1
|
Zhou HF, Deng WY, Guo HQ, Luo WH, Han ZQ, Cheng Z, Lau WM, Xiao NY, Zhang XQ. Antibacterial activity of polyethylene film by hyperthermal hydrogen induced cross-linking with chitosan quaternary ammonium salt. Int J Biol Macromol 2024; 286:138335. [PMID: 39638192 DOI: 10.1016/j.ijbiomac.2024.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In this study, hyperthermal hydrogen-induced cross-linking (HHIC) technology was applied to construct a dense cross-linking layer of antibacterial chitosan quaternary ammonium salt (HTCC) to PE surface through the selective cleavage of CH bonds and subsequent cross-linking of the resulting carbon radicals. Before HHIC treatment, UV-Ozone was used to activate PE surface to facilitate HTCC adsorption. FT-IR and XPS analyses proved the successful cross-linking between PE and HTCC. From AFM analysis, the prepared PE cross-linked HTCC film (PE-c-HTCC) showed the rougher surface with average roughness (Ra) of 9.16 nm. The water vapor permeability (WVP) and oxygen permeability (OP) values of the film were decreased by about 83 % and 97 %, respectively. Additionally, the film exhibited strong antibacterial properties against E. coli and S. aureus. In terms of these properties, the shelf life of fresh beef could be extended for 2 days after packing with the PE-c-HTCC film.
Collapse
Affiliation(s)
- Hui-Fang Zhou
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wan-Ying Deng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hao-Qi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen-Han Luo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi-Qiang Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528000, China
| | - Zheng Cheng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528000, China
| | - Nai-Yu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xue-Qin Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Zhuang K, Shu X, Xie W. Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydr Polym 2024; 344:122503. [PMID: 39218541 DOI: 10.1016/j.carbpol.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing, China; National Coarse Cereals Engineering Research Center, Daqing, China.
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Xie
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
3
|
Wang Q, Wang H, Chen H, Meng Z, Kong F, Liu Y, Jiang W. Efficient synthesis of highly hydrophobic lignin nanoparticles and their application as nano fillers for multifunctional composite membranes. Int J Biol Macromol 2024; 282:136869. [PMID: 39454925 DOI: 10.1016/j.ijbiomac.2024.136869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Controlling the hydrophobic behaviors of lignin nanoparticles (LNPs) is crucial and advantageous for their application as film Nano Fillers, yet it poses a significant challenge. Herein, we successfully developed a novel method for the preparation of LNPs with highly hydrophobic behaviors using ternary deep eutectic solution (DES)-H2O systems. The resulting LNPs exhibit a significantly reduced content of hydrophilic groups on their outer surface, leading to a zeta potential value of only -4.9 mV, and up to 140.0° of water contact angle (WCA). Afterwards, a "Dissolution-Restructuration" mechanism was proposed to explain the formation of the prepared LNPs. Firstly, DES demonstrates superior H-bonding capabilities, facilitating the complete disruption of inter- and intramolecular H-bonding in lignin, and resulting in the formation of a highly homogenized lignin network. Subsequently, the DES system undergoes compromise after adding water, triggering the reformation of both inter- and intramolecular H-bonding and π-π interactions. Consequently, lignin orderly self-assembles into LNPs with highly hydrophobic characteristics. Especially, using the as-prepared LNPs as Nano fillers, a series of LNPs-containing polyvinyl alcohol (PVA) films were successfully fabricated, exhibiting exceptional hydrophobic behaviors (with contact angles reaching up to 124.0°). Furthermore, the mechanical strength, UV-shielding capabilities, and biodegradability of the PVA films are significantly enhanced. This study introduces a sustainable and efficient approach for the synthesis of hydrophobic LNPs, thereby facilitating the broadening of applications for lignin-based functional composite film materials.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Huimei Wang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Honglei Chen
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhengxiang Meng
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yu Liu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Weikun Jiang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Zhang Q, Zhu E, Li T, Zhang L, Wang Z. High-Value Utilization of Cellulose: Intriguing and Important Effects of Hydrogen Bonding Interactions─A Mini-Review. Biomacromolecules 2024; 25:6296-6318. [PMID: 39321123 DOI: 10.1021/acs.biomac.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cellulose has been widely used in papermaking, textile, and chemical industries due to its diverse sources, environmental friendliness, and renewability. Recently, much more attention has been paid to converting cellulose into high-value-added products. Therefore, the extraction of nanocellulose, the dissolution of cellulose, and their applications are some of the most important research topics currently. However, cellulose's dense hydrogen bond network poses challenges for efficient extraction and dissolution, limiting its potential for functional material development. This review discusses the mechanisms of hydrogen bond disruption and weak interactions during nanocellulose extraction and cellulose dissolution. Key challenges and future research directions are highlighted, emphasizing developing efficient, ecofriendly, and cost-effective methods. Additionally, this review provides theoretical insights for constructing high-performance cellulose-based materials.
Collapse
Affiliation(s)
- Qing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Enqing Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianqi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Ma R, Dai L, Sun D, Yang Y, Tang C, Li L, He Z, Ni Y. Nanocellulose/scleroglucan-enhanced robust, heat-resistant composite hydrogels for oilfield water plugging. Carbohydr Polym 2024; 341:122320. [PMID: 38876713 DOI: 10.1016/j.carbpol.2024.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
In an oil exploitation process, hydrogel plugging agents can effectively reduce the water-oil intermixing, decrease water extraction volume, and enhance oil recovery rate. The practical applications of traditional polyacrylamide (PAM) hydrogel plugging agents in oilfield are limited by their non-biodegradability, poor mechanical performance, and inferior temperature-resistance. This work developed a mechanically stable and high-temperature-resistant composite hydrogel (STP) by incorporating biodegradable scleroglucan (Slg) and TEMPO-oxidized cellulose nanofibers (TOCN) in the PAM hydrogel. The addition of Slg conferred heat resistance to the PAM hydrogel, while TOCN reinforced the mechanical strength. Anti-aging analyses revealed that the STP endured for 108 h in a saline environment at 140 °C. In the water flooding characterization, the STP displayed a breakthrough pressure of 42.10 psi/ft. at a flow rate of 0.75 cm3/min. Under these extreme conditions, the plugging pressure reached 14.74 psi/ft., meeting the essential criteria for oilfield water plugging. This research demonstrates the potential of polysaccharides in the preparation of sustainable, tough, and heat-resistant water plugging materials.
Collapse
Affiliation(s)
- Ruoteng Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lei Dai
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Dalong Sun
- College of Energy, Chengdu University of Technology, Chengdu 610059, China
| | - Yang Yang
- College of Energy, Chengdu University of Technology, Chengdu 610059, China.
| | - Chunxia Tang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liang Li
- Sinopec Northwest Oil Field Branch, Sinopec Group, Urumqi 830011, China
| | - Zhibin He
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
6
|
Trovagunta R, Marquez R, Tolosa L, Barrios N, Zambrano F, Suarez A, Pal L, Gonzalez R, Hubbe MA. Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 1. The physical chemistry of lignin self-assembly. Adv Colloid Interface Sci 2024; 332:103247. [PMID: 39126917 DOI: 10.1016/j.cis.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.
Collapse
Affiliation(s)
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Laura Tolosa
- School of Chemical Engineering, Universidad de Los Andes, Mérida, Venezuela
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Antonio Suarez
- WestRock Company, 2742 Charles City Rd, Richmond, VA 23231, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Hai LV, Bandi R, Dadigala R, Han SY, Cho SW, Yang GU, Ma SY, Lee DY, Jin JW, Moon HC, Kwon GJ, Lee SH. Hydrophobic, ultraviolet radiation-shielding, and antioxidant functionalities of TEMPO-oxidized cellulose nanofibril film coated with modified lignin nanoparticles. Int J Biol Macromol 2024; 277:134464. [PMID: 39098701 DOI: 10.1016/j.ijbiomac.2024.134464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
In this study, lignin nanoparticles (LN) and octadecylamine-modified LN (LN-ODA) were utilized as coating materials to enhance the hydrophobic, antioxidant, and ultraviolet radiation-shielding (UV-shielding) properties of a TEMPO-oxidized nanocellulose film (TOCNF). The water contact angle (WCA) of the TOCNF was approximately 53° and remained stable for 1 min, while the modified LN-ODA-coated TOCNF reached over 130° and maintained approximately 85° for an hour. Pure TOCNF exhibited low antioxidant properties (4.7 %), which were significantly enhanced in TOCNF-LN (81.6 %) and modified LN-ODA (10.3 % to 27.5 %). Modified LN-ODA-coated TOCNF exhibited antioxidant properties two to six times higher than those of pure TOCNF. Modified LN-ODA exhibited thermal degradation max (Tmax) at 421 °C, while pure LN showed the main degradation temperature at approximately Tmax 330 °C. The thermal stability of TOCNF-LN-ODA-coated materials remained consistent with that of pure TOCNF, while the crystallinity index of the sample showed a slight decrease due to the amorphous nature of the lignin structure. The tensile strength of TOCNF was approximately 114.1 MPa and decreased to 80.1, 51.3, and 30.3 MPa for LN-ODA coating at 5, 10, and 15 g/m2, respectively.
Collapse
Affiliation(s)
- Le Van Hai
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Woo Cho
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Go-Un Yang
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Young Ma
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Da-Young Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju-Won Jin
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hae-Chan Moon
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Li S, Cui B, Jia X, Wang W, Cui Y, Ding J, Yang C, Fang Y, Song Y, Zhang X. A cellulose-based light-management film incorporated with benzoxazine resin/tannic acid exhibiting UV/blue light double blocking and enhanced mechanical property. Int J Biol Macromol 2024; 278:134461. [PMID: 39153676 DOI: 10.1016/j.ijbiomac.2024.134461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Cellulose, as a biomass resource, has attracted increasingly attention and extensive research by virtue of its widely sources, ideal degradability, good mechanical properties and easy modification due to its rich hydroxyl groups. Nevertheless, it is still a challenge to attain high performance cellulose-based composite film materials with diverse functional combinations. In this work, we developed a multifunctional cellulose-based film via a facile impregnation-curing strategy. Here, benzoxazine resin (BR) is used as an optically functional component to endow the microfibrillated cellulose (MFC) film with powerful light management capabilities including UV and blue light double shielding, high transmittance, and high haze. Meanwhile, the introduction of tannic acid (TA) substantially enhanced the mechanical properties of the film, including tensile strength and toughness, by constructing energy-sacrificial bonds. An effective self-healing of the film was achieved by controlling the degree of BR curing. The final films exhibited 98.24 % UV shielding and 89.98 % blue light blocking, good mechanical properties including a tensile strength of 202.21 MPa and tensile strain of 7.1 %, as well as desirable thermal healing properties supported by incompletely cured BR. This work may provide new insights into the high-value utilization of biomass resources.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Jia
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Yutong Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jiayan Ding
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunmao Yang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yiqun Fang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yongming Song
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xianquan Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Qin Q, Zeng S, Duan G, Liu Y, Han X, Yu R, Huang Y, Zhang C, Han J, Jiang S. "Bottom-up" and "top-down" strategies toward strong cellulose-based materials. Chem Soc Rev 2024; 53:9306-9343. [PMID: 39143951 DOI: 10.1039/d4cs00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cellulose, as the most abundant natural polymer on Earth, has long captured researchers' attention due to its high strength and modulus. Nevertheless, transferring its exceptional mechanical properties to macroscopic 2D and 3D materials poses numerous challenges. This review provides an overview of the research progress in the development of strong cellulose-based materials using both the "bottom-up" and "top-down" approaches. In the "bottom-up" strategy, various forms of regenerated cellulose-based materials and nanocellulose-based high-strength materials assembled by different methods are discussed. Under the "top-down" approach, the focus is on the development of reinforced cellulose-based materials derived from wood, bamboo, rattan and straw. Furthermore, a brief overview of the potential applications fordifferent types of strong cellulose-based materials is given, followed by a concise discussion on future directions.
Collapse
Affiliation(s)
- Qin Qin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, Zhejiang, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Zhu J, Zhang Z, Wen Y, Song X, Tan WK, Ong CN, Li J. Recent Advances in Superabsorbent Hydrogels Derived from Agro Waste Materials for Sustainable Agriculture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39215710 PMCID: PMC11487571 DOI: 10.1021/acs.jafc.4c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Superabsorbent hydrogels made from agro waste materials have the potential to promote sustainable agriculture and environmental sustainability. These hydrogels not only help reduce water consumption and increase crop yields but also contribute to minimizing waste and lowering greenhouse gas emissions. Recent research on superabsorbent hydrogels derived from agro wastes has focused on the preparation of hydrogels based on natural polymers isolated from agro wastes, such as cellulose, hemicellulose, and lignin. This review provides an in-depth examination of hydrogels developed from raw agro waste materials and natural polymers extracted from agro wastes, highlighting that these studies start with raw wastes as the main materials. The utilization strategies for specific types of agro wastes are comprehensively described. This review outlines different methods utilized in the production of these hydrogels, including physical cross-linking techniques such as dissolution-regeneration and freeze-thawing, as well as chemical cross-linking methods involving various cross-linking agents and graft polymerization techniques such as free radical polymerization, microwave-assisted polymerization, and γ radiation graft polymerization. Specifically, this review explores the applications of agro waste-based superabsorbent hydrogels in enhancing soil properties such as water retention and slow-release of fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Jingling Zhu
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Zhongxing Zhang
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Wee Kee Tan
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Choon Nam Ong
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- Saw Swee
Hock School of Public Health, National University
of Singapore, 12 Science
Drive 2, Singapore 117549, Singapore
| | - Jun Li
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| |
Collapse
|
11
|
Guo Q, He Y, Wu J, Ye H, You T, Xu F. Sodium-Alginate-Doped Lignin Nanoparticles for PBAT Composite Films to Dually Enhance Tensile Strength and Elongation Performance with Functionality. Polymers (Basel) 2024; 16:2312. [PMID: 39204532 PMCID: PMC11359584 DOI: 10.3390/polym16162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
It is a formidable challenge in thermoplastic/lignin composites to simultaneously boost tensile strength and elongation performance due to the rigidity of lignin. To address this issue, sodium-alginate-doped lignin nanoparticles (SLNPs) were prepared by combining solvent exchange and a coprecipitation method and used as an eco-friendly filler for poly(butylene adipate-co-terephthalate) (PBAT). The results indicated that the 1% polyanionic sodium alginate solution contributed to the formation of SLNP in lignin/THF solution. SLNP with a mean hydrodynamic diameter of ~500 nm and a Zeta potential value of -19.2 mV was obtained, indicating more hydrophobic lignin nanoparticles and a smaller number of agglomerates in SLNP suspension. Only 0.5 wt% SLNP addition improved the yield strength, tensile strength, and elongation at break by 32.4%, 31.8%, and 35.1% of the PBAT/SLNP composite films, respectively. The reinforcing effect resulted from the rigid aromatic structure of SLNP, whereas the enhanced elongation was attributed to the nanostructural feature of SLNP, which may promote boundary cracking. Additionally, the PBAT/SLNP composite films displayed excellent ultraviolet (UV) resistance with a UV shielding percentage near 100% for UVB and more than 75% for UVA, respectively. The addition of SLNP hindered water vapor, enhancing the moisture barrier properties. Overall, this study provides an effective strategy to eliminate the decrement in elongation performance for PBAT/lignin composites and suggest they are good candidates to be extensively utilized.
Collapse
Affiliation(s)
- Qiyue Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yuan He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Jianyu Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Haichuan Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
12
|
Tian R, Wang C, Jiang W, Janaswamy S, Yang G, Ji X, Lyu G. Biodegradable, Strong, and Hydrophobic Regenerated Cellulose Films Enriched with Esterified Lignin Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309651. [PMID: 38530065 DOI: 10.1002/smll.202309651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The scientific community is pursuing significant efforts worldwide to develop environmentally viable film materials from biomass, particularly transparent, high-performance regenerated cellulose (RC) films, to replace traditional plastics. However, the inferior mechanical performance and hydrophilic nature of RC films are generally not suitable for use as a substitute for plastics in practical applications. Herein, lignin homogenization is used to synthesize high-performance composite films. The esterified lignin nanoparticles (ELNPs) with dispersible and binding advantages are prepared through esterification and nanometrization. In the presence of ELNPs, RC films exhibit a higher tensile strength (110.4 MPa), hydrophobic nature (103.6° water contact angle, 36.6% water absorption at 120 min, and 1.127 × 10-12 g cm cm-2 s-1 Pa-1 water vapor permeability), and exciting optical properties (high visible and low ultraviolet transmittance). The films further display antioxidant activity, oxygen barrier ability, and thermostability. The films completely biodegrade at 12 and 30% soil moisture. Overall, this study offers new insights into lignin valorization and regenerated cellulose composite films as novel bioplastic materials.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| |
Collapse
|
13
|
Zhou H, Li T, Zhu E, Wang S, Zhang Q, Li X, Zhang L, Fan Y, Ma J, Wang Z. Dissolving-co-catalytic strategy for the preparation of flexible and wet-stable cellulose membrane towards biodegradable packaging. Int J Biol Macromol 2024; 275:133454. [PMID: 38964692 DOI: 10.1016/j.ijbiomac.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
In the realization of the goal of circular economy, cellulose as one of sustainable biomass resources, have attracted much attention because of their abundant sources, biodegradability and renewability. However, the mechanical and waterproof performance of cellulose-based materials are usually not satisfying, which limits their high-value utilization. In this study, cellulose membrane with high-performance from the aspects of mechanical properties, water-resistance ability, oxygen barrier capacity and biodegradability, was prepared from bleached hardwood pulp (HBKP) in a AlCl3/ZnCl2/H2O solution. The AlCl3/ZnCl2/H2O acted as both solvent and catalyst to dissolve cellulose and facilitate the chemical crosslinking of epichlorohydrin (EPI) with cellulose, thus improved the overall performance of the obtained cellulose membrane. The addition sequence, amount and crosslinking time of EPI during chemical crosslinking had important effects on the properties of the membranes. When 7 wt% EPI was crosslinked for 24 h, the tensile stress reached 133 MPa and the strain reached 17 %. Moreover, the membrane had excellent oxygen insulation down to (1.1 ± 0.31) × 10-4 cm3/m2·d·Pa, and good water-resistance ability, no obvious swelling behavior after 450 days of immersion in distilled water. Furthermore, the membrane could be degraded by microorganisms in about 20 days. This cellulose-based membrane offers a sustainable and biodegradable packaging material.
Collapse
Affiliation(s)
- Huimei Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianqi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Enqing Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoning Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China..
| |
Collapse
|
14
|
Zhu X, Li H, Cai L, Wu Y, Wang J, Xu S, Wang S, Wang H, Wang D, Chen J. ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging. iScience 2024; 27:110008. [PMID: 38989453 PMCID: PMC11233912 DOI: 10.1016/j.isci.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, China
| | - Henghui Li
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yixian Wu
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shangcheng Xu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
| | - Shoulin Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Daorong Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Jin Chen
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Dong X, Shang J, Xiao T, Song R, Sheng X, Li N, Zhang J, Ping Q. A facile method to fabricate sustainable bamboo ethanol lignin/carboxymethylcellulose films with efficient anti-ultraviolet and insulation properties. Int J Biol Macromol 2024; 273:132959. [PMID: 38848848 DOI: 10.1016/j.ijbiomac.2024.132959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Given the environmental concerns related to the non-degradability of conventional petroleum-based polymer films, the synthesis of biodegradable films utilizing natural polymers derived from biomass has emerged as a promising alternative, garnering significant attention in recent research endeavors. This research introduced an environmentally friendly and efficient method, utilizing extract liquid from the green ethanol pulping process as the solvent to completely dissolve carboxymethylcellulose into the film-forming liquid, and employing the solution pouring technique to successfully fabricate bamboo ethanol lignin/carboxymethylcellulose films (LCF). The findings revealed that the lignin content significantly influenced the LCF, endowing them with tunable mechanical properties, effective UV-blocking, and thermal insulation capabilities. With a lignin addition of 3.75 %, LCF-3.75 exhibited enhanced mechanical properties, characterized by a tensile strength of 19.4 MPa, along with superior UV-blocking efficiency, blocking 100 % of UVB and 99.81 % of UVA rays. Furthermore, relative to LCF-0, LCF-3.75 had been shown to possess enhanced hydrophobicity and thermal stability, culminating in the development of the composite films that showcased exceptional thermal insulation properties and biodegradability. The films not only harbored extensive application prospects as an anti-ultraviolet and heat-insulating glass films but also represented a potential avenue for the efficient utilization of lignin, thereby contributing to sustainable development.
Collapse
Affiliation(s)
- Xu Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Light Industry and Textile, Qiqihar University, 42 Culture Street, Qiqihar 161006, China
| | - Jin Shang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tianyuan Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Light Industry and Textile, Qiqihar University, 42 Culture Street, Qiqihar 161006, China
| | - Rui Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xueru Sheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Na Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Ping
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
16
|
Pan C, Li X, Jiao Y, Fan G, Long Y, Cheng Q, Yang H. Deep-eutectic-solvent modulation of self-assembled multi-responsive films based on polyvinyl alcohol/cellulose nanocrystal and grape skin red for highly sensitive food monitoring. Int J Biol Macromol 2024; 269:132005. [PMID: 38777686 DOI: 10.1016/j.ijbiomac.2024.132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
To enhance the mechanics performance, sensitivity and response range of multi-responsive photonic films, herein, a facile method for fabricating multi-responsive films is demonstrated using the evaporative self-assembly of a mixture of grape skin red (GSR), cellulose nanocrystal (CNC), polyvinyl alcohol (PVA) and deep eutectic solvent (DES). The prepared materials exhibited excellent thermal stability, strain properties, solvent resistance, ultraviolet (UV) resistance and antioxidant activity. Compared to a pure PVA film, the presence of GSR strengthened the antioxidant property of the film by 240.1 % and provided excellent UV barrier capability. The additional cross-linking of DES and CNC promoted more efficient phase fusion, yielding a film strain of 41.5 %. The addition of hydrophilic compound GSR, wetting and swelling due to the DES and the surface inhomogeneity of the films rendered the multi-responsive films high sensitivity, wide response range and multi-cyclic stability in environments with varying pH and humidity. A sample application showed that a PVA/CNC/DES film has the potential to differentiate between fresh, sub-fresh and fully spoiled shrimps. The above results help in designing intelligent thin film materials that integrate antioxidant properties, which help in monitoring the changes in food freshness and food packaging.
Collapse
Affiliation(s)
- Cheng Pan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | - Xiaofei Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yinao Jiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yifei Long
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
17
|
Huang X, Huang R, Zhang Q, Fan J, Zhang Z, Huang J. Preparation of sustainable oxidized nanocellulose films with high UV shielding effect, high transparency and high strength. Int J Biol Macromol 2024; 263:130087. [PMID: 38342262 DOI: 10.1016/j.ijbiomac.2024.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
UV protection has become crucial as increasing environmental pollution has led to the destruction of the ozone layer, which has a weakened ability to block UV rays. In this paper, we successfully prepared cellulose-based biomass films with high UV shielding effect, high transparency and high tensile strength by graft-modifying oxidized cellulose nanocellulose (TOCN) with folic acid (FA) and borrowing vacuum-assisted filtration. The films had tunable UV shielding properties depending on the amount of FA added. When the FA addition was 20 % (V/V), the film showed 0 % transmittance in the UV region (200-400 nm) and 90.61 % transmittance in the visible region (600 nm), while the tensile strength was up to 150.04 MPa. This study provides a new integrated process for the value-added utilization of nanocellulose and a new route for the production of functional biomass packaging materials. The film is expected to be applied in the field of food packaging with UV shielding.
Collapse
Affiliation(s)
- Xuanxuan Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rui Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qian Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinlong Fan
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhaohong Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jintian Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
18
|
Li S, Cui B, Jia X, Wang W, Cui Y, Ding J, Yang C, Fang Y, Song Y, Zhang X. Cellulose-based light-management film exhibiting flame-retardant and thermal-healing properties. Int J Biol Macromol 2024; 265:130447. [PMID: 38458280 DOI: 10.1016/j.ijbiomac.2024.130447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
The increased use and expansion of biomass applications offer a viable approach to diminish reliance on petroleum-derived resources and promote carbon neutrality. Cellulose, being the most abundant natural polymer on Earth, has garnered considerable attention. This study introduces a straightforward method to fabricate a cellulose-based multifunctional composite film designed for efficient light management, specifically featuring flame retardant and thermal-healing capabilities. The film incorporates a microfibrillated cellulose (MFC) matrix with functional components, namely benzoxazine resin (BR) and 2-hydroxyethyl methacrylate phosphate (HEMAP). Utilizing dynamic covalent crosslinking, the composite films exhibit satisfactory self-healing properties. The combined effects of BR and HEMAP contribute to the effective flame retardancy of the composite film. Furthermore, the resulting film shields ultraviolet and blue light, offering comfortable interior lighting by mitigating harsh light and extending light propagation. The film also demonstrates favorable water resistance and high tensile strength. The exceptional multifunctional properties, coupled with its safety and extended service life, position it as a potential optical management film for smart building materials.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Jia
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Yutong Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jiayan Ding
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunmao Yang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yiqun Fang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yongming Song
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xianquan Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
19
|
Fazeli M, Mukherjee S, Baniasadi H, Abidnejad R, Mujtaba M, Lipponen J, Seppälä J, Rojas OJ. Lignin beyond the status quo: recent and emerging composite applications. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:593-630. [PMID: 38264324 PMCID: PMC10802143 DOI: 10.1039/d3gc03154c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
The demand for biodegradable materials across various industries has recently surged due to environmental concerns and the need for the adoption of renewable materials. In this context, lignin has emerged as a promising alternative, garnering significant attention as a biogenic resource that endows functional properties. This is primarily ascribed to its remarkable origin and structure that explains lignin's capacity to bind other molecules, reinforce composites, act as an antioxidant, and endow antimicrobial effects. This review summarizes recent advances in lignin-based composites, with particular emphasis on innovative methods for modifying lignin into micro and nanostructures and evaluating their functional contribution. Indeed, lignin-based composites can be tailored to have superior physicomechanical characteristics, biodegradability, and surface properties, thereby making them suitable for applications beyond the typical, for instance, in ecofriendly adhesives and advanced barrier technologies. Herein, we provide a comprehensive overview of the latest progress in the field of lignin utilization in emerging composite materials.
Collapse
Affiliation(s)
- Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Sritama Mukherjee
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
- Division of Fiber and Polymer Technology, CBH, KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University Espoo Finland
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd P.O. Box 1000 Espoo FI-02044 Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University Espoo Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia Vancouver BC V6T 1Z3 Canada
| |
Collapse
|
20
|
Li B, Xu C, Liu L, Zhang X, Yu J, Fan Y. Photocrosslinkable and hydroplasicable UV-shielding nanocellulose films facilitated by hydroxyl-yne click reaction. Int J Biol Macromol 2024; 255:128099. [PMID: 37979756 DOI: 10.1016/j.ijbiomac.2023.128099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Sustainably-sourced functional nanocellulose materials are vitally important for the green and sustainable development. Herein, we reported photocrosslinkable and hydroplasticable TEMPO-oxidized cellulose nanofiber phenyl propylene ketone ethers (TOCNPPK) films with excellent ultraviolet (UV) shielding, highly reversible processability, and extended mechanical properties, which were facilitated by green hydroxyl-yne click reaction. The introduction of conjugated aromatic ring and vinyl bonds (-C=C-) had been demonstrated the key for the improved overall performance of resultant TOCNPPK, which not only endowed the TOCNPPK with nearly 100 % UV shielding, but also enabled it to be formed into diverse 3D shapes (helix, ring and letters "N, F, U") via the facile hydrosetting method. The photocrosslinkable-enhanced mechanical performance of TOCNPPK films was also attributed to -C=C- which could crosslink via [2π + 2π] cycloaddition reactions under UV-irradiation. The ultimate stress of TOCNPPK films was as high as 210.0 ± 22.8 MPa and the Young's modulus was 11.5 ± 0.7 GPa, much superior to those of 128.6 ± 8.5 MPa and 9.2 ± 0.6 GPa for pristine TOCN films. Furthermore, the TOCNPPK had been demonstrated as efficient nanofillers for both hydrophilic polyvinyl alcohol and lipophilic polycaprolactone to develop advanced biodegradable composite films with the integration of good water-wetting resistance, excellent UV blocking, and photo-enhanced mechanical performance.
Collapse
Affiliation(s)
- Bowen Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaoqun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
21
|
Luo D, Sun G, Wang Y, Shu X, Chen J, Sun M, Liu X, Liu C, Xiao H, Xu T, Dai H, Zhou X, Huang C, Bian H. Metal ion and hydrogen bonding synergistically mediated carboxylated lignin/cellulose nanofibrils composite film. Carbohydr Polym 2024; 323:121456. [PMID: 37940315 DOI: 10.1016/j.carbpol.2023.121456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
In order to alleviate the resource and environmental problems caused by plastic film materials, the development of biodegradable cellulose-based films is crucial. Inspired by the strengthening mechanism of cellulose-lignin network from wood, carboxylated lignin (CL) was isolated using maleic acid (MA) pretreatment catalyzed by metal chlorides. Compared with pure MA, the presence of metal ions yielded CL with high carboxyl content (0.34 mmol/g), small size and good dispersibility. CL was then composited with CNF to prepare various CL/cellulose nanofibrils (CNF) composite films. When the addition of ferric chloride was 0.3 mmol/g maleic acid, the corresponding composite films exhibited highest tensile strength (180.0 MPa), Young's modulus (13.0 GPa) and excellent ultraviolet blocking rate (97.0 %). Meanwhile, the interaction forces measured by atomic force microscope showed that the binding between CNF and various CLs (276-406 nN) was higher than that between pure CNFs (202 nN), verifying that CL enhanced the mechanical properties of composite films. In summary, this work constructs a super-strong network between CL and CNF synergistically mediated by metal ion crosslinking and hydrogen bonding, which can be a promising alternative to replace conventional plastics in multiple areas.
Collapse
Affiliation(s)
- Dan Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Gaofeng Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yilin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mengya Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuyu Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Chao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
22
|
Ren Y, Ling Z, Huang C, Lai C, Yong Q. Layer-by-layer assembly induced strong, hydrophobic and anti-bacterial TEMPO oxidized cellulose nanofibrils films for highly efficient UV-shielding and oil-water separation. Int J Biol Macromol 2023; 253:126486. [PMID: 37633559 DOI: 10.1016/j.ijbiomac.2023.126486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Anti-ultraviolet material with cost-effectiveness, environmental friendliness, and multifunction is urgently needed to address the serious problem of ultraviolet radiation. However, traditional anti-ultraviolet products based on plastics are unsustainable and harmful to the environment. Herein, the cellulose films with a sandwich structure using a surface assembly technique were reported. Natural L-phenylalanine was grafted onto cellulose nanofibrils via amidation to enhance their UV-shielding property. To address the hydrophilic nature and limited mechanical strength of cellulose films, we employed octadecyltrichlorosilane and 4ARM-PEG-NH2 for hydrophobic coating and mechanical reinforcement, respectively. In addition to providing complete UV resistance in the wavelength range of 200-320 nm, sample OPT5 exhibited significantly improved tensile stress, Young's modulus, and toughness, measuring 174.09 MPa, 71.11 MPa, and 295.33 MJ/m3, respectively. Furthermore, due to the presence of antibacterial amine groups, the modified film demonstrated a satisfactory inhibitory effect on the growth of Escherichia coli and Bacillus subtilis. Compared to natural cellulose films, the hydrophobically modified material achieved a contact angle of up to 121.1°, which enabled efficient separation of oil-water mixtures with a maximum separation efficiency of 93.87 %. In summary, the proposed TOCNF-based UV-shielding film with multifunctionality holds great potential for replacing petrochemical-derived plastics and serving as an applicable and sustainable membrane material.
Collapse
Affiliation(s)
- Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Shen R, Wang D, Sun L, Diao M, Zheng Q, Gong X, Liu L, Yao J. Strong and flexible lignocellulosic film fabricated via a feasible molecular remodeling strategy. Int J Biol Macromol 2023; 253:126521. [PMID: 37633560 DOI: 10.1016/j.ijbiomac.2023.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biomass-derived sustainable film is a promising alternative to synthetic plastic, but hampered by strength, toughness and flexibility trade-off predicament. Here, a feasible and scalable strategy was proposed to fabricate strong and flexible lignocellulosic film through molecular reconstruction of cellulose and lignin. In this strategy, polyphenol lignin was absorbed and wrapped on the surface of cellulose fiber, forming strong interfacial adhesion and cohesion via intramolecular and intermolecular hydrogen bonding. Further, covalent ether bond was generated between the hydroxyl groups of lignocellulose to form chemical cross-linking network induced by epichlorohydrin (ECH). The synergistic effect of hydrogen bonding and stable chemical cross-linking enabled the resultant lignocellulosic film (ELCF) with outstanding mechanical strength of 132.48 MPa, the elongation at break of 9.77 %, and toughness of 9.77 MJ·m-3. Notably, the integration of polyphenol lignin synergistically improved the thermal stability, water resistance, UV-blocking performances of ELCF. Importantly, after immersion for 30 d, ELCF still possessed high wet strength of 70.38 MPa, and elongation at break of 7.70 %, suggesting excellent and durable mechanical performances. Moreover, ELCF could be biodegraded in the natural soil. Therefore, this study provides a new and versatile approach to reconstruct highly-performance lignocellulosic films coupling strength, toughness with flexibility for promising plastic replacement.
Collapse
Affiliation(s)
- Rongsheng Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Longfei Sun
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Mengyuan Diao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiannan Zheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiujin Gong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| | - Juming Yao
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China; School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
24
|
Tian Y, Zhang L, Li X, Yan M, Wang Y, Ma J, Wang Z. Compressible, anti-freezing, and ionic conductive cellulose/polyacrylic acid composite hydrogel prepared via AlCl 3/ZnCl 2 aqueous system as solvent and catalyst. Int J Biol Macromol 2023; 253:126550. [PMID: 37657569 DOI: 10.1016/j.ijbiomac.2023.126550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
From the perspective of environmental sustainability, introducing cellulose into ionic conductive hydrogel is an inevitable trend for the development of flexible conductive materials. We report a double-network cellulose/polyacrylic acid (Cel/PAA) composite hydrogel based on the dissolving of cellulose by AlCl3/ZnCl2 aqueous system. The Cel/PAA composite hydrogel consists of rigid cellulose chains and flexible polyacrylic acid, which synergistically realize the improvement of the mechanical properties. The AlCl3/ZnCl2 aqueous system not only serves as the green solvent for cellulose, but also the Al3+ and Zn2+ metal ions can be served as a catalyst to activate the initiator for polymerization of acrylic acid. Compared with pure cellulose hydrogel, the compression strain of the Cel/PAA composite hydrogel was significantly improved to 80 %, and its conductivity increased by 28.1 %. In addition, its compression stress was enhanced over 2 times than pure PAA hydrogel. The Cel/PAA composite hydrogel exhibits excellent anti-freezing (-45 °C), weight retention (90 %), and conductivity (2.70 S/m) properties, still maintaining transparency and storage stability in the extreme environment. This work presents a facile strategy to develop an ionic conductive cellulose-based composite hydrogel with good conductivity and mechanical properties, which shows potential for the application fields of flexible sensors and 3D-printing functional materials.
Collapse
Affiliation(s)
- Yahui Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youlong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Bu N, Zhou N, Cao G, Mu R, Pang J, Ma C, Wang L. Konjac glucomannan/carboxymethyl chitosan film embedding gliadin/casein nanoparticles for grape preservation. Int J Biol Macromol 2023; 249:126131. [PMID: 37543273 DOI: 10.1016/j.ijbiomac.2023.126131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Constructing biopolymer-based packaging films with fantastic water resistance and mechanical properties for food preservation is highly desirable and challenging. In this work, Gliadin/Casein nanoparticles (GCNPs) were prepared by pH-driven method and embedded into konjac glucomannan/carboxymethyl chitosan (KC) film matrix to improve the water resistance and mechanical properties of KC film. Gliadin and Casein showed good compatibility and co-assembled to form compact GCNPs clusters through hydrogen bonding and hydrophobic interaction verified by FT-IR spectroscopy, and fluorescence spectroscopy. The particle size and zeta potential of GCNPs was 269.7 nm and -7.6 mV, respectively. The effect of GCNPs on the mechanics, water barrier, thermal stability, and UV-shielding of KC-GCNPs film was investigated. SEM images revealed that GCNPs uniformly distributed into KC film matrix and significantly improved the mechanics (tensile strength: 75.6 MPa, elongation at breaking: 36.7 %), water barrier ability (water contact angle: 91.3°, water vapor permeability: 0.994 g mm/m2 day kPa, water solubility: 52.0 %), thermal stability and UV blocking property of KC-GCNPs film. Furthermore, KC-GCNPs film could also be applied to extend the shelf life of grapes. This paper demonstrated the great potential of GCNPs as functional nanofillers in enhancing the physicochemical properties of KC film.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Kim JC, Kim J, Cho YM, Cho SM, Hwang SW, Kwak HW, Yeo H, Choi IG. Fabrication of transparent cellulose nanofibril composite film with smooth surface and ultraviolet blocking ability using hydrophilic lignin. Int J Biol Macromol 2023; 245:125545. [PMID: 37355075 DOI: 10.1016/j.ijbiomac.2023.125545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Ecofriendly multifunctional films with only biomass-based components have gathered significant interest from researchers as next-generation materials. Following this trend, a TEMPO-oxidized cellulose nanofibril (TOCNF) film containing hydrophilic lignin (CL) was fabricated. To produce the lignin, peracetic acid oxidation was carried out, leading to the introduction of carboxyl groups into the lignin structure. By adding hydrophilic lignin, various characteristics (e.g., surface smoothness, UV protection, antimicrobial activity, and barrier properties) of the TOCNF film were enhanced. In particular, the shrinkage of CNF was successfully prevented by the addition of CL, which is attributed to the lower surface roughness (Ra) from 18.93 nm to 4.99 nm. As a result, the smooth surface of the TOCNF/CL film was shown compared to neat TOCNF film and TOCNF/Kraft lignin composite film. In addition, the TOCNF/CL film showed a superior UV blocking ability of 99.9 % with high transparency of 78.4 %, which is higher than that of CNF-lignin composite films in other research. Also, water vapor transmission rate was reduced after adding CL to TOCNF film. Consequently, the developed TOCNF/CL film can be potentially utilized in various applications, such as food packaging.
Collapse
Affiliation(s)
- Jong-Chan Kim
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jonghwa Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Min Cho
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seong-Min Cho
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - Sung-Wook Hwang
- Human Resources Development Center for Big Data-based Glocal Forest Science 4.0 Professionals, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hwanmyeong Yeo
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
27
|
Jiang H, Chu Q, Ma J, Wu S, Shao L, Zhou X. Dissolution of lignocellulose with high lignin content in AlCl 3/ZnCl 2 aqueous system and properties of the regenerated cellulose film. Int J Biol Macromol 2023; 234:123590. [PMID: 36773876 DOI: 10.1016/j.ijbiomac.2023.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Herein, a novel method for dissolving lignocellulose at room temperature is proposed by combining deep eutectic solvents (DES) pretreatment and subsequent dissolution in AlCl3/ZnCl2 aqueous system. Results showed that DES pretreatment could significantly increase the dissolubility of lignin-containing cellulose (CL) samples in AlCl3/ZnCl2 aqueous system. The dissolution ratio of the CL sample with 15.6 % lignin content in AlCl3/ZnCl2·3H2O solvent was as high as 90 %. Besides, the mechanism for the remarkable dissolution of CL samples in low water AlCl3/ZnCl2 aqueous solvent was also proposed. Moreover, the dissolved CL sample was regenerated for the production of lignocellulose films, which have excellent ultraviolet (UV) blocking, hydrophobic, mechanical strength, and natural degradation properties. In particular, the films could be completely naturally degraded after 10 days, which provided a promising way to prepare biodegradable lignocellulose materials, and to encourage the potential utilization of renewable lignocellulose in packaging industry.
Collapse
Affiliation(s)
- Huicong Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Rd, Xuanwu District, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Qiulu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Rd, Xuanwu District, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Rd, Xuanwu District, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Rd, Xuanwu District, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Lijun Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Rd, Xuanwu District, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Rd, Xuanwu District, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
28
|
Zhou Y, Han Y, Xu J, Han W, Gu F, Sun K, Huang X, Cai Z. Strong, flexible and UV-shielding composite polyvinyl alcohol films with wood cellulose skeleton and lignin nanoparticles. Int J Biol Macromol 2023; 232:123105. [PMID: 36603717 DOI: 10.1016/j.ijbiomac.2022.12.324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
The development of high-performance composite films using biomass materials have become a sought-after direction. Herein, a green method to fabricate strong, flexible and UV-shielding biological composite film from wood cellulose skeleton (WCS), lignin nanoparticles (LNPs) and polyvinyl alcohol (PVA) was described. In the work, WCS and LNPs were prepared by chemical treatment of wood veneer and Enzymatic lignin, respectively. Then, WCS was infiltrated with the LNPs/PVA mixtures and dried to obtain composite films. WCS enhanced the mechanical properties of the composite films, the tensile stress reached to 85.8 MPa and the tensile strain reached to 6.39 %. The composite films with LNPs blocked over 98 % of UV-light, the water absorption decreased by 30 %, and the thermal stabilities were also improved. These findings would provide some references for exploring high quality biological composite films.
Collapse
Affiliation(s)
- Yu Zhou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yanming Han
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100089, China.
| | - Jianan Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wang Han
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot City 010018, China
| | - Feng Gu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Kaiyong Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xujuan Huang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaosheng Cai
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
29
|
Shao L, Wan H, Wang L, Wang J, Liu Z, Wu Z, Zhan P, Zhang L, Ma X, Huang J. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
30
|
Guo L, Li M, Xu Q, Jin L, Wang Y. Bio-based films with high antioxidant and improved water-resistant properties from cellulose nanofibres and lignin nanoparticles. Int J Biol Macromol 2023; 227:365-372. [PMID: 36535358 DOI: 10.1016/j.ijbiomac.2022.12.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In this study, we propose a simple route for the fabrication of bio-based composite films from cellulose nanofibres (CNF) and lignin. First, CNFs were periodate oxidised to obtain dialdehyde cellulose nanofibres (DACNF). Subsequently, lignin nanoparticles (LNPs) with diameters between 50 and 150 nm were prepared using kraft lignin and mixed with DACNF to fabricate DACNF-LNP nanocomposite films via a condensation reaction. The addition of LNPs rendered the films with high ultraviolet-shielding and antioxidant properties. The water contact angle increased for the composite films compared with that of pure CNF film, while the water vapor transmission rate (WVTR) decreased. The mechanical properties of the nanocomposite films were significantly improved by the addition of LNPs. The dry tensile stress of DACNF-LNPs5 with 5 % LNPs significantly increased from 47 to 164 MPa. It was also higher than that of CNF-LNPs5 (105 MPa), in which CNFs were not periodate oxidised. After immersion in water for 1 h, the wet tensile strength of DACNF-LNPs5 was 31 MPa, 3 times higher than that of CNF-LNPs5 (7 MPa). These results indicate that the water-resistant properties of the composite films were significantly enhanced. The films prepared from green and renewable bioresources exhibited potential applications in food packaging and biomedical materials.
Collapse
Affiliation(s)
- Lukuan Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Min Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Liqiang Jin
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yulu Wang
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
31
|
Qian H, Fan Y, Chen J, He L, Sun Y, Li L. Enabling the complete valorization of hybrid Pennisetum: Directly using alkaline black liquor for preparing UV-shielding biodegradable films. Front Bioeng Biotechnol 2022; 10:1027511. [PMID: 36545683 PMCID: PMC9760701 DOI: 10.3389/fbioe.2022.1027511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The conversion of lignocellulosic biomass into various high-value chemicals has been a rapid expanding research topic in industry and agriculture. Among them, alkaline removal and utilization of lignin are important for the accelerated degradation of biomass. Modern biorefinery has been focusing the vision on the advancement of economical, green, and environmentally friendly processes. Therefore, it is indispensable to develop cost-effective and simple biomass conversion technologies to obtain high-value products. In this study, the black liquor (BL) obtained from the alkaline pretreatment of biomass was added to polyvinyl alcohol (PVA) solution and used to prepare degradable ultraviolet (UV) shielding films, achieving direct and efficient utilization of the aqueous phase from alkaline pretreatment. This method avoids the extraction step of lignin fraction from black liquor, which can be directly utilized as the raw materials of films preparation. In addition, the direct use of alkaline BL results in films with similar UV-shielding properties, higher physical strength, and similar thermal stability compared with films made by commercial alkaline lignin. Therefore, this strategy is proposed for alkaline-pretreated biorefineries as a simple way to convert waste BL into valuable products and partially recover unconsumed sodium hydroxide to achieve as much integration of biomass and near zero-waste biorefineries as possible.
Collapse
Affiliation(s)
- Haojiang Qian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Yafeng Fan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Jiazhao Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Linsong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China,*Correspondence: Lianhua Li,
| |
Collapse
|
32
|
He Y, Ye HC, You TT, Xu F. Sustainable and multifunctional cellulose-lignin films with excellent antibacterial and UV-shielding for active food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Sulfated lignocellulose nanofibril based composite aerogel towards adsorption–photocatalytic removal of tetracycline. Carbohydr Polym 2022; 296:119970. [DOI: 10.1016/j.carbpol.2022.119970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
|
34
|
Halloub A, Raji M, Essabir H, Chakchak H, boussen R, Bensalah MO, Bouhfid R, Qaiss AEK. Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf life extension of food. Carbohydr Polym 2022; 296:119972. [DOI: 10.1016/j.carbpol.2022.119972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
|
35
|
Zhang X, Guo H, Luo W, Chen G, Xiao N, Xiao G, Liu C. Development of functional hydroxyethyl cellulose-based composite films for food packaging applications. Front Bioeng Biotechnol 2022; 10:989893. [PMID: 36246371 PMCID: PMC9557200 DOI: 10.3389/fbioe.2022.989893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Cellulose-based functional composite films can be a good substitute for conventional plastic packaging to ensure food safety. In this study, the semi-transparent, mechanical strengthened, UV-shielding, antibacterial and biocompatible films were developed from hydroxyethyl cellulose Polyvinyl alcohol (PVA) and ε-polylysine (ε-PL) were respectively used as reinforcing agent and antibacterial agent, and chemical cross-linking among these three components were constructed using epichlorohydrin The maximum tensile strength and elongation at break were 95.9 ± 4.1 MPa and 148.8 ± 2.6%, respectively. TG-FTIR and XRD analyses indicated that chemical structure of the composite films could be well controlled by varying component proportion. From UV-Vis analysis, the optimum values of the percentage of blocking from UV-A and UV-B and ultraviolet protection factor values were 98.35%, 99.99% and 60.25, respectively. Additionally, the composite films exhibited good water vapor permeability, swelling behavior, antibacterial activity and biocompatibility. In terms of these properties, the shelf life of grapes could be extended to 6 days after packing with the composite film.
Collapse
Affiliation(s)
- Xueqin Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Haoqi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenhan Luo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guojian Chen
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Naiyu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Naiyu Xiao, ; Gengsheng Xiao, ; Chuanfu Liu,
| | - Gengsheng Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Naiyu Xiao, ; Gengsheng Xiao, ; Chuanfu Liu,
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Naiyu Xiao, ; Gengsheng Xiao, ; Chuanfu Liu,
| |
Collapse
|
36
|
Li S, Cui B, Xie H, Jia X, Hao S, Wang W. Strong Cellulose-Based Light-Management Film with Ultraviolet Blocking and Near-Infrared Shielding Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42522-42530. [PMID: 36084176 DOI: 10.1021/acsami.2c12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light-management materials play a great significant role in efficient-energy buildings because they reduce indoor energy consumption by adjusting to natural sunlight, enhancing heat insulation, and creating comfortable indoor lighting. Here, we fabricated an ecofriendly and sustainable lignocellulose-based light-management film via a facile homogenization and mechanical hot-pressing method without complicated treatment or toxic reagents. The resulting film exhibited a favorable ultraviolet (UV) blocking performance of 82.25% for UVA, high visible light transmittance, and high haze, with a desirable tensile strength of 197 MPa, which was significantly higher than those of most petroleum-based plastics. Accordingly, the film was further endowed with near-infrared absorption performance by spray-coating with lanthanum hexaboride (LaB6) nanoparticles─there were almost no adverse effects on its light transmittance or mechanical strength. Meanwhile, the high haze of the film implied that it met the requirement for privacy protection in smart buildings. The MFC/lignin/LaB6 composite film has potential applications in energy-saving buildings and optoelectronic devices.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Xie
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Jia
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Shuo Hao
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
37
|
Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int J Biol Macromol 2022; 219:897-906. [PMID: 35963350 DOI: 10.1016/j.ijbiomac.2022.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022]
Abstract
In this work, konjac glucomannan (KGM)-based film reinforced with pullulan (PL) and acai berry extract (ABE) was developed by solvent casting method. The as-prepared films performed pH-sensitive properties, which can be potentially applied for fish freshness detection. Rheology, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize chemical structure and morphology of ABE-loaded KGM/PL (KP) films (KP-ABE). FT-IR spectrum indicated that hydrogen bond dominated the formation of KP-ABE films. Adding PL contributed to enhanced mechanical properties of KGM film with increased tensile strength (TS) from 21.25 to 50.27 MPa and elongation at break (EAB) from 10.64 to 19.19 %. Incorporating ABE upgraded flexibility, UV-shielding, thermostability, water barrier (decreased Water vapor permeability (WVP) from 2.07 to 1.67 g·mm/m2·day kPa), antioxidant, and antibacterial ability of KP films, but weakened TS. In addition, KP-ABE films can reflect fish freshness in real time through color variability. Therefore, KP-ABE films exhibited potential applications in intelligent food packaging materials.
Collapse
|