1
|
Merinas-Amo T, Merinas-Amo R, Alonso-Moraga Á, Font R, Del Río Celestino M. In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate. Foods 2024; 13:3981. [PMID: 39683053 DOI: 10.3390/foods13233981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been used to test a wide range of concentrations for safety purposes: toxicity, genotoxicity, longevity and health span. Medium concentrations corresponding to the human acceptable daily intake (ADI) (0.06 mg/mL) were not toxic nor genotoxic for Drosophila and safe for the lifespan parameters. Once safety was determined, the possible nutraceutical effects of monosodium glutamate was monitored in terms of antitoxicity, antigenotoxicity assays and health span. The results for protective activity against hydrogen peroxide were positive in terms of the medium concentration, antitoxic and antigenotoxic in terms of inhibiting the genotoxicity induced by the oxidative toxin up to 43.7% and increasing the health span expectancy by 32% in terms of days. Monosodium glutamate has been demonstrated to be cytotoxic against the model tumour cell line HL-60, not only in a necrotic way but through internucleosomal DNA fragmentation antitumour activity. The significant LINE1 DNA sequence methylation of HL-60 tumour cells induced by monosodium glutamate is a molecular marker for chemoprevention. Conclusions: the slight or non-significant positive nutraceutical and chemo preventive potential showed by monosodium glutamate at its ADI concentration can be considered as a safe dose for a moderate consumption.
Collapse
Affiliation(s)
| | | | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Av. Menéndez Pidal, s/n, 14080 Córdoba, Spain
| | | |
Collapse
|
2
|
Tan D, Miao D, Zhao C, Shi J, Lv Q, Lu F, Ruan H, Xiong Z, Zhang X. N6-methyladenosine-modified ALDH9A1 modulates lipid accumulation and tumor progression in clear cell renal cell carcinoma through the NPM1/IQGAP2/AKT signaling pathway. Cell Death Dis 2024; 15:520. [PMID: 39039052 PMCID: PMC11263707 DOI: 10.1038/s41419-024-06896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Aldehyde dehydrogenases superfamily (ALDHs), which are ubiquitously present in various organisms with diverse subcellular localizations, play a crucial role in regulating malignant tumor progression; Nevertheless, their involvement in clear cell renal cell carcinoma (ccRCC) has not been elucidated. In this study, we performed comprehensive bioinformatics analyses on the 19 ALDHs genes, and identified ALDH9A1 as a key contributor in ccRCC. Expression patterns and clinical relevance of ALDH9A1 were determined using bioinformatics analyses, real-time PCR, western blotting, and immunohistochemistry. To explore the underlying mechanism behind the tumor suppressor role of ALDH9A1, RNA sequencing, methylated RNA immunoprecipitation, luciferase reporter assay, mass spectroscopy, immunoprecipitation, mutational studies and immunofluorescence were employed. The impact of ALDH9A1 in ccRCC progression and metabolic programming was assessed through both in vitro and in vivo. Here, this study revealed ALDH9A1 as a tumor suppressor gene in ccRCC. The fat mass and obesity associated protein (FTO) was identified as a demethylase for ALDH9A1 mRNA, resulting in its reduced stability and expression levels in ccRCC. Functional experiments demonstrated that the deficiency of ALDH9A1 in ccRCC promoted tumor proliferation, invasion, migration and lipid accumulation. Mechanistic insights illustrated that the diminished levels of ALDH9A1 resulted in the failure to sequester nucleophosmin 1 (NPM1) within cytoplasm, thereby suppressing the transcription of IQ motif containing the GTPase-activating protein 2 (IQGAP2), subsequently activating the AKT-mTOR signaling, ultimately fostering tumor progression and lipid accumulation. In conclusion, the present study highlights the robust prognostic significance of ALDH9A1 and delivers a comprehensive understanding of ALDH9A1-NPM1-IQGAP2-AKT axis in ccRCC. These findings established a solid research foundation for novel therapeutic strategies for ccRCC patients.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feiyi Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
4
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
5
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
The Prognostic Role of Chronic Obstructive Pulmonary Disease for Lung Cancer After Pulmonary Resection. J Surg Res 2022; 275:137-148. [DOI: 10.1016/j.jss.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
|
7
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|
8
|
Toxicological and Nutraceutical Screening Assays of Some Artificial Sweeteners. Processes (Basel) 2022. [DOI: 10.3390/pr10020410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial sweeteners are food additives worldwide used instead of fructose or glucose in many diet beverages. Furthermore, diet beverages intake has been increasing every year. Thus, some food agencies should regulate it based on toxicological studies. Debates and controversial results are demonstrated, and authority can revise its decision on the basis of new data reporting toxicological effects since cyclamate has been forbidden in some countries. Therefore, the aim of this study was to report new data about the toxicity of acesulfame-k, aspartame, and cyclamate, which are useful for authority agencies, determining the toxic potential and nutraceutical capabilities of these compounds. The toxicity, antitoxicity, genotoxicity, antigenotoxicity, and life expectancy assays were carried out in Drosophila as an in vivo model. In addition, in vitro HL-60 line cell was used to evaluate the chemopreventive activity determining the cytotoxic effect and the capability of producing DNA damage due to internucleosomal fragmentation or DNA strand breaks. Furthermore, the methylated status of these cancer cells treated with the tested compounds was assayed as a cancer therapy. Our results demonstrated that all tested compounds were neither toxic nor genotoxic, whereas these compounds resulted in antigenotoxic and cytotoxic substances, except for cyclamate. Aspartame showed antitoxic effects in Drosophila. All tested compounds decreased the quality of life of this in vivo organism model. Acesulfame-k, aspartame, and cyclamate induced DNA damage in the HL-60 cell line in the comet assay, and acesulfame-k generally increased the methylation status. In conclusion, all tested artificial sweeteners were safe compounds at assayed concentrations since toxicity and genotoxicity were not significantly induced in flies. Moreover, Aspartame and Cyclamate showed protective activity against a genotoxin in Drosophila Regarding nutraceutical potential, acesulfame-k and aspartame could be demonstrated to be chemopreventive due to the cytotoxicity activity shown by these compounds. According to DNA fragmentation and comet assays, a necrotic way could be the main mechanism of death cells induced by acesulfame-k and aspartame. Finally, Acesulfame-K hypermethylated repetitive elements, which are hypomethylated in cancer cells resulting in a benefit to humans.
Collapse
|
9
|
Abstract
Nowadays, a general interest in improving health in order to achieve better conditions of life is increasing. Diet is a complex factor affecting health conditions. We analysed the biological activities of three types of alcohol-free lager beer (a blond, a pale-blond and a stout beer) as well as epicatechin gallate (ECG) as one of their most abundant phenols with the aim of revealing them as nutraceuticals. For that purpose, we carried out safety and protective assays of the tested substances in the well-known Drosophila melanogaster animal model. Moreover, chemoprevention studies on human leukaemia cells (HL-60) in an in vitro model were carried out to evaluate the viability and genomic damage potential of the studied compounds on the tumour cell line. Results suggest the safety properties of all compounds, although pale-blond and stout beer only showed genotoxic activity at the lowest concentrations assayed. Moreover, alcohol-free beers and phenols were able to protect against H2O2 oxidative damage as well as to induce an increase in longevity with an improvement of the quality of life in the in vivo animal model assayed. Promising results were obtained with the alcohol-free beers and ECG in the in vitro assays with human leukaemia cells as they inhibited the tumour cells’ growth, induced DNA damage and modified the methylation status of such a cancer cell line. To sum up, alcohol-free beers should be of interest not only because of their reduced calories and isotonic properties but because they can be recognised as nutraceutical substances.
Collapse
|
10
|
NRAS expression is associated with prognosis and tumor immune microenvironment in lung adenocarcinoma. J Cancer Res Clin Oncol 2021; 148:565-575. [PMID: 34746975 DOI: 10.1007/s00432-021-03842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE NRAS plays a pivotal role in progression of various kinds of somatic malignancies; however, the correlation between NRAS and lung adenocarcinoma is less known. We aim to analyze the prognostic value of NRAS expression in lung adenocarcinoma, and explore the relationship between NRAS and tumor immune microenvironment. METHODS We obtained the transcriptome profiles and clinical data of LUAD from The Cancer Genome Atlas database and three Genome Expression Omnibus datasets. Specimens from 325 patients with completely resected lung adenocarcinoma were collected for immunohistochemical assays of NRAS, PD-L1, PD-1 and TIM-3. Then, we performed gene set enrichment analysis to investigate cancer-related and immune-related signaling pathways. TIMER algorithms were performed to evaluate tumor immune infiltrating cells and immune-related biomarkers. RESULTS Compared with adjacent non-tumor tissue, NRAS expression was significantly upregulated in LUAD tissue. NRAS expression was significantly correlated with more advanced stage and positive lymph nodes. Kaplan-Meier curves and Cox analysis suggested that high NRAS expression led to a poor prognosis, and could be an independent prognostic factor in LUAD patients. Besides, NRAS expression was positively correlated with CD8+ T cells, macrophages, and neutrophils, and negatively correlated with B cells and CD4+ T cells. The expression level of NRAS was positively correlated with PD-L1, PD-1, and TIM-3 both at RNA and protein level. CONCLUSIONS To conclude, we found NRAS is a novel prognostic biomarker in LUAD. Besides, the expression level of NRAS may influence the prognosis of LUAD via various kinds of cancer-related pathways and remodeling TIM.
Collapse
|
11
|
Qin L, Guitart M, Curull V, Sánchez-Font A, Duran X, Tang J, Admetlló M, Barreiro E. Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines 2021; 9:biomedicines9101347. [PMID: 34680465 PMCID: PMC8533450 DOI: 10.3390/biomedicines9101347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lung cancer (LC) risk increases in patients with chronic respiratory diseases (COPD). MicroRNAs and redox imbalance are involved in lung tumorigenesis in COPD patients. Whether systemic alterations of those events may also take place in LC patients remains unknown. Our objectives were to assess the plasma levels of microRNAs, redox balance, and cytokines in LC patients with/without COPD. MicroRNAs (RT-PCR) involved in LC, oxidized DNA, MDA-protein adducts, GSH, TEAC, VEGF, and TGF-beta (ELISA) were quantified in plasma samples from non-LC controls (n = 45), LC-only patients (n = 32), and LC-COPD patients (n = 91). In LC-COPD patients compared to controls and LC-only, MDA-protein adduct levels increased, while those of GSH decreased, and two patterns of plasma microRNA were detected. In both LC patient groups, miR-451 expression was downregulated, while those of microRNA-let7c were upregulated, and levels of TEAC and TGF-beta increased compared to the controls. Correlations were found between clinical and biological variables. A differential expression profile of microRNAs was detected in patients with LC. Moreover, in LC patients with COPD, plasma oxidative stress levels increased, whereas those of GSH declined. Systemic oxidative and antioxidant markers are differentially expressed in LC patients with respiratory diseases, thus implying its contribution to the pathogenesis of tumorigenesis in these patients.
Collapse
Affiliation(s)
- Liyun Qin
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
12
|
Shi YX. Identification of the molecular function of tripartite motif containing 58 in human lung cancer. Oncol Lett 2021; 22:685. [PMID: 34434284 PMCID: PMC8335731 DOI: 10.3892/ol.2021.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is a major public health problem worldwide, with a high associated incidence and mortality. In the present study, novel epigenetic signatures were identified through genome-wide DNA methylation microarrays. The results revealed that tripartite motif containing 58 (TRIM58), a potential tumor suppressor gene exhibited high methylation and low expression in lung cancer tissue samples compared with normal tissues. Receiver operating characteristic curve analysis demonstrated that TRIM58 may be a promising early diagnostic indicator of lung cancer. In addition, the present study analyzed the role of TRIM58 in tumorigenesis and development in lung cancer A549 cells. Wound healing assay and transwell migration assay were used to investigate cell migration, and flow cytometry analysis was used to detect apoptosis. Silencing TRIM58 accelerated the proliferation and migration of lung cancer cells. In contrast, the overexpression of TRIM58 significantly inhibited the proliferation and migration of lung cancer cells and promoted apoptosis. Gene set enrichment analysis revealed that TRIM58 expression was negatively correlated with MYC targets, G2M checkpoints and the mTORC1 signaling pathway. These results of the present study suggested that TRIM58, a potential tumor suppressor gene may serve as a novel diagnostic biomarker and therapeutic target in human lung cancer.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
13
|
PRMT5 Selective Inhibitor Enhances Therapeutic Efficacy of Cisplatin in Lung Cancer Cells. Int J Mol Sci 2021; 22:ijms22116131. [PMID: 34200178 PMCID: PMC8201369 DOI: 10.3390/ijms22116131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023] Open
Abstract
As a therapeutic approach, epigenetic modifiers have the potential to enhance the efficacy of chemotherapeutic agents. Protein arginine methyltransferase 5 (PRMT5), highly expressed in lung adenocarcinoma, was identified to be involved in tumorigenesis. In the current study, we examined the potential antineoplastic activity of PRMT5 inhibitor, arginine methyltransferase inhibitor 1 (AMI-1), and cisplatin on lung adenocarcinoma. Bioinformatic analyses identified apoptosis, DNA damage, and cell cycle progression as the main PRMT5-associated functional pathways, and survival analysis linked the increased PRMT5 gene expression to worse overall survival in lung adenocarcinoma. Combined AMI-1 and cisplatin treatment significantly reduced cell viability and induced apoptosis. Cell cycle arrest in A549 and DMS 53 cells was evident after AMI-1, and was reinforced after combination treatment. Western blot analysis showed a reduction in demethylation histone 4, a PRMT5- downstream target, after treatment with AMI-1 alone or in combination with cisplatin. While the combination approach tackled lung cancer cell survival, it exhibited cytoprotective abilities on HBEpC (normal epithelial cells). The survival of normal bronchial epithelial cells was not affected by using AMI-1. This study highlights evidence of novel selective antitumor activity of AMI-1 in combination with cisplatin in lung adenocarcinoma cells.
Collapse
|
14
|
Chen E, Zhou J, Xu E, Zhang C, Liu J, Zhou J, Li M, Wu J, Yang Q. A genome-wide screen for differentially methylated long noncoding RNAs identified that lncAC007255.8 is regulated by promoter DNA methylation in Beas-2B cells malignantly transformed by NNK. Toxicol Lett 2021; 346:34-46. [PMID: 33872747 DOI: 10.1016/j.toxlet.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023]
Abstract
Tobacco exposure is well known to induce genetic and epigenetic changes that contribute to the pathogenesis of lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a significant tobacco-specific carcinogen, but the oncogenic mechanisms of NNK have not been thoroughly elucidated. In this study we found that DNA methyltransferase 1 (DNMT1) was overexpressed in malignantly transformed human bronchial epithelial Beas-2B cells induced by NNK (2B-NNK cells), by treatment with NNK (400 μg/mL) for 7 days. An Arraystar Human noncoding RNA Promoter Microarray was used to detect the DNA methylation status of the promoter region of long noncoding RNAs (lncRNAs). The result showed that 1010 differentially methylated fragments were present in the lncRNA promoter region. QRT-PCR revealed that the expression of lncRNA AC007255.8 was remarkably downregulated in 2B-NNK cells and lung cancer tissues. Furthermore, Methylation-specific PCR showed that the methylation of the lncRNA AC007255.8 promoter was increased in 2B-NNK cells and lung cancer tissues. The reduced expression of lncRNA AC007255.8 was significantly associated with hypermethylation of lncRNA AC007255.8 promoter region. LncRNA AC007255.8 overexpression could result in decreased cell proliferation and increased cell apoptosis in 2B-NNK cells. In conclusion, NNK induced lncRNA AC007255.8 promoter hypermethylation via upregulation of DNMT1 in Beas-2B cells, leading to downregulation of lncRNA AC007255.8, and ultimately the enhancement of cell proliferation and the inhibition of apoptosis. This research affords novel insights into the epigenetic mechanisms of lung cancer, and will stimulate further research into the involvement of aberrant DNA methylation of non-coding regions of the genome in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Enzhao Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiaxin Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Cheng Zhang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiayu Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Mengcheng Li
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jianjun Wu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Qiaoyuan Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
15
|
Immune-related miRNA signature identifies prognosis and immune landscape in head and neck squamous cell carcinomas. Biosci Rep 2021; 40:226787. [PMID: 33111959 PMCID: PMC7670576 DOI: 10.1042/bsr20201820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is recognised as an immune active cancer, but little is known about the role of microRNAs (miRNAs) in it. In the present study, we aim to determine a prognostic and immune-related miRNAs signature (IRMS) in HNSCC. Methods: Spearman correlation analysis was used to screen out prognostic immune-related miRNAs based on single-sample gene set enrichment analysis (ssGSEA). Least absolute shrinkage and selection operator (LASSO) Cox regression model was used to establish IRMS in HNSCC. Then, the influence of the IRMS on HNSCC was comprehensively analysed. Results: We obtained 11 prognostic immune-related miRNAs based on ssGSEA. Then an IRMS integrated with six miRNAs was established through LASSO Cox regression analysis. The stratification survival analysis indicated that IRMS was independent from other characteristics and performed favourably in the overall survival (OS) prediction. The function annotation suggested that IRMS was highly associated with the immune-related response biological processes and pathways which are so important for tumorigenesis of HNSCC. Moreover, the nomogram demonstrated that our model was identified as an independent prognostic factor. In addition, we found that IRMS was significantly correlated with the immune infiltration and expression of critical immune checkpoints, indicating that the poor prognosis might be caused partly by immunosuppressive microenvironment. Conclusion: We established a novel IRMS, which exhibited a potent prognostic value and could be representative of immune status in HNSCC.
Collapse
|
16
|
Mateo-Fernández M, Valenzuela-Gómez F, Font R, Del Río-Celestino M, Merinas-Amo T, Alonso-Moraga Á. In Vivo and In Vitro Assays Evaluating the Biological Activity of Taurine, Glucose and Energetic Beverages. Molecules 2021; 26:2198. [PMID: 33920365 PMCID: PMC8069289 DOI: 10.3390/molecules26082198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain; (R.F.); (M.D.R.-C.)
| | | | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
17
|
Toxicological and Epigenetic Studies of Two Types of Ale Beer, Tyrosol and Iso-Alpha Humulone. Processes (Basel) 2021. [DOI: 10.3390/pr9030485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although many benefits drawn from beer consumption are claimed, the epidemiological records are contradictory with respect to cancer prevention. The purpose of this study was to investigate the possible health-related activities involving genome safety and the ageing processes of two types of lyophilised ale beers (blond and stout), as well as two of their bioactive compounds (tyrosol and iso-alpha humulone). A multipurpose trial set of in vivo toxicity, antitoxicity, mutagenicity, antimutagenicity, lifespan and healthspan assays using Drosophila melanogaster were used. In parallel, several in vitro assays were designed using the cancer cell line HL-60 in order to establish the possible chemopreventive activity of the selected substances, where epigenetic modulation of DNA methylation changes, clastogenic activity and tumour cell inhibition growth were evaluated. The safety of the four substances was confirmed: lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB), tyrosol and iso-alpha humulone were neither toxic nor genotoxic. Moreover, all substances, except tyrosol, revealed the ability to protect individual genomes against oxidative radicals and to exert antimutagenic activity against the genotoxin hydrogen peroxide. With respect to the degenerative process indicators of lifespan and healthspan, tyrosol was the only compound that did not exert any influence on the life extension of Drosophila; LBAB induced a significant lifespan extension in D. melanogaster; LSAB and its distinctive compound iso-alpha humulone induced a reduction in longevity. The in vitro assays showed the cytotoxic activity of LBAB, LSAB and tyrosol against HL-60 cells. Moreover, proapoptotic DNA fragmentation or DNA strand breakage was observed for both types of beers and iso-alpha humulone at different concentrations. Furthermore, the lyophilised ale beers and tyrosol exhibited an increasing genome-wide methylation status, while iso-alpha humulone exhibited a demethylation status in repetitive cancer cell sequences. Although the biological activities assigned to beer consumption cannot be linked to any specific molecule/element due to the complexity of the phenolic profile, as well as the multifactor brewing process, the results obtained let us propose lyophilised ale beers as safe potential nutraceutical beverages when consumed in moderate amounts. The prevention of toxicity and genetic oxidative damage, as well as the induction of tumor cell death and modulation of the methylation status, are the key activities of beer that were shown in the present research.
Collapse
|
18
|
Su SF, Liu CH, Cheng CL, Ho CC, Yang TY, Chen KC, Hsu KH, Tseng JS, Chen HW, Chang GC, Yu SL, Li KC. Genome-Wide Epigenetic Landscape of Lung Adenocarcinoma Links HOXB9 DNA Methylation to Intrinsic EGFR-TKI Resistance and Heterogeneous Responses. JCO Precis Oncol 2021; 5:PO.20.00151. [PMID: 34036228 PMCID: PMC8140798 DOI: 10.1200/po.20.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) show efficacy in treating patients with lung adenocarcinoma with EGFR-activating mutations. However, a significant subset of targeted patients fail to respond. Unlike acquired resistance (AR), intrinsic resistance (IR) remains poorly understood. We investigated whether epigenomic factors contribute to patient-to-patient heterogeneity in the EGFR-TKI response and aimed to characterize the IR subpopulation that obtains no benefit from EGFR-TKIs. PATIENTS AND METHODS We conducted genome-wide DNA methylation profiling of 79 tumors sampled from patients with advanced lung adenocarcinoma before they received EGFR-TKI treatment and analyzed the patient responses. Pyrosequencing was performed in a validation cohort of 163 patients with EGFR-activating mutations. RESULTS A DNA methylation landscape of 216 CpG sites with differential methylation was established to elucidate the association of DNA methylation with the characteristics and EGFR-TKI response status of the patients. Functional analysis of 37 transcription-repressive sites identified the enrichment of transcription factors, notably homeobox (HOX) genes. DNA methylation of HOXB9 (cg13643585) in the enhancer region yielded 88% sensitivity for predicting drug response (odds ratio [OR], 6.64; 95% CI, 1.98 to 25.23; P = .0009). Pyrosequencing validated that HOXB9 gained methylation in patients with a poor EGFR-TKI response (OR, 3.06; 95% CI, 1.13 to 8.19; P = .019). CONCLUSION Our data suggest that homeobox DNA methylation could be a novel tumor cellular state that can aid the precise categorization of tumor heterogeneity in the study of IR to EGFR-TKIs. We identified, for the first time, an epigenomic factor that can potentially complement DNA mutation status in discriminating patients with lung adenocarcinoma who are less likely to benefit from EGFR-TKI treatment, thereby leading to improved patient management in precision medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, YongLin Scholar, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Liu
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chiou-Ling Cheng
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Kuo-Hsuan Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Internal Medicine, Division of Critical Care and Respiratory Therapy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Gee-Chen Chang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sung-Liang Yu
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Graduate Institute of Pathology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Statistics, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
19
|
Al-Yozbaki M, Jabre I, Syed NH, Wilson CM. Targeting DNA methyltransferases in non-small-cell lung cancer. Semin Cancer Biol 2021; 83:77-87. [PMID: 33486076 DOI: 10.1016/j.semcancer.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Despite the advances in treatment using chemotherapy or targeted therapies, due to static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. However, treatment using single epigenetic agents on solid tumours has been inadequate; whereas, treatment with a combination of DNMTs inhibitors with chemotherapy and immunotherapy has shown great promise. Dietary sources of phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel and promising way to prevent and treat cancer. Herein, we will discuss the different DNMTs, DNA methylation profiling in NSCLC as well as current demethylating agents in ongoing clinical trials. Therefore, providing a concise overview of future developments in the field of epigenetic therapy in NSCLC.
Collapse
Affiliation(s)
- Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Ibtissam Jabre
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naeem H Syed
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, UK.
| |
Collapse
|
20
|
De Chiara L, Leiro-Fernandez V, Rodríguez-Girondo M, Valverde D, Botana-Rial MI, Fernández-Villar A. Comparison of Bisulfite Pyrosequencing and Methylation-Specific qPCR for Methylation Assessment. Int J Mol Sci 2020; 21:ijms21239242. [PMID: 33287451 PMCID: PMC7730915 DOI: 10.3390/ijms21239242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Different methodological approaches are available to assess DNA methylation biomarkers. In this study, we evaluated two sodium bisulfite conversion-dependent methods, namely pyrosequencing and methylation-specific qPCR (MS-qPCR), with the aim of measuring the closeness of agreement of methylation values between these two methods and its effect when setting a cut-off. Methylation of tumor suppressor gene p16/INK4A was evaluated in 80 lung cancer patients from which cytological lymph node samples were obtained. Cluster analyses were used to establish methylated and unmethylated groups for each method. Agreement and concordance between pyrosequencing and MS-qPCR was evaluated with Pearson’s correlation, Bland–Altman, Cohen’s kappa index and ROC curve analyses. Based on these analyses, cut-offs were derived for MS-qPCR. An acceptable correlation (Pearson’s R2 = 0.738) was found between pyrosequencing (PYRmean) and MS-qPCR (NMP; normalized methylation percentage), providing similar clinical results when categorizing data as binary using cluster analysis. Compared to pyrosequencing, MS-qPCR tended to underestimate methylation for values between 0 and 15%, while for methylation >30% overestimation was observed. The estimated cut-off for MS-qPCR data based on cluster analysis, kappa-index agreement and ROC curve analysis were much lower than that derived from pyrosequencing. In conclusion, our results indicate that independently of the approach used for estimating the cut-off, the methylation percentage obtained through MS-qPCR is lower than that calculated for pyrosequencing. These differences in data and therefore in the cut-off should be examined when using methylation biomarkers in the clinical practice.
Collapse
Affiliation(s)
- Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
- Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Universidad de Vigo, 36310 Vigo, Spain
- Correspondence: ; Tel.: +34-986-813-841
| | - Virginia Leiro-Fernandez
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300RC Leiden, The Netherlands;
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
- Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Universidad de Vigo, 36310 Vigo, Spain
| | - María Isabel Botana-Rial
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| |
Collapse
|
21
|
Huang S, Wei YK, Kaliamurthi S, Cao Y, Nangraj AS, Sui X, Chu D, Wang H, Wei DQ, Peslherbe GH, Selvaraj G, Shi J. Circulating miR-1246 Targeting UBE2C, TNNI3, TRAIP, UCHL1 Genes and Key Pathways as a Potential Biomarker for Lung Adenocarcinoma: Integrated Biological Network Analysis. J Pers Med 2020; 10:jpm10040162. [PMID: 33050659 PMCID: PMC7712139 DOI: 10.3390/jpm10040162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Analysis of circulating miRNAs (cmiRNAs) before surgical operation (BSO) and after the surgical operation (ASO) has been informative for lung adenocarcinoma (LUAD) diagnosis, progression, and outcomes of treatment. Thus, we performed a biological network analysis to identify the potential target genes (PTGs) of the overexpressed cmiRNA signatures from LUAD samples that had undergone surgical therapy. Differential expression (DE) analysis of microarray datasets, including cmiRNAs (GSE137140) and cmRNAs (GSE69732), was conducted using the Limma package. cmiR-1246 was predicted as a significantly upregulated cmiRNA of LUAD samples BSO and ASO. Then, 9802 miR-1246 target genes (TGs) were predicted using 12 TG prediction platforms (MiRWalk, miRDB, and TargetScan). Briefly, 425 highly expressed overlapping miRNA-1246 TGs were observed between the prediction platform and the cmiRNA dataset. ClueGO predicted cell projection morphogenesis, chemosensory behavior, and glycosaminoglycan binding, and the PI3K-Akt signaling pathways were enriched metabolic interactions regulating miRNA-1245 overlapping TGs in LUAD. Using 425 overlapping miR-1246 TGs, a protein-protein interaction network was constructed. Then, 12 PTGs of three different Walktrap modules were identified; among them, ubiquitin-conjugating enzyme E2C (UBE2C), troponin T1(TNNT1), T-cell receptor alpha locus interacting protein (TRAIP), and ubiquitin c-terminal hydrolase L1(UCHL1) were positively correlated with miR-1246, and the high expression of these genes was associated with better overall survival of LUAD. We conclude that PTGs of cmiRNA-1246 and key pathways, namely, ubiquitin-mediated proteolysis, glycosaminoglycan binding, the DNA metabolic process, and the PI3K-Akt-mTOR signaling pathway, the neurotrophin and cardiomyopathy signaling pathway, and the MAPK signaling pathway provide new insights on a noninvasive prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China; (S.H.); (X.S.)
| | - Yong-Kai Wei
- College of Science, Henan University of Technology, Zhengzhou 450001, China;
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada; (S.K.); (D.-Q.W.); (G.H.P.); (G.S.)
- Center of Interdisciplinary Science-Computational Life Sciences, College of Biological Engineering, Henan University of Technology, No.100, Lianhua Street, Hi-Tech Development Zone, Zhengzhou 450001, China
| | - Yanghui Cao
- Department of General Surgery, Henan Tumor Hospital, No.127 Dongming Road, Zhengzhou 450008, China;
| | - Asma Sindhoo Nangraj
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xin Sui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China; (S.H.); (X.S.)
| | - Dan Chu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China; (D.C.); (H.W.)
| | - Huan Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China; (D.C.); (H.W.)
| | - Dong-Qing Wei
- Centre for Research in Molecular Modeling and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada; (S.K.); (D.-Q.W.); (G.H.P.); (G.S.)
- Center of Interdisciplinary Science-Computational Life Sciences, College of Biological Engineering, Henan University of Technology, No.100, Lianhua Street, Hi-Tech Development Zone, Zhengzhou 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada; (S.K.); (D.-Q.W.); (G.H.P.); (G.S.)
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada; (S.K.); (D.-Q.W.); (G.H.P.); (G.S.)
- Center of Interdisciplinary Science-Computational Life Sciences, College of Biological Engineering, Henan University of Technology, No.100, Lianhua Street, Hi-Tech Development Zone, Zhengzhou 450001, China
| | - Jiang Shi
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China; (D.C.); (H.W.)
- Correspondence: ; Tel.: +86-15824836717
| |
Collapse
|
22
|
Xiong Z, Yuan C, shi J, Xiong W, Huang Y, Xiao W, Yang H, Chen K, Zhang X. Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress. Am J Cancer Res 2020; 10:11444-11461. [PMID: 33052225 PMCID: PMC7546001 DOI: 10.7150/thno.48469] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Tumors have significant abnormalities in various biological properties. In renal cell carcinoma (RCC), metabolic abnormalities are characteristic biological dysfunction that cannot be ignored. Despite this, many aspects of this dysfunction have not been fully explained. The purpose of this study was to reveal a new mechanism of metabolic and energy-related biological abnormalities in RCC. Methods: Molecular screening and bioinformatics analysis were performed in RCC based on data from The Cancer Genome Atlas (TCGA) database. Regulated pathways were investigated by qRT-PCR, immunoblot analysis and immunohistochemistry. A series of functional analyses was performed in cell lines and xenograft models. Results: By screening the biological abnormality core dataset-mitochondria-related dataset and the metabolic abnormality core dataset-energy metabolism-related dataset in public RCC databases, PCK2 was found to be differentially expressed in RCC compared with normal tissue. Further analysis by the TCGA database showed that PCK2 was significantly downregulated in RCC and predicted a poor prognosis. Through additional studies, it was found that a low expression of PCK2 in RCC was caused by methylation of its promoter region. Restoration of PCK2 expression in RCC cells repressed tumor progression and increased their sensitivity to sunitinib. Finally, mechanistic investigations indicated that PCK2 mediated the above processes by promoting endoplasmic reticulum stress. Conclusions: Collectively, our results identify a specific mechanism by which PCK2 suppresses the progression of renal cell carcinoma (RCC) and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress. This finding provides a new biomarker for RCC as well as novel targets and strategies for the treatment of RCC.
Collapse
|
23
|
Daniunaite K, Sestokaite A, Kubiliute R, Stuopelyte K, Kettunen E, Husgafvel-Pursiainen K, Jarmalaite S. Frequent DNA methylation changes in cancerous and noncancerous lung tissues from smokers with non-small cell lung cancer. Mutagenesis 2020; 35:geaa022. [PMID: 32914849 DOI: 10.1093/mutage/geaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/07/2020] [Indexed: 01/20/2023] Open
Abstract
Cancer deaths account for nearly 10 million deaths worldwide each year, with lung cancer (LCa) as the leading cause of cancer-related death. Smoking is one of the major LCa risk factors, and tobacco-related carcinogens are potent mutagens and epi-mutagens. In the present study, we aimed to analyse smoking-related epigenetic changes in lung tissues from LCa cases. The study cohort consisted of paired LCa and noncancerous lung tissues (NLT) from 104 patients, 90 of whom were smokers or ex-smokers (i.e. ever smokers) at the time of diagnosis. DNA methylation status of tumour suppressor genes DAPK1, MGMT, p16, RASSF1 and RARB was screened by means of methylation-specific PCR (MSP) and further analysed quantitatively by pyrosequencing. Methylation of at least one gene was detected in 59% (61 of 104) of LCa samples and in 39% (41 of 104) of NLT. DAPK1 and RASSF1 were more frequently methylated in LCa than in NLT (P = 0.022 and P = 0.041, respectively). The levels of DNA methylation were higher in LCa than NLT at most of the analysed CpG positions. More frequent methylation of at least one gene was observed in LCa samples of ever smokers (63%, 57 of 90) as compared with never smokers (36%, 5 of 14; P = 0.019). In the ever smokers group, methylation of the genes also occurred in NLT, but was rare or absent in the samples of never smokers. Among the current smokers, RASSF1 methylation in LCa showed association with the number of cigarettes smoked per day (P = 0.017), whereas in NLT it was positively associated with the duration of smoking (P = 0.039). Similarly, p16 methylation in LCa of current smokers correlated with the larger number of cigarettes smoked per day (P = 0.047). Overall, DNA methylation changes were present in both cancerous and noncancerous tissues of LCa patients and showed associations with smoking-related parameters.
Collapse
Affiliation(s)
- Kristina Daniunaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
- Finnish Institute of Occupational Health, Topeliuksenkatu, Helsinki, Finland
| | - Agne Sestokaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Raimonda Kubiliute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Kristina Stuopelyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Eeva Kettunen
- Finnish Institute of Occupational Health, Topeliuksenkatu, Helsinki, Finland
| | | | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| |
Collapse
|
24
|
Meng F, Zhang L, Ren Y, Ma Q. Transcriptome analysis reveals key signature genes involved in the oncogenesis of lung cancer. Cancer Biomark 2020; 29:475-482. [PMID: 32831194 DOI: 10.3233/cbm-200110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies have suggested potential signature genes for lung cancer, however, due to factors such as sequencing platform, control, data selection and filtration conditions, the results of lung cancer-related gene expression analysis are quite different. Here, we performed a meta-analysis on existing lung cancer gene expression results to identify Meta-signature genes without noise. In this study, functional enrichment, protein-protein interaction network, the DAVID, String, TfactS, and transcription factor binding were performed based on the gene expression profiles of lung adenocarcinoma and non-small cell lung cancer deposited in the GEO database. As a result, a total of 574 differentially expressed genes (DEGs) affecting the pathogenesis of lung cancer were identified (207 up-regulated expression and 367 down-regulated expression in lung cancer tissues). A total of 5,093 interactions existed among the 507 (88.3%) proteins, and 10 Meta-signatures were identified: AURKA, CCNB1, KIF11, CCNA2, TOP2A, CENPF, KIF2C, TPX2, HMMR, and MAD2L1. The potential biological functions of Meta-signature DEGs were revealed. In summary, this study identified key genes involved in the process of lung cancer. Our results would help the developing of novel biomarkers for lung cancer.
Collapse
|
25
|
Dukaew N, Chairatvit K, Pitchakarn P, Imsumran A, Karinchai J, Tuntiwechapikul W, Wongnoppavich A. Inactivation of AKT/NF‑κB signaling by eurycomalactone decreases human NSCLC cell viability and improves the chemosensitivity to cisplatin. Oncol Rep 2020; 44:1441-1454. [PMID: 32945500 PMCID: PMC7448543 DOI: 10.3892/or.2020.7710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
The high activation of protein kinase B (AKT)/nuclear factor-κB (NF-κB) signaling has often been associated with the induction of non-small cell lung cancer (NSCLC) cell survival and resistance to cisplatin, which is one of the most widely used chemotherapeutic drugs in the treatment of NSCLC. The inhibition of AKT/NF-κB can potentially be used as a molecular target for cancer therapy. Eurycomalactone (ECL), a quassinoid from Eurycoma longifolia Jack, has previously been revealed to exhibit strong cytotoxic activity against the human NSCLC A549 cell line, and can inhibit NF-κB activity in TNF-α-activated 293 cells stably transfected with an NF-κB luciferase reporter. The present study was the first to investigate whether ECL inhibits the activation of AKT/NF-κB signaling, induces apoptosis and enhances chemosensitivity to cisplatin in human NSCLC cells. The anticancer activity of ECL was evaluated in two NSCLC cell lines, A549 and Calu-1. ECL decreased the viability and colony formation ability of both cell lines by inducing cell cycle arrest and apoptosis through the activation of pro-apoptotic caspase-3 and poly (ADP-ribose) polymerase, as well as the reduction of anti-apoptotic proteins Bcl-xL and survivin. In addition, ECL treatment suppressed the levels of AKT (phospho Ser473) and NF-κB (phospho Ser536). Notably, ECL significantly enhanced cisplatin sensitivity in both assessed NSCLC cell lines. The combination treatment of cisplatin and ECL promoted cell apoptosis more effectively than cisplatin alone, as revealed by the increased cleaved caspase-3, but decreased Bcl-xL and survivin levels. Exposure to cisplatin alone induced the levels of phosphorylated-AKT and phosphorylated-NF-κB, whereas co-treatment with ECL inhibited the cisplatin-induced phosphorylation of AKT and NF-κB, leading to an increased sensitization effect on cisplatin-induced apoptosis. In conclusion, ECL exhibited an anticancer effect and sensitized NSCLC cells to cisplatin through the inactivation of AKT/NF-κB signaling. This finding provides a rationale for the combined use of chemotherapy drugs with ECL to improve their efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- Nahathai Dukaew
- Graduate/PhD Degree Program in Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Abstract
Cancer can be identified as an uncontrolled growth and reproduction of cell. Accumulation of genetic aberrations (mutations of oncogenes and tumor-suppressor genes and epigenetic modifications) is one of the characteristics of cancer cell. Increasing number of studies highlighted importance of the epigenetic alterations in cancer treatment and prognosis. Now, cancer epigenetics have a huge importance for developing novel biomarkers and therapeutic target for cancer. In this review, we will provide a summary of the major epigenetic changes involved in cancer and preclinical results of epigenetic therapeutics.
Collapse
Affiliation(s)
- Cansu Aydin
- Department of Molecular Biology and Genetics, Faculty of Medicine, Trakya University, Merkez/Edirne, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Turkish Republic of Northern Cyprus
| |
Collapse
|
27
|
Yu H, Raut JR, Schöttker B, Holleczek B, Zhang Y, Brenner H. Individual and joint contributions of genetic and methylation risk scores for enhancing lung cancer risk stratification: data from a population-based cohort in Germany. Clin Epigenetics 2020; 12:89. [PMID: 32552915 PMCID: PMC7301507 DOI: 10.1186/s13148-020-00872-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Risk stratification for lung cancer (LC) screening is so far mostly based on smoking history. This study aimed to assess if and to what extent such risk stratification could be enhanced by additional consideration of genetic risk scores (GRSs) and epigenetic risk scores defined by DNA methylation. METHODS We conducted a nested case-control study of 143 incident LC cases and 1460 LC-free controls within a prospective cohort of 9949 participants aged 50-75 years with 14-year follow-up. Lifetime smoking history was obtained in detail at recruitment. We built a GRS based on 31 previously identified LC-associated single-nucleotide polymorphisms (SNPs) and a DNA methylation score (MRS) based on methylation of 151 previously identified smoking-associated cytosine-phosphate-guanine (CpG) loci. We evaluated associations of GRS and MRS with LC incidence by logistic regression models, controlling for age, sex, smoking status, and pack-years. We compared the predictive performance of models based on pack-years alone with models additionally including GRS and/or MRS using the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). RESULTS GRS and MRS showed moderate and strong associations with LC risk even after comprehensive adjustment for smoking history (adjusted odds ratio [95% CI] comparing highest with lowest quartile 1.93 [1.05-3.71] and 5.64 [2.13-17.03], respectively). Similar associations were also observed within the risk groups of ever and heavy smokers. Addition of GRS and MRS furthermore strongly enhanced LC prediction beyond prediction by pack-years (increase of optimism-corrected AUC among heavy smokers from 0.605 to 0.654, NRI 26.7%, p = 0.0106, IDI 3.35%, p = 0.0036), the increase being mostly attributable to the inclusion of MRS. CONCLUSIONS Consideration of MRS, by itself or in combination with GRS, may strongly enhance LC risk stratification.
Collapse
Affiliation(s)
- Haixin Yu
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Janhavi R Raut
- Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Krebsregister Saarland, Präsident-Baltz-Straße 5, 66119, Saarbrücken, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Bel’skaya LV, Sarf EA, Kosenok VK, Gundyrev IA. Biochemical Markers of Saliva in Lung Cancer: Diagnostic and Prognostic Perspectives. Diagnostics (Basel) 2020; 10:E186. [PMID: 32230883 PMCID: PMC7235830 DOI: 10.3390/diagnostics10040186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the work is to study the metabolic characteristics of saliva in lung cancer for use in early diagnosis and determining the prognosis of the disease. The patient group included 425 lung cancer patients, 168 patients with non-cancerous lung diseases, and 550 healthy volunteers. Saliva samples were collected from all participants in the experiment before treatment and 34 biochemical saliva parameters were determined. Participants were monitored for six years to assess survival rates. The statistical analysis was performed by means of Statistica 10.0 (StatSoft) program and R package (version 3.2.3). To construct the classifier, the Random Forest method was used; the classification quality was assessed using the cross-validation method. Prognostic factors were analyzed by multivariate analysis using Cox's proportional hazard model in a backward step-wise fashion to adjust for potential confounding factors. A complex of metabolic changes occurring in saliva in lung cancer is described. Seven biochemical parameters were identified (catalase, triene conjugates, Schiff bases, pH, sialic acids, alkaline phosphatase, chlorides), which were used to construct the classifier. The sensitivity and specificity of the method were 69.5% and 87.5%, which is practically not inferior to the diagnostic characteristics of markers routinely used in the diagnosis of lung cancer. Significant independent factors in the poor prognosis of lung cancer are imidazole compounds (ICs) above 0.478 mmol/L and salivary lactate dehydrogenase activity below 545 U/L. Saliva has been shown to have great potential for the development of diagnostic and prognostic tests for lung cancer.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Laboratory of biochemistry, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Elena A. Sarf
- Laboratory of biochemistry, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Victor K. Kosenok
- Department of Oncology, Omsk State Medical University, 12, Lenina str, 644099 Omsk, Russia;
| | | |
Collapse
|
29
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
30
|
MicroRNA Biomarker hsa-miR-195-5p for Detecting the Risk of Lung Cancer. Int J Genomics 2020; 2020:7415909. [PMID: 31976313 PMCID: PMC6961786 DOI: 10.1155/2020/7415909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is one of the leading diagnosed cancers worldwide, and microRNAs could be used as biomarkers to diagnose lung cancer. hsa-miR-195 has been demonstrated to affect the prognosis of NSCLC (non-small-cell lung cancer) in a previous study. However, the diagnostic value of hsa-miR-195-5p in lung cancer has not been investigated. Methods To evaluate the ability of hsa-miR-195-5p to diagnose lung cancer, we compared the expression of hsa-miR-195-5p in lung cancer patients, COPD patients, and normal controls. Receiver operating characteristic (ROC) curve analysis was performed to investigate the sensitivity and specificity of hsa-miR-195-5p. Coexpression network and pathway analysis were carried out to explore the mechanism. Results We found that hsa-miR-195-5p had lower expression in lung cancer and COPD patients than in normal controls, and the AUC was 0.92 for diagnosing lung cancer. hsa-miR-143 correlated with hsa-miR-195-5p, and by combining these two microRNAs, the AUC was 0.97 for diagnosing lung cancer. Conclusions hsa-miR-195-5p may act as a biomarker that contributes to the diagnosis of lung cancer and the detection of its high-risk population.
Collapse
|
31
|
Tranchevent LC, Azuaje F, Rajapakse JC. A deep neural network approach to predicting clinical outcomes of neuroblastoma patients. BMC Med Genomics 2019; 12:178. [PMID: 31856829 PMCID: PMC6923884 DOI: 10.1186/s12920-019-0628-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The availability of high-throughput omics datasets from large patient cohorts has allowed the development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence. Such methods are also important to better understand the biological mechanisms underlying disease etiology and development, as well as treatment responses. Recently, different predictive models, relying on distinct algorithms (including Support Vector Machines and Random Forests) have been investigated. In this context, deep learning strategies are of special interest due to their demonstrated superior performance over a wide range of problems and datasets. One of the main challenges of such strategies is the "small n large p" problem. Indeed, omics datasets typically consist of small numbers of samples and large numbers of features relative to typical deep learning datasets. Neural networks usually tackle this problem through feature selection or by including additional constraints during the learning process. METHODS We propose to tackle this problem with a novel strategy that relies on a graph-based method for feature extraction, coupled with a deep neural network for clinical outcome prediction. The omics data are first represented as graphs whose nodes represent patients, and edges represent correlations between the patients' omics profiles. Topological features, such as centralities, are then extracted from these graphs for every node. Lastly, these features are used as input to train and test various classifiers. RESULTS We apply this strategy to four neuroblastoma datasets and observe that models based on neural networks are more accurate than state of the art models (DNN: 85%-87%, SVM/RF: 75%-82%). We explore how different parameters and configurations are selected in order to overcome the effects of the small data problem as well as the curse of dimensionality. CONCLUSIONS Our results indicate that the deep neural networks capture complex features in the data that help predicting patient clinical outcomes.
Collapse
Affiliation(s)
- Léon-Charles Tranchevent
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, Strassen, L-1445 Luxembourg
- Current affiliation: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg
| | - Francisco Azuaje
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, Strassen, L-1445 Luxembourg
- Current affiliation: Data and Translational Sciences, UCB Celltech, 208 Bath Road, Slough, SL1 3WE UK
| | - Jagath C. Rajapakse
- Bioinformatics Research Center, School of Computer Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798 Singapore
| |
Collapse
|
32
|
Yin J, Hu W, Xue X, Fu W, Dai L, Jiang Z, Zhong S, Deng B, Zhao J. Epigenetic activation of hepatocyte growth factor is associated with epithelial-mesenchymal transition and clinical outcome in non-small cell lung cancer. J Cancer 2019; 10:5070-5081. [PMID: 31602259 PMCID: PMC6775597 DOI: 10.7150/jca.30034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) expression is repressed in normal differentiated lung epithelial cells, but its expression is aberrantly upregulated in non-small cell lung cancer (NSCLC) and acts as a poor prognostic factor. The underlying molecular mechanisms of aberrant HGF expression are unclear. In this study, a novel differential methylation region located in the HGF promoter was identified, which was associated with aberrant HGF expression in NSCLC. The correlations of HGF promoter methylation detected by methylation specific PCR and HGF expression detected by immunohistochemistry with clinical outcomes were assessed in NSCLC patients. DNA methylation of the HGF promoter was correlated with the activation of HGF expression, which induced epithelial-mesenchymal transition, cell migration and invasion. According to the clinical correlation analysis in 63 NSCLC patients, those with high methylation were more likely to have stages III and IV (51.6% vs. 25.0%, P<0.05) and metastasis (57.5% vs. 16.7%, P<0.05) than patients with low methylation. In addition, compared with the protein marker of HGF expression, the DNA methylation marker of the HGF promoter had higher specificity for prognostic analysis of metastases in NSCLC. Our study indicated the regulatory mechanisms related to DNA methylation of the HGF promoter for HGF expression in NSCLC epithelial cells, and suggested that the DNA methylation signature of the HGF promoter could potentially be employed as a biomarker to improve the prognostic accuracy of NSCLC.
Collapse
Affiliation(s)
- Jun Yin
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weimin Hu
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingyang Xue
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenfan Fu
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengpeng Zhong
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Boyun Deng
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Parris BA, O'Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thorac Dis 2019; 11:S2155-S2172. [PMID: 31737343 DOI: 10.21037/jtd.2019.10.54] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer comprise the leading causes of lung disease-related mortality worldwide. Exposure to tobacco smoke is a mutual aetiology underlying the two diseases, accounting for almost 90% of cases. There is accumulating evidence supporting the role of immune dysfunction, the lung microbiome, extracellular vesicles and underlying genetic susceptibility in the development of COPD and lung cancer. Further, epigenetic factors, involving DNA methylation and microRNA expression, have been implicated in both diseases. Chronic inflammation is a key feature of COPD and could be a potential driver of lung cancer development. Using next generation technologies, further studies investigating the genomics, epigenetics and gene-environment interaction in key molecular pathways will continue to elucidate the pathogenic mechanisms underlying the development of COPD and lung cancer, and contribute to the development of novel diagnostic and prognostic tools for early intervention and personalised therapeutic strategies.
Collapse
Affiliation(s)
- Brielle A Parris
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
34
|
Mateo-Fernández M, Alves-Martínez P, Del Río-Celestino M, Font R, Merinas-Amo T, Alonso-Moraga Á. Food Safety and Nutraceutical Potential of Caramel Colour Class IV Using In Vivo and In Vitro Assays. Foods 2019; 8:foods8090392. [PMID: 31491925 PMCID: PMC6770427 DOI: 10.3390/foods8090392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023] Open
Abstract
Nutraceutical activity of food is analysed to promote the healthy characteristics of diet where additives are highly used. Caramel is one of the most worldwide consumed additives and it is produced by heating natural carbohydrates. The aim of this study was to evaluate the food safety and the possible nutraceutical potential of caramel colour class IV (CAR). For this purpose, in vivo toxicity/antitoxicity, genotoxicity/antigenotoxicity and longevity assays were performed using the Drosophila melanogaster model. In addition, cytotoxicity, internucleosomal DNA fragmentation, single cell gel electrophoresis and methylation status assays were conducted in the in vitro HL-60 human leukaemia cell line. Our results reported that CAR was neither toxic nor genotoxic and showed antigenotoxic effects in Drosophila. Furthermore, CAR induced cytotoxicity and hipomethylated sat-α repetitive element using HL-60 cell line. In conclusion, the food safety of CAR was demonstrated, since Lethal Dose 50 (LD50) was not reached in toxicity assay and any of the tested concentrations induced mutation rates higher than that of the concurrent control in D. melanogaster. On the other hand, CAR protected DNA from oxidative stress provided by hydrogen peroxide in Drosophila. Moreover, CAR showed chemopreventive activity and modified the methylation status of HL-60 cell line. Nevertheless, much more information about the mechanisms of gene therapies related to epigenetic modulation by food is necessary.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain.
| | - Pilar Alves-Martínez
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain
| | - Mercedes Del Río-Celestino
- Agri-Food Laboratory, Council of Agriculture, Fisheries and Rural Development of Andalusia (CAPDER), 14004 Córdoba, Spain
| | - Rafael Font
- Agri-Food Laboratory, Council of Agriculture, Fisheries and Rural Development of Andalusia (CAPDER), 14004 Córdoba, Spain
| | - Tania Merinas-Amo
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain
| | - Ángeles Alonso-Moraga
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain
| |
Collapse
|
35
|
He Z, Zhang R, Chen S, Chen L, Li H, Ye L, Li Q, Wang Z, Wang Q, Duan H, Niu Y, Xiao Y, Dong G, Li D, Yu D, Zheng Y, Xing X, Chen W. FLT1 hypermethylation is involved in polycyclic aromatic hydrocarbons-induced cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:607-615. [PMID: 31185349 DOI: 10.1016/j.envpol.2019.05.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/14/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Coke oven emissions (COEs) are common particle pollutants in occupational environment and the major constituents of COEs are polycyclic aromatic hydrocarbons (PAHs). Previously, we identified aberrant methylation of the fms related tyrosine kinase 1 (FLT1) gene over the course of benzo(a)pyrene (BaP)-induced cell transformation via genome-wide methylation array. To quantify FLT1 methylation, we established a bisulfite pyrosequencing assay and examined the FLT1 hypermethylation in several human cancers. The results revealed that 70.0% (21/30 pairs) of lung cancers harbored hypermethylated FLT1 and concomitant suppression of gene expression compared to the adjacent tissues. This implies that FLT1 hypermethylation might play a role in malignant cell transformation. In addition, FLT1 hypermethylation and gene suppression appeared in primary human lymphocytes in a dose-response manner following COEs treatment. To explore whether FLT1 methylation is correlated with COEs exposure and DNA damage, we recruited 144 male subjects who had been exposed to high levels of COEs and 84 male control subjects. Notably, the FLT1 methylation in peripheral blood lymphocytes (PBLCs) of the COEs-exposed group (19.8 ± 3.2%) was enhanced by 17.9% compared to that of the control group (16.8 ± 2.8%) (P < 0.001). The FLT1 methylation status was positively correlated with urinary 1-hydroxypyrene (1-OHP) levels, an internal exposure marker of PAHs (β = 0.029, 95% CI = 0.010-0.048, P = 0.003) and positively correlated with DNA damage (βOTM = 0.024, 95% CI = 0.007-0.040, P = 0.005; βTail DNA = 0.035, 95% CI = 0.0017-0.054, P < 0.001) indicated by comet assay. Taken together, these findings indicate that FLT1 might be a tumor suppressor, and its hypermethylation might contribute to PAHs-induced carcinogenicity.
Collapse
Affiliation(s)
- Zhini He
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huiyao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiong Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Merinas-Amo T, Merinas-Amo R, García-Zorrilla V, Velasco-Ruiz A, Chladek L, Plachy V, Del Río-Celestino M, Font R, Kokoska L, Alonso-Moraga Á. Toxicological Studies of Czech Beers and Their Constituents. Foods 2019; 8:E328. [PMID: 31398837 PMCID: PMC6723778 DOI: 10.3390/foods8080328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Czech beers are unique because they are brewed using specific technology at a particular latitude and for being entirely produced in the area of the Czech Republic. The purpose of this work is the evaluation of toxicological effects of a variety of freeze-dried Czech beers, their raw materials (malts, hops and yeast) and processed-beer (wort, hopped wort and young beer). METHODS In vivo assays to evaluate the safety and protective effects in the Drosophila melanogaster eukaryotic system, and the in vitro evaluations of chemopreventive and DNA damage activity using the HL-60 tumour human cell line were carried out. RESULTS The safe effects for all the analysed substances and general protective effects against H2O2 were shown both at the individual and genomic level in the Drosophila animal model, with some exceptions. Moreover, all the substances were able to inhibit the tumour cell growth and to induce DNA damage in the HL-60 cells at different levels (proapoptotic, single/double strands breaks and methylation status). CONCLUSIONS The promising effects shown by freeze-dried Czech beers due to their safety, protection against a toxin, chemopreventive potential and the induction of DNA damage in tumour cells, allow the proposition of Czech beer as a beverage with nutraceutic potential.
Collapse
Affiliation(s)
- Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
| | | | | | | | - Ladislav Chladek
- Research and Teaching Brewery, Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Pargue, Czech Republic
| | - Vladimir Plachy
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Pargue, Czech Republic
| | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Pargue, Czech Republic
| | | |
Collapse
|
37
|
Fernández-Bedmar Z, Demyda-Peyrás S, Merinas-Amo T, Del Río-Celestino M. Nutraceutic Potential of Two Allium Species and Their Distinctive Organosulfur Compounds: A Multi-Assay Evaluation. Foods 2019; 8:foods8060222. [PMID: 31234398 PMCID: PMC6617039 DOI: 10.3390/foods8060222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the biological activities of two Allium species (garlic and onion) as well as diallyl disulphide (DADS) and dipropyl disulphide (DPDS) as their representative bioactive compounds in a multi-assay experimental design. The genotoxic, antigenotoxic, and lifespan effects of garlic, onion, DADS, and DPDS were checked in Drosophila melanogaster and their cytotoxic, pro-apoptotic, and DNA-clastogenic activities were analyzed using HL60 tumoral cells. All compounds were non-genotoxic and antigenotoxic against H2O2-induced DNA damage with a positive dose-response effect and different inhibition percentages (the highest value: 95% for DADS) at all tested concentrations. Daily intake of Allium vegetables, DADS, or DPDS had no positive effects on flies' lifespan and health span. Garlic and DADS exerted the highest cytotoxic effects in a positive dose-dependent manner. Garlic and DADS exerted a DNA-internucleosomal fragmentation as an index of induced proapoptotic activity on HL60 cells. Allium vegetables and DADS were able to induce clastogenic strand breaks in the DNA of HL60 cells. This study showed the genomic safety of the assayed substances and their protective genetic effects against the hydrogen peroxide genotoxine. Long-term treatments during the whole life of the Drosophila genetic model were beneficial only at low-median concentrations. The chemo-preventive activity of garlic could be associated with its distinctive organosulfur DADS. We suggest that supplementary studies are needed to clarify the cell death pathway against garlic and DADS.
Collapse
Affiliation(s)
- Zahira Fernández-Bedmar
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | - Sebastián Demyda-Peyrás
- Institute of Veterinary Genetics (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | | |
Collapse
|
38
|
Andreescu N, Puiu M, Niculescu M. Effects of Dietary Nutrients on Epigenetic Changes in Cancer. Methods Mol Biol 2019; 1856:121-139. [PMID: 30178249 DOI: 10.1007/978-1-4939-8751-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor's microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.
Collapse
Affiliation(s)
- Nicoleta Andreescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | - Maria Puiu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Mihai Niculescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
- Advanced Nutrigenomics, Hillsborough, NC, USA
| |
Collapse
|
39
|
Biological Effects of Food Coloring in In Vivo and In Vitro Model Systems. Foods 2019; 8:foods8050176. [PMID: 31137639 PMCID: PMC6560448 DOI: 10.3390/foods8050176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The suitability of certain food colorings is nowadays in discussion because of the effects of these compounds on human health. For this reason, in the present work, the biological effects of six worldwide used food colorings (Riboflavin, Tartrazine, Carminic Acid, Erythrosine, Indigotine, and Brilliant Blue FCF) were analyzed using two model systems. (2) Methods: In vivo toxicity, antitoxicity, and longevity assays using the model organism Drosophila melanogaster and in vitro cytotoxicity, DNA fragmentation, and methylation status assays using HL-60 tumor human cell line were carried out. (3) Results: Our in vivo results showed safe effects in Drosophila for all the food coloring treatments, non-significant protective potential against an oxidative toxin, and different effects on the lifespan of flies. The in vitro results in HL-60 cells, showed that the tested food colorings increased tumor cell growth but did not induce any DNA damage or modifications in the DNA methylation status at their acceptable daily intake (ADI) concentrations. (4) Conclusions: From the in vivo and in vitro studies, these results would support the idea that a high chronic intake of food colorings throughout the entire life is not advisable.
Collapse
|
40
|
Lin H, Lu Y, Lin L, Meng K, Fan J. Does chronic obstructive pulmonary disease relate to poor prognosis in patients with lung cancer?: A meta-analysis. Medicine (Baltimore) 2019; 98:e14837. [PMID: 30882673 PMCID: PMC6426564 DOI: 10.1097/md.0000000000014837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nowadays, there is growing recognition that chronic obstructive pulmonary disease (COPD) may have influence on lung cancer. However, coexisted COPD related to prognosis of lung cancer is still elusive. We conducted this meta-analysis to examine the association between COPD and 5-year overall survival (OS) and postoperative pulmonary complications of patients with lung cancer. METHODS A comprehensive computer-based online search was conducted using PubMed, Embase, Medline, and the Cochrane Library for articles published before September 30, 2017. We identified 29 eligible studies, which included 70,111 patients in the related literature. RESULTS Twenty-two of the 29 studies provided hazard ratio for OS (1.18, 95% confidence interval: 1.11-1.25; P < .001), it suggested that the presence of COPD indicated poor survival for the patients with lung cancer. In subgroup analysis, the relationship between COPD and OS occurrence remained statistically prominent in the subgroups stratified by study designs, COPD diagnosis timing, lung cancer surgery, cancer stage, and origins of patients. The presence of COPD increased the risk of bronchopleural fistula, pneumonia, prolonged air leakage, and prolonged mechanical ventilation. CONCLUSIONS The present meta-analysis suggested that coexisting COPD is associated with poor survival outcomes in patients with lung cancer and higher rates of postoperative pulmonary complications.
Collapse
Affiliation(s)
- Hefeng Lin
- The Second Affiliated Hospital, School of Medicine
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunlong Lu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Meng
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Junqiang Fan
- The Second Affiliated Hospital, School of Medicine
| |
Collapse
|
41
|
Jin Y, Yang Y, Su Y, Ye X, Liu W, Yang Q, Wang J, Fu X, Gong Y, Sun H. Identification a novel clinical biomarker in early diagnosis of human non-small cell lung cancer. Glycoconj J 2019; 36:57-68. [PMID: 30607521 DOI: 10.1007/s10719-018-09853-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality. The clinical biomarkers currently used for the early diagnosis of lung cancer have poor sensitivity and specificity. Therefore, it is urgent to identify sensitive biomarkers for the early detection of NSCLC to improve the patient survival of patients. In our previously study, we identified glycoprotein alpha-1-antichymotrypsin (AACT) as an early biomarker of NSCLC. In this study, serum glycopeptides were enriched using the high-GlcNAc-specific binding lectin, AANL/AAL2, for further quantitative proteomics analysis using LC-MS/MS. A total of 55 differentially expressed proteins were identified by using demethylation labelling proteomics. Serum paraoxonase/arylesterase 1 (PON1) was selected for validation by western blotting and lectin-ELISA in samples from 120 enrolled patients. Our data showed that AANL-enriched PON1 has better diagnostic performance than total PON1 in early NSCLC, since it differed between early Stage I tumor samples and tumor-free samples (healthy and benign). Combining AANL-enriched PON1 with carcinoembryonic antigen (CEA) significantly improved the diagnostic specificity of CEA. Moreover, combined AANL-enriched PON1 and AANL-enriched AACT was significantly different between early NSCLC samples and tumor-free samples with an AUC of 0.940, 94.4% sensitivity, and 90.2% specificity. Our findings suggest that combined AANL-enriched PON1 and AANL-enriched AACT is a potential clinical biomarker for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Yajun Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yanting Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiangdong Ye
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Qing Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jie Wang
- Tongji Medical Hospital, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiangning Fu
- Tongji Medical Hospital, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yongsheng Gong
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, People's Republic of China.
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
42
|
An H, Ma X, Liu M, Wang X, Wei X, Yuan W, Ma J. Stomatin plays a suppressor role in non-small cell lung cancer metastasis. Chin J Cancer Res 2019; 31:930-944. [PMID: 31949395 PMCID: PMC6955161 DOI: 10.21147/j.issn.1000-9604.2019.06.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective Metastasis is one of the key causes of high mortality in lung cancer. Aberrant DNA methylation is a common event in metastatic lung cancer. We aimed to identify new epigenetic regulation of metastasis-associated genes and characterize their effects on lung cancer progression. Methods We screened genes associated with non-small cell lung cancer (NSCLC) metastasis by integrating datasets from the Gene Expression Omnibus (GEO) database. We obtained epigenetic-regulated candidate genes by analyzing the expression profile of demethylation genes. By overlapping analysis, epigenetically modulated metastasis-associated genes were obtained. Kaplan-Meier plotter (KM plotter) was utilized to assess the overall survival (OS) of stomatin in lung cancer. Immunohistochemistry (IHC) was conducted to determine the association between stomatin and metastasis-associated clinical indicators. Both in vitro and in vivo assays were performed to investigate the potential role of stomatin in metastasis. The regulation mechanisms of transforming growth factor β1 (TGFβ1) on stomatin were determined by Sequenom MassARRAY quantitative methylation and western blot assays.
Results A series of bioinformatic analyses revealed stomatin as the metastasis-associated gene regulated by DNA methylation. The KM plotter analysis showed a positive association between stomatin and the OS of lung cancer. IHC analysis indicated that the decreased stomatin expression is linked with advanced TNM stage. Loss- and gain-of-function experiments displayed that stomatin could inhibit the migration and invasion of NSCLC cells. Furthermore, TGFβ1 repressed stomatin expression during epithelial-to-mesenchymal transition (EMT). The negative correlation between stomatin and TGFβ1 was also validated in advanced stage III lung tumor samples. The underlying mechanism by which TGFβ1 inhibits stomatin is due in part to DNA methylation. Conclusions Our results suggest that stomatin may be a target for epigenetic regulation and can be used to prevent metastatic diseases.
Collapse
Affiliation(s)
- Huaying An
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingyi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
43
|
Abstract
INTRODUCTION Cancer is often diagnosed at late stages when the chance of cure is relatively low and although research initiatives in oncology discover many potential cancer biomarkers, few transition to clinical applications. This review addresses the current landscape of cancer biomarker discovery and translation with a focus on proteomics and beyond. Areas covered: The review examines proteomic and genomic techniques for cancer biomarker detection and outlines advantages and challenges of integrating multiple omics approaches to achieve optimal sensitivity and address tumor heterogeneity. This discussion is based on a systematic literature review and direct participation in translational studies. Expert commentary: Identifying aggressive cancers early on requires improved sensitivity and implementation of biomarkers representative of tumor heterogeneity. During the last decade of genomic and proteomic research, significant advancements have been made in next generation sequencing and mass spectrometry techniques. This in turn has led to a dramatic increase in identification of potential genomic and proteomic cancer biomarkers. However, limited successes have been shown with translation of these discoveries into clinical practice. We believe that the integration of these omics approaches is the most promising molecular tool for comprehensive cancer evaluation, early detection and transition to Precision Medicine in oncology.
Collapse
Affiliation(s)
- Ventzislava A Hristova
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Daniel W Chan
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
44
|
Zhang Y, Xu H, Mu J, Guo S, Ye L, Li D, Peng W, He X, Xiang T. Inactivation of ADAMTS18 by aberrant promoter hypermethylation contribute to lung cancer progression. J Cell Physiol 2018; 234:6965-6975. [PMID: 30417422 DOI: 10.1002/jcp.27439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Lung cancer is the most frequently diagnosed cancer worldwide. Epigenetic regulation contributes to lung cancer pathogenesis. The ADAMTS18 tumor suppressor gene is inactivated in some cancers, but its involvement in lung cancer has not been shown. Immunohistochemistry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and methylation-specific PCR were used to assay ADAMTS18 expression and promoter methylation in lung tumor tissues and adjacent tissues. Cell viability, transwell, and wound-healing assays, as well as flow cytometry were used to characterize the biological activity of ADAMTS18. The influence of ADAMTS18 on protein expression was assayed using western blots analysis, and its effect on chemosensitivity was assayed by the response to cisplatin. We found that ADAMTS18 was silenced in lung cancer cells by promoter methylation. Demethylation by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, with or without the histone deacetylase inhibitor trichostatin A, restored ADAMTS18 expression. Compared with normal lung tissue, ADAMTS18 in lung tumors was frequently methylated. Overexpression of ADAMTS18 in lung cancer cells inhibited cell proliferation, migration, and invasiveness and induced G0/G1 cell cycle arrest. Furthermore, ADAMTS18 suppressed epidermal growth factor receptor/protein kinase B (EGFR/AKT) signaling, which sensitized lung cancer cells to cisplatin. Thus, our results demonstrated that the tumor suppressor gene ADAMTS18 was downregulated in lung cancer by promoter CpG methylation, and it promoted sensitivity to cisplatin via EGFR/AKT signaling. Our study suggests that ADAMTS18 promoter methylation is a potential epigenetic biomarker for early detection of lung cancer and warrants investigation as a therapeutic target for early-stage lung cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongying Xu
- Department of Respiratory Medicine, The Sixth People's Hospital of Chongqing, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dairong Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Prabhakar B, Shende P, Augustine S. Current trends and emerging diagnostic techniques for lung cancer. Biomed Pharmacother 2018; 106:1586-1599. [DOI: 10.1016/j.biopha.2018.07.145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
|
46
|
Wang X, Jia Z, Shi H, Pan C. Identification and evaluation of 2 circulating microRNAs for non-small cell lung cancer diagnosis. Clin Exp Pharmacol Physiol 2018; 45:1083-1086. [PMID: 29862540 DOI: 10.1111/1440-1681.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoqin Wang
- Department of Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| | - Zhongzhi Jia
- Department of Interventional Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| | - Haifeng Shi
- Department of Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| | - Changjie Pan
- Department of Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| |
Collapse
|
47
|
Inage T, Nakajima T, Itoga S, Ishige T, Fujiwara T, Sakairi Y, Wada H, Suzuki H, Iwata T, Chiyo M, Yoshida S, Matsushita K, Yasufuku K, Yoshino I. Molecular Nodal Staging Using miRNA Expression in Lung Cancer Patients by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Respiration 2018; 96:267-274. [PMID: 29898461 DOI: 10.1159/000489178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The limited negative predictive value of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has often been discussed. OBJECTIVE The aim of this study was to identify a highly sensitive molecular biomarker for lymph node staging by EBUS-TBNA. METHODS Five microRNAs (miRNAs) (miR-200a, miR-200b, miR-200c, miR-141, and let-7e) were selected as biomarker candidates for the detection of nodal metastasis in a miRNA expression analysis. After having established a cutoff level of expression for each marker to differentiate malignant from benign lymph nodes among surgically dissected lymph nodes, the cutoff level was applied to snap-frozen EBUS-TBNA samples. Archived formalin-fixed paraffin- embedded (FFPE) samples rebiopsied by EBUS-TBNA after induction chemoradiotherapy were also analyzed. RESULTS The expression of all candidate miRNAs was significantly higher in metastatic lymph nodes than in benign ones (p < 0.05) among the surgical samples. miR-200c showed the highest diagnostic yield, with a sensitivity of 95.4% and a specificity of 100%. When the cutoff value for miR-200c was applied to the snap-frozen EBUS-TBNA samples, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 97.4, 81.8, 95.0, 90.0, and 94.0%, respectively. For restaging FFPE EBUS- TBNA samples, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 100, 60.0, 80.0, 100, and 84.6%, respectively. Among the restaged samples, 4 malignant lymph nodes were false negative by EBUS-TBNA, but they were accurately identified by miR-200c. CONCLUSIONS miR-200c can be used as a highly sensitive molecular staging biomarker that will enhance nodal staging of lung cancer.
Collapse
Affiliation(s)
- Terunaga Inage
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sakae Itoga
- Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Takayuki Ishige
- Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Taiki Fujiwara
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hironobu Wada
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takekazu Iwata
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masako Chiyo
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shigetoshi Yoshida
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
48
|
Kim DS, Lee WK, Park JY. Hypermethylation of normal mucosa of esophagus-specific 1 is associated with an unfavorable prognosis in patients with non-small cell lung cancer. Oncol Lett 2018; 16:2409-2415. [PMID: 30013631 PMCID: PMC6036558 DOI: 10.3892/ol.2018.8915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality due to high incidence and poor survival rates, irrespective of global variations in its biology and treatment. Changes in DNA methylation are frequent in cancer and constitute an important mechanism in tumorigenesis. Normal mucosa of esophagus-specific 1 (NMES1) is expressed in epithelial tissue and is believed to be a tumor suppressor gene. The present study investigated the methylation status of the NMES1 promoter in 178 cases of primary non-small cell lung cancer (NSCLC) by pyrosequencing and evaluated the prognostic value of this methylation. NMES1 methylation-positive tumors above the background threshold for non-malignant tissue were found in 15 cases (8.4%) and were detected exclusively in malignant tissues. In addition, univariate and multivariate analyses showed that methylation-positive patients experienced worse overall survival rate (OSR) compared with methylation-negative patients (adjusted hazard ratio, 2.62; 95% confidence interval, 1.20-5.69; P=0.02). Notably, within the methylation-positive group, patients with strong methylation tended to experience worse OSR compared with those with weak methylation (adjusted hazard ratio, 2.45 vs. 3.05; Ptrend=0.02). These findings suggest that NMES1 may serve an important role in lung cancer pathogenesis, and its methylation could be considered a prognostic marker for NSCLC. Further studies with large numbers of samples are required to confirm this conclusion.
Collapse
Affiliation(s)
- Dong Sun Kim
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Won Kee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| |
Collapse
|
49
|
Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, Abd Rahman AZ, Zakaria Z, Yahaya BH, Baharuddin P. Novel triple‑positive markers identified in human non‑small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep 2018; 40:669-681. [PMID: 29845263 PMCID: PMC6072294 DOI: 10.3892/or.2018.6461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non-small cell lung cancer (NSCLC). Initially, we sorted two subpopulations known as the triple-positive (EpCAM+/CD166+/CD44+) and triple-negative (EpCAM−/CD166−/CD44−) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple-positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5-fluouracil and cisplatin with 80% expression of ALDH was observed in the triple-positive subpopulation, compared to only 67% detected in the triple-negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple-positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple-negative subpopulation on day 2. This was similarly observed on day 3 in the triple-positive subpopulation with 36% higher cellular migration compared to the triple-negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple-positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple-positive subpopulation demonstrated similar characteristics to CSCs compared to the triple-negative subpopulation. It also confirmed the feasibility of using the triple-positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
Collapse
Affiliation(s)
- Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Noor Atiqah Fakharuzi
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Ahmad Zuhairi Abd Rahman
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Puteri Baharuddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Wang Z, Li M, Huang Y, Ma L, Zhu H, Kong L, Yu J. Clinical and radiological characteristics of central pulmonary adenocarcinoma: a comparison with central squamous cell carcinoma and small cell lung cancer and the impact on treatment response. Onco Targets Ther 2018; 11:2509-2517. [PMID: 29765230 PMCID: PMC5942174 DOI: 10.2147/ott.s154385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose The proportion of central pulmonary adenocarcinoma (ADC) in central-type lung cancer has been gradually increasing due to the overall increasing incidence of pulmonary ADC. But the clinical and radiological characteristics of central ADCs remain unclear. In this study, we compared the clinical and radiological characteristics of central ADCs with those of small cell lung cancers (SCLCs) and squamous cell carcinomas (SQCCs) and investigated the impact of these characteristics on patients’ treatment response. Patients and methods The medical records of 302 consecutive patients with central lung cancer from July 2014 to September 2016 were retrospectively reviewed. There were 99 patients with ADC, 95 with SQCC and 108 with SCLC. Computed tomography images were interpreted by two radiologists. Treatment response was determined by Response Evaluation Criteria In Solid Tumors 1.1. Results Univariate analyses found that younger age, female sex, no history of smoking, higher levels of carcinoembryonic antigen (CEA), contralateral hilum lymphadenopathy, contralateral lung metastasis, pleural nodules and pleural metastasis to the interlobular fissure were significantly correlated with central ADC. Multivariate logistic regression analyses revealed that compared with central SQCC, female sex, younger age, no history of smoking, higher levels of CEA and contralateral hilum lymphadenopathy were the significantly independent indicators of central pulmonary ADC. Furthermore, compared with central SCLC, younger age, higher levels of CEA and cytokeratin 19 fragment (Cyfra21-1), lower levels of neuron-specific enolase, pleural nodules and lack of vascular involvement were significantly associated with central ADC. In 85 central ADC patients who received first-line platinum-based chemotherapy, both univariate and multivariate logistic regression analyses revealed that pulmonary emphysema had a negative correlation with treatment response (odds ratio=8.04, p=0.02). Conclusion Our study revealed that central pulmonary ADCs exhibited more aggressive clinical and radiological characteristics. Pulmonary emphysema was an independent and negative indicator for treatment response of central ADC.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Shandong University, Jinan, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yong Huang
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Li Ma
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|