1
|
Zheleva-Dimitrova D, Petrova A, Savov Y, Gevrenova R, Balabanova V, Momekov G, Simeonova R. Protective Potential of Cicerbita alpina Leaf Extract on Metabolic Disorders and Oxidative Stress in Model Animals. Int J Mol Sci 2024; 25:10851. [PMID: 39409180 PMCID: PMC11477542 DOI: 10.3390/ijms251910851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Metabolic disorders (MDs) include disease states such as diabetes mellitus, obesity, dyslipidemia, hyperuricemia, etc., affecting about 30% of the planet's population. The purpose of the present study was to investigate the protective potential of Cicerbita alpina leaf extract (ECA) against chemically induced type 2 diabetes in Wistar rats. Additionally, some biochemical parameters in the blood serum and liver, as well as histopathological investigation, were also performed. Quantitative analysis of the major compounds in the used extract was performed using ultrahigh-performance liquid chromatography-diode array detection (UHPLC-DAD) analyses using the external standard method. C. alpina extract revealed a beneficial effect on MDs, lowering blood sugar levels and MDA quantity in the liver, increasing the reduced glutathione level, and increasing antioxidant enzyme activity. Cichoric acid (CA) (91.93 mg/g dry extract (de) ± 4.64 mg/g de) was found to be the dominant compound in the extract, followed by caftaric (11.36 ± 2.10 mg/g de), and chlorogenic acid (CGA) (9.25 ± 0.05 mg/g de). In conclusion, C. alpina leaf extract (ECA) is rich in caffeoyltartaric and caffeoylquinic acids and provides beneficial effects on the diabetic animal model.
Collapse
Affiliation(s)
- Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| | - Yonko Savov
- Institute of Emergency Medicine “N. I. Pirogov”, Bul. Totleben 21, 1000 Sofia, Bulgaria;
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| |
Collapse
|
2
|
Guerra-Ávila PL, Guzmán TJ, Vargas-Guerrero B, Domínguez-Rosales JA, Cervantes-Garduño AB, Salazar-Montes AM, Sánchez-Orozco LV, Gurrola-Díaz CM. Comparative Screening of the Liver Gene Expression Profiles from Type 1 and Type 2 Diabetes Rat Models. Int J Mol Sci 2024; 25:4151. [PMID: 38673735 PMCID: PMC11050131 DOI: 10.3390/ijms25084151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Experimental animal models of diabetes can be useful for identifying novel targets related to disease, for understanding its physiopathology, and for evaluating emerging antidiabetic treatments. This study aimed to characterize two rat diabetes models: HFD + STZ, a high-fat diet (60% fat) combined with streptozotocin administration (STZ, 35 mg/kg BW), and a model with a single STZ dose (65 mg/kg BW) in comparison with healthy rats. HFD + STZ- induced animals demonstrated a stable hyperglycemia range (350-450 mg/dL), whereas in the STZ-induced rats, we found glucose concentration values with a greater dispersion, ranging from 270 to 510 mg/dL. Moreover, in the HFD + STZ group, the AUC value of the insulin tolerance test (ITT) was found to be remarkably augmented by 6.2-fold higher than in healthy animals (33,687.0 ± 1705.7 mg/dL/min vs. 5469.0 ± 267.6, respectively), indicating insulin resistance (IR). In contrast, a more moderate AUC value was observed in the STZ group (19,059.0 ± 3037.4 mg/dL/min) resulting in a value 2.5-fold higher than the average exhibited by the control group. After microarray experiments on liver tissue from all animals, we analyzed genes exhibiting a fold change value in gene expression <-2 or >2 (p-value <0.05). We found 27,686 differentially expressed genes (DEG), identified the top 10 DEGs and detected 849 coding genes that exhibited opposite expression patterns between both diabetes models (491 upregulated genes in the STZ model and 358 upregulated genes in HFD + STZ animals). Finally, we performed an enrichment analysis of the 849 selected genes. Whereas in the STZ model we found cellular pathways related to lipid biosynthesis and metabolism, in the HFD + STZ model we identified pathways related to immunometabolism. Some phenotypic differences observed in the models could be explained by transcriptomic results; however, further studies are needed to corroborate these findings. Our data confirm that the STZ and the HFD + STZ models are reliable experimental models for human T1D and T2D, respectively. These results also provide insight into alterations in the expression of specific liver genes and could be utilized in future studies focusing on diabetes complications associated with impaired liver function.
Collapse
Affiliation(s)
- Paloma Lucía Guerra-Ávila
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Tereso J. Guzmán
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - José Alfredo Domínguez-Rosales
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Alejandra Beatriz Cervantes-Garduño
- Laboratorio de Genómica Clínica, Facultad de Odontología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Laura Verónica Sánchez-Orozco
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| |
Collapse
|
3
|
Zhou B, Guo Z, Zhao P, Wang H, Dong S, Cheng B, Yang J, Li B, Wang X. Fabrication and characterization of coated microneedle patches based on PEGDA for transdermal administration of metformin. Drug Deliv Transl Res 2024; 14:131-142. [PMID: 37450235 DOI: 10.1007/s13346-023-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Type 2 diabetes is one of the major challenges that the world is facing today. However, metformin (MET) as most type 2 diabetics' first-line oral hypoglycemic drug may cause serious side effects such as gastrointestinal irritation and nausea which reduce the patients' medication compliance. Therefore, the aim of the study was to design a safe and effective self-treatment device for the delivery of MET. Here, a kind of coated microneedle (MN) patches based on poly(ethylene glycol)diacrylate (PEGDA) were prepared by a two-step casting method and photopolymerization process for transdermal administration of MET. The needles wrapped with drug-loaded hyaluronic acid (HA) coating showed promising mechanical properties and drug delivery ability that allowed them to penetrate the skin barrier for rapid drug delivery, and they had no skin irritancy. The in vivo experiment of type 2 diabetic rats showed a satisfying hypoglycemic effect of the coated MN patches. The study shows that the prepared MN patches will be a potential method for the treatment of type 2 diabetes in the future.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhendong Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Peiwen Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Siyan Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, People's Republic of China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, People's Republic of China.
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, People's Republic of China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
4
|
Bae CS, Lee Y, Ahn T. Therapeutic treatments for diabetes mellitus-induced liver injury by regulating oxidative stress and inflammation. Appl Microsc 2023; 53:4. [PMID: 37428327 PMCID: PMC10333167 DOI: 10.1186/s42649-023-00089-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that affects all systems in the body, including the liver. Numerous studies have reported that chronic DM etiology and pathogenesis complications implicate oxidative stress, generating reactive oxygen species, such as superoxide anions and free radicals. In addition, pro-inflammatory reactions are also underlying functions closely related to oxidative stress that further exacerbate pathological DM states. The liver is especially susceptible to hyperglycemia-induced oxidative stress and the related inflammation. Thus, anti-oxidation and anti-inflammation therapies are promising strategies for treating liver damage. This review summarizes therapeutic treatments attenuating the generation of oxidative stress and pro-inflammation, which also cause DM-induced liver injury. Although the treatments have several impediments to be solved, these remedies may have clinically important implications under the absence of effective drugs for the damaged liver in DM patients.
Collapse
Affiliation(s)
- Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Youngchan Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
ALTamimi JZ, Alshammari GM, AlFaris NA, Alagal RI, Aljabryn DH, Albekairi NA, Alkhateeb MA, Yahya MA. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocin-diabetic rats by activating AMPK. PHARMACEUTICAL BIOLOGY 2022; 60:25-37. [PMID: 34870551 PMCID: PMC8654409 DOI: 10.1080/13880209.2021.1990969] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 05/26/2023]
Abstract
CONTEXT Ellagic acid (EA) is used in traditional medicine to treated hyperlipidaemia. OBJECTIVE This study examined if AMPK mediates the anti-steatotic effect of ellagic acid (EA) in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats. MATERIALS AND METHODS Adult male Wistar rats (130 ± 10 g) were divided into 6 groups (n = 8 rats/group) as control, control + EA, control + EA + CC an AMPK inhibitor), T1DM, T1DM + EA, and T1DM + EA + CC. The treatments with EA (50 mg/kg/orally) and CC (200 ng/rat/i.p.) were given the desired groups for 12 weeks, daily. RESULTS In T1DM-rats, EA reduced fasting glucose levels (44.8%), increased fasting insulin levels (92.8%), prevented hepatic lipid accumulation, and decreased hepatic and serum levels of total triglycerides (54% & 61%), cholesterol (57% & 48%), and free fatty acids (40% & 37%). It also reduced hepatic levels of ROS (62%), MDA (52%), TNF-α (62%), and IL-6 (57.2%) and the nuclear activity of NF-κB p65 (54%) but increased the nuclear activity of Nrf-2 (4-fold) and levels of GSH (107%) and SOD (87%). Besides, EA reduced downregulated SREBP1 (35%), SREBP2 (34%), ACC-1 (36%), FAS (38%), and HMG-CoAR (49%) but stimulated mRNA levels of PPARα (1.7-fold) and CPT1a (1.8-fold), CPT1b (2.9-fold), and p-AMPK (4-fold). All these events were prevented by the co-administration of CC. DISCUSSION AND CONCLUSIONS These findings encourage the use of EA to treat hepatic disorders, and non-alcoholic fatty liver disease (NAFLD). Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A. AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham I. Alagal
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal H. Aljabryn
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Ahmad Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Olagunju AI. Multigrain porridge possesses superior nutritional quality, its consumption alleviates hyperglycemia, hypercholesterolemia and oxidative stress in obese-diabetic wistar rats. J Food Biochem 2022; 46:e14309. [PMID: 35796287 DOI: 10.1111/jfbc.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022]
Abstract
There is an increased utilization of wholegrain cereals in food formulations considering their richness in essential nutritional and biological properties. In this study, each component (amaranth, acha and pearl millet) of the multigrain blend was individually pre-fermented. Thereafter, the pre-fermented grain flours were optimized to obtain two unique blends (90:5:5 and 47.98: 26.68:25.34) containing high protein content (~23% and 17%) and low glycemic index (~43). The optimum blends were processed into instant porridges (PR1, PR2) and analyzed for its nutritional composition, blood glucose lowering ability, antioxidant enzyme and tissue/serum biochemical makers modulatory ability in obese-diabetic animals. The porridge showed significant nutritional profile, consumption of formulated multigrain porridge reduced blood glucose level (by 62% and 66%), upregulated the antioxidant defense system to near normal levels likewise, significantly reduced serum biochemical parameters. Thus, suggests that the multigrain blends/porridge is nutrient-dense possessing beneficial effect to maintain antioxidant levels in the diabetic condition with potential to attenuate oxidative damage. PRACTICAL APPLICATIONS: Prolonged feeding with high-fat diet induces hypercholesterolemia in experimental animals. Further interperitoneal injection of streptozotocin induces experimental diabetes with a cascade of oxidative stress related complications in serum and tissue parameters. Porridge is a traditional meal while multigrain porridge is a nutrient dense meal which may exert curative effect. In this work, it was shown that dietary intervention with multigrain porridge product promoted positive weight control, portrayed hepatoprotective effect as shown by the elevated levels of biomarker (ALT, AST, ALP) and antioxidant enzymes (CAT, SOD, GPx) as well as modulation of serum lipid profile (total cholesterol, triglycerides, high density lipoprotein-cholesterol). Thus, the multigrain porridge may be a functional food product to combat hypercholesterolemia and hyperglycemia especially PR1 which appeared to be more efficient than PR2 in modulating oxidative stress, conferring hypoglycemic effect and lowering lipid levels in obese-diabetic rats model studied.
Collapse
Affiliation(s)
- Aderonke I Olagunju
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
7
|
Clinical Investigation of French Maritime Pine Bark Extract on Attention-Deficit Hyperactivity Disorder as compared to Methylphenidate and Placebo: Part 2: Oxidative Stress and Immunological Modulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Nattagh-Eshtivani E, Gheflati A, Barghchi H, Rahbarinejad P, Hachem K, Shalaby MN, Abdelbasset WK, Ranjbar G, Olegovich Bokov D, Rahimi P, Gholizadeh Navashenaq J, Pahlavani N. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: Molecular aspects. Phytother Res 2022; 36:2352-2374. [PMID: 35583807 DOI: 10.1002/ptr.7454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
The prevalence of chronic diseases has increased significantly with the rising trend of sedentary lifestyles, reduced physical activity, and dietary modifications in recent decades. Inflammation and oxidative stress play a key role in the pathophysiology of several chronic diseases, such as type II diabetes, cardiovascular diseases, and hepatic conditions. Therefore, reducing inflammation and oxidative stress may be beneficial in the prevention and treatment of various chronic disorders. Since chronic diseases are not completely curable, various methods have been proposed for their control. Complementary therapies and the use of natural antioxidant and antiinflammatory compounds are among these novel approaches. Pycnogenol (PYC) is a natural compound that could control inflammation and oxidative stress. Furthermore, some previous studies have shown that PYC could effectively reduce inflammation through signaling the downstream of insulin receptors, inhibiting the phosphorylation of the serine residues of insulin receptor substrate-1, reducing pro-inflammatory cytokines and oxidative stress indices through the stimulation of antioxidant pathways, increasing free radical scavenging activities, preventing lipid peroxidation, and protecting the erythrocytes in glucose-6-phosphate dehydrogenase-deficient individuals, although these effects have not been fully proved. The present study aimed to comprehensively review the evidence concerning the positive physiological and pharmacological properties of PYC, with an emphasis on the therapeutic potential of this natural component for enhancing human health.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Gheflati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Rahbarinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida- Dr Moulay Tahar, Saida, Algeria
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
9
|
Demir A, Celik I. Investigation of healing effects of lemon ( Citrus limonum) seeds lyophilized extracts on experimental diabetic rats. Arch Physiol Biochem 2022; 128:539-546. [PMID: 31829746 DOI: 10.1080/13813455.2019.1702061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the effects of lemon seed lyophilised extract (LSLE) were investigated on the diabetic rats. Groups were conducted as normal control (NC), diabetic control (DC), diabetic + 20 mg acarbose/kg bw (DAC)), diabetic + 100 mg LSLE/kg bw (DLSLE1), diabetic + 200 LSLE mg/kg bw (DLSLE2) and diabetic + 400 LSLE mg/kg bw (DLSLE4). The protective and antioxsidant effects of LSLE on experimental diabetes complications were evaluated by measuring hepatic and renal damage biomarkers (HRDBs), antioxidant defence system constituents (ADSCs), diabetes biomarkers and MDA content in tissues of diabetic rats. Glucose, HRDBs, HbA1c, lipid profile (LP) levels increased in DC compared to NC whereas these parameters of the supplementation groups showed a significant decreas compared to DC. Also, it was determined an increase MDA content and fluctuate ADSCs in the DC tissues whereas the LSLE restored the parameters towards to the NC. It can be said that LSLE is may have healings effects against diabetic complications.
Collapse
Affiliation(s)
- Abdulbaki Demir
- Department of Molecular Biology and Genetics, Science Faculty, Van Yüzüncü Yıl University, Van, Turkey
| | - Ismail Celik
- Department of Molecular Biology and Genetics, Science Faculty, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
10
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Chlorophytum alismifolium mitigates microvascular complications of type 2 diabetes mellitus: the involvement of oxidative stress and aldose reductase. Drug Metab Pers Ther 2021; 37:69-80. [PMID: 35385895 DOI: 10.1515/dmpt-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Chlorophytum alismifolium (C. alismifolium) tubers are used in the management of diabetes. This research evaluated the effect of ethylacetate extract of C. alismifolium (EACA) on microvascular complications and the possible association of oxidative stress and aldose reductase in type 2 diabetic rats. METHODS C. alismifolium tubers were subjected to sequential extraction until ethylacetate extract was obtained using a soxhlet apparatus. The LD50 was determined using the OECD 425 guideline. The animals were placed on high fat diet for 42 days and then induced with hyperglycaemia using 40 mg/kg of streptozotocin. Diabetic neuropathy was evaluated using thermal and mechanical methods. Serum was used for the assessment of oxidative stress markers and biochemical markers of retinopathy and nephropathy. Serum aldose reductase was investigated by utilizing the principle of enzyme-linked immunosorbent assay. RESULTS The median lethal dose of EACA was assessed to be above 5,000 mg/kg and it caused no mortality. Treatment with EACA significantly reduced the withdrawal times in both thermal and mechanical hyperalgesic methods (p<0.05). EACA also significantly reduced the levels of urea (p<0.001), albumin (p<0.05) and uric acid (p<0.001) in hyperglycaemic rats. EACA significantly decreased the amounts of low density lipoprotein and triglycerides (p<0.001). There was a remarkable elevation in the levels of high density lipoprotein (p<0.05). A significant (p<0.05) increase in the levels of magnesium was observed in the EACA-treated groups. EACA significantly increased catalase (p<0.05) and reduced malondialdehyde levels (p<0.05). The levels of aldose reductase was significantly (p<0.001) reduced by EACA compared to the hyperglycaemic control. CONCLUSIONS The ethylacetate extract of C. alismifolium has beneficial effects in alleviating microvascular complications of diabetes through the inhibition of oxidative stress and aldose reductase in diabetic rats.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris Mohammed Maje
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Tanko
- Department of Human Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Akpojo Anuka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
11
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Chlorophytum alismifolium mitigates microvascular complications of type 2 diabetes mellitus: the involvement of oxidative stress and aldose reductase. Drug Metab Pers Ther 2021; 0:dmdi-2021-0129. [PMID: 34392635 DOI: 10.1515/dmdi-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Chlorophytum alismifolium (C. alismifolium) tubers are used in the management of diabetes. This research evaluated the effect of ethylacetate extract of C. alismifolium (EACA) on microvascular complications and the possible association of oxidative stress and aldose reductase in type 2 diabetic rats. METHODS C. alismifolium tubers were subjected to sequential extraction until ethylacetate extract was obtained using a soxhlet apparatus. The LD50 was determined using the OECD 425 guideline. The animals were placed on high fat diet for 42 days and then induced with hyperglycaemia using 40 mg/kg of streptozotocin. Diabetic neuropathy was evaluated using thermal and mechanical methods. Serum was used for the assessment of oxidative stress markers and biochemical markers of retinopathy and nephropathy. Serum aldose reductase was investigated by utilizing the principle of enzyme-linked immunosorbent assay. RESULTS The median lethal dose of EACA was assessed to be above 5,000 mg/kg and it caused no mortality. Treatment with EACA significantly reduced the withdrawal times in both thermal and mechanical hyperalgesic methods (p<0.05). EACA also significantly reduced the levels of urea (p<0.001), albumin (p<0.05) and uric acid (p<0.001) in hyperglycaemic rats. EACA significantly decreased the amounts of low density lipoprotein and triglycerides (p<0.001). There was a remarkable elevation in the levels of high density lipoprotein (p<0.05). A significant (p<0.05) increase in the levels of magnesium was observed in the EACA-treated groups. EACA significantly increased catalase (p<0.05) and reduced malondialdehyde levels (p<0.05). The levels of aldose reductase was significantly (p<0.001) reduced by EACA compared to the hyperglycaemic control. CONCLUSIONS The ethylacetate extract of C. alismifolium has beneficial effects in alleviating microvascular complications of diabetes through the inhibition of oxidative stress and aldose reductase in diabetic rats.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris Mohammed Maje
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Tanko
- Department of Human Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Akpojo Anuka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
12
|
Jiang HW, Zhou Y, Zhou PY, Zhang TY, Hu JY, Bai XT. Protective Effects of Bariatric Surgery on Kidney Functions by Inhibiting Oxidative Stress Responses Through Activating PPARα in Rats With Diabetes. Front Physiol 2021; 12:662666. [PMID: 34262471 PMCID: PMC8275180 DOI: 10.3389/fphys.2021.662666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Objective The aim of this study was to explore the protective effects and the regulatory mechanisms of bariatric surgery on kidney injury in diabetic rats. Methods We established a useful type 2 diabetic rat model using high-fat and high-sugar diet feeding following low-dose streptozotocin (STZ) treatment. Sprague–Dawley (SD) rats were randomly divided into the following groups: control (Con) group, diabetic nephropathy (DN) group, and duodenal–jejunal bypass (DJB) surgery group. The food intake and body weight of rats were monitored and the glucose tolerance test (OGTT) test was performed every 2 weeks. The glomerular filtration rate (GFR) and urinary albumin excretion rate (UAFR) were measured to assess renal function. Hematoxylin–eosin (H&E), periodic acid–Schiff (PAS), and Masson staining were used to evaluate renal histopathological changes. TUNEL assay was performed to detect cell apoptosis. The expressions of oxidative stress factors and inflammatory factors in the renal tissues of rats were detected by ELISA. The expressions of PPARα, reactive oxygen species (ROS), and NF-κB were detected by immunofluorescence. For in vitro experiment, HK2 cells cultured with high glucose were treated with PPARα agonist, PPARα antagonist, and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) agonist. The expressions of AMPK/PPARα/NF-κB signaling pathway-related proteins were detected by Western blot. Results Bariatric surgery improved the glucose tolerance of DN rats. The GFR was decreased, the promotion of urinary albumin excretion rate (UAER) was inhibited, and the renal injury was alleviated. The extracellular matrix fraction was decreased and the renal function was improved. Meanwhile, bariatric surgery activates PPARα, inhibits ROS release, reduces oxidative stress injury, and reduces renal cell apoptosis. In vitro experiment results showed that the AMPK activator could activate PPARα, downregulate NF-κB, and inhibit inflammatory response. The phosphorylation of AMPK was inhibited by PPARα antagonism. Conclusion Bariatric surgery can activate PPARα, inhibit oxidative stress injury, and improve glucose metabolism and renal function in DN rats.
Collapse
Affiliation(s)
- Hong-Wei Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Pin-Yi Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Tian-Yi Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing-Yao Hu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue-Tao Bai
- Department of Anaesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Lima Júnior JPD, Franco RR, Saraiva AL, Moraes IB, Espindola FS. Anacardium humile St. Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113667. [PMID: 33301920 DOI: 10.1016/j.jep.2020.113667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The substantial increase in diabetes cases worldwide has been a major public health problem, and the use of medicinal plants can be considered an interesting alternative to control the disease and its complications. Anacardium humile St. Hill. (Anacardiaceae) is a typical plant from the Brazilian savanna, popularly known for its antidiarrheal, expectorant, antidiabetic and anti-inflammatory properties, however, few studies have fully described its biological properties. This study aimed to investigate in vitro and ex vivo the antioxidant and antiglycation potential of A. humile ethanolic extract, its organic fractions and three isolated molecules (quercetin, catechin and gallic acid), their capacity to inhibit the glycolytic enzyme α-amylase, as well as their cytotoxic effects against RAW264.7 macrophages. MATERIAL AND METHODS The ethanolic extract of A. humile, its organic fractions and three isolated molecules (catechin, quercetin and gallic acid) were tested for their antioxidant (ORAC, FRAP and DPPH) and antiglycation (BSA/Fructose, BSA/Methylglyoxal, Arginine/Methylglyoxal and Lysine/Methylglyoxal) capacities, and also for its potential to inhibit the enzyme α-amylase. Additionally, bioactive compounds present in the A. humile leaves fractions were elucidated by an HPLC-ESIMS/MS analysis. RESULTS The analysis showed relevant antioxidant activity of DCM (1264.85 ± 76.90 μM Trolox eq/g ORAC; 216.71 ± 1.04 μM Trolox eq/g FRAP and 3.03 ± 0.08 IC50 μg/mL IC50 DPPH) and EtOAc (1300.11 ± 33.04 ORAC, 236.21 ± 23.86 FRAP and 3.03 ± 0.14 μg/mL IC50 DPPH) fractions and also of the isolated molecules, mainly gallic acid (1291.19 ± 8.41 μM Trolox eq/g ORAC, 1103.52 ± 31.48 μM Trolox eq/g FRAP and 0.78 ± 0.11 μg/mL IC50 DPPH). Concerning the antiglycation activity, all samples inhibited over 88% in the BSA-FRU method. In the BSA-MGO and ARG-MGO methods, the Hex, DCM, EtOAc fractions and the isolated molecule catechin stood out. However, in the LYS-MGO model, only the isolated molecules showed significant results. In α-amylase assay, all fractions, for exception Hex, presented notable inhibition capacity with low IC50 values, especially DCM, EtOAc, ButOH and H2O (IC50 0.56 ± 0.10, 0.84 ± 0.01, 0.74 ± 0.03 and 0.79 ± 0.06 μg/mL, respectively). Tests using hepatic tissue showed a notorious capacity of the DCM, AcOEt and ButOH fractions, as well as of the isolated molecules to inhibit lipid peroxidation and ROS production, and also to preserve thiol groups. Molecules of great antioxidant potential were found in our samples, such as kaempferol, quercetin, catechin, gallic acid and luteolin. CONCLUSION A. humile extract and its organic fractions showed promising antioxidant and antiglycation potential and a prominent capacity to inhibit the α-amylase enzyme. Hence, this study presents new results and stimulates further research to elucidate the biological properties of A. humile and its capacity to manage DM and its complications.
Collapse
Affiliation(s)
- Joed Pires de Lima Júnior
- Graduate Program in Cell Biology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Rodrigo Rodrigues Franco
- Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - André Lopes Saraiva
- Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Izabela Barbosa Moraes
- Center of Biological Sciences and Health (CCBS), Federal University of Oeste da Bahia (UFOB), Barreiras, BA, Brazil
| | - Foued Salmen Espindola
- Graduate Program in Cell Biology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
14
|
Ameer OZ, Salman IM, Alwadi AY, Ouban A, Abu-Owaimer FM, AlSharari SD, Bukhari IA. Regional functional and structural abnormalities within the aorta as a potential driver of vascular disease in metabolic syndrome. Exp Physiol 2021; 106:771-788. [PMID: 33450088 DOI: 10.1113/ep089213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is aortic dysfunction, a significant contributor to cardiovascular disease in metabolic syndrome, expressed uniformly across both the thoracic and abdominal aorta? What is the main finding and its importance? Our study shows that, in the setting of metabolic syndrome, functional and structural deficits in the aorta are differentially expressed along its length, with the abdominal portion displaying more extensive vascular abnormalities. It is, therefore, likely that early interventional strategies targeting the abdominal aorta might alleviate cardiovascular pathologies driven by the metabolic syndrome. ABSTRACT The extent of vascular dysfunction associated with metabolic syndrome might vary along the length of the aorta. In this study, we investigated regional functional and structural changes in the thoracic and abdominal aorta of a rat model of metabolic syndrome, namely, high-fat diet (HFD) streptozotocin-induced diabetes mellitus (HFD-D). Four-week-old male Wistar albino rats were fed with either HFD or control diet (CD) for 10 weeks. At week 6, 40 mg/kg streptozotocin and its vehicle were injected i.p. into HFD and CD groups, respectively. At the end of the feeding period, rats were euthanised and aortic segments collected for assessment of vascular functional responses and histomorphometry. Tail-cuff systolic blood pressures (154 ± 6 vs. 110 ± 4 mmHg) and areas under the curve for oral glucose and i.p. insulin tolerance tests were greater in HFD-D versus CD rats. Abdominal aortic vasoconstriction in response to noradrenaline and KCl was greater in HFD-D compared with CD rats. Thoracic vasoconstrictor responses to noradrenaline, but not KCl, were greater in the HFD-D group. Abdominal, but not thoracic, endothelium-dependent vasorelaxation in response to acetylcholine was blunted in HFD-D relative to CD rats; however, nitric oxide-dependent vasorelaxation in HFD-D rats was impaired in both thoracic and abdominal segments. The abdominal aorta of HFD-D rats showed deranged interlamellar spacing and increased lipid plaque deposition. In conclusion, vascular dysfunction in metabolic syndrome is expressed differentially along the length of the aorta, with the abdominal aorta exhibiting increased susceptibility to vasoconstrictors and greater deficits in endothelium-dependent relaxation. These vascular functional abnormalities could potentially underlie the development of hypertensive cardiovascular disease associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Omar Z Ameer
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim M Salman
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Aiman Y Alwadi
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | | - Shakir D AlSharari
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ishfaq A Bukhari
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Antihyperglycaemic activity of ethylacetate extract of Chlorophytum alismifolium in type 2 diabetes: The involvement of peroxisome proliferator-activated receptor-γ and dipeptidyl peptidase-4. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:78-84. [DOI: 10.1016/j.joim.2020.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
|
16
|
ÇAKINA S, ÖZTÜRK Ş. Streptozotosin kaynaklı diyabetik sıçanların karaciğerindeki oksidatif stres belirteçleri: metformin ve sitagliptinin etkileri. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.791369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Cheng Y, Quan W, Qu T, He Y, Wang Z, Zeng M, Qin F, Chen J, He Z. Effects of 60Co-irradiation and superfine grinding wall disruption pretreatment on phenolic compounds in pine (Pinus yunnanensis) pollen and its antioxidant and α-glucosidase-inhibiting activities. Food Chem 2020; 345:128808. [PMID: 33316712 DOI: 10.1016/j.foodchem.2020.128808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Effects of 60Co-irradiation and superfine grinding wall disruption on the phenolic, antioxidant activity, and α-glucosidase-inhibiting potential of pine pollen were investigated. Eight soluble phenolics (SP) and insoluble-bound phenolic (IBP) compounds were characterized for the first time. After 60Co-irradiation, total phenolic content (TPC) and total flavonoid content (TFC) in SP increased by 16.90% and 14.66%, respectively; in IBP, they decreased by 53.26% and 21.57%, respectively; whereas they were unchanged in pine pollen, but antioxidant activity decreased by 29.18%-40.90%. After superfine grinding wall disruption, the TPC and TFC in IBP increased by 80.24% and 27.24%, respectively; in pine pollen, they increased by 22.66% and 10.61%, respectively; whereas they were unchanged in SP; and their antioxidant activity increased by 46.68%-58.06%. Both pretreatments had a little effect on the α-glucosidase-inhibiting activities of pine pollen. These results would be helpful in promoting the application of pine pollen in functional food.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Qu
- Yantai New Era Health Industry Co., Ltd., Yantai, Shandong 264000, China
| | - Yujie He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Rosemary extract reverses oxidative stress through activation of Nrf2 signaling pathway in hamsters fed on high fat diet and HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
19
|
Shiravi AA, Saadatkish M, Abdollahi Z, Miar P, Khanahmad H, Zeinalian M. Vitamin D can be effective on the prevention of COVID-19 complications: A narrative review on molecular aspects. INT J VITAM NUTR RES 2020; 92:134-146. [PMID: 32811354 DOI: 10.1024/0300-9831/a000676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The widespread COVID-19 pandemic has been, currently, converted to a catastrophic human health challenge. Vitamin D (VD) and its metabolites have been used as a palliative treatment for chronic inflammatory and infectious diseases from ancient times. In the current study, some molecular aspects of the potential effects of VD against COVID-19 side-effects have been discussed. An arguable role in autophagy or apoptosis control has been suggested for VD through calcium signaling at the mitochondrial and ER levels. 1,25(OH)2D3 is also an immunomodulator that affects the development of B-cells, T-cells, and NK cells in both innate and acquired immunity. The production of some anti-microbial molecules such as defensins and cathelicidins is also stimulated by VD. The overexpression of glutathione, glutathione peroxidase, and superoxide dismutase, and down-regulation of NADPH oxidase are induced by VD to reduce the oxidative stress. Moreover, the multi-organ failure due to a cytokine storm induced by SARS-CoV2 in COVID-19 may be prevented by the immunomodulatory effects of VD. It can also downregulate the renin-angiotensin system which has a protective role against cardiovascular complications induced by COVID-19. Given the many experimental and molecular evidences due to the potential protective effects of VD on the prevention of the COVID-19-induced morbidities, a VD supplementation is suggested to prevent the lethal side-effects of the infection. It is particularly recommended in VD-deficient patients or those at greater risk of serious or critical effects of COVID-19, including the elderly, and patients with pre-existing chronic diseases, especially those in nursing homes, care facilities, and hospitals.
Collapse
Affiliation(s)
- Amir-Abbas Shiravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Saadatkish
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Abdollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paniz Miar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Ala Cancer Control and Prevention Center, Isfahan, Iran
| |
Collapse
|
20
|
Paul M, Sohag MSU, Khan A, Barman RK, Wahed MII, Khan MRI. Pumpkin ( Cucurbita maxima) seeds protect against formaldehyde-induced major organ damages. Heliyon 2020; 6:e04587. [PMID: 32904241 PMCID: PMC7452453 DOI: 10.1016/j.heliyon.2020.e04587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022] Open
Abstract
Exposures to hazardous chemicals including formaldehyde are harmful to human health. In this study, the authors investigate the protective effects of pumpkin seed oil (PSO) extract against formaldehyde-induced major organ damages in mice. Administration of formaldehyde (FA) caused significant elevation of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), serum creatinine, etc. Histopathological examinations of liver, kidney, and brain tissues showed the degenerations of those organs. Mice pretreated with PSO extract significantly attenuated the FA-induced elevation of SGOT (39.0 ± 1.30 vs 20.5 ± 0.65 IU/L; FA-group vs PSO treatment group), SGPT (91.8 ± 1.65 vs 51.0 ± 1.29 IU/L), serum creatinine (1.05 ± 0.07 vs 0.65 ± 0.07 IU/L), and preserved the normal histology of organ tissues. The FA-induced elevation of malondialdehyde (MDA) in the brain, liver, and kidneys was suppressed by pretreatment with PSO extract. The extract also attenuated the FA-induced reduction of endogenous antioxidant pools. In vitro phytochemical analyses showed that PSO extract possesses free radical scavenging and total antioxidant activities due to the presence of phenolic and flavonoid compounds. Thus, PSO extract has significant protective effects against FA-induced organ toxicities by scavenging oxidative stress and inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Mollika Paul
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Alam Khan
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ranjan Kumar Barman
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mir Imam Ibne Wahed
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Rafiqul Islam Khan
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
21
|
Gothandam K, Ganesan VS, Ayyasamy T, Ramalingam S. Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin - induced diabetic rats. Redox Rep 2020; 24:41-50. [PMID: 31142215 PMCID: PMC6748596 DOI: 10.1080/13510002.2019.1624085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives: The present study was to evaluate the effect of theaflavin on the activities of key enzymes of carbohydrate metabolism in high fat diet and streptozotocin – induced diabetic rats. Methods: Diabetes was induced in male albino Wistar rats by feeding them with high fat diet comprising of standard laboratory rat chow 84.3%, lard 5%, egg yolk powder 10%, cholesterol 0.2% and bile salt 0.5% for 2 weeks. After 2 weeks, the animals were kept in an overnight fast and injected with low dose of streptozotocin (40 mg/kg b.w). Results: Theaflavin (100 mg/kg b.w /day) was administered orally to diabetic rats for 30 days. At the end of the experimental period, diabetic control rats showed significant increase in plasma glucose, homeostatic model assessment of insulin resistance (HOMA-IR), glycosylated hemoglobin (HbA1c) with concomitant decrease in plasma insulin, total hemoglobin and body weight. The activities of key enzymes of carbohydrate metabolism, lipid peroxidation markers, antioxidant enzymes, glycogen content and glycogen synthase and glycogen phosphorylase were also altered in diabetic rats. Discussion: Oral administration of theaflavin to diabetic rats significantly ameliorated all the biochemical alterations to near normal levels. The results of the present study suggest that theaflavin exhibits antidiabetic effect through its antioxidant activity.
Collapse
Affiliation(s)
| | | | - Thangaraj Ayyasamy
- b Department of Plant Biology and Plant Biotechnology , Government Arts College for Men (Autonomous), Nandanam, University of Madras , Chennai , India
| | - Sundaram Ramalingam
- c Department of Medical Biochemistry , Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Chennai , India.,d Department of Biochemistry , Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences , Chennai , India
| |
Collapse
|
22
|
Zai JA, Khan MR, Mughal ZUN, Batool R, Naz I, Maryam S, Zahra Z. Methanol extract of Iphiona aucheri ameliorates CCl 4 induced hepatic injuries by regulation of genes in rats. Toxicol Res (Camb) 2019; 8:815-832. [PMID: 34055308 PMCID: PMC8142630 DOI: 10.1039/c9tx00157c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
We have investigated the protective potential of methanol extract of Iphiona aucheri (IAM) on the expression of endoplasmic reticulum (ER) stress associated genes and inflammatory genes on carbon tetrachloride (CCl4) induced hepatic toxicity in rats. Hepatic damage markers: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin were elevated while the content of antioxidants: catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione (GSH) were decreased significantly (p < 0.05) in CCl4 treated rats as compared to the control group. The CCl4 intoxication induced a higher expression of glucose-regulated protein 78 kDa (GRP78), X-box-binding protein 1 total (XBP1t), spliced X-box-binding protein 1 (XBP1s), unspliced X-box-binding protein 1 (XBP1u), C/EBP homologous protein (CHOP) and genes involved in inflammation and fibrosis: tumor necrosis factor alpha (TNF-α), transforming growth factor-beta (TGF-β), mothers against DPP homolog 3 (SMAD3), alpha skeletal muscle actin (αSMA) and collagen type I alpha 1 chain (COL1A1). The intoxicated rats showed a low expression of the glutamate-cysteine ligase catalytic subunit (GCLC), protein disulfide isomerase (PDI) and nuclear factor (erythroid-derived 2) like-2 (Nrf2). The administration of IAM to intoxicated rats restored the expression of ER stress, inflammatory, fibrosis and antioxidant genes in a dose dependent manner. Our results indicated that IAM can impede the ER stress and inflammatory genes and it could be a complementary and alternative therapeutic agent for oxidative stress associated disorders.
Collapse
Affiliation(s)
- Jawaid Ahmed Zai
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Muhammad Rashid Khan
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Zaib Un Nisa Mughal
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Riffat Batool
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Irum Naz
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Sonia Maryam
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Zartash Zahra
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| |
Collapse
|
23
|
Malekahmadi M, Moradi Moghaddam O, Firouzi S, Daryabeygi-Khotbehsara R, Shariful Islam SM, Norouzy A, Soltani S. Effects of pycnogenol on cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2019; 150:104472. [PMID: 31585179 DOI: 10.1016/j.phrs.2019.104472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
AIM Clinical trials on the effect of pycnogenol supplementation on cardiometabolic health have been controversial. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the potential effect of pycnogenol supplementation on cardiometabolic profile. METHODS PubMed, Scopus, and ISI Web of Science databases were searched until October 2018. RCTs that evaluated the effects of pycnogenol on cardiometabolic parameters were included. DerSimonian and Laird random-effect models were used to compute the weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS Twenty-four RCTs including 1594 participants were included in the meta-analysis. Pycnogenol significantly reduced fasting blood glucose (WMD: -5.86 mg/dl; 95% CI: -9.56, -2.15), glycated hemoglobin (WMD = -0.29%, 95%CI: -0.56, -0.01), systolic blood pressure (WMD: -2.54 mmhg; 95% CI: -4.08, -0.99), diastolic blood pressure (WMD: -1.76 mmhg; 95% CI: -3.12, -0.41), body mass index (WMD: -0.47 kg/m2; 95% CI: -0.90, -0.03), LDL cholesterol (WMD: -7.12 mg/dl; 95% CI: -13.66, -0.58) and increased HDL cholesterol (WMD: 3.27 mg/dl; 95% CI: 0.87, 5.66). CONCLUSION This meta-analysis suggests that pycnogenol may have a role in preventing cardiometabolic disease. However, further well-designed RCTs are recommended to evaluate its long-term effects and explore the optimal duration of use and dosage.
Collapse
Affiliation(s)
- Mahsa Malekahmadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Moradi Moghaddam
- Trauma and Injury Research Center, Critical Care Department, Rasoul-e-Akram Complex Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Safieh Firouzi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Daryabeygi-Khotbehsara
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Sheikh Mohammed Shariful Islam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Abdolreza Norouzy
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Soltani
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
24
|
The effect of boletus polysaccharides on diabetic hepatopathy in rats. Chem Biol Interact 2019; 308:61-69. [DOI: 10.1016/j.cbi.2019.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
|
25
|
Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation. Biosci Rep 2019; 39:BSR20181379. [PMID: 30918104 PMCID: PMC6481239 DOI: 10.1042/bsr20181379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The present study aimed to explore the changes in the hepatic metabolic profile during the evolution of diabetes mellitus (DM) and verify the key metabolic pathways. Methods: Liver samples were collected from diabetic rats induced by streptozotocin (STZ) and rats in the control group at 1, 5, and 9 weeks after STZ administration. Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics was used to examine the metabolic changes during the evolution of DM, and partial least squares-discriminate analysis (PLS-DA) was performed to identify the key metabolites. Results: We identified 40 metabolites in the 1H NMR spectra, and 11 metabolites were further selected by PLS-DA model. The levels of α-glucose and β-glucose, which are two energy-related metabolites, gradually increased over time in the DM rats, and were significantly greater than those of the control rats at the three-time points. The levels of choline, betaine, and methionine decreased in the DM livers, indicating that the protective function in response to liver injury may be undermined by hyperglycemia. The levels of the other amino acids (leucine, alanine, glycine, tyrosine, and phenylalanine) were significantly less than those of the control group during DM development. Conclusions: Our results suggested that the hepatic metabolic pathways of glucose, choline-betaine-methionine, and amino acids were disturbed during the evolution of diabetes, and that choline-betaine-methionine metabolism may play a key role.
Collapse
|
26
|
Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:209-238. [PMID: 31351526 DOI: 10.1016/bs.afnr.2019.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease, characterized by elevated levels of blood glucose and insufficiency in production and action of insulin is the seventh leading cause of death worldwide. Numerous studies have shown that diabetes mellitus is associated with increased formation of free radicals and decrease in antioxidant potential. In the patients with diabetes mellitus, the levels of antioxidant parameters are found to decrease, hence in many studies phytochemicals which can exert antioxidant and free radical scavenging activities, are suggested to improve the insulin sensitivity. Several phytoactive compounds such as flavonoids, lignans, prophenylphenols, are also found to combat the complications of diabetes. This chapter mainly focuses on the relationship between diabetes mellitus and preventive roles of various phytochemicals on diabetes via their antioxidant properties.
Collapse
Affiliation(s)
- Merve Bacanli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.
| | - Sevtap Aydin Dilsiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Nurşen Başaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - A Ahmet Başaran
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
27
|
Verlaet A, van der Bolt N, Meijer B, Breynaert A, Naessens T, Konstanti P, Smidt H, Hermans N, Savelkoul HFJ, Teodorowicz M. Toll-Like Receptor-Dependent Immunomodulatory Activity of Pycnogenol ®. Nutrients 2019; 11:E214. [PMID: 30678156 PMCID: PMC6412808 DOI: 10.3390/nu11020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pycnogenol® (PYC), an extract of French maritime pine bark, is widely used as a dietary supplement. PYC has been shown to exert anti-inflammatory actions via inhibiting the Toll-like receptor 4 (TLR4) pathway. However, the role of the other receptors from the TLR family in the immunomodulatory activity of PYC has not been described so far. AIM The aim of this study was to investigate whether PYC might exert its immunomodulatory properties through cell membrane TLRs (TLR1/2, TLR5, and TLR2/6) other than TLR4. Moreover, the effect of gastrointestinal metabolism on the immunomodulatory effects of PYC was investigated. FINDINGS We showed that intact non-metabolized PYC dose-dependently acts as an agonist of TLR1/2 and TLR2/6 and as a partial agonist of TLR5. PYC on its own does not agonize or antagonize TLR4. However, after the formation of complexes with lipopolysaccharides (LPS), it is a potent activator of TLR4 signaling. Gastrointestinal metabolism of PYC revealed the immunosuppressive potential of the retentate fraction against TLR1/2 and TLR2/6 when compared to the control fraction containing microbiota and enzymes only. The dialyzed fraction containing PYC metabolites revealed the capacity to induce anti-inflammatory IL-10 secretion. Finally, microbially metabolized PYC affected the colonic microbiota composition during in vitro gastrointestinal digestion. CONCLUSIONS This study showed that gastrointestinal metabolism of PYC reveals its biological activity as a potential inhibitor of TLRs signaling. The results suggest that metabolized PYC acts as a partial agonist of TLR1/2 and TLR2/6 in the presence of the microbiota-derived TLR agonists (retentate fraction) and that it possesses anti-inflammatory potential reflected by the induction of IL-10 from THP-1 macrophages (dialysate fraction).
Collapse
Affiliation(s)
- Annelies Verlaet
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Nieke van der Bolt
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Ben Meijer
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Annelies Breynaert
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Tania Naessens
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University& Research, 6708 WE Wageningen, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University& Research, 6708 WE Wageningen, The Netherlands.
| | - Nina Hermans
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Huub F J Savelkoul
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
28
|
Wen W, Lin Y, Ti Z. Antidiabetic, Antihyperlipidemic, Antioxidant, Anti-inflammatory Activities of Ethanolic Seed Extract of Annona reticulata L. in Streptozotocin Induced Diabetic Rats. Front Endocrinol (Lausanne) 2019; 10:716. [PMID: 31708869 PMCID: PMC6819323 DOI: 10.3389/fendo.2019.00716] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Annona reticulata L. (Bullock's heart) is a pantropic tree commonly known as custard apple, which is used therapeutically for a variety of maladies. The present research was carried out to evaluate the possible protective effects of Annona reticulata L. (A. reticulata) ethanolic seed extract on an experimentally induced type 2 diabetes rat model. Male Albino Wistar rats were randomly divided into five groups with six animals in each group viz., control rats in group I, diabetic rats in group II, diabetic rats with 50 and 100 mg/kg/bw of ethanolic seed extract of A. reticulata in groups III and IV, respectively, and diabetic rats with metformin in group V. Treatment was given for 42 consecutive days through oral route by oro-gastric gavage. Administration of A. reticulata seed extract to diabetes rats significantly restored the alterations in the levels of body weight, food and water intake, fasting blood glucose (FBG), insulin levels, insulin sensitivity, HbA1c, HOMA-IR, islet area and insulin positive cells. Furthermore, A. reticulata significantly decreased the levels of triglycerides, cholesterol, LDL, and significantly increased the HDL in diabetic rats. A. reticulata effectively ameliorated the enzymatic (ALT, AST, ALP, GGT) and modification of histopathological changes in diabetic rats. The serum levels of the BUN, creatinine levels, uric acid, urine volume, and urinary protein were significantly declined with a significant elevation in CCr in diabetic rats treated with A. reticulata. MDA and NO levels were significantly reduced with an enhancement in SOD, CAT, and GPx antioxidant enzyme activities in the kidney, liver, and pancreas of diabetic rats treated with A. reticulata. Diabetic rats treated with A. reticulata have shown up-regulation in mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), Heme oxygenase-1 (HO-1) and protein expression level of Nrf2 with diminution in Keap1 mRNA expression level in pancreas, kidney, and liver. From the outcome of the current results, it can be inferred that seed extract of A. reticulata exhibits a protective effect in diabetic rats through its anti-diabetic, anti-hyperlipidemic, antioxidant and anti-inflammatory effects and could be considered as a promising treatment therapy in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Wenbin Wen
- Department of Nephrology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yukiat Lin
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Zhenyu Ti
- The Department of General Surgery, Xi'an No. 3 Hospital, Xi'an, China
- *Correspondence: Zhenyu Ti
| |
Collapse
|
29
|
Sarkar P, Nath K, Banu S. Modulatory effect of baicalein on gene expression and activity of antioxidant enzymes in streptozotocin-nicotinamide induced diabetic rats. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000118201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Aydın S, Bacanlı M, Anlar HG, Çal T, Arı N, Ündeğer Bucurgat Ü, Başaran AA, Başaran N. Preventive role of Pycnogenol ® against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats. Food Chem Toxicol 2018; 124:54-63. [PMID: 30465898 DOI: 10.1016/j.fct.2018.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol® (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes.
Collapse
Affiliation(s)
- Sevtap Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Hatice Gül Anlar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| | - Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Arif Ahmet Başaran
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Nursen Başaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
31
|
Alkan EE, Celik I. The therapeutics effects and toxic risk of Heracleum persicum Desf. extract on streptozotocin-induced diabetic rats. Toxicol Rep 2018; 5:919-926. [PMID: 30225197 PMCID: PMC6138785 DOI: 10.1016/j.toxrep.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
There is an increasing interest against to fight of diabetes by using hypoglycemic plants in the world. The public thinks that Heracleum persicum (HP) has antidiabetic effect local consumer in Turkey. As far as our literature survey, no studies have been reported so far on antidiabetic effects and toxic risk potential of the HP lyophilized extract supplementation used in this study. The aim of this study, for the first time, was to investigate the therapeutic effects of diabetic complications, antioxidant properties and toxic risk potential of HP against experimentaly streptozotocin (STZ) induced diabetes in rats, which were evaluated by measuring the level of serum biomarker releated diabetes complications changes such glucose, insülin, c-peptide, lipid profile (LP), hepatic and renal damage biomarkers (HRDB), glucosylated hemoglobin (HbA1c), antioxidant defense system constituents (ADSCs), malondialdehyde (MDA) content measured in erythrocyte, brain, kidney and liver tissues, and α-glucosidase activitiy of small intestine. The plant aqueous extract was allowed to freeze-dried under a vacuum at -54 °C to obtain a fine lyophilized extract. The study was performed on STZ-induced diabetic rats (45 mg/kg, body weight (bw), intraperitonally) designed as normal control (NC), diabetic control (DC), diabetes + acarbose (DAC) (20 mg/kg, bw), diabetes + HP (100 mg/kg, bw) (DH1), diabetes + HP (200 mg/kg, bw) (DH2) and diabetes + HP (400 mg/kg, bw) (DH3)] groups. The experimental process lasted 21 days. According to results; the levels of blood glucose (BG), glucosylated hemoglobin (HbA1c) and malondialdehyde (MDA) of DC group increased significantly (p<0.05) compared to NC group, whereas these parameters of the groups treated with oral administrations of HP plant lyophilized extract were observed significant (p<0.05) declines compared to DC. The biochemical analyses showed a considerable decrease in insulin and c-peptide levels and the fluctuated ADSCs in the DC group as compared to control group, whereas the extract supplementations diet restored the diabetic complications parameters towards to the NC. On the other hands, liver damage serum enzymes as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were incressed significantly (p<0.05) in the plant extract supplementations groups as compared to NC and DC groups. It was concluded that while the extracts of HP have had therapeutic effects on some complications caused by diabetes, but might be caused hepatocyte damage changes as the transport functions and membrane permeability of these cells, thus causing enzymes to leak.
Collapse
Affiliation(s)
| | - Ismail Celik
- Department of Molecular Biology and Genetics, Science Faculty, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
32
|
Wang D, Cong H, Wang X, Cao Y, Ikuyama S, Fan B, Gu J. Pycnogenol protects against diet-induced hepatic steatosis in apolipoprotein-E-deficient mice. Am J Physiol Endocrinol Metab 2018; 315:E218-E228. [PMID: 29462565 DOI: 10.1152/ajpendo.00009.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PycnogenolR (PYC), a combination of active flavonoids derived from French maritime pine bark, is a natural antioxidant that has various pharmacological activities. Here, we investigated the beneficial effect of PYC on diet-induced hepatic steatosis. Apolipoprotein E (ApoE)-deficient male mice were administered PYC at oral doses of 30 or 100 mg·kg-1·day-1 for 2 wk in advance and were then fed a high-cholesterol and -fat diet (HCD) for 8 wk. Biochemical, immunohistochemical, and gene expression analyses were conducted to explore the effect of PYC on lipid metabolism in ApoE-deficient mice on a HCD. Short-term treatment with HCD in ApoE-deficient mice induced hepatic injuries, such as lipid metabolism disorder and hepatic histopathological changes. We found that PYC reduced body weight and the increase of serum lipids that had been caused by HCD. Supplementation of PYC significantly reduced lipid deposition in the liver, as shown by the lowered hepatic lipid content and histopathological lesions. We subsequently detected genes related to lipid metabolism and inflammatory cytokines. The study showed that PYC markedly suppressed the expression of genes related to hepatic lipogenesis, fatty acid uptake, and lipid storage while increasing the lipolytic gene, which thus reduced hepatic lipid content. Furthermore, PYC mainly reduced the expression of inflammatory cytokines and the infiltration of inflammatory cells, which were resistant to the development of hepatic steatosis. These results demonstrate that PYC protects against the occurrence and development of hepatic steatosis and may provide a new prophylactic approach for nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Difei Wang
- Department of Geriatric Endocrinology, The First Hospital of China Medical University , Shenyang , China
| | - Huiying Cong
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang , China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang , China
| | - Yanli Cao
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang , China
| | - Shoichiro Ikuyama
- Department of Clinical Investigation, Department of Diabetes, Endocrine and Rheumatic Diseases Oita San-ai Medical Center, Ichi, Oita , Japan
| | - Bin Fan
- Department of Neurology, Shengjing Hospital, China Medical University , Shenyang , China
| | - Jianqiu Gu
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
33
|
Sudasinghe HP, Peiris DC. Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ 2018; 6:e4389. [PMID: 29479498 PMCID: PMC5824672 DOI: 10.7717/peerj.4389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
Leaves of Passiflora suberosa L. (Family: Passifloraceae; common name: wild passion fruit, devil's pumpkin) are used in Sri Lankan traditional medicine for treating diabetes. The present study investigated the in vivo ability of P. suberosa leaves to manage blood sugar status and associated cholesterol levels. Mechanisms of action and toxicity were also determined. Phytochemical screening of aqueous extracts of P. suberosa leaves and carbohydrate content of the leaves were determined according to previously published methods. In two group of male mice (n = 9), effects on fasting and random blood glucose levels (BGLs) of different acute doses (0, 25, 50, 100 and 200 mg/kg) of the aqueous leaf extract (ALE) were evaluated at 1, 3, and 5 h post-treatment. In another set of mice, the fasting BGL was evaluated following treatment of 0 or 50 mg/kg ALE (dose prescribed in traditional medicine) for 30 consecutive days. The lipid profile, some mechanism of ALE action (diaphragm glucose uptake, glycogen content in the liver and skeletal muscles) and its toxicity (behavioural observation, food and water intake, hepatoxicity) were also assessed following 30-day treatment. However, sucrose and glucose tolerance tests and intestinal glucose uptake were conducted to determine portion of mechanisms of action following single dose of 50 mg/kg ALE. Phytochemical screening revealed the presence of alkaloids, unsaturated sterols, triterpenes, saponins, flavonoids, tannins and proanthocyanidins. Carbohydrate content of the leaves was 12.97%. The maximum hypoglycemic effect was observed after 4 h of 50 and 100 mg/kg ALE administration. The extract decreased fasting BGL (18%) following an oral sucrose challenge and inhibited (79%) glucose absorption from the intestine. Correspondingly, the levels of glycogen in the liver (61%) and in the skeletal muscles (57%) were found be higher than that of the control group. The levels of total cholesterol (17%) and tri-glyceraldehyde levels (12%) found to be reduced in treated groups. Furthermore, no significant toxic effects were observed in treated groups. The present results suggest that the leaves of P. suberosa can be used to manage blood glucose and cholesterol levels. Isolation of active compounds are recommended for further analysis.
Collapse
Affiliation(s)
- Hasani Prabodha Sudasinghe
- Department of Zoology (Centre for Plant materials & Herbal Products Research), University of Sri Jayewardenepura, Nugegoda, Western Province, Sri Lanka
| | - Dinithi C Peiris
- Department of Zoology (Centre for Plant materials & Herbal Products Research), University of Sri Jayewardenepura, Nugegoda, Western Province, Sri Lanka
| |
Collapse
|
34
|
Aydın AF, Bingül İ, Küçükgergin C, Doğan-Ekici I, Doğru Abbasoğlu S, Uysal M. Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats. Int J Exp Pathol 2017; 98:278-288. [PMID: 29205589 DOI: 10.1111/iep.12252] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
High-fat diet (HFD) and low-dose streptozotocin (STZ)-treated rats provide useful animal model for type II diabetes mellitus. Oxidative stress and advanced glycation end products (AGEs) play a role in the development of diabetic complications. Carnosine (CAR) has anti-oxidant and anti-glycating properties. We investigated the effects of CAR on oxidation and glycation products in HFD+STZ rats. Rats were fed with HFD (60% of total calories from fat) for 4 weeks, and then a single dose of STZ (40 mg/kg; i.p.) was applied. Rats with blood glucose levels above 200 mg/dl were fed with HFD until the end of the 12th week. CAR (250 mg/kg body weight; i.p.; five times a week) was administered to the rats for the last four weeks. CAR significantly decreased serum triglyceride (TG) (57.7%), cholesterol (35.6%) levels and hepatic marker enzyme activities of HFD+STZ rats. It significantly reduced serum reactive oxygen species (ROS) (23.7%), AGEs (13.4%) and advanced oxidized protein products (AOPP) (35.9%) and hepatic TG (59%), ROS (26%), malondialdehyde (MDA) (11.5%), protein carbonyl (PC) (19.2%) and AGE (20.2%) levels. Liver steatosis and hepatocyte ballooning were also significantly reduced. However, CAR treatment did not alter serum glucose and blood glycated haemoglobin and hepatic anti-oxidant enzyme activities/mRNA expressions in HFD+STZ rats. Our results indicate that CAR decreased accumulation of oxidation and glycation products, such as MDA, AGE, AOPP and PC in the serum and liver and ameliorated hepatic dysfunction in HFD+STZ rats. This effect may be related to its anti-oxidative, anti-glycating, and anti-lipogenic potential.
Collapse
Affiliation(s)
| | - İlknur Bingül
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Canan Küçükgergin
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Yeditepe University Medical Faculty, Istanbul, Turkey
| | - Semra Doğru Abbasoğlu
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
35
|
Alqasim AA, Noureldin EEM, Hammadi SH, Esheba GE. Effect of melatonin versus vitamin D as antioxidant and Hepatoprotective agents in STZ-induced diabetic rats. J Diabetes Metab Disord 2017; 16:41. [PMID: 29021975 PMCID: PMC5622449 DOI: 10.1186/s40200-017-0322-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022]
Abstract
Background Diabetes mellitus (DM) is a serious chronic disease, with multiple complications including hepatopathy associated with imbalance of the oxidative status. The purpose of this study is to observe possible protective effects of vitamin-D and melatonin on glucose profile, antioxidant-oxidant status, lipid peroxidation, and histopathological protection of the liver in streptozotocin-induced diabetic rats. Methods Eighty three male albino rats were divided into nine groups as follows: G1 (n = 10) Normal control rats; G2 (n = 8) were normal rats treated with melatonin only; G3 (n = 10) were normal rats treated with vitamin D only; G4 (n = 9) were diabetic rats, which received no medications; G5 (n = 8) were diabetic rat treated with insulin only; G6 (n = 10) were diabetic rats treated with melatonin only; G7 (n = 9) were diabetic rats treated with melatonin and insulin; G8 (n = 9) were diabetic rats treated with vitamin D only; G9 (n = 10) were diabetic rats treated with vitamin D and insulin. Two months post treatment, blood was collected to measure: Fasting blood sugar (FBS), glycosylated hemoglobin (HbA1c), fructosamine (FA), total antioxidant capacity (TAC), malondialdahyde (MDA). livers were isolated for histopathological study. Results As compared to normal rats, our results demonstrate that glucose, fructosamine and HbA1c levels is increased in diabetic groups and declined to lesser levels in treated groups. TAC level of diabetic rats is not significantly changed. Vitamin D administration significantly increased TAC while it is not changed with melatonin either in treated or non-treated groups. The liver of diabetic rats shows only mild focal microvesicular fatty degeneration. The liver of diabetic rats treated with insulin shows degeneration of cell edema in the stroma. The liver of diabetic rats treated with melatonin with or without insulin, exhibited marked improvement. The liver of diabetic rats treated with vitamin D with or without insulin, shows degeneration of cells and edema in the stroma. Conclusion Our results demonstrated the beneficial antioxidant effect of vitamin D administration to normal and diabetic rats as compared to melatonin. Nevertheless, melatonin still shows more therapeutic effect on liver cell injury induced by induction of diabetes.
Collapse
Affiliation(s)
- Abdulmonim A Alqasim
- Department of Physiology, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Essam Eldin M Noureldin
- Department of Biochemistry, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Sami H Hammadi
- Department of Internal Medicine, College of Medicine, Umm Alqura university, Makkah, Saudi Arabia
| | - Ghada E Esheba
- Department of Pathology, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| |
Collapse
|
36
|
Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed Pharmacother 2017; 95:605-613. [PMID: 28881291 DOI: 10.1016/j.biopha.2017.08.098] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Prevalence of diabetes, a serious public health problem is rapidly increasing worldwide. Type-2 diabetes is the common form of diabetes characterized by insulin resistance and abnormalities in insulin production. Despite the current development of therapeutic agents, there is no effective treatment without side effects; it is therefore necessary to find new prevention strategies and better treatments. For this purpose animal models of diabetes are appropriate tools, of which rodents due to the short generation time and economic considerations are the first choice. The aim of this review is to present features of a frequently used model of type-2 diabetes in rat, induced by a high fat diet and streptozotocin, taking into account its advantages/disadvantages and presenting a practical guide.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Pozzo L, Vornoli A, Coppola I, Croce CMD, Giorgetti L, Gervasi PG, Longo V. Effect of HFD/STZ on expression of genes involved in lipid, cholesterol and glucose metabolism in rats. Life Sci 2016; 166:149-156. [DOI: 10.1016/j.lfs.2016.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022]
|
38
|
Novel Podophyllotoxin Derivatives as Partial PPARγ Agonists and their Effects on Insulin Resistance and Type 2 Diabetes. Sci Rep 2016; 6:37323. [PMID: 27853282 PMCID: PMC5112511 DOI: 10.1038/srep37323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is recognized as a key regulator of insulin resistance. In this study, we searched for novel PPARγ agonists in a library of structurally diverse organic compounds and determined that podophyllotoxin exhibits partial agonist activity toward PPARγ. Eight novel podophyllotoxin-like derivatives were synthesized and assayed for toxicity and functional activity toward PPARγ to reduce the possible systemic toxic effects of podophyllotoxin and to maintain partial agonist activity toward PPARγ. Cell-based transactivation assays showed that compounds (E)-3-(hydroxy(3,4,5-trimethoxyphenyl)methyl)-4-(4(trifluoromethyl)styryl)dihydrofuran-2(3H)-one (3a) and (E)-4-(3-acetylstyryl)-3-(hydroxyl (3,4,5-trimethoxyphenyl)methyl)dihydrofuran-2(3H)-one (3f) exhibited partial agonist activity. An experiment using human hepatocarcinoma cells (HepG2) that were induced to become an insulin-resistant model showed that compounds 3a and 3f improved insulin sensitivity and glucose consumption. In addition, compounds 3a and 3f significantly improved hyperglycemia and insulin resistance in high-fat diet-fed streptozotocin (HFD-STZ)-induced type 2 diabetic rats at a dose of 15 mg/kg/day administered orally for 45 days, without significant weight gain. Cell toxicity testing also showed that compounds 3a and 3f exhibited weaker toxicity than pioglitazone. These findings suggested that compounds 3a and 3f improved insulin resistance in vivo and in vitro and that the compounds exhibited potential for the treatment of type 2 diabetes mellitus.
Collapse
|
39
|
Evaluation of Hypoglycemic and Genotoxic Effect of Polyphenolic Bark Extract from Quercus sideroxyla. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4032618. [PMID: 27867402 PMCID: PMC5102877 DOI: 10.1155/2016/4032618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/09/2016] [Accepted: 10/04/2016] [Indexed: 01/15/2023]
Abstract
Quercus sideroxyla is a wood species whose bark has phenolic compound and should be considered to be bioactive; the hypoglycemic and genotoxic properties of Q. sideroxyla bark were evaluated in this study. Total phenolic compound was determined in crude extract (CE) and organic extract (OE). The OE has the highest amount of phenols (724.1 ± 12.0 GAE/g). Besides, both CE and OE demonstrated effect over the inhibition of α-amylase in vitro. Hypoglycemic activity was assessed by glucose tolerance curve and the area under curve (UAC); OE showed the highest hypoglycemic activity. In addition, diabetes was induced by streptozotocin (65 mg/kg) and the extracts (50 mg/kg) were administered for 10 days; OE showed hypoglycemic effect compared with diabetic control and decreased hepatic lipid peroxidation. Acute toxicity and genotoxicity were evaluated in CE; results of acute toxicity did not show any mortality. Besides, the comet assay showed that CE at a dose of 100 mg/kg did not show any genotoxic effect when evaluated at 24 h, whereas it induced slight damage at 200 mg/kg, with the formation of type 1 comets.
Collapse
|
40
|
Choi RY, Ham JR, Lee MK. Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet. Chem Biol Interact 2016; 260:13-21. [PMID: 27769711 DOI: 10.1016/j.cbi.2016.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
This study investigated the effects and mechanism of esculetin (6,7-dihydroxycoumarin) on non-alcoholic fatty liver in diabetic mice fed high-fat diet (HFD). The diabetic mice model was induced by injection of streptozotocin, after which they were fed HFD diet with or without esculetin for 11 weeks. Non-diabetic mice were provided a normal diet. Diabetes induced hepatic hypertrophy, lipid accumulation and droplets; however, esculetin reversed these changes. Esculetin treatment in diabetic mice fed HFD significantly down-regulated expression of lipid synthesis genes (Fasn, Dgat2 and Plpp2) and inflammation genes (Tlr4, Myd88, Nfkb, Tnfα and Il6). Moreover, the activities of hepatic lipid synthesis enzymes (fatty acid synthase and phosphatidate phosphohydrolase) and gluconeogenesis enzyme (glucose-6-phosphatase) in the esculetin group were decreased compared with the diabetic group. In addition, esculetin significantly reduced blood HbA1c, serum cytokines (TNF-α and IL-6) and chemokine (MCP-1) levels compared with the diabetic group without changing the insulin content in serum and the pancreas. Hepatic SOD activity was lower and lipid peroxidation level was higher in the diabetic group than in the normal group; however, esculetin attenuates these differences. Overall, these results demonstrated that esculetin supplementation could protect against development of non-alcoholic fatty liver in diabetes via regulation of lipids, glucose and inflammation.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
41
|
Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ Med J 2016; 16:e132-41. [PMID: 27226903 PMCID: PMC4868511 DOI: 10.18295/squmj.2016.16.02.002] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/18/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines-including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α-exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals.
Collapse
Affiliation(s)
- Jamaludin Mohamed
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - A. H. Nazratun Nafizah
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - A. H. Zariyantey
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S. B. Budin
- Department of Biomedical Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis 2016; 7:90-110. [PMID: 26816666 DOI: 10.14336/ad.2015.0702] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and its complications are caused by chronic glucotoxicity driven by persistent hyperglycemia. In this article, we review the mechanisms of diabetic glucotoxicity by focusing mainly on hyperglycemic stress and carbon stress. Mechanisms of hyperglycemic stress include reductive stress or pseudohypoxic stress caused by redox imbalance between NADH and NAD(+) driven by activation of both the polyol pathway and poly ADP ribose polymerase; the hexosamine pathway; the advanced glycation end products pathway; the protein kinase C activation pathway; and the enediol formation pathway. Mechanisms of carbon stress include excess production of acetyl-CoA that can over-acetylate a proteome and excess production of fumarate that can over-succinate a proteome; both of which can increase glucotoxicity in diabetes. For hyperglycemia stress, we also discuss the possible role of mitochondrial complex I in diabetes as this complex, in charge of NAD(+) regeneration, can make more reactive oxygen species (ROS) in the presence of excess NADH. For carbon stress, we also discuss the role of sirtuins in diabetes as they are deacetylases that can reverse protein acetylation thereby attenuating diabetic glucotoxicity and improving glucose metabolism. It is our belief that targeting some of the stress pathways discussed in this article may provide new therapeutic strategies for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Xiaoting Luo
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 2 Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi province, China, 341000
| | - Jinzi Wu
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siqun Jing
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 3 College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China, 830046
| | - Liang-Jun Yan
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
43
|
Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016; 9:145-53. [PMID: 27274295 PMCID: PMC4869616 DOI: 10.2147/dmso.s106087] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NAD(+) is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD(+) can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD(+) can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD(+) as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD(+) as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD(+). Impairment of NAD(+) regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD(+) deficiency. The consequence of NADH/NAD(+) redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD(+) redox balance could provide further insights into design of novel antidiabetic strategies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hong Zheng
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Correspondence: Liang-Jun Yan, Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA, Tel +1 817 735 2386, Fax +1 817 735 2603, Email
| |
Collapse
|
44
|
Dogan A, Celik I, Kaya MS. Antidiabetic properties of lyophilized extract of acorn (Quercus brantii Lindl.) on experimentally STZ-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:243-251. [PMID: 26505295 DOI: 10.1016/j.jep.2015.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acorn obtained from the Quercus brantii Lindl. (QB) tree has been used in Turkish folk medicine. Some studies have reported as an antioxidant, antimicrobial, anti-inflammatory, gastroprotective, antitumoural of QB properties previously. however, its effect on the management of type diabetic 2 and oxidative stress complications is still unexplored. The aims of our study were the evaluation of the protective effect and antioxidant role of acorn lyophilized seed plant extract against STZ-induced diabetic complications as oxidative stress, hepatotoxicity and nephropathy, lipidemia and serum biomarkers of diabetes (SBD). MATERIALS AND METHODS In-vivo studies were performed on STZ-induced diabetic rats Experiment was designed as I [Normal Control (NC)], II [Diabetes mellitus (DM)], III [DM+Acarbose (20mg/kg b.w) (DM+AC-20)], IV [DM+QB (100mg/kg b.w) (DM+QB-100)], V [DM+QB (250 mg/kg b.w) (DM+QB-250)] and VI [DM+QB (500 mg/kg b.w) (DM+QB-500)] groups. RESULTS This study showed that the biochemical analysis showed a considerable increase in the HRDB, DB, LP, MDA and fluctuated ADSC in the II group as compared to that of control group whereas, AC and the plant lyophilized seed plant extract supplementations diet restored the STZ-induced diabetic complications towards the control. α-glycosidase activity in DM group showed statistically significant increase with respect to control group in small intestine. Moreover, in accordance with the effects of seed extract; in diabetic rat groups to whom acorn seed extract and acarbose were given, the levels of almost all the concerned parameters were reached to the ones measured at control group. As a result, it was concluded that acorn seed extract had certain healing effects on many complications caused by diabetes.
Collapse
Affiliation(s)
- Abdulahad Dogan
- Department of Biology, Science Faculty, Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Department of Molecular Biology and Genetic, Science Faculty, Yuzuncu Yil University, Van, Turkey.
| | - Mehmet Salih Kaya
- Department of Physiology, Veterinary Faculty, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
45
|
Zhou J, Xu G, Bai Z, Li K, Yan J, Li F, Ma S, Xu H, Huang K. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway. Toxicol Appl Pharmacol 2015; 289:409-18. [PMID: 26522834 DOI: 10.1016/j.taap.2015.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Gang Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhaoshuai Bai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kaicheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Junyan Yan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fen Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shuai Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huibi Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
46
|
Gulati OP. Pycnogenol® in Metabolic Syndrome and Related Disorders. Phytother Res 2015; 29:949-68. [PMID: 25931421 DOI: 10.1002/ptr.5341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
The present review provides an update of the biological actions of Pycnogenol® in the treatment of metabolic syndrome and related disorders such as obesity, dyslipidaemia, diabetes and hypertension. Pycnogenol® is a French maritime pine bark extract produced from the outer bark of Pinus pinaster Ait. Subsp. atlantica. Its strong antioxidant, antiinflammatory, endothelium-dependent vasodilator activity, and also its anti-thrombotic effects make it appropriate for targeting the multifaceted pathophysiology of metabolic syndrome. Clinical studies have shown that it can reduce blood glucose levels in people with diabetes, blood pressure in mild to moderate hypertensive patients, and waist circumference, and improve lipid profile, renal and endothelial functions in metabolic syndrome. This review highlights the pathophysiology of metabolic syndrome and related clinical research findings on the safety and efficacy of Pycnogenol®. The results of clinical research studies performed with Pycnogenol® are discussed using an evidence-based, target-oriented approach following the pathophysiology of individual components as well as in metabolic syndrome overall.
Collapse
|
47
|
Liu HJ, Zhang CY, Song F, Xiao T, Meng J, Zhang Q, Liang CL, Li S, Wang J, Zhang B, Liu YR, Sun T, Zhou HG. A Novel Partial Agonist of Peroxisome Proliferator-Activated Receptor γ with Excellent Effect on Insulin Resistance and Type 2 Diabetes. J Pharmacol Exp Ther 2015; 353:573-81. [PMID: 25876909 DOI: 10.1124/jpet.115.223107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 02/01/2023] Open
Abstract
Partial agonists of peroxisome proliferator-activated receptor γ (PPARγ) reportedly reverse insulin resistance in patients with type 2 diabetes mellitus. In this work, a novel non-thiazolidinedione-partial PPARγ ligand, MDCCCL1636 [N-(4-hydroxyphenethyl)-3-mercapto-2-methylpropanamide], was investigated. The compound displayed partial agonist activity in biochemical and cell-based transactivation assays and reversed insulin resistance. MDCCCL1636 showed a potential antidiabetic effect on an insulin-resistance model of human hepatocarcinoma cells (HepG2). High-fat diet-fed streptozotocin-induced diabetic rats treated with MDCCCL1636 for 56 days displayed reduced fasting serum glucose and reversed dyslipidemia and pancreatic damage without significant weight gain. Furthermore, MDCCCL1636 had lower toxicity in vivo and in vitro than pioglitazone. MDCCCL1636 also potentiated glucose consumption and inhibited the impairment in insulin signaling targets, such as AKT, glycogen synthase kinase 3β, and glycogen synthase, in HepG2 human hepatoma cells. Overall, our results suggest that MDCCCL1636 is a promising candidate for the prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hui-juan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Cheng-yu Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Fei Song
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Ting Xiao
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Jing Meng
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Qiang Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Cai-li Liang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Shan Li
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Jing Wang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Bo Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Yan-rong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Tao Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Hong-gang Zhou
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.).
| |
Collapse
|
48
|
|
49
|
Cordero-Herrera I, Martín MA, Goya L, Ramos S. Cocoa flavonoids protect hepatic cells against high-glucose-induced oxidative stress: relevance of MAPKs. Mol Nutr Food Res 2015; 59:597-609. [PMID: 25594685 DOI: 10.1002/mnfr.201400492] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023]
Abstract
SCOPE Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. METHODS AND RESULTS Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. CONCLUSION EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs.
Collapse
Affiliation(s)
- Isabel Cordero-Herrera
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Universitaria, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Li YY, Feng J, Zhang XL, Cui YY. Pine bark extracts: nutraceutical, pharmacological, and toxicological evaluation. J Pharmacol Exp Ther 2015; 353:9-16. [PMID: 25597308 DOI: 10.1124/jpet.114.220277] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Proanthocyanidins are among the most abundant constituents in pine bark extracts (PBEs). This review summarizes medical research on PBEs from Pinus pinaster, Pinus radiata, Pinus massoniana, and other less well characterized species. The precise mechanisms of the important physiologic functions of PBE components remain to be elucidated, but there is evidently great potential for the identification and development of novel antioxidant, anti-inflammatory, cardiovascular, neuroprotective, and anticancer medicines. Although toxicological data for PBEs are limited, no serious adverse effects have been reported. PBEs, therefore, may have potential as nutraceuticals and pharmaceuticals and should be safe for use as food ingredients.
Collapse
Affiliation(s)
- Ying-Ya Li
- Department of Regenerative Medicine (Y.-Y.L., J.F., X.-L.Z., Y.-Y.C.), Key Laboratory of Arrhythmias of the Ministry of Education of China (Y.-Y.C.), and Institute of Medical Genetics (Y.-Y.C.), Tongji University School of Medicine, Shanghai, China
| | - Jiao Feng
- Department of Regenerative Medicine (Y.-Y.L., J.F., X.-L.Z., Y.-Y.C.), Key Laboratory of Arrhythmias of the Ministry of Education of China (Y.-Y.C.), and Institute of Medical Genetics (Y.-Y.C.), Tongji University School of Medicine, Shanghai, China
| | - Xiao-Lu Zhang
- Department of Regenerative Medicine (Y.-Y.L., J.F., X.-L.Z., Y.-Y.C.), Key Laboratory of Arrhythmias of the Ministry of Education of China (Y.-Y.C.), and Institute of Medical Genetics (Y.-Y.C.), Tongji University School of Medicine, Shanghai, China
| | - Ying-Yu Cui
- Department of Regenerative Medicine (Y.-Y.L., J.F., X.-L.Z., Y.-Y.C.), Key Laboratory of Arrhythmias of the Ministry of Education of China (Y.-Y.C.), and Institute of Medical Genetics (Y.-Y.C.), Tongji University School of Medicine, Shanghai, China
| |
Collapse
|