagoskina NV. Influence of Primary Light Exposure on the Morphophysiological Characteristics and Phenolic Compounds Accumulation of a Tea Callus Culture ( Camellia sinensis L.). Int J Mol Sci 2024; 25:10420. [PMID: 39408751 PMCID: PMC11477156 DOI: 10.3390/ijms251910420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Tea plant calli (Camellia sinensis L.) are characterized by the accumulation of various phenolic compounds (PC)-substances with high antioxidant activity. However, there is still no clarity on the response of tea cells to light exposure of varying intensity. The purpose of the research was to study tea callus cultures grown under the influence of primary exposure to different light intensities (50, 75, and 100 µmol·m-2·s-1). The cultures' growth, morphology, content of malondialdehyde and photosynthetic pigments (chlorophyll a and b), accumulation of various PC, including phenylpropanoids and flavanols, and the composition of catechins were analyzed. Primary exposure to different light intensities led to the formation of chloroplasts in tea calli, which was more pronounced at 100 µmol·m-2·s-1. Significant similarity in the growth dynamics of cultures, accumulation of pigments, and content of malondialdehyde and various phenolics in tea calli grown at light intensities of 50 and 75 µmol·m-2·s-1 has been established, which is not typical for calli grown at 100 µmol·m-2·s-1. According to data collected using high-performance liquid chromatography, (+)-catechin, (-)-epicatechin, epigallocatechin, gallocatechin gallate, epicatechin gallate, and epigallocatechin gallate were the main components of the tea callus culture's phenolic complex. Its content changed under the influence of primary exposure to light, reaching the greatest accumulation in the final stages of growth, and depended on the light intensity. The data obtained indicate changes in the morphophysiological and biochemical characteristics of tea callus cultures, including the accumulation of PC and their individual representatives under primary exposure to light exposure of varying intensity, which is most pronounced at its highest values (100 µmol·m-2·s-1).
Collapse
Affiliation(s)
- Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Georgiy P. Zaitsev
- All-Russia National Research Institute of Viticulture and Winemaking “Magarach”, Russian Academy of Sciences, 298600 Yalta, Russia;
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| |
Collapse
|
3
|
Wróbel-Kwiatkowska M, Osika A, Liszka J, Lipiński M, Dymińska L, Piegza M, Rymowicz W. The Impact of a Non-Pathogenic Strain of Fusarium Oxysporum on Structural and Biochemical Properties of Flax Suspension Cultures. Int J Mol Sci 2024; 25:9616. [PMID: 39273563 PMCID: PMC11394997 DOI: 10.3390/ijms25179616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Flax (Linum usitatissimum L.) is an important crop plant with pharmaceutical significance. It is described in pharmacopoeias (the United States Pharmacopeia and the European Pharmacopoeia), which confirms that it (especially the seeds) is a valuable medicinal product. Similar to flax seeds, which accumulate bioactive compounds, flax in vitro cultures are also a rich source of flavonoids, phenolics, lignans and neolignans. In the present study, flax suspension cultures after treatment of the non-pathogenic Fusarium oxysporum strain Fo47 were established and analyzed. The study examined the suitability of Fo47 as an elicitor in flax suspension cultures and provided interesting data on the impact of these endophytic fungi on plant metabolism and physiology. Two flax cultivars (Bukoz and Nike) and two compositions of media for flax callus liquid cultures were tested. Biochemical analysis revealed enhanced levels of secondary metabolites (total flavonoid and total phenolic content) and photosynthetically active pigments in the flax callus cultures after treatment with the non-pathogenic fungal strain F. oxysporum Fo47 when compared to control, untreated cultures. In cultures with the selected, optimized conditions, FTIR analysis was performed and revealed changes in the structural properties of cell wall polymers after elicitation of cultures with F. oxysporum Fo47. The plant cell wall polymers were more strongly bound, and the crystallinity index (Icr) of cellulose was higher than in control, untreated samples. However, lignin and pectin levels were lower in the flax callus liquid cultures treated with the non-pathogenic strain of Fusarium when compared to the untreated control. The potential application of the non-pathogenic strain of F. oxysporum for enhancing the synthesis of desired secondary metabolites in plant tissue cultures is discussed.
Collapse
Affiliation(s)
- Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Aleksandra Osika
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Justyna Liszka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Mateusz Lipiński
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
4
|
Bansal Y, Mujib A, Mamgain J, Syeed R, Mohsin M, Nafees A, Dewir YH, Mendler-Drienyovszki N. Integrated GC-MS and UPLC-ESI-QTOF-MS based untargeted metabolomics analysis of in vitro raised tissues of Digitalis purpurea L. FRONTIERS IN PLANT SCIENCE 2024; 15:1433634. [PMID: 39239200 PMCID: PMC11374661 DOI: 10.3389/fpls.2024.1433634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
Digitalis purpurea L. is one of the important plant species of Nilgiris, Kashmir and Darjeeling regions of India, belonging to the family Plantaginaceae, with well-known pharmacological applications. In the present investigation, an in vitro culture technique of indirect shoot organogenesis of D. purpurea is being explored; the biochemical attributes, the antioxidant activities and the metabolomic analyses were made by utilizing untargeted Gas Chromatography-Mass Spectrometry (GC-MS) and Ultra Performance Liquid Chromatography coupled with electronspray ionization/quadrupole-time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) approaches. Initially, the leaf explants were used for callus induction and proliferation and maximum callusing frequency (94.44%) and fresh biomass (4.9 g) were obtained on MS, fortified with 8.8 µM BAP (6-benzyl amino purine) + 0.9 µM 2,4-D (2,4-dichlorophenoxyacetic acid), subsequently shoot formation (indirect organogenesis) was noted on the same MS medium with a shoot induction frequency of 83.33%. Later on, the biochemical and antioxidant potential of in vivo-, in vitro grown leaf and leaf derived callus were assessed. Significantly higher total phenol, flavonoid, DPPH (2,2-diphenyl-1-picrylhydrazyl), POD (peroxidase) and SOD (superoxide dismutase) activities were noticed in in vitro grown callus and leaf tissues compared with field grown leaf. The GC-MS analysis of each methanolic extract (in vivo-, in vitro derived leaf and leaf derived callus) displayed the presence of more than 75 bioactive compounds viz loliolide, stigmasterin, alpha-tocopherol, squalene, palmitic acid, linoleic acid, beta-amyrin, campesterol etc. possessing immense therapeutic importance. The UPLC-MS based metabolite fingerprinting of each methanolic extracts were conducted in both positive and negative ionization mode. The obtained results revealed variation in phytochemical composition in field - and laboratory grown tissues, indicating the impact of in vitro culture conditions on plant tissues. The detected phytocompounds belongs to various classes such as flavonoids, steroids, terpenoids, carbohydrates, tannins, lignans etc. The medicinally important metabolites identified were 20, 22-dihydrodigoxigenin, digoxigenin monodigitoxoside, apigenin, luteolin, kaempferide, rosmarinic acid, nepitrin and others. The results of the present study suggest that in vitro culture of D. purpurea could successfully be utilized for the novel drug discovery by producing such important phytocompounds of commercial interest in shorter duration without harming the plants' natural population.
Collapse
Affiliation(s)
- Yashika Bansal
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - A Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Mohammad Mohsin
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Afeefa Nafees
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nóra Mendler-Drienyovszki
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
5
|
Chitolina SF, Dartora N, de Pelegrin CMG, Dos Santos MV, Cassol F, Friedrich T, da Veiga JD, Borkowski JE, Vieira IAM. Excess copper promotes an increase in the concentration of metabolites in Tridax procumbens L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51870-51882. [PMID: 39134796 DOI: 10.1007/s11356-024-34688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
The study investigated the effects of cultivating Tridax procumbens in hydroponic conditions with different concentrations of copper ions, aiming to understand the physiological changes and the impact on the biosynthesis of secondary metabolites. The treatments consisted of a completely randomized design, with five increasing concentrations of copper (T0 = 0.235, T1 = 12.5, T2 = 25, T3 = 50, T4 = 100 µmol L-1 of Cu), under controlled conditions for 36 days. Analysis of bioactive compounds in leaves was performed by HPLC-DAD and ESI-MS. Several phenolic compounds, alkaloids, phytosterols and triterpenoids were identified, demonstrating the plant's metabolic plasticity. The highest dose of copper (100 µmol L-1) significantly promoted voacangine, the most predominant compound in the analyses. Notably, 66.7% of the metabolites that showed an increase in concentration, were phenolic compounds. Furthermore, treatments with 12.5 and 25 µmol L-1 of copper were identified as promoting the biosynthesis of phytosterols and triterpenoids. These biochemical adaptations can play a fundamental role in the survival and development of plants in environments contaminated by metals, and from this it is possible to determine cultivation techniques that maximize the biosynthesis of the compound of interest.
Collapse
Affiliation(s)
- Samuel Francisco Chitolina
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil.
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Thalía Friedrich
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Jayne Deboni da Veiga
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Júnior Eugênio Borkowski
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Isabelle Alícia Melo Vieira
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| |
Collapse
|
6
|
Zhao Z, Liu S, Yun C, Liu J, Yao L, Wang H. Melatonin alleviates UV-B stress and enhances phenolic biosynthesis in rosemary (Rosmarinus officinalis) callus. PHYSIOLOGIA PLANTARUM 2024; 176:e14453. [PMID: 39091124 DOI: 10.1111/ppl.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 μM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.
Collapse
Affiliation(s)
- Zhuowen Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
- Department of Agriculture and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, Hebei, China
| | - Siyu Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Forest Science, Kim Il Sung University, Pyongyang, DPR of Korea
| | - Jianing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Liuyang Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
| |
Collapse
|
7
|
Banadka A, Narasimha SW, Dandin VS, Naik PM, Vennapusa AR, Melmaiee K, Vemanna RS, Al-Khayri JM, Thiruvengadam M, Nagella P. Biotechnological approaches for the production of camptothecin. Appl Microbiol Biotechnol 2024; 108:382. [PMID: 38896329 PMCID: PMC11186875 DOI: 10.1007/s00253-024-13187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.
Collapse
Affiliation(s)
- Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560 029, Karnataka, India
| | - Sudheer Wudali Narasimha
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560 029, Karnataka, India
| | | | - Poornanand M Naik
- Department of Botany, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, 19901, USA
| | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, Haryana, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al- Ahsa, 31982, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560 029, Karnataka, India.
| |
Collapse
|
8
|
Park C, Sathasivam R, Yeo HJ, Park YJ, Kim JK, Shin SY, Park SU. Comparative Analysis of Primary and Secondary Metabolites in Different In Vitro Tissues of Narcissus tazetta var. chinensis. ACS OMEGA 2024; 9:23761-23771. [PMID: 38854557 PMCID: PMC11154942 DOI: 10.1021/acsomega.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Narcissus tazetta var. chinensis is a perennial monocot plant that is well known for its pharmaceutical and ornamental uses. This study aimed to understand the changes in the primary and secondary metabolites in different in vitro tissues of N. tazetta (callus, adventitious root, and shoot) using high-performance liquid chromatography and gas chromatography time-of-flight mass spectrometry. In addition, to optimize the most efficient in vitro culture methods for primary and secondary metabolite production, N. tazetta bulbs were used as explants and cultivated in Murashige and Skoog (MS) medium containing different hormones at various concentrations. In addition, the present study found suitable hormonal concentrations for callus, adventitious root, and shoot induction and analyzed the primary and secondary metabolites. The MS medium supplemented with 1.0 mg L-1 dicamba, 3.0 mg L-1 indole-3-butyric acid (IBA), and 3.0 mg L-1 6-benzylaminopurine (BAP) was the most efficient media for callus, adventitious root, and shoot induction in N. tazetta. The tissue induced in this medium was subjected to primary (amines, amino acids, organic acids, sugars, and sugar alcohols) and secondary metabolite (galantamine and phenolic acids) analysis. The shoots and roots showed the highest amounts of metabolites. This study showed that bulb in vitro culture can be an efficient micropropagation method for N. tazetta and the production of primary and secondary metabolites, offering implications for the mass production of primary and secondary metabolite compounds from N. tazetta tissues generated in vitro.
Collapse
Affiliation(s)
- Chanung Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ramaraj Sathasivam
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyeon Ji Yeo
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young Jin Park
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Su Young Shin
- Using
Technology Development Department, Bio-resources Research Division, Nakdonggang National Institute of Biological Resources
(NNIBR), 137, Donam 2-gil, Gyeongsangbuk-do, Sangju-si 37242, Republic of Korea
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department
of Bio-AI Convergence, Chungnam National
University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Wawrosch C, Oberhofer M, Steinbrecher S, Zotchev SB. Impact of Phylogenetically Diverse Bacterial Endophytes of Bergenia pacumbis on Bergenin Production in the Plant Cell Suspension Cultures. PLANTA MEDICA 2024; 90:651-657. [PMID: 37673090 DOI: 10.1055/a-2162-4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Plant in vitro cultures are potential sources for secondary metabolites. However, low productivity is often a major drawback for industrial application. Elicitation is an important strategy to improve product formation in vitro. In this context, endophytes are of special interest as biotic elicitors due to their possible interaction with the metabolism of the host plant. A total of 128 bacterial endophytes were isolated from the medicinal plant Bergenia pacumbis and taxonomically classified using 16S rRNA gene sequencing. Five strains belonging to different genera were grown in lysogeny broth and tryptic soy broth medium and cells as well as spent media were used as elicitors in cell suspension cultures of B. pacumbis. Production of the main bioactive compound bergenin was enhanced 3-fold (964 µg/g) after treatment with cells of Moraxella sp. or spent tryptic soy broth medium of Micrococcus sp. These results indicate that elicitation of plant cell suspension cultures with endophytic bacteria is a promising strategy for enhancing the production of desired plant metabolites.
Collapse
Affiliation(s)
- Christoph Wawrosch
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Martina Oberhofer
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Stefan Steinbrecher
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Sergey B Zotchev
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Dalla Costa V, Piovan A, Filippini R, Brun P. From Ethnobotany to Biotechnology: Wound Healing and Anti-Inflammatory Properties of Sedum telephium L. In Vitro Cultures. Molecules 2024; 29:2472. [PMID: 38893348 PMCID: PMC11173831 DOI: 10.3390/molecules29112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Sedum telephium is a succulent plant used in traditional medicine, particularly in Italy, for its efficacy in treating localized inflammation such as burns, warts, and wounds. Fresh leaves or freshly obtained derivatives are directly applied to the injuries for these purposes. However, challenges such as the lack of microbiologically controlled materials and product standardization prompted the exploration of more controlled biotechnological alternatives, utilizing in vitro plant cell cultures of S. telephium. In the present study, we used HPLC-DAD analysis to reveal a characteristic flavonol profile in juices from in vivo leaves and in vitro materials mainly characterized by several kaempferol and quercetin derivatives. The leaf juice exhibited the highest content in total flavonol and kaempferol derivatives, whereas juice from callus grown in medium with hormones and callus suspensions showed elevated levels of quercetin derivatives. The in vitro anti-inflammatory and wound-healing assays evidenced the great potential of callus and suspension cultures in dampening inflammation and fostering wound closure, suggesting quercetin may have a pivotal role in biological activities.
Collapse
Affiliation(s)
- Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (V.D.C.); (A.P.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (V.D.C.); (A.P.); (R.F.)
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (V.D.C.); (A.P.); (R.F.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
11
|
Szűcs Z, Cziáky Z, Volánszki L, Máthé C, Vasas G, Gonda S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1288. [PMID: 38794359 PMCID: PMC11124948 DOI: 10.3390/plants13101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Medicinal plant tissue cultures are potential sources of bioactive compounds. In this study, we report the chemical characterization of the callus cultures of three medicinal Tilia spp. (Tilia cordata, Tilia vulgaris and Tilia tomentosa), along with the comparison to bracts and flowers of the same species. Our aim was to show that calli of Tilia spp. are good alternatives to the calli of T. americana for the production of polyphenols and are better sources of a subset of polyphenolic metabolites, compared to the original organs. Calli were initiated from young bracts and grown on woody plant medium containing 1 mg L-1 2,4-D and 0.1 mg L-1 BAP. For chemical characterization, a quality-controlled untargeted metabolomics approach and the quantification of several bioactive compounds was performed with the use of LC-ESI-MS/MS. While bracts and flowers contained flavonoid glycosides (astragalin, isoquercitrin) as major polyphenols, calli of all species contained catechins, coumarins (fraxin, esculin and scopoletin) and flavane aglyca. T. tomentosa calli contained 5397 µg g DW-1 catechin, 201 µg g DW-1 esculin, 218 µg g DW-1 taxifolin and 273 µg g DW-1 eriodictyol, while calli from other species contained lower amounts. T. cordata and T. tomentosa flowers were rich in isoquercitrin, containing 8134 and 6385 µg g DW-1, respectively. The currently tested species contained many of the bioactive metabolites described from T. americana. The production of catechin was shown to be comparable to the most efficient tissue cultures reported. Flowers and bracts contained flavonoid glycosides, including tiliroside, resembling bioactive fractions of T. americana. In addition, untargeted metabolomics has shown fingerprint-like differences among species, highlighting possible chemotaxonomic and quality control applications, especially for bracts.
Collapse
Affiliation(s)
- Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Sóstói út 31/b, 4400 Nyíregyháza, Hungary;
| | - László Volánszki
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Balaton Limnological Research Institute, HUN-REN (Hungarian Research Network), Klebelsberg K. u. 3, 8237 Tihany, Hungary
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| |
Collapse
|
12
|
Thangapushbam V, Rama P, Sivakami S, Jothika M, Muthu K, Almansour AI, Arumugam N, Perumal K. Potential in-vitro antioxidant and anti-inflammatory activity of Martynia annua extract mediated Phytosynthesis of MnO 2 nanoparticles. Heliyon 2024; 10:e29457. [PMID: 38655305 PMCID: PMC11036009 DOI: 10.1016/j.heliyon.2024.e29457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The present research work describes the phyto-synthesis of Manganese dioxide nanoparticles (MnO2NPs) from the reduction of potassium permanganate using Martynia annua (M.annua) plant extract. From the literature review, we clearly understood the M.annua plant has anti-inflammatory activity. Manganese dioxides are important materials due to their wide range of applications. Their increased surface area gives them distinct capabilities, as it increases their mechanical, magnetic, optical, and catalytic qualities, allowing them to be used in more pharmaceutical applications. A detailed review of literature highlighting the issues related to this present work and its knowledge gap that none of the inflammatory activities had been done by MnO2 NPs synthesized from M.annua plant extract. So we selected this study. The product MnO2 NPs showed the wavelength centre at 370 nm and was monitored by UV-Vis spectra. The wave number around 600 cm-1 has to the occurrence of O-Mn-O bonds of pure MnO2 confirmed by FTIR spectroscopy. Transmission electron microscopy images showed the morphology of MnO2 NPs as spherical-shaped particles with average sizes at 7.5 nm. The selected area electron diffraction analysis exhibits the crystalline nature of MnO2 NPs. The obtained MnO2 NPs showed potential antioxidant and anti-inflammatory activity was compared to the plant extract. The synthesized MnO2 NPs have a large number of potential applications in the field of pharmaceutical industries. In the future, we isolate the phytocompounds present in the M.annua plant extract and conduct a study against corona virus. MnO2 produces manganese (III) oxide and oxygen, which increases fire hazard. But further research is required to understand their environmental behaviour and safety.
Collapse
Affiliation(s)
- V. Thangapushbam
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - P. Rama
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - S. Sivakami
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - M. Jothika
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - K. Muthu
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Hagaggi NSA, Abdul-Raouf UM, Radwan TAA. Variation of antibacterial and antioxidant secondary metabolites and volatiles in leaf and callus extracts of Phulai (Acacia Modesta Wall.). BMC PLANT BIOLOGY 2024; 24:93. [PMID: 38321418 PMCID: PMC10848437 DOI: 10.1186/s12870-024-04747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Acacia species are economically significant as medicinal plants that have been utilized since ancient times. Acacia modesta has been reported to possess potent antibacterial and antioxidant properties, but its growth rate is slow. In this study, we hypothesized that inducing callus in vitro from A. modesta could enhance the production of antibacterial and antioxidant secondary metabolites, thereby circumventing the issues of slow growth and excessive harvesting of the plant. RESULTS The callus was induced from axillary buds on MS medium supplemented with 1 mg/L of 2,4-D and 1 mg/L of BAP. The secondary metabolites, volatile compounds, antibacterial activity, and antioxidant activity of the callus and parent plant leaf extracts were evaluated. The results revealed that the content of phenolics and flavonoids, the number of volatile compounds, and the antibacterial and antioxidant activities of the callus extract were significantly enhanced (P ≤ 0.05) compared to the leaf extract. The antibacterial and antioxidant effects were strongly correlated with the total phenolic and flavonoid content in the extracts. CONCLUSIONS Our findings suggest that in vitro callus culture increases the production of phenolics, flavonoids, and volatile compounds. This subsequently enhances the antibacterial and antioxidant properties of A. modesta.
Collapse
Affiliation(s)
- Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| | - Usama M Abdul-Raouf
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Tarek A A Radwan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
14
|
Nazeam JA, El-Emam SZ. Middle Eastern Plants with Potent Cytotoxic Effect Against Lung Cancer Cells. J Med Food 2024; 27:198-207. [PMID: 38381516 DOI: 10.1089/jmf.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Cancer is one of the leading causes of increasing global mortality with uprising health concerns and threats. Unfortunately, conventional chemotherapy has substantial side effects, limiting its relevance and prompting a quest for safe and efficient alternatives. For thousands of years, plants have provided a rich reservoir for curing a variety of ailments, including cancer. According to the World Health Organization, medicinal plants would be the best source of medications. However, only 25% of drugs in the present pharmacopoeia are derived from plants. Hence, further research into different plants is required to better understand their efficacy. Twenty extracts of widely distributed Middle Eastern plants were screened for the cytotoxic effect against lung cancer cell lines (A549). Eleven plants showed IC50 below 25 μg/mL, consequently, the bioactive extracts were further fractionated by graded precipitation using absolute ethanol. All fraction A (FA; crude polysaccharides precipitate) showed potent IC50, 0.2-5.5 μg/mL except the FA of Brassica juncea, Silybum marianum, and Phaseolus vulgaris, whereas FB fractions (filtrate) of Anastatica hierochuntica, Plantago ovate, Tussilago farfara, and Cucurbita moschata had lower efficacy than other fractions with IC50 values in the range of 0.1-7.7 μg/mL. The fractions of FA Taraxacum officinale and FB Ziziphus spina possess the most potent cytotoxic activity with IC50, 0.2 and 0.1 μg/mL, respectively. Moreover, cell cycle analysis of both fractions revealed an arrest at G1/S-phase and activation of apoptosis rather than necrosis as the mode of cell death. Therefore, T. officinale and Z. spina fractions may pave the way to manage lung carcinoma as an alternative and complementary food regimen.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
15
|
Roshni PT, Rekha PD. Biotechnological interventions for the production of forskolin, an active compound from the medicinal plant, Coleus forskohlii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:213-226. [PMID: 38623169 PMCID: PMC11016037 DOI: 10.1007/s12298-024-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024]
Abstract
Coleus forskohlii, an Indian-origin medicinal plant is the sole natural source of the labdane terpenoid forskolin (C22H34O7), with growing demand. Forskolin emerged as an industrially important bioactive compound, with many therapeutic applications in human health. It has established potential effects in the treatment of various diseases and conditions such as glaucoma, asthma, obesity, allergies, skin conditions and cardiovascular diseases. Moreover, clinical trials against different types of cancers are progressing. The mechanism of action of forskolin mainly involves activating adenylyl cyclase and elevating cAMP, thereby regulating different cellular processes. For the extraction of forskolin, tuberous roots of C. forskohlii are used as they contain the highest concentration of this metabolite. Approximately 2500 tonnes of the plant are cultivated annually to produce a yield of 2000-2200 kg ha-1 of dry tubers. The forskolin content of the root is distributed in the range of 0.01-1%, which cannot meet the increasing commercial demands from industries such as pharmaceuticals, cosmetics, dietary supplements, food and beverages. Hence, various aspects of micropropagation with different culture methods that employ precursors or elicitors to improve the forskolin content have been explored. Different extraction and analytical methods are also introduced to examine the yield and purity of forskolin. This review discusses the significance, clinical importance, mechanism of action and different approaches used for mass production including tissue culture for the lead compound forskolin to meet market needs.
Collapse
Affiliation(s)
- Pulukkunadu Thekkeveedu Roshni
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018 India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018 India
| |
Collapse
|
16
|
Pasternak TP, Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:327. [PMID: 38276784 PMCID: PMC10818547 DOI: 10.3390/plants13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide.
Collapse
Affiliation(s)
- Taras P. Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | |
Collapse
|
17
|
Aksenova MA, Nechaeva TL, Goncharuk EA, Zubova MY, Kazantseva VV, Lapshin PV, Frolov A, Zagoskina NV. Changes in the Antioxidant Potential of Camellia sinensis Cultures under the Influence of Phenolic Precursors. Molecules 2024; 29:474. [PMID: 38257387 PMCID: PMC10820049 DOI: 10.3390/molecules29020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.
Collapse
Affiliation(s)
- Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (M.Y.Z.); k.v.- (V.V.K.); (P.V.L.); (A.F.); (N.V.Z.)
| | | | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (M.Y.Z.); k.v.- (V.V.K.); (P.V.L.); (A.F.); (N.V.Z.)
| | | | | | | | | | | |
Collapse
|
18
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
19
|
Raikar SV, Isak I, Patel S, Newson HL, Hill SJ. Establishment of feijoa ( Acca sellowiana) callus and cell suspension cultures and identification of arctigenin - a high value bioactive compound. FRONTIERS IN PLANT SCIENCE 2024; 14:1281733. [PMID: 38298607 PMCID: PMC10829094 DOI: 10.3389/fpls.2023.1281733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
Feijoa (Acca sellowiana (O. Berg.) Burret), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an in vitro culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa. Feijoa tissue culture was initiated by the induction of callus from floral buds. Sections of floral buds were plated on MS medium supplemented with 2,4-D and BAP at 2.0mg/L and 0.2mg/L concentrations, respectively. Cell suspension cultures of feijoa were established using a liquid MS medium with different concentrations of 2,4-D and BAP and cultured on a rotary shaker. The growth of the cell suspension was evaluated with different parameters such as different carbohydrate sources, concentration of MS media, and inoculum density. When the cell suspensions were treated with different concentrations of MeJA at different time points, phytochemicals UPLC - QTOF MS analysis identified extractables of interest. The main compounds identified were secondary metabolites (flavonoids and flavonoid-glucosides) and plant hormones. These compounds are of interest for their potential use in therapeutics or skin and personal care products. This report investigates essential methodology parameters for establishing cell suspension cultures from feijoa floral buds, which could be used to generate in vitro biomass to produce high-value bioactive compounds. This is the first study reporting the identification of arctigenin from feijoa, a high-value compound whose pharmaceutical properties, including anti-tumour, anti-inflammatory and anti-colitis effects, have been widely reported. The ability of feijoa cell cultures to produce such high-value bioactive compounds is extremely promising for its use in pharmaceuticals, cosmeceuticals and nutraceuticals applications.
Collapse
|
20
|
Chauhan PK, Upadhyay SK, Rajput VD, Dwivedi P, Minkina T, Wong MH. Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:41. [PMID: 38227068 DOI: 10.1007/s10653-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
21
|
Bravo-Ruíz IN, González-Arnao MT, Hernández-Ramírez F, López-Domínguez J, Cruz-Cruz CA. Types of Temporary Immersion Systems Used in Commercial Plant Micropropagation. Methods Mol Biol 2024; 2759:9-24. [PMID: 38285135 DOI: 10.1007/978-1-0716-3654-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Technological innovation in the design and manufacture of temporary immersion systems (TIS) has increased in the past decade. Innovations have involved the size, fitting, and replacement of components, as well as manufacturing materials. Air replacement by compressor has also been substituted by air replacement by preset tilting/rotation of culture bottles. This design modification aims to increase the biological yield (number of shoots) produced in these bottles and reduce manufacturing costs. However, the operative principle has remained unchanged through time: promote an environment where explant immersions in the culture medium are programmable. The changes in the TIS design involve advantages and disadvantages, generating the efficiency of one type over another. However, validation to identify the most effective type of TIS should be carried out for each plant species. This chapter lists the different types of temporary immersion available on the market, emphasizing the advantages and disadvantages of each when used for plant micropropagation.
Collapse
Affiliation(s)
- Ivonne N Bravo-Ruíz
- Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | | | | | | | - Carlos A Cruz-Cruz
- Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.
| |
Collapse
|
22
|
García-Ramírez Y. Temporary Immersion System for Biomass Production of Salvia spp.: A Mini-Review. Methods Mol Biol 2024; 2759:217-225. [PMID: 38285153 DOI: 10.1007/978-1-0716-3654-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Salvia is a very valuable medicinal plant for the pharmaceutical industry. Tissue culture techniques can be used to increase the number of plants in a shorter time. Although protocols for in vitro propagation of more than 15 plant species have been developed, they are not yet efficient enough to increase mass propagation of plants. Therefore, the use of temporary immersion systems is necessary to increase the morphological quality of plants as well as their biomass in several Salvia species. In this chapter, progress in in vitro propagation in several Salvia species using liquid medium and automation is described.
Collapse
Affiliation(s)
- Yudith García-Ramírez
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba
| |
Collapse
|
23
|
Kostyukova YA. Phenolic Determination in Proembryogenic Cell Complexes of Buckwheat Morphogenic Cell Culture with Osmium Tetroxide, Toluidine Blue O Dye, and Iron Chloride. Methods Mol Biol 2024; 2791:35-43. [PMID: 38532090 DOI: 10.1007/978-1-0716-3794-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The study of the localization of secondary metabolites in both plants and the cell cultures on the intravital sections is hampered by the difficulty of obtaining thin, correctly oriented sections. Techniques for fixing tissues in resins allow these difficulties to be overcome. Properly selected tissue fixation techniques allow using different dyes to identify the compound of interest. In addition, some components of tissue fixation can act as fixatives and as a dye for identifying secondary metabolites. For example, osmium tetroxide, which fixes lipids in tissues, stains phenolic compounds black. This paper describes methods for the detection of phenolic compounds in morphogenic callus culture of buckwheat using osmium tetroxide, Toluidine Blue O dye, and ferric chloride as dyes in epoxy resin-embedded cell culture with double fixation of the material and when material fixed in Karnovsky's fixative.
Collapse
Affiliation(s)
- Yulia A Kostyukova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia.
| |
Collapse
|
24
|
Sale S, Subramaniam S, Mad’ Atari MF. Trends in the Tissue Culture Techniques and the Synthesis of Bioactive Compounds in Eurycoma longifolia Jack-Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 13:107. [PMID: 38202415 PMCID: PMC10780575 DOI: 10.3390/plants13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Over the last two decades, there has been a concerted effort by researchers to mass propagate Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques include the optimization of media conditions and application of various types and combinations of plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve the synthesis of these bioactive compounds. However, in comparison with other herbal species with similar economic importance, many techniques have not been applied to E. longifolia. Adopting the most recent methodologies would ensure efficiency and sustainability in the in vitro production of bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition, we attempted to identify some of the missing links on the road to the effective and sustainable biotechnological utilization of this super important biological resource.
Collapse
Affiliation(s)
- Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Department of Botany, Gombe State University, P.M.B 127, Gombe 760214, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya 60115, Indonesia
| | | |
Collapse
|
25
|
Paunovic D, Rajkovic J, Novakovic R, Grujic-Milanovic J, Mekky RH, Popa D, Calina D, Sharifi-Rad J. The potential roles of gossypol as anticancer agent: advances and future directions. Chin Med 2023; 18:163. [PMID: 38098026 PMCID: PMC10722855 DOI: 10.1186/s13020-023-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Gossypol, a polyphenolic aldehyde derived from cottonseed plants, has seen a transformation in its pharmaceutical application from a male contraceptive to a candidate for cancer therapy. This shift is supported by its recognized antitumor properties, which have prompted its investigation in the treatment of various cancers and related inflammatory conditions. This review synthesizes the current understanding of gossypol as an anticancer agent, focusing on its pharmacological mechanisms, strategies to enhance its clinical efficacy, and the status of ongoing clinical evaluations.The methodological approach to this review involved a systematic search across several scientific databases including the National Center for Biotechnology Information (NCBI), PubMed/MedLine, Google Scholar, Scopus, and TRIP. Studies were meticulously chosen to cover various aspects of gossypol, from its chemical structure and natural sources to its pharmacokinetics and confirmed anticancer efficacy. Specific MeSH terms and keywords related to gossypol's antineoplastic applications guided the search strategy.Results from selected pharmacological studies indicate that gossypol inhibits the Bcl-2 family of anti-apoptotic proteins, promoting apoptosis in tumor cells. Clinical trials, particularly phase I and II, reveal gossypol's promise as an anticancer agent, demonstrating efficacy and manageable toxicity profiles. The review identifies the development of gossypol derivatives and novel carriers as avenues to enhance therapeutic outcomes and mitigate adverse effects.Conclusively, gossypol represents a promising anticancer agent with considerable therapeutic potential. However, further research is needed to refine gossypol-based therapies, explore combination treatments, and verify their effectiveness across cancer types. The ongoing clinical trials continue to support its potential, suggesting a future where gossypol could play a significant role in cancer treatment protocols.
Collapse
Affiliation(s)
- Danijela Paunovic
- Institute for Biological Research Sinisa Stankovic, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Rajkovic
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Radmila Novakovic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Jelica Grujic-Milanovic
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, University of Belgrade, Belgrade, Serbia
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Dragos Popa
- Department of Plastic Surgery, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
26
|
Anaya-Esparza LM, Aurora-Vigo EF, Villagrán Z, Rodríguez-Lafitte E, Ruvalcaba-Gómez JM, Solano-Cornejo MÁ, Zamora-Gasga VM, Montalvo-González E, Gómez-Rodríguez H, Aceves-Aldrete CE, González-Silva N. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023; 28:7752. [PMID: 38067479 PMCID: PMC10707804 DOI: 10.3390/molecules28237752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Edward F. Aurora-Vigo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Ernesto Rodríguez-Lafitte
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Mexico;
| | - Miguel Ángel Solano-Cornejo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Victor Manuel Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - César Eduardo Aceves-Aldrete
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Napoleón González-Silva
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| |
Collapse
|
27
|
Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M. Exposure to single-walled carbon nanotubes differentially affect in vitro germination, biochemical and antioxidant properties of Thymus daenensis celak. seedlings. BMC PLANT BIOLOGY 2023; 23:579. [PMID: 37981681 PMCID: PMC10658928 DOI: 10.1186/s12870-023-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) offer a new possibility for phyto-nanotechnology and biotechnology to improve the quality and quantity of secondary metabolites in vitro. The current study aimed to determine the SWCNTs effects on Thyme (Thymus daenensis celak.) seed germination. The seedlings were further assessed in terms of morphological and phytochemical properties. Sterile seeds were cultured in vitro and treated with various concentrations of SWCNTs. Biochemical analyses were designed on seedling sample extracts for measuring antioxidant activities (AA), total flavonoids (TFC) and phenolic contents, and the main enzymes involved in oxidative reactions under experimental treatments. The results indicated that an increase in SWCNTs concentration can enhance the total percentage of seed germination. The improvement was observed in samples that received SWCNTs levels of up to 125 µg ml-1, even though seedling height and biomass accumulation decreased. Seedling growth parameters in the control samples were higher than those of grown in SWCNT-fortified media. This may have happened because of more oxidative damage as well as a rise in POD and PPO activities in tissues. Additionally, secondary metabolites and relevant enzyme activities showed that maximum amounts of TPC, TFC, AA and the highest PAL enzyme activity were detected in samples exposed to 62.5 µg ml-1 SWCNTs. Our findings reveal that SWCNTs in a concentration-dependent manner has different effects on T. daenensis morphological and phytochemical properties. Microscopic images analysis revealed that SWCNTs pierce cell walls, enter the plant cells and agglomerate in the cellular cytoplasm and cell walls. The findings provide insights into the regulatory mechanisms of SWCNTs on T. daenensis growth, germination and secondary metabolites production.
Collapse
Affiliation(s)
- Saba Samadi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Azizi
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Samiei
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
28
|
Zhang Y, Zhang J, Yin J, Liu Y, Cai X. Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots. PLANTS (BASEL, SWITZERLAND) 2023; 12:3789. [PMID: 38005688 PMCID: PMC10675715 DOI: 10.3390/plants12223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
The Jerusalem artichoke (Helianthus tuberosus) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA3) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA3 was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA3. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity.
Collapse
Affiliation(s)
- Yiming Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (Y.Z.); (J.Z.)
| | - Jiahui Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (Y.Z.); (J.Z.)
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (Y.Z.); (J.Z.)
| | - Xiaodong Cai
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (Y.Z.); (J.Z.)
| |
Collapse
|
29
|
Lobato-Tapia CA, Moreno-Hernández Y, Olivo-Vidal ZE. In Silico Studies of Four Compounds of Cecropia obtusifolia against Malaria Parasite. Molecules 2023; 28:6912. [PMID: 37836757 PMCID: PMC10574735 DOI: 10.3390/molecules28196912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Malaria is a disease that affects many people in the world. In Mexico, malaria remains an active disease in certain regions, particularly in the states of Chiapas and Chihuahua. While antimalarial effects have been attributed to some species of Cecropia in various countries, no such studies have been conducted in Mexico. Therefore, the objective of this study was to evaluate the in silico antimalarial activity of some active compounds identified according to the literature in the species of Cecropia obtusifolia, belonging to the Cecropiaceae family, such as ursolic acid, α-amyrin, chrysin, and isoorientin. These compounds were evaluated with specific molecular docking and molecular dynamics (MD) studies using three different malarial targets with the PDB codes 1CET, 2BL9, and 4ZL4 as well as the prediction of their pharmacokinetic (Pk) properties. Docking analysis revealed the following best binding energies (kcal/mol): isoorientin-1CET (-9.1), isoorientin-2BL9 (-8.8), and chrysin-4ZL4 (-9.6). MD simulation validated the stability of the complexes. Pharmacokinetics analysis suggested that the compounds would generally perform well if administered. Therefore, these results suggest that these compounds may be used as potential drugs for the treatment of malaria.
Collapse
Affiliation(s)
- Carlos Alberto Lobato-Tapia
- Departamento de Ingeniería en Biotecnología, Universidad Politécnica Metropolitana de Puebla, Popocatépetl s/n, Reserva Territorial Atlixcáyotl, Tres Cerritos, Puebla 72480, Mexico
| | - Yolotl Moreno-Hernández
- Departamento de Salud, El Colegio de la Frontera Sur Unidad Villahermosa, Carretrea Federal Villa-Hermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Mexico;
| | - Zendy Evelyn Olivo-Vidal
- Departamento de Salud, El Colegio de la Frontera Sur Unidad Villahermosa, Carretrea Federal Villa-Hermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Mexico;
| |
Collapse
|
30
|
Singh Y, Kumar U, Panigrahi S, Balyan P, Mehla S, Sihag P, Sagwal V, Singh KP, White JC, Dhankher OP. Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108004. [PMID: 37714027 DOI: 10.1016/j.plaphy.2023.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Sheetal Mehla
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
31
|
Mishra S, Mehrotra S, Srivastava V. Editorial: Stress-mediated regulation of plant specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1290281. [PMID: 37810394 PMCID: PMC10556729 DOI: 10.3389/fpls.2023.1290281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
32
|
Patel K, Akbari D, Pandya RV, Trivedi J, Mevada V, Wanale SG, Patel R, Yadav VK, Tank JG, Sahoo DK, Patel A. Larvicidal proficiency of volatile compounds present in Commiphora wightii gum extract against Aedes aegypti (Linnaeus, 1762). FRONTIERS IN PLANT SCIENCE 2023; 14:1220339. [PMID: 37711311 PMCID: PMC10499046 DOI: 10.3389/fpls.2023.1220339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Aedes mosquitoes are the major cause of several vector-borne diseases in tropical and subtropical regions. Synthetic pesticides against these mosquitoes have certain limitations; hence, natural, eco-friendly, and safe larvicides obtained from plant resources are used to overcome these. In the present study, the larvicidal efficiency of Commiphora wightii against the fourth instar stage of the dengue fever mosquito Aedes aegypti (Linnaeus, 1762) was studied. The gum resin of C. wightii was collected using the borehole tapping method, and hexane extracts in different concentrations were prepared. The fourth-instar larvae were exposed to the extracts, and percent mortality, as well as LC20, LC50, and LC90, was calculated. Volatile compounds of the hexane gum extract were analyzed by Headspace GC/MS, and the sequence of the acetylcholine, Gamma-aminobutyric acid (GABA) receptor, and octopamine receptor subunit of A. aegypti was obtained. It was found that the hexane gum extract was toxic and lethal for larvae at different concentrations. Minimum mortality was observed at 164 µg mL-1 (10%/h), while maximum mortality was at 276 µg mL-1 (50%/h). The lethal concentrations LC20, LC50, and LC90 were 197.38 µg mL-1, 294.13 µg mL-1, and 540.15 µg mL-1, respectively. The GC/MS analysis confirmed the presence of diterpenes, monoterpenes, monoterpene alcohol, and sesquiterpenes in the gum samples, which are lethal for larvae due to their inhibitory activity on the acetylcholinesterase enzyme, GABA receptor, and octopamine receptor subunit. The use of commonly occurring plant gum for the control of mosquitoes was explored, and it was found that the gum of C. wightii had larvicidal activities and could be potentially insecticidal.
Collapse
Affiliation(s)
- Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Divya Akbari
- University Grants Commission-Career Advancement Scheme (UGC-CAS) Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Rohan V. Pandya
- Department of Microbiology, Atmiya University, Rajkot, Gujarat, India
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Vishal Mevada
- DNA Division, Directorate of Forensic Science, Gandhinagar, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigna G. Tank
- University Grants Commission-Career Advancement Scheme (UGC-CAS) Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
33
|
Murthy HN, Joseph KS, Hahn JE, Lee HS, Paek KY, Park SY. Suspension culture of somatic embryos for the production of high-value secondary metabolites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1153-1177. [PMID: 37829704 PMCID: PMC10564700 DOI: 10.1007/s12298-023-01365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Secondary metabolites from plants are ubiquitous and have applications in medicines, food additives, scents, colorants, and natural pesticides. Biotechnological production of secondary metabolites that have economic benefits is an attractive alternative to conventional methods. Cell, adventitious, and hairy root suspension cultures are typically used to produce secondary metabolites. According to recent studies, somatic embryos in suspension culture are useful tools for the generation of secondary metabolites. Somatic embryogenesis is a mode of regeneration in several plant species. This review provides an update on the use of somatic embryogenesis in the production of valuable secondary metabolites. The factors influencing the generation of secondary metabolites using somatic embryos in suspension cultures, elicitation methods, and prospective applications are also discussed in this review. Graphical abstract
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, 580003 India
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | | | - Jong-Eun Hahn
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Han-Sol Lee
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| |
Collapse
|
34
|
Pivetta CP, Chitolina SF, Dartora N, Pelegrin CMGD, Santos MVD, Cassol F, Batista LS. Copper exposure leads to changes in chlorophyll content and secondary metabolite profile in Lantana fucata leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:571-584. [PMID: 37187188 DOI: 10.1071/fp23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of plants in environments polluted by metals at toxic levels can affect the biosynthesis of secondary metabolites. Here, we analysed the effect caused by excess copper on the concentration of chlorophylls a and b and the profile of secondary metabolites of Lantana fucata leaves. Five copper (Cu) treatments (mg Cukg-1 soil) were tested: T0, 0; T1, 210; T2, 420; T3, 630; and T4, 840. We found that the concentrations of chlorophylls in the plants decreased when compared to the control. However, this did not lead to a significant reduction in its growth, possibly due to the low translocation of the metal to shoots and the activation of plant defence systems to tolerate the environment in which they are exposed, increasing the emission of lateral roots and activating pathways for the production of secondary metabolites. Therefore, we found a decrease in the concentration of two key compounds in secondary metabolism, p -coumaric and cinnamic acids in treatments with higher copper concentrations. We also found an increase in phenolics. Decreases in p -coumaric and cinnamic acids may have occurred because these are precursors in the synthesis of phenolic compounds, which are increased in the high Cu treatments. Six secondary metabolites were characterised, described for the first time for this plant species. Thus, the presence of excess Cu in the soil may have triggered an increase in the amount of reactive oxygen species in the plants, which that led to the synthesis of antioxidant compounds, as a defence strategy.
Collapse
Affiliation(s)
- Carlise Patrícia Pivetta
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | | | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Laura Spohr Batista
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| |
Collapse
|
35
|
Yuorieva N, Sinetova M, Messineva E, Kulichenko I, Fomenkov A, Vysotskaya O, Osipova E, Baikalova A, Prudnikova O, Titova M, Nosov AV, Popova E. Plants, Cells, Algae, and Cyanobacteria In Vitro and Cryobank Collections at the Institute of Plant Physiology, Russian Academy of Sciences-A Platform for Research and Production Center. BIOLOGY 2023; 12:838. [PMID: 37372123 DOI: 10.3390/biology12060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Ex situ collections of algae, cyanobacteria, and plant materials (cell cultures, hairy and adventitious root cultures, shoots, etc.) maintained in vitro or in liquid nitrogen (-196 °C, LN) are valuable sources of strains with unique ecological and biotechnological traits. Such collections play a vital role in bioresource conservation, science, and industry development but are rarely covered in publications. Here, we provide an overview of five genetic collections maintained at the Institute of Plant Physiology of the Russian Academy of Sciences (IPPRAS) since the 1950-1970s using in vitro and cryopreservation approaches. These collections represent different levels of plant organization, from individual cells (cell culture collection) to organs (hairy and adventitious root cultures, shoot apices) to in vitro plants. The total collection holdings comprise more than 430 strains of algae and cyanobacteria, over 200 potato clones, 117 cell cultures, and 50 strains of hairy and adventitious root cultures of medicinal and model plant species. The IPPRAS plant cryobank preserves in LN over 1000 specimens of in vitro cultures and seeds of wild and cultivated plants belonging to 457 species and 74 families. Several algae and plant cell culture strains have been adapted for cultivation in bioreactors from laboratory (5-20-L) to pilot (75-L) to semi-industrial (150-630-L) scale for the production of biomass with high nutritive or pharmacological value. Some of the strains with proven biological activities are currently used to produce cosmetics and food supplements. Here, we provide an overview of the current collections' composition and major activities, their use in research, biotechnology, and commercial application. We also highlight the most interesting studies performed with collection strains and discuss strategies for the collections' future development and exploitation in view of current trends in biotechnology and genetic resources conservation.
Collapse
Affiliation(s)
- Natalya Yuorieva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Sinetova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Messineva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Irina Kulichenko
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Artem Fomenkov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Vysotskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Osipova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Angela Baikalova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Prudnikova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Titova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Alexander V Nosov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
36
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
37
|
Rezaei H, Mirzaie-asl A, Abdollahi MR, Tohidfar M. Comparative analysis of different artificial neural networks for predicting and optimizing in vitro seed germination and sterilization of petunia. PLoS One 2023; 18:e0285657. [PMID: 37167278 PMCID: PMC10174541 DOI: 10.1371/journal.pone.0285657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
The process of optimizing in vitro seed sterilization and germination is a complicated task since this process is influenced by interactions of many factors (e.g., genotype, disinfectants, pH of the media, temperature, light, immersion time). This study investigated the role of various types and concentrations of disinfectants (i.e., NaOCl, Ca(ClO)2, HgCl2, H2O2, NWCN-Fe, MWCNT) as well as immersion time in successful in vitro seed sterilization and germination of petunia. Also, the utility of three artificial neural networks (ANNs) (e.g., multilayer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN)) as modeling tools were evaluated to analyze the effect of disinfectants and immersion time on in vitro seed sterilization and germination. Moreover, non‑dominated sorting genetic algorithm‑II (NSGA‑II) was employed for optimizing the selected prediction model. The GRNN algorithm displayed superior predictive accuracy in comparison to MLP and RBF models. Also, the results showed that NSGA‑II can be considered as a reliable multi-objective optimization algorithm for finding the optimal level of disinfectants and immersion time to simultaneously minimize contamination rate and maximize germination percentage. Generally, GRNN-NSGA-II as an up-to-date and reliable computational tool can be applied in future plant in vitro culture studies.
Collapse
Affiliation(s)
- Hamed Rezaei
- Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Asghar Mirzaie-asl
- Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
38
|
Sharma A, Pandey H, Nampoothiri Devadas VAS, Kartha BD, Jha R. Production of, Factors Affecting, Gene Regulations, and Challenges in Tissue Cultured Plant through Soilless Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5804-5811. [PMID: 36995942 DOI: 10.1021/acs.jafc.2c08162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Soilless culture also known as water based culture and substrate based culture has immense potential to grow tissue cultured plants in a closed and controlled environment system. This review analyzes the various factors that affect the vegetative growth, reproductive growth, metabolic processes, and gene regulatory functions of tissue cultured plants and the suitability of soilless culture for tissue culture plants. Experiments show that morphological and reproductive abnormalities are mitigated in tissue cultured plants by gene regulation in a closed and controlled environment system. Various factors of a soilless culture influence gene regulation and enhance cellular, molecular, and biochemical processes and compensate constraints in tissue cultured plants in closed and controlled environment conditions. The soilless culture can be utilized to harden and grow tissue culture plants. The tissue cultured plants counter water logging problems and are supplied with nutrients at 7 day intervals in the water based culture. It is necessary to analyze the involvement of regulatory genes in detail in combating challenges of tissue cultured plants in soilless cultures under closed systems. Detailed studies are also required to determine anatomy, genesis, and function of microtuber cells in tissue cultured plants.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Himanshu Pandey
- Division of Plant Physiology and Biochemistry, Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226005, India
| | | | - Bhagya D Kartha
- Department of Fruit Crops, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656, India
| | - Rani Jha
- Faculty of Chemistry, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| |
Collapse
|
39
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|
40
|
Larson ER, Armstrong EM, Harper H, Knapp S, Edwards KJ, Grierson D, Poppy G, Chase MW, Jones JDG, Bastow R, Jellis G, Barnes S, Temple P, Clarke M, Oldroyd G, Grierson CS. One hundred important questions for plant science - reflecting on a decade of plant research. THE NEW PHYTOLOGIST 2023; 238:464-469. [PMID: 36924326 DOI: 10.1111/nph.18663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Emily R Larson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Emily May Armstrong
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Helen Harper
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Keith J Edwards
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, nr Loughborough, LE12 5RD, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6845, Australia
- Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | | | - Ruth Bastow
- Crop Health and Protection Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Graham Jellis
- Agrifood Charities Partnership, The Bullock Building, University Way, Cranfield, Bedford, MK43 OGH, UK
| | | | - Paul Temple
- Wold Farm, Driffield, East Yorkshire, YO25 3BB, UK
| | - Matthew Clarke
- Bayer - Crop Science, Monsanto UK Ltd, 230 Science Park, Cambridge, CB4 0WB, UK
| | - Giles Oldroyd
- Crop Science Centre, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Claire S Grierson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
41
|
Ji B, Xuan L, Zhang Y, Mu W, Paek KY, Park SY, Wang J, Gao W. Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1505. [PMID: 37050131 PMCID: PMC10096660 DOI: 10.3390/plants12071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
At present, most precious compounds are still obtained by plant cultivation such as ginsenosides, glycyrrhizic acid, and paclitaxel, which cannot be easily obtained by artificial synthesis. Plant tissue culture technology is the most commonly used biotechnology tool, which can be used for a variety of studies such as the production of natural compounds, functional gene research, plant micropropagation, plant breeding, and crop improvement. Tissue culture material is a basic and important part of this issue. The formation of different plant tissues and natural products is affected by growth conditions and endogenous substances. The accumulation of secondary metabolites are affected by plant tissue type, culture method, and environmental stress. Multi-domain technologies are developing rapidly, and they have made outstanding contributions to the application of plant tissue culture. The modes of action have their own characteristics, covering the whole process of plant tissue from the induction, culture, and production of natural secondary metabolites. This paper reviews the induction mechanism of different plant tissues and the application of multi-domain technologies such as artificial intelligence, biosensors, bioreactors, multi-omics monitoring, and nanomaterials in plant tissue culture and the production of secondary metabolites. This will help to improve the tissue culture technology of medicinal plants and increase the availability and the yield of natural metabolites.
Collapse
Affiliation(s)
- Baoyu Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liangshuang Xuan
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunxiang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrong Mu
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kee-Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
42
|
Kakalis A, Tsekouras V, Mavrikou S, Moschopoulou G, Kintzios S, Evergetis E, Iliopoulos V, Koulocheri SD, Haroutounian SA. Farm or Lab? A Comparative Study of Oregano's Leaf and Callus Volatile Isolates Chemistry and Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1472. [PMID: 37050098 PMCID: PMC10096753 DOI: 10.3390/plants12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Oregano (Origanum vulgare, Lamiaceae plant family) is a well-known aromatic herb with great commercial value, thoroughly utilized by food and pharmaceutical industries. The present work regards the comparative assessment of in vitro propagated and commercially available oregano tissue natural products. This study includes their secondary metabolites' biosynthesis, antioxidant properties, and anticancer activities. The optimization of callus induction from derived oregano leaf explants and excessive oxidative browning was performed using various plant growth regulators, light conditions, and antioxidant compounds. The determination of oregano callus volatiles against the respective molecules in maternal herbal material was performed using gas chromatography-mass spectrometry (GC/MS) analysis. In total, the presence of twenty-seven phytochemicals was revealed in both leaf and callus extracts, from which thirteen molecules were biosynthesized in both tissues studied, seven compounds were present only in callus extracts, and seven metabolites only in leaf extracts. Carvacrol and sabinene hydrate were the prevailing volatiles in all tissues exploited, along with alkanes octacosane and triacontane and the trimethylsilyl (TMS) derivative of carvacrol that were detected in significant amounts only in callus extracts. The MTT assay was employed to assess the in vitro cytotoxic properties of oregano extracts against the epithelial human breast cancer MDA-MB-231 and the human neuroblastoma SK-N-SH cell lines. The extracts displayed concentration and time-dependent responses in cell proliferation rates.
Collapse
Affiliation(s)
- Antonis Kakalis
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
| | - Vasileios Tsekouras
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
| | - Sofia Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
43
|
Sustainable Production of Ajuga Bioactive Metabolites Using Cell Culture Technologies: A Review. Nutrients 2023; 15:nu15051246. [PMID: 36904246 PMCID: PMC10005297 DOI: 10.3390/nu15051246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The genus Ajuga (Lamiaceae) is rich in medicinally important species with biological activities ranging from anti-inflammatory, antitumor, neuroprotective, and antidiabetic to antibacterial, antiviral, cytotoxic, and insecticidal effects. Every species contains a unique and complex mixture of bioactive metabolites-phytoecdysteroids (PEs), iridoid glycosides, withanolides, neo-clerodane terpenoids, flavonoids, phenolics, and other chemicals with high therapeutic potential. Phytoecdysteroids, the main compounds of interest, are natural anabolic and adaptogenic agents that are widely used as components of dietary supplements. Wild plants remain the main source of Ajuga bioactive metabolites, particularly PEs, which leads to frequent overexploitation of their natural resources. Cell culture biotechnologies offer a sustainable approach to the production of vegetative biomass and individual phytochemicals specific for Ajuga genus. Cell cultures developed from eight Ajuga taxa were capable of producing PEs, a variety of phenolics and flavonoids, anthocyanins, volatile compounds, phenyletanoid glycosides, iridoids, and fatty acids, and demonstrated antioxidant, antimicrobial, and anti-inflammatory activities. The most abundant PEs in the cell cultures was 20-hydroxyecdysone, followed by turkesterone and cyasterone. The PE content in the cell cultures was comparable or higher than in wild or greenhouse plants, in vitro-grown shoots, and root cultures. Elicitation with methyl jasmonate (50-125 µM) or mevalonate and induced mutagenesis were the most effective strategies that stimulated cell culture biosynthetic capacity. This review summarizes the current progress in cell culture application for the production of pharmacologically important Ajuga metabolites, discusses various approaches to improve the compound yield, and highlights the potential directions for future interventions.
Collapse
|
44
|
Zheleznichenko TV, Veklich TN, Kostikova VA. Investigation of Phenolic Compounds and Antioxidant Activity of Sorbaria pallasii (Rosaceae) Microshoots Grown In Vitro. Life (Basel) 2023; 13:life13020557. [PMID: 36836913 PMCID: PMC9963493 DOI: 10.3390/life13020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Sorbaria pallasii is an endemic species of the Far East and Siberia and grows along the Goltsy altitudinal belt. Data on micropropagation and phytochemical characteristics of this plant are not available, probably because of the inaccessibility of the plant material. Morphogenesis initiation from flower buds of S. pallasii in vitro and micropropagation were performed here in the Murashige and Skoog medium supplemented with 5.0 µM 6-benzylaminopurine and 0.0-1.0 µM α-naphthylacetic acid; elongation was implemented in the same medium without the hormones. A well-growing sterile culture of S. pallasii was obtained; the number of microshoots per explant reached 5.7 ± 1.2. Phytochemical analyses of in vitro propagated S. pallasii detected 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in a water-ethanol extract from its microshoots and revealed phenolic compounds in it. The phenolic compounds that likely contribute to its biological activity are tannins (74.9 mg/g), phenolcarboxylic acids (30.8 mg/g), and catechins (13.3 mg/g). In the microshoot extract, high-performance liquid chromatography identified three catechins. Microshoots showed the highest concentration of (±)-catechin (3.03 mg/(g of absolutely dry mass; ADM)). Concentrations of epigallocatechin gallate (0.38 mg/(g of ADM)) and (-)-epicatechin (0.55 mg/(g of ADM)) were significantly lower. This study paves the way for further biotechnological and phytochemical research on S. pallasii.
Collapse
Affiliation(s)
- Titiana V. Zheleznichenko
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), 630090 Novosibirsk, Russia
| | - Tatiana N. Veklich
- Amur Branch of Botanical Garden-Institute, Far Eastern Branch of Russian Academy of Sciences, 675000 Blagoveshchensk, Russia
| | - Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-339-9810
| |
Collapse
|
45
|
Aksenova MA, Nechaeva TL, Zubova MY, Goncharuk EA, Kazantseva VV, Katanskaya VM, Lapshin PV, Zagoskina NV. Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:796. [PMID: 36840145 PMCID: PMC9965760 DOI: 10.3390/plants12040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant tissue cultures are considered as potential producers of biologically active plant metabolites, which include various phenolic compounds that can be used to maintain human health. Moreover, in most cases, their accumulation is lower than in the original explants, which requires the search for factors and influences for the intensification of this process. In this case, it is very promising to use the precursors of their biosynthesis as potential "regulators" of the various metabolites' formation. The purpose of our research was to study the effect of L-phenylalanine (PhA, 3 mM), trans-cinnamic acid (CA, 1 mM) and naringenin (NG, 0.5 mM), as components of various stages of phenolic metabolism, on accumulation of various phenolic compound classes, including phenylpropanoids, flavans and proanthocyanidins, as well as the content of malondialdehyde in in vitro callus culture of the tea plant (Camellia sinensis L.). According to the data obtained, the precursors' influence did not lead to changes in the morphology and water content of the cultures. At the same time, an increase in the total content of phenolic compounds, as well as phenylpropanoids, flavans and proanthocyanidins, was noted in tea callus cultures. Effectiveness of precursor action depends on its characteristics and the exposure duration, and was more pronounced in the treatments with PhA. This compound can be considered as the most effective precursor regulating phenolic metabolism, contributing to a twofold increase in the total content of phenolic compounds, flavanes and proanthocyanidins, and a fourfold increase in phenylpropanoids in tea callus cultures.
Collapse
|
46
|
Comparative Transcriptome Profiles of Human HaCaT Cells in Response to Gynostemma pentaphyllum Extracts Obtained Using Three Independent Methods by RNA Sequencing. Life (Basel) 2023; 13:life13020423. [PMID: 36836780 PMCID: PMC9961609 DOI: 10.3390/life13020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Gynostemma pentaphyllum (GP) is widely used in herbal medicine. In this study, we developed a method for the large-scale production of GP cells using plant tissue culture techniques combined with bioreactors. Six metabolites (uridine, adenosine, guanosine, tyrosine, phenylalanine, and tryptophan) were identified in GP extracts. Transcriptome analyses of HaCaT cells treated with GP extracts using three independent methods were conducted. Most differentially expressed genes (DEGs) from the GP-all condition (combination of three GP extracts) showed similar gene expression on treatment with the three individual GP extracts. The most significantly upregulated gene was LTBP1. Additionally, 125 and 51 genes were upregulated and downregulated, respectively, in response to the GP extracts. The upregulated genes were associated with the response to growth factors and heart development. Some of these genes encode components of elastic fibers and the extracellular matrix and are associated with many cancers. Genes related to folate biosynthesis and vitamin D metabolism were also upregulated. In contrast, many downregulated genes were associated with cell adhesion. Moreover, many DEGs were targeted to the synaptic and neuronal projections. Our study has revealed the functional mechanisms of GP extracts' anti-aging and photoprotective effects on the skin using RNA sequencing.
Collapse
|
47
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
48
|
Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture. Biomolecules 2023; 13:biom13020227. [PMID: 36830596 PMCID: PMC9953653 DOI: 10.3390/biom13020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Salvia bulleyana is a plant native to the Chinese Yunnan Province. This species has been used in traditional Chinese medicine as a substitute for Danshen (the roots of Salvia miltiorrhiza). The aim of our study was to establish an effective system for propagating S. bulleyana shoots to obtain large amounts of material rich in bioactive compounds. Phytohormones were used to regulate shoot growth and regeneration potential and influence plant secondary metabolism. The shoot tips were incubated on a Murashige and Skoog agar medium supplemented with 0.1 or 0.5 mg/L IAA (indole-3-acetic acid) and the cytokinins benzylaminopurine (BAP), meta-topoline (M-T), 6-benzylaminopurine riboside (RBAP), N-benzyl-9-(2-tetrahydropyranyl)-adenine (BPA) or kinetin, (K) at concentrations of 0.5, 1 or 2 mg/L. It was observed that the type and concentration of growth regulator significantly influenced the regeneration potential of S. bulleyana shoots. The highest multiplication rate was obtained when 0.1 mg/L IAA and 2 mg/L BPA were used. Under these conditions, 100% of shoot tips formed buds and almost seven buds/shoot per explant were obtained after five weeks. Meanwhile, the highest biomass was found for shoots growing on a medium supplemented with 0.1 mg/L IAA and 1 mg/L M-T: 1.2 g of fresh weight and 0.17 g of dry weight. However, a medium with 0.1 mg/L IAA and 2 mg/L RBAP was most favorable for bioactive phenolic acid content, with a total polyphenol level (37.7 mg/g dw) 4.5 times higher than in shoots grown on medium without growth regulators (8.23 mg/g dw). Finally, optimal conditions were selected by TOPSIS (technique for order of preference by similarity to the ideal solution); the culture of S. bulleyana grown on an MS medium containing 0.1 mg/L IAA and 1 mg/L M-T was found to be the most efficient for polyphenol accumulation and can be used for the production of medicinally relevant compounds.
Collapse
|
49
|
Sánchez-Ramos M, Marquina-Bahena S, Alvarez L, Bernabé-Antonio A, Cabañas-García E, Román-Guerrero A, Cruz-Sosa F. Obtaining 2,3-Dihydrobenzofuran and 3-Epilupeol from Ageratina pichinchensis (Kunth) R.King & Ho.Rob. Cell Cultures Grown in Shake Flasks under Photoperiod and Darkness, and Its Scale-Up to an Airlift Bioreactor for Enhanced Production. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020578. [PMID: 36677637 PMCID: PMC9865622 DOI: 10.3390/molecules28020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Ageratina pichinchensis (Kunth) R.King & Ho.Rob. is a plant used in traditional Mexican medicine, and some biotechnological studies have shown that its calluses and cell suspension cultures can produce important anti-inflammatory compounds. In this study, we established a cell culture of A. pichinchensis in a 2 L airlift bioreactor and evaluated the production of the anti-inflammatory compounds 2,3-dihydrobenzofuran (1) and 3-epilupeol (2). The maximum biomass production (11.90 ± 2.48 g/L) was reached at 11 days of culture and cell viability was between 80% and 90%. Among kinetic parameters, the specific growth rate (µ) was 0.2216 days-1 and doubling time (td) was 3.13 days. Gas chromatography coupled with mass spectrometry (GC-MS) analysis of extracts showed the maximum production of compound 1 (903.02 ± 41.06 µg/g extract) and compound 2 (561.63 ± 10.63 µg/g extract) at 7 and 14 days, respectively. This study stands out for the significant production of 2,3-dihydrobenzofuran and 3-epilupeol and by the significant reduction in production time compared to callus and cell suspension cultures, previously reported. To date, these compounds have not been found in the wild plant, i.e., its production has only been reported in cell cultures of A. pichinchensis. Therefore, plant cell cultured in an airlift reactor can be an alternative for the improved production of these anti-inflammatory compounds.
Collapse
Affiliation(s)
- Mariana Sánchez-Ramos
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
- Correspondence: (M.S.-R.); (F.C.-S.)
| | - Silvia Marquina-Bahena
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Laura Alvarez
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Emmanuel Cabañas-García
- Scientific and Technological Studies Center No. 18, National Polytechnic Institute, Blvd. del Bote 202 Cerro del Gato, Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Zacatecas, Mexico
| | - Angélica Román-Guerrero
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
| | - Francisco Cruz-Sosa
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
- Correspondence: (M.S.-R.); (F.C.-S.)
| |
Collapse
|
50
|
Thamrongwatwongsa J, Pattarapipatkul N, Jaithon T, Jindaruk A, Paemanee A, T-Thienprasert NP, Phonphoem WP. Mulberroside F from In Vitro Culture of Mulberry and the Potential Use of the Root Extracts in Cosmeceutical Applications. PLANTS (BASEL, SWITZERLAND) 2022; 12:146. [PMID: 36616275 PMCID: PMC9823754 DOI: 10.3390/plants12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Mulberry (Morus spp.) is primarily used in sericulture, and its uses also extend to the food, pharmaceutical, and cosmetic industries. Mulberry extracts are rich in many bioactive compounds that exhibit a wide range of biological properties. Mulberroside F (Moracin M-6, 3'-di-O-β-D-glucopyranoside), one of the bioactive compounds found in mulberry, has previously been reported as a whitening agent by inhibiting melanin synthesis and exhibiting antioxidant effects. However, there is still limited information on the presence of this compound in plants cultured in vitro. In this study, the mulberroside F content, biochemical, and cytotoxic properties of the extracts from mulberry cultured in vitro were determined. The results revealed that both root and callus were found to be a potential source of mulberroside F. Furthermore, the mulberroside F content was positively correlated with the inhibitory effects on tyrosinase activity. Cell viability assay also revealed that crude extract of the mulberry root has no cytotoxicity in both human keratinocyte cell line (HaCaT) and Vero cells. Taken together, mulberry tissue culture represents a possible alternative and continuous production of mulberroside F, which could be further utilized in cosmeceutical applications.
Collapse
Affiliation(s)
| | - Nattaya Pattarapipatkul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Titiradsadakorn Jaithon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ananya Jindaruk
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Atchara Paemanee
- Metabolomics Research Team, National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | | | | |
Collapse
|