1
|
Kaczmarzyk I, Nowak-Perlak M, Woźniak M. Promising Approaches in Plant-Based Therapies for Thyroid Cancer: An Overview of In Vitro, In Vivo, and Clinical Trial Studies. Int J Mol Sci 2024; 25:4463. [PMID: 38674046 PMCID: PMC11050626 DOI: 10.3390/ijms25084463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Thyroid cancer, particularly undifferentiated tumors, poses a significant challenge due to its limited response to standard therapies. The incidence of thyroid cancer, predominantly differentiated carcinomas, is on the rise globally. Anaplastic thyroid carcinoma (ATC), though rare, is highly aggressive and challenging to treat. Therefore, this study aimed to collect data and explore alternative treatments, focusing on the efficacy of photodynamic therapy (PDT) combined with natural compounds as well as the potential role of phytochemicals, including quercetin, kaempferol, apigenin, genistein, daidzein, naringenin, hesperitin, anthocyanidins, epigallocatechin gallate (EGCG), resveratrol, ellagic acid, ferulic acid, caffeic acid, curcumin, saponins, ursolic acid, indole-3-carbinol (I3C), capsaicin, and piperine in thyroid cancer treatment. PDT, utilizing sensitizers activated by tumor-directed light, demonstrates promising specificity compared to traditional treatments. Combining PDT with natural photosensitizers, such as hypericin and genistein, enhances cytotoxicity against thyroid carcinoma cells. This literature review summarizes the current knowledge on phytochemicals and their anti-proliferative effects in in vitro and in vivo studies, emphasizing their effectiveness and mechanism of action as a novel therapeutic approach for thyroid cancers, especially those refractory to standard treatments.
Collapse
Affiliation(s)
| | | | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.K.); (M.N.-P.)
| |
Collapse
|
2
|
Li G, Du Z, Shen P, Zhang J. Novel MeON-glycosides of ursolic acid: Synthesis, antitumor evaluation, and mechanism studies. Fitoterapia 2023; 169:105595. [PMID: 37355050 DOI: 10.1016/j.fitote.2023.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid widely found in in medicinal plants, edible plants, fruits, and flowers. The great interest in this bioactive compound is related to the positive effects in human health. However, its limited solubility, moderate biological activity and poor bioavailability limit the potential and further applications of UA. Here, we explored the efficacy of MeON-Glycosides of UA in inhibiting tumor cell proliferation. A number of compounds showed significant antitumor activity against tested five cancer cell lines. Among them, compound 2a exhibited the most potent activity against HepG2 cells with IC50 values of 3.1 ± 0.5 μM. Especially, compound 2a could induce HepG2 cells apoptosis and reduce mitochondrial membrane potential. Western blot analysis showed that compound 2a up-regulated Bax, cleaved caspase-3/9, cleaved PARP levels and down-regulated Bcl-2 level of HepG2 cells. These results indicated that compound 2a could obviously induce the apoptosis of HepG2 cells. At the same time, compound 2a significantly decreased the expression of p-AKT and p-mTOR, which indicated that compound 2a might exert its cytotoxic effect by targeting PI3K/AKT/mTOR signaling pathway. Moreover, the in silico ADME predictions showed that compound 2a has improved water solubility and other properties. Thus, compound 2a may be a promising antitumor candidate, which may be potentially used to prevent or treat cancers.
Collapse
Affiliation(s)
- Guolong Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xianyang, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhichao Du
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Pingping Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Jian Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
3
|
Namdeo P, Gidwani B, Tiwari S, Jain V, Joshi V, Shukla SS, Pandey RK, Vyas A. Therapeutic potential and novel formulations of ursolic acid and its derivatives: an updated review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4275-4292. [PMID: 36597140 DOI: 10.1002/jsfa.12423] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 06/06/2023]
Abstract
Plants produce biologically active metabolites that have been utilised to cure a variety of severe and persistent illnesses. There is a possibility that understanding how these bioactive molecules work would allow researchers to come up with better treatments for diseases including malignancy, cardiac disease and neurological disorders. A triterpene called ursolic acid (UA) is a pentacyclic prevalent triterpenoid found in fruits, leaves, herbs and blooms. The biological and chemical aspects of UA, as well as their presence, plant sources and biosynthesis, and traditional and newer technologies of extraction, are discussed in this review. Because of its biological function in the creation of new therapeutic techniques, UA is a feasible option for the evolution and medical management of a wide range of medical conditions, including cancer and other life threatening diseases. Despite this, the substance's poor solubility in aquatic environments makes it unsuitable for medicinal purposes. This hurdle was resolved in many different ways. The inclusion of UA into various pharmaceutical delivery approaches was found to be quite effective in this respect. This review also describes the properties of UA and its pharmacokinetics, as well as therapeutic applications of UA for cancer, inflammatory and cardiovascular diseases, in addition to its anti-diabetic, immunomodulatory, hepatoprotective and anti-microbial properties. Some of the recent findings related to novel nano-sized carriers as a delivery system for UA and the patents related to the applications of UA and its various derivatives are covered in this review. The analytical study of UA, oleanolic acid and other phytoconstituents by UV, HPLC, high-performance thin-layer chromatography and gas chromatography is also discussed. In the future, UA could be explored in vivo using various animal models and, in addition, the regulatory status regarding UA needs to be explored. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Priya Namdeo
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | | | - Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Vishal Jain
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Veenu Joshi
- Center for Basic Science and Research, Pt. Ravishankar Shukla University, Raipur, India
| | | | | | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
4
|
Li S, Wu R, Wang L, Dina Kuo HC, Sargsyan D, Zheng X, Wang Y, Su X, Kong AN. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer. Mol Carcinog 2022; 61:111-121. [PMID: 34727410 PMCID: PMC8665082 DOI: 10.1002/mc.23365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan, China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Li T, Zhang X, Wang H, Li J, Wang H, Zhang X. Development, Physical-Chemical Characterization, and Molecular Docking Simulations of Ursolic Acid-Sodium Alginate Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14311-14319. [PMID: 34797663 DOI: 10.1021/acs.jafc.1c02787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to fabricate ursolic acid (UA)-sodium alginate (SA) complexes to improve the dissolution rate and antioxidant abilities. The antioxidant activity was evaluated by the DPPH (1,1-diphenyl-2-trinitrophenylhydrazine) assay and the pyrogallol auto-oxidation method. For the optimal composition ratio of UA:SA (1:5, w/w), the cumulative release of UA was about 101.22 ± 1.50% for 180 min. Powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses confirmed that the crystallinity of UA was significantly reduced by forming complexes with SA. By Fourier transform infrared spectroscopy (FTIR) and molecular docking simulations, it was observed that the hydroxyl group in UA formed hydrogen bonding with the carbonyl group in SA. The DPPH scavenger activities of the complexes were also increased compared with free UA. The results indicated that SA could serve as a promising carrier for lipophilic functional food ingredients due to improved solubility and antioxidant activity.
Collapse
Affiliation(s)
- Ting Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xindi Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongyue Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota-Twin Cities, 308 SE Harvard St, Minneapolis, 55455 Minnesota, United States
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiangrong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
6
|
Ursolic Acid Inhibits Collective Cell Migration and Promotes JNK-Dependent Lysosomal Associated Cell Death in Glioblastoma Multiforme Cells. Pharmaceuticals (Basel) 2021; 14:ph14020091. [PMID: 33530486 PMCID: PMC7911358 DOI: 10.3390/ph14020091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a bioactive compound which has demonstrated therapeutic efficacy in a variety of cancer cell lines. UA activates various signalling pathways in Glioblastoma multiforme (GBM) and offers a promising starting point in drug discovery; however, understanding the relationship between cell death and migration has yet to be elucidated. UA induces a dose dependent cytotoxic response demonstrated by flow cytometry and biochemical cytotoxicity assays. Inhibitor and fluorescent probe studies demonstrate that UA induces a caspase independent, JNK dependent, mechanism of cell death. Migration studies established that UA inhibits GBM collective cell migration in a time dependent manner that is independent of the JNK signalling pathway. Cytotoxicity induced by UA results in the formation of acidic vesicle organelles (AVOs), speculating the activation of autophagy. However, inhibitor and spectrophotometric analysis demonstrated that autophagy was not responsible for the formation of the AVOs. Confocal microscopy and isosurface visualisation determined co-localisation of lysosomes with the previously identified AVOs, thus providing evidence that lysosomes are likely to be playing a role in UA induced cell death. Collectively, our data identify that UA rapidly induces a lysosomal associated mechanism of cell death in addition to UA acting as an inhibitor of GBM collective cell migration.
Collapse
|
7
|
Cao M, Xiao D, Ding X. The anti-tumor effect of ursolic acid on papillary thyroid carcinoma via suppressing Fibronectin-1. Biosci Biotechnol Biochem 2020; 84:2415-2424. [PMID: 32942951 DOI: 10.1080/09168451.2020.1813543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
This study aims to discover the effects of ursolic acid (UA) on papillary thyroid carcinoma (PTC). Human PTC cells were under UA treatment, and cell viability, clone formation, and apoptosis were measured by MTT assay, clone formation assay, and flow cytometry, respectively. Expressions of apoptosis- and epithelial-mesenchymal transition (EMT)-related markers were determined via qRT-PCR and western blot. Fibronectin-1 (FN1) expression in thyroid carcinoma was analyzed by GEPIA2 and qRT-PCR. The effects of overexpressed FN1 on UA-treated cells were detected following the previous procedures. Cell viability, proliferation, and EMT-related marker expressions were inhibited, while cell apoptosis and apoptosis-related marker expressions were promoted by UA. FN1 was higher expressed in thyroid carcinoma and downregulated by UA. Effects of FN1 on cell viability, proliferation, and apoptosis- and EMT-related marker expressions were partially reversed by UA. UA inhibited human PTC cell viability, proliferation, and EMT but promoted apoptosis via suppressing FN1.
Collapse
Affiliation(s)
- Mingxiang Cao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Di Xiao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Xubei Ding
- Department of Thyroid and Breast Surgery, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| |
Collapse
|
8
|
Electrosprayed Folic Acid-Conjugated Ursolic Acid Nanoparticles for Tumor Therapy. Macromol Res 2018. [DOI: 10.1007/s13233-018-6089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Pandey DK, Kaur P. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology. 3 Biotech 2018; 8:152. [PMID: 29492371 DOI: 10.1007/s13205-018-1174-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature (X1 35-70 °C), extraction time (X2 30-60 min), solvent composition (X3 20-80%), solvent-to-solid ratio (X4 30-60 mlg-1), and particle size (X5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata. A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R2 values of 0.98 for the triterpenoid yield (p < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).
Collapse
Affiliation(s)
- Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Prabhjot Kaur
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
10
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong ANT. Correction to: In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS JOURNAL 2018; 20:27. [PMID: 29411155 DOI: 10.1208/s12248-018-0190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The citation of the author name "Ah-Ng Tony Kong" in PubMed is not the author's preference. Instead of "Kong AT", the author prefers "Kong AN".
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Tony Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
11
|
Oprean C, Ivan A, Bojin F, Cristea M, Soica C, Drăghia L, Caunii A, Paunescu V, Tatu C. Selective in vitro anti-melanoma activity of ursolic and oleanolic acids. Toxicol Mech Methods 2018; 28:148-156. [PMID: 28868958 DOI: 10.1080/15376516.2017.1373881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Products of natural origin have become important agents in the treatment of cancer, and the active principles of natural sources could be used in combination with chemotherapeutic agents to increase their effects and to minimize their toxicity. Oleanolic (OA) and ursolic (UA) acids are intensely studied for their promising anticancer potential. The aim of this study was focused on the in vitro toxicological effects induced by UA and OA human mesenchymal stem cells and on melanoma, one of the most frequent cancers whose incidence is increasing every year. The two compounds were tested for their cytotoxic, cell cycle arrest and pro-apoptotic effects on melanoma cells (A375 and B164A5) and mesenchymal stem cells. UA exerted a cytotoxic effect in a dose-dependent manner on melanoma cells, while OA's activity has been shown to be low or moderate. Both compounds produced alterations of the cell cycle, arresting cells in the G0/G1 phase. Furthermore, UA induced significant apoptosis through the bcl-2 genes family pathway, with the decrease of the bcl-2 gene expression. The two compounds exerted selective effects on melanoma cells with no effects on human mesenchymal stem cells. The presented results reveal the anticancer potential of UA on melanoma cells, with no detectable toxicity on the mesenchymal stem cells.
Collapse
Affiliation(s)
- Camelia Oprean
- a Department of Environmental and Food Chemistry, Faculty of Pharmacy , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
| | - Alexandra Ivan
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
- c Department of Functional Sciences, Faculty of Medicine , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| | - Florina Bojin
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
- c Department of Functional Sciences, Faculty of Medicine , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| | - Mirabela Cristea
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
| | - Codruta Soica
- d Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| | - Lavinia Drăghia
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
- c Department of Functional Sciences, Faculty of Medicine , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| | - Angela Caunii
- a Department of Environmental and Food Chemistry, Faculty of Pharmacy , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| | - Virgil Paunescu
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
- c Department of Functional Sciences, Faculty of Medicine , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| | - Calin Tatu
- b 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute , Timişoara , Romania
- c Department of Functional Sciences, Faculty of Medicine , Victor Babeş University of Medicine and Pharmacy , Timişoara , Romania
| |
Collapse
|
12
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong AN. In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS J 2017; 20:19. [PMID: 29264822 PMCID: PMC6021020 DOI: 10.1208/s12248-017-0177-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
13
|
Lugini L, Sciamanna I, Federici C, Iessi E, Spugnini EP, Fais S. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase. Oncotarget 2017; 8:4147-4155. [PMID: 27926505 PMCID: PMC5354819 DOI: 10.18632/oncotarget.13792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.
Collapse
Affiliation(s)
- Luana Lugini
- Department of Therapeutic Research and Medicine Evaluation, National Institute of Health, Rome, Italy
| | - Ilaria Sciamanna
- Department of Servizio Biologico e per la Gestione della Sperimentazione Animale (SBGSA), National Institute of Health, Rome, Italy
| | - Cristina Federici
- Department of Therapeutic Research and Medicine Evaluation, National Institute of Health, Rome, Italy
| | - Elisabetta Iessi
- Department of Therapeutic Research and Medicine Evaluation, National Institute of Health, Rome, Italy
| | - Enrico Pierluigi Spugnini
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU) Department, Regina Elena Cancer Institute, Rome, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicine Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
14
|
Rocha TGR, Lopes SCDA, Cassali GD, Ferreira Ê, Veloso ES, Leite EA, Braga FC, Ferreira LAM, Balvay D, Garofalakis A, Oliveira MC, Tavitian B. Evaluation of Antitumor Activity of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid in Animal Models of Breast Tumor and Gliosarcoma. Integr Cancer Ther 2016; 15:512-524. [PMID: 27130721 PMCID: PMC5739155 DOI: 10.1177/1534735416628273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
Background Ursolic acid (UA) is a triterpene found in different plant species, possessing antitumor activity, which may be a result of its antiangiogenic effect. However, UA has low water solubility, which limits its use because the bioavailability is impaired. To overcome this inconvenience, we developed long-circulating and pH-sensitive liposomes containing ursolic acid (SpHL-UA). We investigated the antiangiogenic effect of free UA and SpHL-UA in murine brain cancer and human breast tumor models by means of determination of the relative tumor volume, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and histopathological analysis. Methods The animals were treated with dimethyl sulfoxide in 0.9% (w/v) NaCl, free UA, long-circulating and pH-sensitive liposomes without drug (SpHL), or SpHL-UA. The animals were submitted to each treatment by intraperitoneal injection for 5 days. The dose of free UA or SpHL-UA was equal to 23 mg/kg. Results Tumor growth inhibition was not observed in human breast tumor-bearing animals. For murine gliosarcoma-bearing animals, a slight tumor growth inhibition was observed in the groups treated with free UA or SpHL-UA (9% and 15%, respectively). No significant change in any of the parameters evaluated by DCE-MRI for both experimental models could be observed. Nevertheless, the evaluation of the mean values of magnetic resonance parameters of human breast tumor-bearing animals showed evidence of a possible antiangiogenic effect induced by SpHL-UA. Histopathological analysis did not present significant change for any treatment. Conclusion SpHL-UA did not show antiangiogenic activity in a gliosarcoma model and seemed to induce an antiangiogenic effect in the human breast tumor model.
Collapse
Affiliation(s)
| | | | | | - Ênio Ferreira
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oprean C, Mioc M, Csányi E, Ambrus R, Bojin F, Tatu C, Cristea M, Ivan A, Danciu C, Dehelean C, Paunescu V, Soica C. Improvement of ursolic and oleanolic acids' antitumor activity by complexation with hydrophilic cyclodextrins. Biomed Pharmacother 2016; 83:1095-1104. [PMID: 27551755 DOI: 10.1016/j.biopha.2016.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Ursolic and oleanolic acids have been brought into the spotlight of research due to their chemopreventive, anti-inflammatory and immunomodulatory properties. The most important disadvantage of ursolic and oleanolic acids is their weak water solubility which limits their bioavailability. Pentacyclic triterpenes can form inclusion complexes with different types of cyclodextrins which provide the hydrophilic matrix requested for the molecular dispersion of drugs in order to become more water soluble. The aim of the current study is the complexation of ursolic and oleanolic acids with hydrophilic cyclodextrins in order to achieve an improvement of their pharmacological effect. After the virtual screening of the binding affinities between ursolic and oleanolic acids and various cyclodextrins, 2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropil-γ-cyclodextrin were selected as host-molecules for the inclusion complexation. Using the scanning electron microscopy, differential scanning calorimetry and X-ray diffraction the formation of real inclusion complexes between ursolic and oleanolic acids and the two cyclodextrins was confirmed. The anti-proliferative potential of the complexes was tested in vitro on several melanoma cell lines, using the pure compounds as reference. The complexes exhibited higher in vitro anti-proliferative activity as compared to the pure compounds; this improvement was significant for ursolic acid complexes, the highest activity being reported for the 2-hydroxypropil-γ-cyclodextrin complex. Weaker results were recorded for the oleanolic acid complexes where 2-hydroxypropyl-β-cyclodextrin proved to be the most fitted inclusion partner. The entrapment of the two active compounds inside ramified hydrophilic cyclodextrins proved to be a suitable option to increase their anti-proliferative activity.
Collapse
Affiliation(s)
- Camelia Oprean
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Erzsébet Csányi
- Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.
| | - Rita Ambrus
- Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.
| | - Florina Bojin
- Department of Functional Sciences, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Calin Tatu
- Department of Functional Sciences, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Mirabela Cristea
- "Pius Brinzeu" Timişoara County Emergency Clinical Hospital, 156 Liviu Rebreanu, Timişoara 300723, Romania.
| | - Alexandra Ivan
- Department of Functional Sciences, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Virgil Paunescu
- Department of Functional Sciences, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timişoara 300041, Romania.
| |
Collapse
|
16
|
Villar VH, Vögler O, Barceló F, Martín-Broto J, Martínez-Serra J, Ruiz-Gutiérrez V, Alemany R. Down-Regulation of AKT Signalling by Ursolic Acid Induces Intrinsic Apoptosis and Sensitization to Doxorubicin in Soft Tissue Sarcoma. PLoS One 2016; 11:e0155946. [PMID: 27219337 PMCID: PMC4878803 DOI: 10.1371/journal.pone.0155946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/06/2016] [Indexed: 01/11/2023] Open
Abstract
Several important biological activities have been attributed to the pentacyclic triterpene ursolic acid (UA), being its antitumoral effect extensively studied in human adenocarcinomas. In this work, we focused on the efficacy and molecular mechanisms involved in the antitumoral effects of UA, as single agent or combined with doxorubicin (DXR), in human soft tissue sarcoma cells. UA (5-50 μM) strongly inhibited (up to 80%) the viability of STS cells at 24 h and its proliferation in soft agar, with higher concentrations increasing apoptotic death up to 30%. UA treatment (6-9 h) strongly blocked the survival AKT/GSK3β/β-catenin signalling pathway, which led to a concomitant reduction of the anti-apoptotic proteins c-Myc and p21, altogether resulting in the activation of intrinsic apoptosis. Interestingly, UA at low concentrations (10-15 μM) enhanced the antitumoral effects of DXR by up to 2-fold, while in parallel inhibiting DXR-induced AKT activation and p21 expression, two proteins implicated in antitumoral drug resistance and cell survival. In conclusion, UA is able to induce intrinsic apoptosis in human STS cells and also to sensitize these cells to DXR by blocking the AKT signalling pathway. Therefore, UA may have beneficial effects, if used as nutraceutical adjuvant during standard chemotherapy treatment of STS.
Collapse
Affiliation(s)
- Victor Hugo Villar
- Group of Clinical and Translational Research, Department of Biology, Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Oliver Vögler
- Group of Clinical and Translational Research, Department of Biology, Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Francisca Barceló
- Group of Clinical and Translational Research, Department of Biology, Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Javier Martín-Broto
- Group of Clinical and Translational Research, Department of Biology, Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Oncology, University Hospital Virgen del Rocío and Biomedicine Institute of Sevilla (IBIS), Sevilla, Spain
| | - Jordi Martínez-Serra
- Group of Clinical and Translational Research, Department of Biology, Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Hematology, University Hospital Son Espases, Palma de Mallorca, Spain
| | - Valentina Ruiz-Gutiérrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- CIBER:CB06/03 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud, Carlos III (ISCIII), Spain
| | - Regina Alemany
- Group of Clinical and Translational Research, Department of Biology, Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain
- CIBER:CB06/03 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud, Carlos III (ISCIII), Spain
| |
Collapse
|
17
|
Kumar V, Van Staden J. A Review of Swertia chirayita (Gentianaceae) as a Traditional Medicinal Plant. Front Pharmacol 2016; 6:308. [PMID: 26793105 PMCID: PMC4709473 DOI: 10.3389/fphar.2015.00308] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Swertia chirayita (Gentianaceae), a popular medicinal herb indigenous to the temperate Himalayas is used in traditional medicine to treat numerous ailments such as liver disorders, malaria, and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British, and the American pharmacopeias and in different traditional medicine such as the Ayurveda, Unani, Siddha, and other conventional medical systems. This ethnomedicinal herb is known mostly for its bitter taste caused by the presence of different bioactive compounds that are directly associated with human health welfare. The increasing high usage of Swertia chirayita, mostly the underground tissues, as well as the illegal overharvesting combined with habitat destruction resulted in a drastic reduction of its populations and has brought this plant to the verge of extinction. The increasing national and international demand for Swertia chirayita has led to unscrupulous collection from the wild and adulteration of supplies. The aim of this review is to provide a synthesis of the current state of scientific knowledge on the medicinal uses, phytochemistry, pharmacological activities, safety evaluation as well as the potential role of plant biotechnology in the conservation of Swertia chirayita and to highlight its future prospects. Pharmacological data reported in literature suggest that Swertia chirayita shows a beneficial effect in the treatment of several ailments. However, there is lack of adequate information on the safety evaluation of the plant. The pharmacological usefulness of Swertia chirayita requires the need for conservation-friendly approaches in its utilization. Providing high-quality genetically uniform clones for sustainable use and thereby saving the genetic diversity of this species in nature is important. In this regard, plant biotechnological applications such as micropropagation, synthetic seed production, and hairy root technology can play a significant role in a holistic conservation strategy. In addition to micropropagation, storage of these valuable genetic resources is equally important for germplasm preservation. However, more advanced research is warranted to determine the activities of bioactive compounds in vitro and in vivo, establish their underlying mechanisms of action and commence the process of clinical research.
Collapse
Affiliation(s)
- Vijay Kumar
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, South Africa
| |
Collapse
|
18
|
Yang X, Li Y, Jiang W, Ou M, Chen Y, Xu Y, Wu Q, Zheng Q, Wu F, Wang L, Zou W, Zhang YJ, Shao J. Synthesis and Biological Evaluation of Novel Ursolic acid Derivatives as Potential Anticancer Prodrugs. Chem Biol Drug Des 2015; 86:1397-404. [PMID: 26077799 DOI: 10.1111/cbdd.12608] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/23/2015] [Accepted: 05/30/2015] [Indexed: 01/11/2023]
Abstract
Ursolic acid (UA) is a natural product which has been shown to possess a wide range of pharmacological activities, in particular those with anticancer activity. In this study, 13 novel ursolic acid derivatives were designed and synthesized in an attempt to further improve compound potency. The structures of the newly synthesized compounds were confirmed using mass spectrometry, infrared spectroscopy, and (1) H NMR. The ability of the UA derivatives to inhibit cell growth was assayed against both various tumor cell lines and a non-pathogenic cell line, HELF. Analysis of theoretical toxicity risks for all derivatives was performed using OSIRIS and indicated that the majority of compounds would present moderate to low risks. Pharmacological results indicated that the majority of the derivatives were more potent growth inhibitors than UA. In particular, 5b demonstrated IC50 values ranging from 4.09 ± 0.27 to 7.78 ± 0.43 μm against 12 different tumor cell lines. Flow cytometry analysis indicated that 5b induced G0/G1 arrest in three of these cell lines. These results were validated by structural docking studies, which confirmed that UA could bind to cyclins D1 (Cyc D1) and cyclin-dependent kinases (CDK6), the key regulators of G0/G1 transition in cell cycle, while the piperazine moiety of 5b could bind with glucokinase (GK), glucose transporter 1 (GLUT1), and ATPase, which are the main proteins involved in cancer cell metabolism. Acridine orange/ethidium bromide staining confirmed that 5b was capable of inducing apoptosis and decreasing cell viability in a dose-dependent manner.
Collapse
Affiliation(s)
- Xiang Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Yuanfang Li
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Wei Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Minrui Ou
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Yali Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Xu
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Qiong Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Qing Zheng
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Fuqiang Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Lue Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Wentao Zou
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Yitong J Zhang
- Department of Chemistry, University of Washington, Seattle, WA, 98105, USA
| | - Jingwei Shao
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China
- Biopharmaceutical Photocatalysis State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
19
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|
20
|
Jesus JA, Lago JHG, Laurenti MD, Yamamoto ES, Passero LFD. Antimicrobial activity of oleanolic and ursolic acids: an update. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:620472. [PMID: 25793002 PMCID: PMC4352472 DOI: 10.1155/2015/620472] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022]
Abstract
Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed.
Collapse
Affiliation(s)
- Jéssica A. Jesus
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, 09972-270 Diadema, SP, Brazil
| | - João Henrique G. Lago
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, 09972-270 Diadema, SP, Brazil
| | - Márcia D. Laurenti
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
| | - Eduardo S. Yamamoto
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
| | - Luiz Felipe D. Passero
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
| |
Collapse
|
21
|
Yang H, Liu C, Zhang YQ, Ge LT, Chen J, Jia XQ, Gu RX, Sun Y, Sun WD. Ilexgenin A induces B16-F10 melanoma cell G1/S arrest in vitro and reduces tumor growth in vivo. Int Immunopharmacol 2015; 24:423-431. [DOI: 10.1016/j.intimp.2014.12.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/24/2022]
|
22
|
Gong YY, Liu YY, Yu S, Zhu XN, Cao XP, Xiao HP. Ursolic acid suppresses growth and adrenocorticotrophic hormone secretion in AtT20 cells as a potential agent targeting adrenocorticotrophic hormone-producing pituitary adenoma. Mol Med Rep 2014; 9:2533-9. [PMID: 24682498 DOI: 10.3892/mmr.2014.2078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 02/26/2014] [Indexed: 11/06/2022] Open
Abstract
Adrenocorticotrophic hormone (ACTH)-producing pituitary adenoma leads to excess ACTH secretion, which is associated with significant mortality and impaired quality of life. Thus far, the first line therapy is the transphenoidal microsurgery. Considering the high recurrence rate and complications of surgery, novel agents, which directly target on pituitary ACTH-producing adenoma and suppress ACTH secretion are urgently required. In the present study, the effect of ursolic acid (UA) as a candidate agent targeting ACTH-producing AtT20 cells was investigated. It was demonstrated that UA inhibited the viability and induced apoptosis of AtT20 cells and decreased ACTH secretion. The process of apoptosis involved a decrease of the B cell lymphoma 2 (Bcl-2)/Bcl2-associated X protein ratio followed by a release of mitochondrial cytochrome c into the cytosol with subsequent activation of caspase-9, -3/7 and -8. The potential signaling pathway involved the activation of c-Jun N-terminal kinase (JNK) but not extracellular signal-regulated protein kinases1/2 and p38 mitogen-activated protein kinase. The JNK pathway participated in UA-induced mitochondrial apoptotic signaling transduction via increasing the phosphorylation and degradation of Bcl-2, which may be partly attenuated by the JNK inhibitor SP600125. In conclusion, the present study indicates that UA may be a promising candidate agent for the management of ACTH-producing pituitary adenoma.
Collapse
Affiliation(s)
- Ying-Ying Gong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuan-Yuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Nan Zhu
- Department of Pharmacology, Zhong‑Shan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Pei Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hai-Peng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
23
|
Eloy JO, Marchetti JM. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: A comparative study of fusion and solvent methods. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2013.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Zang LL, Wu BN, Lin Y, Wang J, Fu L, Tang ZY. Research progress of ursolic acid's anti-tumor actions. Chin J Integr Med 2014; 20:72-9. [PMID: 24374755 DOI: 10.1007/s11655-013-1541-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 01/01/2023]
Abstract
Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars' attention. This review explained anti-tumor actions of UA, including (1) the protection of cells' DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor/mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells. With further studies, UA would be one of the potential anti-tumor agents.
Collapse
Affiliation(s)
- Li-li Zang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | | | | | | | | | | |
Collapse
|
25
|
Caldeira de Araújo Lopes S, Vinícius Melo Novais M, Salviano Teixeira C, Honorato-Sampaio K, Tadeu Pereira M, Ferreira LAM, Braga FC, Cristina Oliveira M. Preparation, physicochemical characterization, and cell viability evaluation of long-circulating and pH-sensitive liposomes containing ursolic acid. BIOMED RESEARCH INTERNATIONAL 2013; 2013:467147. [PMID: 23984367 PMCID: PMC3747370 DOI: 10.1155/2013/467147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Although several drugs are used clinically, some tumors either do not respond or are resistant to the existing pharmacotherapy, thus justifying the search for new drugs. Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low solubility in aqueous medium, which presents a barrier to its biological applications. In this context, the use of liposomes presents a promising strategy to deliver UA and allow for its intravenous administration. In this work, long-circulating and pH-sensitive liposomes containing UA (SpHL-UA) were developed, and their chemical and physicochemical properties were evaluated. SpHL-UA presented adequate properties, including a mean diameter of 191.1 ± 6.4 nm, a zeta potential of 1.2 ± 1.4 mV, and a UA entrapment of 0.77 ± 0.01 mg/mL. Moreover, this formulation showed a good stability after having been stored for 2 months at 4 °C. The viability studies on breast (MDA-MB-231) and prostate (LNCaP) cancer cell lines demonstrated that SpHL-UA treatment significantly inhibited cancer cell proliferation. Therefore, the results of the present work suggest the applicability of SpHL-UA as a new and promising anticancer formulation.
Collapse
Affiliation(s)
- Sávia Caldeira de Araújo Lopes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Melo Novais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Cláudia Salviano Teixeira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Kinulpe Honorato-Sampaio
- Centro de Microscopia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Márcio Tadeu Pereira
- Centro de Desenvolvimento de Tecnologia Nuclear (CDTN)/Comissão Nacional de Energia Nuclear (CNEN), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Fernão Castro Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Mônica Cristina Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Mazumder K, Tanaka K, Fukase K. Cytotoxic activity of ursolic acid derivatives obtained by isolation and oxidative derivatization. Molecules 2013; 18:8929-44. [PMID: 23896618 PMCID: PMC6269999 DOI: 10.3390/molecules18088929] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 01/11/2023] Open
Abstract
Structure-activity relationships of ursane-type pentacyclic triterpenes obtained from natural sources and by chemical derivatization are reviewed. Ursolic acid, corosolic acid, and a new ursane-type pentacyclic triterpene, 7,24-dihydroxyursolic acid, were isolated from the methanolic extract of the leaves of the Bangladeshi medicinal plant, Saurauja roxburghii. Derivatization of ursolic acid by oxidation with dioxoruthenium (VI) tetraphenylporphyrins was investigated. Oxidation selectivity on the terpene structure was modulated by the auxiliaries introduced on the tetraphenylporphyrin. The natural triterpenes and oxidized derivatives were tested for cytotoxicity against the C6 rat glioma and A431 human skin carcinoma cell lines. Although they have the same ursane-type pentacyclic triterpene cores, the position and numbers of hydroxyls on the terpene structures significantly affected the activity and the selectivity towards the tested cell lines.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, University of Science and Technology Chittagong, Foy’s Lake, Chittagong 4202, Bangladesh; E-Mail:
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Katsunori Tanaka
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; E-Mail:
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
27
|
Niu Y, Meng QX. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:550-565. [PMID: 23600735 DOI: 10.1080/10286020.2013.781589] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents the chemical and preclinical anticancer research on Hedyotis diffusa Willd. in detail, one of the most renowned herbs often prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicine. Anthraquinones, flavonoids, and terpenoids constitute the majority of the 69 compounds that have been isolated and identified from H. diffusa. The anticancer effects of the methanolic, ethanolic, and aqueous extracts in various preclinical cancer models have been described. This review also summarized the anticancer activity of constituents of the herb and the mechanisms of action. All the studies suggest that H. diffusa has enormous potential in the therapy of cancer and warrants further chemical and pharmacological investigation.
Collapse
Affiliation(s)
- Yu Niu
- Institute of Agricultural Resources and Economy, Shanxi Academy of Agricultural Sciences, Taiyuan 030006, China
| | | |
Collapse
|
28
|
de Oliveira Eloy J, Saraiva J, de Albuquerque S, Marchetti JM. Solid dispersion of ursolic acid in Gelucire 50/13: a strategy to enhance drug release and trypanocidal activity. AAPS PharmSciTech 2012; 13:1436-45. [PMID: 23070562 PMCID: PMC3513474 DOI: 10.1208/s12249-012-9868-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 09/27/2012] [Indexed: 11/30/2022] Open
Abstract
Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 μg/mL in PMs to 293.43 μg/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.
Collapse
Affiliation(s)
- Josimar de Oliveira Eloy
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Avenida do Café s/n, 14040-903 Ribeirão Preto, São Paulo Brazil
| | - Juliana Saraiva
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Avenida do Café s/n, 14040-903 Ribeirão Preto, São Paulo Brazil
| | - Sergio de Albuquerque
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Avenida do Café s/n, 14040-903 Ribeirão Preto, São Paulo Brazil
| | - Juliana Maldonado Marchetti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Avenida do Café s/n, 14040-903 Ribeirão Preto, São Paulo Brazil
| |
Collapse
|
29
|
Mbosso EJT, Nguedia JCA, Meyer F, Lenta BN, Ngouela S, Lallemand B, Mathieu V, Antwerpen PV, Njunda AL, Adiogo D, Tsamo E, Looze Y, Kiss R, Wintjens R. Ceramide, cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). PHYTOCHEMISTRY 2012; 83:95-103. [PMID: 22963707 DOI: 10.1016/j.phytochem.2012.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
Three compounds, ficusamide (1), ficusoside (2) and elasticoside (3), were isolated from the bark of aerial roots of Ficus elastica (Moraceae), together with nine known compounds, including four triterpenes, three steroids and two aliphatic linear alcohols. The chemical structures of the three compounds were established by extensive 1D and 2D NMR spectroscopy, mass spectrometry and by comparison with published data. The growth inhibitory effect of the crude extract and isolated compounds was evaluated against several microorganisms and fungi. The cytotoxicity against human cancer cell lines was also assessed. Ficusamide (1) displayed a moderate in vitro growth inhibitory activity against the human A549 lung cancer cell line and a strong activity against Staphylococcus saprophyticus, while elasticoside (3) showed a potent activity on Enterococcus faecalis.
Collapse
Affiliation(s)
- Emmanuel Jean Teinkela Mbosso
- Laboratory of Biopolymers and Supramolecular Nanomaterials, Faculté de Pharmacie, Université Libre de Bruxelles-ULB, Campus Plaine-CP 206/4, Boulevard du Triomphe, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Salvador JAR, Moreira VM, Gonçalves BMF, Leal AS, Jing Y. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat Prod Rep 2012; 29:1463-79. [PMID: 23047641 DOI: 10.1039/c2np20060k] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights the potential of natural and semisynthetic ursane-type triterpenoids as candidates for the design of multi-target bioactive compounds, with focus on their anticancer effects. A brief illustration of the biosynthesis, sources, and general biological effects of the main classes of naturally occurring pentacyclic triterpenoids (PTs) are provided.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Grupo de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
31
|
Leal AS, Wang R, Salvador JAR, Jing Y. Synthesis of novel ursolic acid heterocyclic derivatives with improved abilities of antiproliferation and induction of p53, p21waf1 and NOXA in pancreatic cancer cells. Bioorg Med Chem 2012; 20:5774-86. [PMID: 22959527 DOI: 10.1016/j.bmc.2012.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/18/2012] [Accepted: 08/08/2012] [Indexed: 11/25/2022]
Abstract
A series of new heterocyclic derivatives of ursolic acid 1 were synthesized and evaluated for their antiproliferative activity against AsPC-1 pancreatic cancer cells. Compounds 24-32, with an α,β unsaturated ketone in conjugation with an heterocyclic ring in ring A have improved antiproliferative activities. Compound 32 is the most active compound with an IC(50) of 1.9 μM which is sevenfold more active than ursolic acid 1. Compound 32 arrests cell cycle in G1 phase and induces apoptosis in AsPC-1 cells with upregulation of p53, p21(waf1) and NOXA protein levels.
Collapse
Affiliation(s)
- Ana S Leal
- Laboratório de Química Farmacêutica, Faculdade de Farmácia da Universidade de Coimbra, Poló das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | |
Collapse
|
32
|
Sultana N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 2011; 26:616-42. [PMID: 21417964 DOI: 10.3109/14756366.2010.546793] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Medicinal plants are becoming an important research area for novel and bioactive molecules for drug discovery. Novel therapeutic strategies and agents are urgently needed to treat different incurable diseases. Many plant derived active compounds are in human clinical trials. Currently ursolic acid is in human clinical trial for treating cancer, tumor, and skin wrinkles. This review includes the clinical use of ursolic acid in various diseases including anticancer, antitumor, and antiwrinkle chemotherapies, and the isolation and purification of this tritepernoid from various plants to update current knowledge on the rapid analysis of ursolic acid by using analytical methods. In addition, the chemical modifications of ursolic acid to make more effective and water soluble derivatives, previous and current information regarding, its natural and semisynthetic analogs, focusing on its anticancer, cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, α-glucosidase, antimicrobial, and hepatoprotective activities, briefly discussion is attempted here for its research perspectives. This review article contains fourteen medicinally important ursolic acid derivatives and 351 references.
Collapse
Affiliation(s)
- Nighat Sultana
- Pharmaceutical Research Center, PCSIR Laboratories Complex, Karachi, Pakistan.
| |
Collapse
|
33
|
Kuttan G, Pratheeshkumar P, Manu KA, Kuttan R. Inhibition of tumor progression by naturally occurring terpenoids. PHARMACEUTICAL BIOLOGY 2011; 49:995-1007. [PMID: 21936626 DOI: 10.3109/13880209.2011.559476] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Cancer is a major public health problem in India and many other parts of the world. Its two main characteristics are uncontrolled cell growth and metastasis. Natural products represent a rich source of compounds that have found many applications in various fields of medicines and therapy including cancer therapy. Effective ingredients in several plant-derived medicinal extracts are terpenoid compounds and many terpenes have biological activities and are used for the treatment of human diseases. OBJECTIVES This review attempted to collect all available published scientific literature of eight naturally occurring terpenoids and their effect on inhibition of tumor progression. METHODS The present review is about eight potent naturally occurring terpenoids that have been studied for their pharmacological properties in our lab and this review includes 130 references compiled from all major databases. RESULTS Literature survey revealed that triterpenoids, such as glycyrrhizic acid, ursolic acid, oleanolic acid, and nomilin, the diterpene andrographolide, and the monoterpenoids like limonene and perillic acid had shown immunomodulatory and antitumor activities. All of them could induce apoptosis in various cancer cells by activating various proapoptotic signaling cascades. Many of these terpenoids found to inhibit metastatic progression and tumor-induced angiogenesis. The molecular mechanisms that involved in these activities include inhibition of various oncogenic and anti-apoptotic signaling pathways and suppression or nuclear translocation of various transcription factors including nuclear factor kappa B (NF-κB). CONCLUSION The chemopreventive and chemoprotective effects of these compounds point toward their possible role in modern anticancer therapies.
Collapse
Affiliation(s)
- Girija Kuttan
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India.
| | | | | | | |
Collapse
|
34
|
Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA. Spices as functional foods. Crit Rev Food Sci Nutr 2011; 51:13-28. [PMID: 21229415 DOI: 10.1080/10408390903044271] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spices and aromatic herbs have been used since antiquity as preservatives, colorants, and flavor enhancers. Spices, which have long been the basis of traditional medicine in many countries, have also been the subject of study, particularly by the chemical, pharmaceutical, and food industries, because of their potential use for improving health. Both in vitro and in vivo studies have demonstrated how these substances act as antioxidants, digestive stimulants, and hypolipidemics and show antibacterial, anti-inflammatory, antiviral, and anticancerigenic activities. These beneficial physiological effects may also have possible preventative applications in a variety of pathologies. The aim of this review is to present an overview of the potential of spices and aromatic herbs as functional foods.
Collapse
Affiliation(s)
- M Viuda-Martos
- Grupo Industrialización de Productos de Origen Animal (IPOA), Generalitat Valenciana, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela Alicante
| | | | | | | |
Collapse
|
35
|
Kwon SH, Park HY, Kim JY, Jeong IY, Lee MK, Seo KI. Apoptotic action of ursolic acid isolated from Corni fructus in RC-58T/h/SA#4 primary human prostate cancer cells. Bioorg Med Chem Lett 2010; 20:6435-8. [PMID: 20943386 DOI: 10.1016/j.bmcl.2010.09.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/01/2010] [Accepted: 09/14/2010] [Indexed: 11/30/2022]
Abstract
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a major biological active component of Corni fructus that is known to induce apoptosis. However, the apoptotic mechanism of ursolic acid using primary malignant tumor (RC-58T/h/SA#4)-derived human prostate cells is not known. In the present study, ursolic acid significantly inhibited the growth of RC-58T/h/SA#4 cells in dose- and time-dependent manners. Ursolic acid induced cell death as evidenced by an increased proportion of cells in sub-G1 phase, the formation of apoptotic bodies, nuclear condensation, and DNA fragmentation. After ursolic acid treatment at concentrations above 40 μM, the activities of caspase-3, -8, and -9 were significantly increased compared that of control. Ursolic acid modulated the upregulation of Bax (pro-apoptotic) as well as the downregulation of Bcl-2 (anti-apoptotic). Ursolic acid also stimulated Bid cleavage, which indicates that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. Thus, the apoptotic effect of ursolic acid was involved in extrinsic and intrinsic signaling pathways. In addition, ursolic acid increased the expression of the caspase-independent mitochondrial apoptosis factor (AIF) in RC-58T/h/SA#4 cells. The present results suggest that ursolic acid from Corni fructus activated apoptosis in RC-58T/h/SA#4 cells via both caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Seong-Hyuk Kwon
- Department of Food and Nutrition, Sunchon National University, 413 Jungangro, Suncheon, Jeonnam 540-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Rodrigo G, Almanza GR, Cheng Y, Peng J, Hamann M, Duan RD, Åkesson B. Antiproliferative effects of curcuphenol, a sesquiterpene phenol. Fitoterapia 2010; 81:762-6. [PMID: 20385210 PMCID: PMC11173363 DOI: 10.1016/j.fitote.2010.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022]
Abstract
Curcuphenol is a sesquiterpene isolated from sponges and plants having several significant biological activities. The present study explored its effect on cell proliferation and apoptosis in Caco-2 human colon cancer cells. It was demonstrated that curcuphenol in concentrations in the range of 29-116 µg/ml inhibited cell proliferation and DNA replication and induced cell death in a dose-dependent manner. The induction of apoptosis was associated with a stimulation of the activity of caspase-3. The findings presented here suggest that curcuphenol has antiproliferative and pro-apoptotic properties.
Collapse
Affiliation(s)
- Gloria Rodrigo
- Molecular Biology and Biotechnology Institute, University Major of San Andres, La Paz, Bolivia
- Gastroenterology Laboratory, Department of Clinical Sciences, Lund University, Lund, Sweden
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Giovanna R. Almanza
- Chemistry Research Institute, University Major of San Andres, La Paz, Bolivia
| | - Yajun Cheng
- Gastroenterology Laboratory, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jiangnan Peng
- Department of Pharmacognosy, The University of Mississippi, Oxford, USA
| | - Mark Hamann
- Department of Pharmacognosy, The University of Mississippi, Oxford, USA
| | - Rui-Dong Duan
- Gastroenterology Laboratory, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Zhang JF, He ML, Qi Dong, Xie WD, Chen YC, Lin MCM, Leung PC, Zhang YO, Kung HF. Aqueous extracts of Fructus Ligustri Lucidi enhance the sensitivity of human colorectal carcinoma DLD-1 cells to doxorubicin-induced apoptosis via Tbx3 suppression. Integr Cancer Ther 2010; 10:85-91. [PMID: 20702496 DOI: 10.1177/1534735410373921] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemoresistance has imposed a great challenge for cancer therapy. Fructus Ligustri Lucidi (FLL) is one of the commonest Chinese herbs that has been used for thousand years. This study shows that the aqueous extract of FLL (AFLL) enhanced the sensitivity of DLD-1 colon cancer cells to doxorubicin-induced apoptosis. Furthermore, Tbx3 expression was found to be suppressed by AFLL when the expression of tumor suppressor genes p14 and p53 were activated. Therefore, reduction of Tbx3 rescued the dysregulated P14(ARF)-P53 signaling, which in turn contributed to the sensitivity of DLD-1 cells to doxorubicin-induced apoptosis. As a conclusion, the findings suggest that FLL has a potential of being an appealing agent for auxiliary chemotherapy in treatment of human colorectal carcinoma.
Collapse
Affiliation(s)
- Jin-fang Zhang
- Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen GQ, Yao ZW, Zheng WP, Chen L, Duan H, Shen Y. Combined antitumor effect of ursolic acid and 5-fluorouracil on human esophageal carcinoma cell Eca-109 in vitro. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
39
|
Hybelbauerová S, Sejbal J, DracÌÃnský M, Rudovská I, Koutek B. Unusual p-Coumarates from the Stems of Vaccinium myrtillus. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200900220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Kuo RY, Qian K, Morris-Natschke SL, Lee KH. Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat Prod Rep 2009; 26:1321-44. [PMID: 19779642 DOI: 10.1039/b810774m] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Reen-Yen Kuo
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA
| | | | | | | |
Collapse
|