1
|
Zhang Z, Yuan S, Yang Z, Liu Y, Liu S, Chen L, Wu B. Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1519-1529. [PMID: 39804792 DOI: 10.1021/acs.est.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then Mus musculus were exposed to the three LCMs for 42 days at doses of 0.5 and 50 μg/kg/d to investigate hepatotoxicity and mechanisms. Phenotypic and histopathological results showed that the three LCMs (DTMDPB, MeO3bcH, and 5OCB) induced hepatomegaly, and only 5OCB induced fatty liver. DTMDPB and MeO3bcH decreased the total cholesterol (TCHO) and triglyceride (TG) content, whereas 5OCB increased the TCHO, TG, and alanine aminotransferase levels. Transcriptome and molecular docking analysis revealed that DTMDPB induced hepatotoxicity by agonizing the farnesoid X receptor, resulting in the disruption of unsaturated fatty acid biosynthesis, ascorbic acid and antioxidant pathways, and circadian clock homeostasis. MeO3bcH promoted inflammation and altered unsaturated fatty acid, primary bile acid biosynthesis, and circadian rhythm by antagonizing the aryl hydrocarbon receptor. 5OCB antagonized peroxisome proliferator-activated receptors, leading to fatty liver caused by the disruption of steroid, cholesterol, and terpenoid backbone biosynthesis pathways. This study provides references for understanding the hepatotoxicity of LCMs with different structures and the selection of priority control LCMs.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Ritzenthaler JD, Ekuban A, Horsman B, Roman J, Watson WH. Alcohol-induced liver injury is mediated via α4-containing nicotinic acetylcholine receptors expressed in hepatocytes. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025. [PMID: 39853711 DOI: 10.1111/acer.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Our previous study demonstrated that alcohol induced the expression of the α4 subunit of nicotinic acetylcholine receptors (nAChRs) in the livers of wild type mice (WT), and that whole-body α4 nAChR knockout mice (α4KO) showed protection against alcohol-induced steatosis, inflammation, and injury. Based on these findings, we hypothesized that hepatocyte-specific α4 nAChRs may directly contribute to the detrimental effects of alcohol on the liver. METHODS Hepatocyte-specific α4 knockout mice (α4HepKO) were generated, and the absence of α4 nAChR was confirmed through PCR of genomic DNA. Female WT and α4HepKO mice were exposed to alcohol in the NIAAA chronic + binge model. After 10 days on the Lieber-DeCarli liquid diet containing 5% (vol/vol) alcohol or isocaloric maltose-dextrin, the mice were gavaged with a single dose of alcohol or isocaloric maltose-dextrin. The mice were euthanized 9 h later and their organs harvested. Additionally, hepatocytes were isolated from WT, α4HepKO, α4floxed, and α4KO mice and exposed to 80 mM alcohol in vitro for 24 h. Steatosis, inflammation, and cell injury were assessed in both liver and isolated hepatocytes. RESULTS In WT mice, alcohol exposure resulted in hepatic steatosis, inflammation, and injury as evidenced by increased liver triglycerides, neutrophil infiltration, and serum concentrations of liver enzymes. All of these responses were markedly lower in α4HepKO mice. mRNA expression of genes involved in lipogenesis (Srebf1, Fasn, and Dgat2) and inflammation (TNFα, Cxcl5, Cxcl1, and Serpine1) were increased in the livers of WT mice exposed to alcohol in vivo and in WT hepatocytes exposed to alcohol in vitro. These changes were not observed in liver or hepatocytes from mice lacking α4 nAChRs. CONCLUSIONS α4 nAChRs expressed in hepatocytes mediate alcohol-associated hepatoxicity. Therefore, the development of therapeutic strategies targeting hepatocyte α4-containing nAChRs could help reduce the burden of ALD.
Collapse
Affiliation(s)
- Jeffrey D Ritzenthaler
- Division of Pulmonary, Allergy and Critical Care Medicine and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abigail Ekuban
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Benjamin Horsman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jesse Roman
- Division of Pulmonary, Allergy and Critical Care Medicine and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Walter H Watson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Cui WT, Xue HR, Wei DF, Feng XY, Wang K. Prospects of elafibranor in treating alcohol-associated liver diseases. World J Gastroenterol 2025; 31:99549. [PMID: 39811505 PMCID: PMC11684193 DOI: 10.3748/wjg.v31.i2.99549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol-related liver disease (ALD), which is induced by excessive alcohol consumption, is a leading cause of liver-related morbidity and mortality. ALD patients exhibit a spectrum of liver injuries, including hepatic steatosis, inflammation, and fibrosis, similar to symptoms of nonalcohol-associated liver diseases such as primary biliary cholangitis, metabolic dysfunction-associated steatotic liver disease, and nonalcoholic steatohepatitis. Elafibranor has been approved for the treatment of primary biliary cholangitis and has been shown to improve symptoms in both animal models and in vitro cell models of metabolic dysfunction-associated steatotic liver disease and nonalcoholic steatohepatitis. However, the efficacy of elafibranor in treating ALD remains unclear. In this article, we comment on the recent publication by Koizumi et al that evaluated the effects of elafibranor on liver fibrosis and gut barrier function in an ALD mouse model. Their findings indicate the potential of elafibranor for ALD treatment, but further experimental investigations and clinical trials are warranted.
Collapse
Affiliation(s)
- Wei-Tong Cui
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Hua-Ru Xue
- School of Medical Imaging, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Dian-Fang Wei
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Xiao-Yu Feng
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Kai Wang
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| |
Collapse
|
4
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2025; 48:136-149. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
5
|
Guo X, Liu C, Dong Z, Luo G, Li Q, Huang M. Flavonoids from Rhododendron nivale Hook. f ameliorate alcohol-associated liver disease via activating the PPARα signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156215. [PMID: 39556985 DOI: 10.1016/j.phymed.2024.156215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Flavonoids are increasingly recognized for their potent antioxidant properties and potential therapeutic roles in the management of alcohol-associated liver disease (ALD). Extracts derived from Rhododendron nivale Hook. f. (FRN) have been shown to influence glutathione metabolism in aging animal models, exhibiting notable antioxidant effects. However, the specific impact of FRN on ALD remains insufficiently explored. HYPOTHESIS/PURPOSE This study seeks to elucidate the efficacy of FRN in alleviating the pathology associated with ALD, delving into the underlying molecular mechanisms that facilitate its protective effects. STUDY DESIGN We employed network pharmacology to predict the functional roles and pathway enrichments associated with FRN targets. Both a murine model of ALD and in vitro cellular models were utilized to clarify the mechanistic basis by which FRN mitigates ALD. METHODS FRN was extracted and characterized according to well-established methodologies outlined in our previous studies. Potential functions and pathways implicated by FRN were predicted through network pharmacology analyses. A combination of liver transcriptomics, targeted lipidomics, molecular biology techniques, and antagonists of relevant targets were employed to investigate the mechanisms through which FRN exerts its protective effects in ALD. RESULTS Network pharmacology identified multiple target genes modulated by FRN, particularly those within critical ALD-related signaling pathways, such as PPARα signaling and fatty acids (FAs) degradation. Notably, treatment with FRN in the ALD murine model led to a significant attenuation of hepatic lipid accumulation and a restoration of serum AST and ALT to baseline ranges. Subsequent validation through liver transcriptomics and molecular biology techniques revealed an upregulation of PPARα expression concomitant with a downregulation of ACSL1 in FRN-treated ALD mice. Targeted lipidomic and bioinformatic analyses demonstrated that FRN substantially reduced the accumulation of long-chain fatty acids in hepatocytes. Importantly, the reversal of FRN's protective effects on lipid accumulation through the PPARα antagonist GW6471 provides compelling evidence for the critical role of PPARα signaling modulation in mediating the beneficial impact of FRN on ALD. CONCLUSION Our research highlights FRN's capacity to alleviate ALD through PPARα pathway activation, paving the way for innovative treatment strategies. This underscores the significance of natural compounds in pharmacotherapy, suggesting that FRN may provide an effective alternative for managing ALD.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Chen Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Gang Luo
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qien Li
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Meizhou Huang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Chang S, Lei X, Xu W, Guan F, Ge J, Nian F. Preparation and characterization of Tobacco polysaccharides and its modulation on hyperlipidemia in high-fat-diet-induced mice. Sci Rep 2024; 14:26860. [PMID: 39500936 PMCID: PMC11538525 DOI: 10.1038/s41598-024-77514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the structural properties of tobacco polysaccharide (TP) and its mechanism of modulating hyperlipidemia in high-fat diet-induced mice. The structural properties of TP were characterized by FT-IR, 1HNMR, SEM, AFM and thermogravimetric analysis. And the regulatory mechanism of TP on lipid metabolism was investigated in hyperlipidemia mice. These results showed that TP had a high composition of reducing monosaccharide and the glycosidic bond type was α-glycosidic bond. The intervention by TP resulted in a significant reduction of body weight and improvement in lipid accumulation. And the modulation mechanism by which TP ameliorated the abnormalities of lipid metabolism was associated with the expression levels of lipid metabolism-related genes and serum exosomes miRNA-128-3p, as well as the modulation of structure and abundance of the gut microbiota in mice. In addition, TP treatment significantly increased the content of short-chain fatty acids (SCFAs) in mice feces. The results of molecular docking and dual-luciferase assay exhibited a good interaction between propionic acid and PPAR-α, and it was hypothesized that the interaction might further ameliorate the hyperlipidemia. Therefore, TP can regulate the expression levels of lipid metabolism-related genes through miRNAs from serum exosomes and SCFAs from gut microbiota.
Collapse
Affiliation(s)
- Shuaishuai Chang
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Xuanhao Lei
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Weijia Xu
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Feng Guan
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Jian Ge
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China.
| | - Fuzhao Nian
- Yunnan Agricultural University School of Tobacco Science, Kunming, 650201, China
| |
Collapse
|
7
|
Durairajan SSK, Singh AK, Iyaswamy A. Peroxisome proliferator-activated receptor agonists: A new hope towards the management of alcoholic liver disease. World J Gastroenterol 2024; 30:3965-3971. [PMID: 39351059 PMCID: PMC11438660 DOI: 10.3748/wjg.v30.i35.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we examine a paper by Koizumi et al, on the role of peroxisome proliferator-activated receptor (PPAR) agonists in alcoholic liver disease (ALD). The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD. The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis, which are both affected by ALD. Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide. This editorial analyzes the possibility of PPAR agonists as treatments for ALD. As key factors of inflammation and metabolism, PPARs offer multiple methods for managing the complex etiology of ALD. We assess the abilities of PPARα, PPARγ, and PPARβ/δ agonists to prevent steatosis, inflammation, and fibrosis due to liver diseases. Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease. This editorial discusses the data analyzed and the obstacles, advantages, and mechanisms of action of PPAR agonists for ALD. Further research is needed to understand the efficacy, safety, and mechanisms of PPAR agonists for treating ALD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| |
Collapse
|
8
|
AmeliMojarad M, AmeliMojarad M, Cui X. Discovering the lipid metabolism-related hub genes of HCC-treated samples with PPARα agonist through weighted correlation network analysis. Sci Rep 2024; 14:19591. [PMID: 39179766 PMCID: PMC11344068 DOI: 10.1038/s41598-024-69998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Liver cancer is the 4th most lethal form of cancer with a poor prognosis for patients worldwide. Dysregulation of lipid metabolism is related to FA oxidation alternation which can be modified by peroxisome proliferator-activated receptor-α (PPARα). Therefore, it is important to identify the lipid metabolism-related genes regulated by PPARα in liver cancer. Hub genes related to the lipid metabolism pathway of HCC samples treated with PPARα agonist (WY-14,643) were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression and clinical information were obtained from the Gene Expression Omnibus (GEO) database. The network of top main hub genes was visualized by the Cytoscape software using MCODE and CytoHubba plugins. Finally, the expression and clinical association of each hub gene were evaluated using enrichment analysis, TCGA data, GEPIA, GSCA, and q-PCR. Based on our results, the top 5 co-expressed genes including (CPT2, ACSL1, ACSL3, ACOX1, and SLC27A2) were selected as the main hub genes participating in fatty acid metabolism, fatty acid beta-oxidation, and PPAR signaling pathway. All association of higher ACSL3 expression with lower outcomes and survival rates was detected in HCC patients. Therefore, lipid metabolism-related Hub genes regulated by PPARα are potential biomarkers, and they may offer a therapeutical foundation for targeted therapy directed against the HCC antitumor strategy.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Mandana AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
9
|
Koizumi A, Kaji K, Nishimura N, Asada S, Matsuda T, Tanaka M, Yorioka N, Tsuji Y, Kitagawa K, Sato S, Namisaki T, Akahane T, Yoshiji H. Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease. World J Gastroenterol 2024; 30:3428-3446. [PMID: 39091710 PMCID: PMC11290391 DOI: 10.3748/wjg.v30.i28.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis. Peroxisome proliferator activated receptor (PPAR) α and δ play a key role in lipid metabolism and intestinal barrier homeostasis, which are major contributors to the pathological progression of ALD. Meanwhile, elafibranor (EFN), which is a dual PPARα and PPARδ agonist, has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease and primary biliary cholangitis. However, the benefits of EFN for ALD treatment is unknown. AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model. METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol (EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly (1 mL/kg) for 8 weeks. EFN (3 and 10 mg/kg/day) was orally administered during the experimental period. Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis, fibrosis, and intestinal barrier integrity. The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays. RESULTS The hepatic steatosis, apoptosis, and fibrosis in the ALD mice model were significantly attenuated by EFN treatment. EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells, primarily through PPARα activation. Moreover, EFN inhibited the Kupffer cell-mediated inflammatory response, with blunted hepatic exposure to lipopolysaccharide (LPS) and toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling. EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses. The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation. CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis, enhancing hepatocyte autophagic and antioxidant capacities, and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.
Collapse
Affiliation(s)
- Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
10
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Li X, Zhuang R, Zhang K, Zhang Y, Lu Z, Wu F, Wu X, Li W, Zhang Z, Zhang H, Zhu W, Zhang B. Nobiletin Protects Against Alcoholic Liver Disease in Mice via the BMAL1-AKT-Lipogenesis Pathway. Mol Nutr Food Res 2024; 68:e2300833. [PMID: 38850176 DOI: 10.1002/mnfr.202300833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Indexed: 06/10/2024]
Abstract
SCOPE Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.
Collapse
Affiliation(s)
- Xudong Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Runxuan Zhuang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ke Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchun Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhitian Lu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fan Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoli Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenxue Li
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Shock and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Zhu
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
12
|
Wang Y, Li S, Liu Z, Li X, Yu Y, Liu H. Identification of PPAR-related differentially expressed genes liver hepatocellular carcinoma and construction of a prognostic model based on data analysis and molecular docking. J Cell Mol Med 2024; 28:e18304. [PMID: 38652093 PMCID: PMC11037413 DOI: 10.1111/jcmm.18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Organ Transplantation and HepatobiliaryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuqiang Li
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zihang Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xuanzheng Li
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yifan Yu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
13
|
Sanz-Serrano J, Callewaert E, De Boever S, Drees A, Verhoeven A, Vinken M. Chemical-induced liver cancer: an adverse outcome pathway perspective. Expert Opin Drug Saf 2024; 23:425-438. [PMID: 38430529 DOI: 10.1080/14740338.2024.2326479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
INTRODUCTION The evaluation of the potential carcinogenicity is a key consideration in the risk assessment of chemicals. Predictive toxicology is currently switching toward non-animal approaches that rely on the mechanistic understanding of toxicity. AREAS COVERED Adverse outcome pathways (AOPs) present toxicological processes, including chemical-induced carcinogenicity, in a visual and comprehensive manner, which serve as the conceptual backbone for the development of non-animal approaches eligible for hazard identification. The current review provides an overview of the available AOPs leading to liver cancer and discusses their use in advanced testing of liver carcinogenic chemicals. Moreover, the challenges related to their use in risk assessment are outlined, including the exploitation of available data, the need for semantic ontologies, and the development of quantitative AOPs. EXPERT OPINION To exploit the potential of liver cancer AOPs in the field of risk assessment, 3 immediate prerequisites need to be fulfilled. These include developing human relevant AOPs for chemical-induced liver cancer, increasing the number of AOPs integrating quantitative toxicodynamic and toxicokinetic data, and developing a liver cancer AOP network. As AOPs and other areas in the field continue to evolve, liver cancer AOPs will progress into a reliable and robust tool serving future risk assessment and management.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sybren De Boever
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annika Drees
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anouk Verhoeven
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Liu J, Shen J, Zong J, Fan Y, Cui J, Peng D, Jin Y. Lithium Chloride Promotes Endogenous Synthesis of CLA in Bovine Mammary Epithelial Cells. Biol Trace Elem Res 2024; 202:513-526. [PMID: 37099221 DOI: 10.1007/s12011-023-03679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
Although conjugated linoleic acid (CLA) can promote human health, its content in milk is insufficient to have a significant impact. The majority of the CLA in milk is produced endogenously by the mammary gland. However, research on improving its content through nutrient-induced endogenous synthesis is relatively scarce. Previous research found that the key enzyme, stearoyl-CoA desaturase (SCD) for the synthesis of CLA, can be expressed more actively in bovine mammary epithelial cells (MAC-T) when lithium chloride (LiCl) is present. This study investigated whether LiCl can encourage CLA synthesis in MAC-T cells. The results showed that LiCl effectively increased SCD and proteasome α5 subunit (PSMA5) protein expression in MAC-T cells as well as the content of CLA and its endogenous synthesis index. LiCl enhanced the expression of proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and its downstream enzymes acetyl CoA carboxylase (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and Perilipin 2 (PLIN2). The addition of LiCl significantly enhanced p-GSK-3β, β-catenin, p-β-catenin protein expression, hypoxia-inducible factor-1α (HIF-1α), and downregulation factor genes for mRNA expression (P < 0.05). These findings highlight that LiCl can increase the expression of SCD and PSMA5 by activating the transcription of HIF-1α, Wnt/β-catenin, and the SREBP1 signaling pathways to promote the conversion of trans-vaccenic acid (TVA) to the endogenous synthesis of CLA. This data suggests that the exogenous addition of nutrients can increase CLA content in milk through pertinent signaling pathways.
Collapse
Affiliation(s)
- Jiayi Liu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jinglin Shen
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jinxin Zong
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yating Fan
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Junhao Cui
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Dongqiao Peng
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yongcheng Jin
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Jin X, Li Z, Zhang Y, Zhu Y, Su L, Song J, Hao J, Wang D. Protection of Inonotus hispidus (Bull.) P. Karst. against Chronic Alcohol-Induced Liver Injury in Mice via Its Relieving Inflammation Response. Nutrients 2023; 15:3530. [PMID: 37630721 PMCID: PMC10458315 DOI: 10.3390/nu15163530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Alcoholic liver disease (ALD) can be induced by excessive alcohol consumption, and has a worldwide age-standardized incidence rate (ASIR) of approximately 5.243%. Inonotus hispidus (Bull.) P. Karst. (IH) is a mushroom with pharmacological effects. In ALD mice, the hepatoprotective effects of IH were investigated. IH strongly ameliorated alcohol-induced pathological changes in the liver, including liver structures and its function-related indices. Intestinal microbiota and serum metabolomics analysis showed that IH altered the associated anti-inflammatory microbiota and metabolites. According to results obtained from Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA), IH downregulated the levels of pro-inflammation factors interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), enhanced the expressions of peroxisome proliferator-activated receptor alpha (PPARα) and 15-hydroxprostaglandin dehydrogenase (15-PGDH), and inhibited the phosphorylated activation of Janus kinase (JAK) 1 and signal transducer and activator of transcription (STAT) 3, confirming the hepatoprotection of IH against alcohol damage via anti-inflammation. This study provides the experimental evidence for the hepatoprotective effects of IH in chronic ALD.
Collapse
Affiliation(s)
- Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China;
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
16
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Mu YW, Cheng D, Zhang CL, Zhao XL, Zeng T. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162187. [PMID: 36781137 DOI: 10.1016/j.scitotenv.2023.162187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 μg/kg bw/d) and the UK Committee on Toxicity (COT, 30 μg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.
Collapse
Affiliation(s)
- Ying-Wen Mu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
18
|
Salama RM, Abbas SS, Darwish SF, Sallam AA, Elmongy NF, El Wakeel SA. Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight. Arch Pharm Res 2023; 46:323-338. [PMID: 36959348 PMCID: PMC10123034 DOI: 10.1007/s12272-023-01441-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in Boswellia serrata, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Al Aliaa Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| |
Collapse
|
19
|
Yang C, Zhao Y, Luo Z, Hu Y, Wang S, Hu S, Yao Y, Pan L, Shen C, Xu T. Honokiol Inhibits the Inflammatory Response and Lipid Metabolism Disorder by Inhibiting p38α in Alcoholic Liver Disease. PLANTA MEDICA 2023; 89:273-285. [PMID: 35714651 DOI: 10.1055/a-1878-3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcoholic liver disease is one of the leading causes of liver-related morbidity and mortality worldwide, but effective treatments are still lacking. Honokiol, a lignin-type natural compound isolated from the leaves and bark of Magnolia plants, has been widely studied for its beneficial effects on several chronic diseases. Accumulating studies have revealed that honokiol displays a potential therapeutic effect on alcoholic liver disease. In this study, the protective activity of honokiol on alcoholic liver disease was confirmed due to its significant inhibitory activity on the expression levels of inflammatory cytokines (such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1β) in EtOH-fed mice and in EtOH-induced AML-12 cells. Meanwhile, the expression of the lipid metabolic parameter sterol regulatory element-binding protein-1c was also reduced. However, peroxisome proliferator-activated receptor α was increased in animal and cell experiments, which indicates that the activity of honokiol was related to its regulated activity on lipid metabolism. The result showed that honokiol significantly inhibited the expression level of p38α in vivo and in vitro. Blocking p38α inhibited the expression levels of tumor necrosis factor-alpha, interleukin-6, interleukin-1β, and sterol regulatory element-binding protein-1c but promoted the expression level of peroxisome proliferator-activated receptor α compared with the honokiol-treated group. Moreover, the forced expression level of p38α further produced the opposite effect on inflammatory cytokines and lipid metabolism indicators. Furthermore, p38α has been related to the activation of the nuclear factor kappa B signaling pathway. In our study, honokiol significantly inhibited the activation of the nuclear factor kappa B signaling pathway mediated by p38α. In conclusion, the results suggest that honokiol might be an effective regulator of p38α by downregulating the nuclear factor kappa B signaling pathway, thereby reducing the inflammatory response and lipid metabolism disorder in alcoholic liver disease.
Collapse
Affiliation(s)
- Chenchen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Hefei, China
| | - Yinglian Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Hefei, China
| | - Zhipan Luo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Linxin Pan
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chuanpu Shen
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
20
|
Zong J, Shen J, Liu X, Liu J, Zhang J, Zhou C, Fan Y, Jin Y. Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways. Biol Trace Elem Res 2023; 201:180-195. [PMID: 35080710 DOI: 10.1007/s12011-022-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 01/11/2023]
Abstract
Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction. Moreover, we analyzed the effect of LiCl on the expression of genes related to milk fat and milk protein synthesis. Herein, LiCl (5-20 mM) significantly increased the expression of β-casein, promoted mRNA expression and phosphorylated protein expression of the signal transduction molecule and activator of transcription 5β (STAT5-β), and inhibited mRNA and protein expression of suppressor of cytokine signaling 2 (SOCS2). In contrast, 5 and 10 mM LiCl significantly inhibited expression of SOCS3. LiCl at concentration of 5-20 mM enhanced phosphorylation level of mTOR protein; at 10 mM and 20 mM, LiCl significantly promoted expression and phosphorylation of downstream ribosomal protein S6 kinase beta-1 (S6K1) protein. Considering milk fat synthesis, mRNA expression of acetyl CoA carboxylase (ACC) and lipoprotein lipase (LPL) genes was considerably increased in the presence of LiCl (5-20 mM). Additionally, increased protein expression levels of stearoyl-CoA desaturase (SCD), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein 1 (SREBP1) were observed at all LiCl concentrations tested. Subsequently, LiCl (5-20 mM) significantly promoted protein expression and phosphorylation of β-catenin, while 10 mM and 20 mM of LiCl significantly promoted protein expression of hypoxia-inducible factor-1α (HIF-1α). Collectively, it has been shown that 10 mM LiCl can effectively activate HIF-1α, β-catenin, and β-catenin downstream signaling pathways. Conversely, at 10 mM, LiCl inhibited SOCS2 and SOCS3 protein expression through JAK2/STAT5, mTOR, and SREBP1 signaling pathways, improving synthesis of milk protein and fat. Therefore, LiCl can be used as a potential nutrient to regulate milk synthesis in dairy cows.
Collapse
Affiliation(s)
- Jinxin Zong
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jinglin Shen
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Xinlu Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiayi Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jing Zhang
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Changhai Zhou
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yating Fan
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongcheng Jin
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
21
|
Watson WH, Ritzenthaler JD, Torres-Gonzalez E, Arteel GE, Roman J. Mice lacking α4 nicotinic acetylcholine receptors are protected against alcohol-associated liver injury. Alcohol Clin Exp Res 2022; 46:1371-1383. [PMID: 35723023 PMCID: PMC9427714 DOI: 10.1111/acer.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic heavy alcohol consumption is a major risk factor for the development of liver steatosis, fibrosis, and cirrhosis, but the mechanisms by which alcohol causes liver damage remain incompletely elucidated. This group has reported that α4 nicotinic acetylcholine receptors (α4 nAChRs) act as sensors for alcohol in lung cells. This study tested the hypothesis that α4 nAChRs mediate the effects of alcohol in the liver. METHODS Expression of acetylcholine receptor subunits in mouse liver was determined by RNA sequencing (RNA-seq). α4 nAChR knockout (α4 KO) mice were generated in C57BL/6J mice by introducing a mutation encoding an early stop codon in exon 4 of Chrna4, the gene encoding the α4 subunit of the nAChR. The presence of the inactivating mutation was established by polymerase chain reaction and genomic sequencing, and the lack of α4 nAChR function was confirmed in primary fibroblasts isolated from the α4 KO mice. Wild-type (WT) and α4 KO mice were fed the Lieber-DeCarli diet (with 36% of calories from alcohol) or pair fed an isocaloric maltose-dextrin control diet for a 6-week period that included a ramping up phase of increasing dietary alcohol. RESULTS Chrna4 was the most abundantly expressed nAChR subunit gene in mouse livers. After 6 weeks of alcohol exposure, WT mice had elevated serum transaminases and their livers showed increased fat accumulation, decreased Sirt1 protein levels, and accumulation of markers of oxidative stress and inflammation including Cyp2E1, Nos2, Sod1, Slc7a11, TNFα, and PAI1. All these responses to alcohol were either absent or significantly attenuated in α4 KO animals. CONCLUSION Together, these observations support the conclusion that activation of α4 nAChRs by alcohol or one of its metabolites is one of the initial events promoting the accumulation of excess fat and expression of inflammatory mediators. Thus, α4 nAChRs may represent viable targets for intervention in chronic alcohol-related liver disease.
Collapse
Affiliation(s)
- Walter H. Watson
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Jeffrey D. Ritzenthaler
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA
| | - Edilson Torres-Gonzalez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA
| | - Gavin E. Arteel
- Department of Medicine, Division Gastroenterology, University of Pittsburgh, Pittsburgh, PA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
22
|
Xie Y, Liu J, Shi Y, Wang B, Wang X, Wang W, Sun M, Xu X, Cheng L, He S. Structural simplification and bioisostere principle lead to Bis-benzodioxole-fibrate derivatives as potential hypolipidemic and hepatoprotective agents. Bioorg Chem 2021; 117:105454. [PMID: 34740054 DOI: 10.1016/j.bioorg.2021.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
The bis-benzodioxole-fibrate hybrids were designed by structural simplification and bioisostere principle. Lipids lowering activity was preliminarily screened by Triton WR 1339 induced hyperlipidemia mice model, in which T3 showed the best hypolipidemia, decreasing plasma triglyceride (TG) and total cholesterol (TC), which were better than sesamin and fenofibrate (FF). T3 was also found to significantly reduce TG, TC and low density lipoprotein cholesterin (LDL-C) both in plasma and liver tissue of high fat diet (HFD) induced hyperlipidemic mice. In addition, T3 showed hepatoprotective activity, which the noteworthy amelioration in liver aminotransferases (AST and ALT) was evaluated and the histopathological observation exhibited that T3 inhibited lipids accumulation in the hepatic and alleviated liver damage. The expression of PPAR-α receptor involved lipids metabolism in liver tissue significantly increased after T3 supplementation. Other potent activity, such as antioxidation and anti-inflammation, was also observed. The molecular docking study revealed that T3 has good affinity activity toward to the active site of PPAR-α receptor. Based on these findings, T3 may serve as an effective hypolipidemic agent with hepatoprotection.
Collapse
Affiliation(s)
- Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Bin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xiaoping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Wei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Meng Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Lifei Cheng
- Shaanxi Traffic Hospital, 276 Daxue South Road, Beilin District, Xi'an, Shannxi Province 710068, People's Republic of China.
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University 99 Shangda Road, Shanghai 200444, People's Republic of China.
| |
Collapse
|
23
|
Koga T, Peters JM. Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for the Treatment or Prevention of Alcoholic Liver Disease. Biol Pharm Bull 2021; 44:1598-1606. [PMID: 34719638 DOI: 10.1248/bpb.b21-00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- Laboratory of Hygienic Chemistry, Department of Health Science and Hygiene, Daiichi University of Pharmacy
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University
| |
Collapse
|
24
|
Hu K, Xiao L, Li L, Shen Y, Yang Y, Huang J, Wang Y, Zhang L, Wen S, Tang L. The mitochondria-targeting antioxidant MitoQ alleviated lipopolysaccharide/ d-galactosamine-induced acute liver injury in mice. Immunol Lett 2021; 240:24-30. [PMID: 34525396 DOI: 10.1016/j.imlet.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The mitochondria are the primary source of reactive oxygen species (ROS) under pathological condition, but the significance of mitochondrial ROS in the development of Lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury remains unclear. In the present study, the level of mitochondrial ROS in LPS/D-Gal has been determined by MitoSox staining and the potential roles of mitochondrial ROS in LPS/D-Gal-induced liver injury have been investigated by using the mitochondria-targeting antioxidant MitoQ. The results indicated that LPS/D-Gal exposure induced the generation of mitochondrial ROS while treatment with MitoQ reduced the level of mitochondrial ROS. Treatment with MitoQ ameliorated LPS/D-Gal-induced histopathologic abnormalities, suppressed the elevation of AST and ALT, and increased the survival rate of the experimental animals. Treatment with MitoQ also suppressed LPS/D-Gal-induced production of tumor necrosis factor α (TNF-α), inhibited the activities of caspase-3, caspase-8 and caspase-9, decreased the level of cleaved caspase-3 and reduced the counts of TUNEL positive cells. These results indicate that mitochondrial ROS is involved in the development of LPS-induced acute liver injury and the mitochondria-targeting antioxidant MitoQ might have potential value for the treatment of inflammation-based acute liver injury.
Collapse
Affiliation(s)
- Kai Hu
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Lidan Xiao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yaping Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Sha Wen
- Department of General medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Tang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China; Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Monroy-Ramirez HC, Galicia-Moreno M, Sandoval-Rodriguez A, Meza-Rios A, Santos A, Armendariz-Borunda J. PPARs as Metabolic Sensors and Therapeutic Targets in Liver Diseases. Int J Mol Sci 2021; 22:ijms22158298. [PMID: 34361064 PMCID: PMC8347792 DOI: 10.3390/ijms22158298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.
Collapse
Affiliation(s)
- Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
- Correspondence:
| |
Collapse
|
26
|
Sun J, Hong Z, Shao S, Li L, Yang B, Hou Y, Wang H, Xu Y, Zhang Q, Pi J, Fu J. Liver-specific Nrf2 deficiency accelerates ethanol-induced lethality and hepatic injury in vivo. Toxicol Appl Pharmacol 2021; 426:115617. [PMID: 34116071 DOI: 10.1016/j.taap.2021.115617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality from liver disorders. Various mechanisms, including oxidative stress and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Our previous studies showed that nuclear factor erythroid-derived 2-like 2 (Nrf2) is a master regulator of adaptive antioxidant response and lipid metabolism by using a liver-specific Nrf2 knockout (Nrf2(L)-KO) mouse model. In the current study, an ALD model was developed by a Lieber-DeCarli liquid-based ethanol diet given to this Nrf2(L)-KO mouse strain. We found that Nrf2(L)-KO mice were quite sensitive to lethality from 6.3% ethanol diet. We thus decreased the ethanol concentration to 4.2% to obtain tissues to analyze the role of hepatic Nrf2 in the development of ALD. We found that mild hepatic steatosis occurred with both liquid control and 4.2% ethanol diet feeding, which contain 35% fat. Both the fatty acid β-oxidation marker peroxisome proliferators-activated receptor α (PPARα), and lipogenesis regulator PPARγ were reduced with ethanol feeding in Nrf2(L)-KO mice, compared to Nrf2 floxed control mice (Nrf2-LoxP). However, Nrf2(L)-KO livers showed more cell injury than the livers of Nrf2-LoxP mice. Consistent with these data, there was increased proportion of apoptotic cells in the liver of ethanol-fed Nrf2(L)-KO mice comparing Nrf2-LoxP controls. Mechanistically, Nrf2 mediated expression of ethanol detoxification enzymes, such as alcohol dehydrogenase 1 and aldehyde dehydrogenase1a1, likely contributed to the sensitivity to ethanol toxicity. In conclusion, hepatic Nrf2 is critical to the development of ALD, particularly the morbidity and liver injury.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Zhixuan Hong
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Shuai Shao
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Bei Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
27
|
Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. BIOLOGY 2021; 10:456. [PMID: 34067313 PMCID: PMC8224793 DOI: 10.3390/biology10060456] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Medicinal herbs and many food ingredients possess favorable biological properties that contribute to their therapeutic activities. One such natural product is betaine, a stable, nontoxic natural substance that is present in animals, plants, and microorganisms. Betaine is also endogenously synthesized through the metabolism of choline or exogenously consumed through dietary intake. Betaine mainly functions as (i) an osmolyte and (ii) a methyl-group donor. This review describes the major physiological effects of betaine in whole-body health and its ability to protect against both liver- as well as non-liver-related diseases and conditions. Betaine's role in preventing/attenuating both alcohol-induced and metabolic-associated liver diseases has been well studied and is extensively reviewed here. Several studies show that betaine protects against the development of alcohol-induced hepatic steatosis, apoptosis, and accumulation of damaged proteins. Additionally, it can significantly prevent/attenuate progressive liver injury by preserving gut integrity and adipose function. The protective effects are primarily associated with the regulation of methionine metabolism through removing homocysteine and maintaining cellular SAM:SAH ratios. Similarly, betaine prevents metabolic-associated fatty liver disease and its progression. In addition, betaine has a neuroprotective role, preserves myocardial function, and prevents pancreatic steatosis. Betaine also attenuates oxidant stress, endoplasmic reticulum stress, inflammation, and cancer development. To conclude, betaine exerts significant therapeutic and biological effects that are potentially beneficial for alleviating a diverse number of human diseases and conditions.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew C. Paal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
28
|
Liu SX, Du YC, Zeng T. A mini-review of the rodent models for alcoholic liver disease: shortcomings, application, and future prospects. Toxicol Res (Camb) 2021; 10:523-530. [PMID: 34141166 DOI: 10.1093/toxres/tfab042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Rodents are the most common models in studies of alcoholic liver disease (ALD). Although several rodents ALD models have been established and multiple mechanisms have been elucidated based on them, these models have some non-negligible shortcomings, specifically only inducing early stage (mainly steatosis, slight to moderate steatohepatitis) but not the whole spectrum of human ALD. The resistance of rodents to advanced ALD has been suggested to be due to the physiological differences between rodents and human beings. Previous studies have reported significant interstrain differences in the susceptibility to ethanol-induced liver injury and in the manifestation of ALD (such as different alteration of lipid profiles). Therefore, it would be interesting to characterize the manifestation of ethanol-induced liver damage in various rodents, which may provide a recommendation to investigators of ALD. Furthermore, more severe ALD models need to be established for the study of serious ALD forms, which may be achieved by using genetic modified rodents.
Collapse
Affiliation(s)
- Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, 1311 Longao Bei Road, Jinan, Shandong, 250102, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
29
|
Chen SZ, Ling Y, Yu LX, Song YT, Chen XF, Cao QQ, Yu H, Chen C, Tang JJ, Fan ZC, Miao YS, Dong YP, Tao JY, Monga SPS, Wen W, Wang HY. 4-phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR-α. Clin Transl Med 2021; 11:e379. [PMID: 33931972 PMCID: PMC8087947 DOI: 10.1002/ctm2.379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aims 4‐phenylbutyric acid (4‐PBA) is a low molecular weight fatty acid that is used in clinical practice to treat inherited urea cycle disorders. In previous reports, it acted as a chemical chaperone inhibiting endoplasmic reticulum (ER) stress and unfolded protein response signaling. A few studies have suggested its function against hepatic fibrosis in mice models. However, its role in hepatocarcinogenesis remained unknown. Methods 4‐PBA was administered alone or in combination with diethylnitrosamine to investigate its long‐term effect on liver tumorigenesis. The role of 4‐PBA in oncogene‐induced hepatocellular carcinoma (HCC) mice model using sleeping beauty system co‐expressed with hMet and β‐catenin point mutation (S45Y) was also observed. RNA‐seq and PCR array were used to screen the pathways and genes involved. In vitro and in vivo studies were conducted to explore the effect of 4‐PBA on liver and validate the underlying mechanism. Results 4‐PBA alone didn't cause liver tumor in long term. However, it promoted liver tumorigenesis in HCC mice models via initiation of liver cancer stem cells (LCSCs) through Wnt5b‐Fzd5 mediating β‐catenin signaling. Peroxisome proliferator‐activated receptors (PPAR)‐α induced by 4‐PBA was responsible for the activation of β‐catenin signaling. Thus, intervention of PPAR‐α reversed 4‐PBA‐induced initiation of LCSCs and HCC development in vivo. Further study revealed that 4‐PBA could not only upregulate the expression of PPAR‐α transcriptionally but also enhance its stabilization via protecting it from proteolysis. Moreover, high PPAR‐α expression predicted poor prognosis in HCC patients. Conclusions 4‐PBA could upregulate PPAR‐α to initiate LCSCs by activating β‐catenin signaling pathway, promoting HCC at early stage. Therefore, more discretion should be taken to monitor the potential tumor‐promoting effect of 4‐PBA under HCC‐inducing environment.
Collapse
Affiliation(s)
- Shu-Zhen Chen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yan Ling
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Le-Xing Yu
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Ting Song
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi-Qi Cao
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Yu
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Can Chen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiao-Jiao Tang
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhe-Cai Fan
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yu-Shan Miao
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ya-Ping Dong
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jun-Yan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P S Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Yang Wang
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Fujian Medical University, Fuzhou, Fujian Province, China.,Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|