1
|
Zakeri D, Pazooki J, Mohseni M, Jamshidi S. Effect of dietary chitosan on the growth performance, intestinal histology and growth-related gene expression in stellate sturgeon (Acipenser stellatus) juveniles. J Anim Physiol Anim Nutr (Berl) 2024; 108:1152-1163. [PMID: 38602249 DOI: 10.1111/jpn.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
As sturgeon breeding has proliferated, there has been a heightened demand for growth stimulators in their diets. This study aimed to determine the impact of dietary chitosan on growth performance, whole-body proximate composition, growth-related gene expression, and intestinal histology in juvenile Acipenser stellatus. A total of 180 A. stellatus juveniles with an average weight of 31.90 ± 0.73 g were fed with diets containing 0 (control), 1.5, 3.0, 4.5, and 6.0 g chitosan.kg-1 basic diet for eight weeks. The findings revealed a significant enhancement in growth performance with rising chitosan concentrations. Furthermore, chitosan supplementation upregulated the expression of the growth hormone gene in both brain and liver tissues. In liver samples, the most pronounced expression of the insulin-like growth factor-1 gene was noted at 6.0 g chitosan.kg-1, while in brain samples, peak expressions were observed in both the 4.5 and 6.0 g chitosan.kg-1 treatments. While the whole-body proximate composition remained relatively stable, there was a notable decrease in whole-body lipids with the escalation of chitosan dosage. Intestinal villi dimensions, both height and width, were amplified in the chitosan-supplemented groups compared to controls. In summation, chitosan supplementation showed promise in bolstering growth performance, refining intestinal morphology, and enhancing growth-related gene expression. Analysis of the polynomial regression of weight gain and specific growth rate revealed that the optimum dietary chitosan requirements in A. stellatus were 5.32 and 5.21 g chitosan.kg-1, respectively.
Collapse
Affiliation(s)
- Donya Zakeri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Jamileh Pazooki
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmoud Mohseni
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
| | - Shirin Jamshidi
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
| |
Collapse
|
2
|
Scheuffele H, Todd EV, Donald JA, Clark TD. Daily thermal variability does not modify long-term gene expression relative to stable thermal environments: A case study of a tropical fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111532. [PMID: 37816418 DOI: 10.1016/j.cbpa.2023.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Global warming is leading to an increase in the frequency and intensity of extreme weather events, magnifying the breadth of temperatures faced by ectotherms across days and seasons. Despite the importance and ecological relevance of diurnal thermal variability, the vast majority of knowledge on gene expression patterns and physiology stems from animals acclimated to constant temperatures or in the early stages of exposure to a new temperature regime. If heterothermal environments modulate responses differently from constant thermal environments, our existing capacity to forecast impacts of climate warming may be compromised. To address this knowledge gap, we acclimated barramundi (Lates calcarifer) to 23 °C, 29 °C (optimal), 35 °C and to thermal cycling conditions (23-35 °C daily with a mean of 29 °C) and sampled liver and white muscle tissue before acclimation and after 2 and 17 weeks of acclimation. NanoString nCounter technologies were used to measure expression of 20 genes related to metabolism, growth and maintenance of cellular homeostasis. Acclimation to cool and warm conditions caused predictable changes in whole-animal performance (metabolism and growth) and the underlying gene expression patterns. Acclimation to a cycling temperature regime did not change the molecular regulation of metabolism or growth compared with barramundi acclimated to constant 29 °C, nor did it cause any discernible effects on whole-animal performance. However, the heat shock response was higher in the former group, suggesting that barramundi under a daily temperature cycle have an increased need for cellular chaperoning to minimise detrimental effects of temperature on proteins. We conclude that the genetic regulation of metabolism and growth may be more dependent on the mean daily temperature than on the daily temperature range.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/JohnDon17043551
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/Timothy_D_Clark
| |
Collapse
|
3
|
Mennigen JA, Magnan J, Touma K, Best C, Culbert BM, Bernier NJ, Gilmour KM. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol Cell Endocrinol 2022; 554:111709. [PMID: 35787462 DOI: 10.1016/j.mce.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) develop social hierarchies when competing for resources in a constrained environment. Among the physiological consequences of social status are changes in organismal energy metabolism, which generally favour anabolic pathways in dominant fish and catabolic pathways in subordinate fish. The somatotropic axis is an important regulator of metabolism and growth that could be involved in mediating metabolic changes in response to social status in juvenile rainbow trout. Here we used juvenile trout housed either in dyads or individually (sham controls) to determine whether social status changes indices of somatotropic axis function. Although pituitary growth hormone expression (gh1 and gh2) did not differ among groups, circulating growth hormone (GH) increased ∼12-fold in subordinate fish compared to sham and dominant fish. Social status caused consistent differential expression of GH receptor paralogues in liver and muscle, two principal target tissues of GH. Compared to dominant and/or sham fish, ghra paralogue expression (ghra1 and ghra2) was lower, while ghrb1 expression was higher in subordinate fish. Across tissues, ghra paralogue expression was generally positively correlated with expression of insulin growth factors (igf1, igf2), while ghrb1 expression was positively correlated with transcript abundance of hormone sensitive lipase (hsl1). Because igf and hsl expression are subject to context-dependent GH control in rainbow trout, these results suggest that increased circulating GH in conjunction with differential expression of ghr paralogues may translate into prioritization of downstream catabolic lipolytic pathways in subordinate rainbow trout. These findings support a social context-dependent role for GH signalling in mediating metabolic changes in juvenile rainbow trout.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Julianne Magnan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenan Touma
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
4
|
Blasco J, Vélez EJ, Perelló-Amorós M, Azizi S, Capilla E, Fernández-Borràs J, Gutiérrez J. Recombinant Bovine Growth Hormone-Induced Metabolic Remodelling Enhances Growth of Gilthead Sea-Bream ( Sparus aurata): Insights from Stable Isotopes Composition and Proteomics. Int J Mol Sci 2021; 22:ijms222313107. [PMID: 34884912 PMCID: PMC8658469 DOI: 10.3390/ijms222313107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Growth hormone and insulin-like growth factors (GH/IGF axis) regulate somatic growth in mammals and fish, although their action on metabolism is not fully understood in the latter. An intraperitoneal injection of extended-release recombinant bovine growth hormone (rbGH, Posilac®) was used in gilthead sea bream fingerlings and juveniles to analyse the metabolic response of liver and red and white muscles by enzymatic, isotopic and proteomic analyses. GH-induced lipolysis and glycogenolysis were reflected in liver composition, and metabolic and redox enzymes reported higher lipid use and lower protein oxidation. In white and red muscle reserves, rBGH increased glycogen while reducing lipid. The isotopic analysis of muscles showed a decrease in the recycling of proteins and a greater recycling of lipids and glycogen in the rBGH groups, which favoured a protein sparing effect. The protein synthesis capacity (RNA/protein) of white muscle increased, while cytochrome-c-oxidase (COX) protein expression decreased in rBGH group. Proteomic analysis of white muscle revealed only downregulation of 8 proteins, related to carbohydrate metabolic processes. The global results corroborated that GH acted by saving dietary proteins for muscle growth mainly by promoting the use of lipids as energy in the muscles of the gilthead sea bream. There was a fuel switch from carbohydrates to lipids with compensatory changes in antioxidant pathways that overall resulted in enhanced somatic growth.
Collapse
|
5
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
6
|
Zemheri-Navruz F, Acar Ü, Yılmaz S. Dietary supplementation of olive leaf extract enhances growth performance, digestive enzyme activity and growth related genes expression in common carp Cyprinus carpio. Gen Comp Endocrinol 2020; 296:113541. [PMID: 32585215 DOI: 10.1016/j.ygcen.2020.113541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023]
Abstract
It is not desirable to use synthetic chemicals as growth promoters in aquaculture. Therefore, phytogenic compounds have been extensively studied in fish diets due to their growth promoter effects. Common carp (Cyprinus carpio) is widely distributed around the world and has been reared in Asia for several centuries. This study was conducted to determine the effects of olive leaf extract (OLE) (0, 0.1, 0.25, 0.50 and 1%) on the growth performance, digestive enzyme activity in the intestine and the expression levels of some growth-related genes in the brain. liver, head kidney and mucsle tissue of common carp C. carpio. At the end of the 60-day feeding period, there was a significant increase in growth performance in the OLE0.1 and OLE0.25 groups. Similar trends have been obtained for digestive enzyme activities such as α-amylase, protease and lipase. Morover, the expression of growth hormone (GH) and insulin-like growth factor I (IGF-I) was regulated by OLE supplemented by up to 0.25% in brain, liver, head kidney and muscle tissue. This study confirms that dietary OLE may enhance the growth performance of the common carp by activating the digestive enzyme activity in the intestine and increase the expression of genes (GH and IGF-I) related with growth in brain, liver, head kidneys and muscle tissue of common carp up to use 0.10% in diets.
Collapse
Affiliation(s)
- Fahriye Zemheri-Navruz
- Bartın University, Faculty of Science, Department of Molecular Biology and Genetics, Turkey
| | - Ümit Acar
- Department of Forestry, Bayramiç Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Sevdan Yılmaz
- Department of Aquaculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
7
|
Herkenhoff ME, Ribeiro AO, Costa JM, Oliveira AC, Dias MAD, Reis Neto RV, Hilsdorf AWS, Pinhal D. Expression profiles of growth-related genes in two Nile tilapia strains and their crossbred provide insights into introgressive breeding effects. Anim Genet 2020; 51:611-616. [PMID: 32378756 DOI: 10.1111/age.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown. Molecular investigations have shown that variable expression of growth hormone (gh), insulin-like growth factors (igf1 and 2) and somatolactin (smtla) - components of the growth hormone/insulin-like growth factor (GH/IGF) axis - and myostatin (mstn) genes can affect traits of economic relevance in farmed animals. The aim of this study was to assess and compare the gene expression signature among Chitralada, Red-Stirling and their backcross hybrid in order to gain insights into the effects of introgressive breeding in modulation of the GH/IGF axis. Gene expression analyses in distinct tissues showed that most genes of the GH/IGF axis were up-regulated and mstn was down-regulated in backcross animals in comparison with Red-Stirling and Chitralada animals. These gene expression profiles revealed that backcross animals displayed a distinctive expression signature, which attests to the effectiveness of the introgressive breeding technique. Our findings also suggest that the GH/IGF axis and mstn genes might be candidate markers for fish performance and prove useful within genetic improvement programs aimed at the production of superior-quality tilapia strains using introgressive breeding.
Collapse
Affiliation(s)
- M E Herkenhoff
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - A O Ribeiro
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - J M Costa
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - A C Oliveira
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - M A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, 08780-911, Brazil.,Department of Animal Sciences, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - R V Reis Neto
- São Paulo State University (UNESP), Registro, SP, 11900-000, Brazil
| | - A W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, 08780-911, Brazil.,Department of Animal Sciences, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - D Pinhal
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
8
|
Nelson HM, Coffing GC, Chilson S, Hester K, Carrillo C, Ostreicher S, Tomamichel W, Hanlon S, Burns AR, Lafontant PJ. Structure, development, and functional morphology of the cement gland of the giant danio, Devario malabaricus. Dev Dyn 2019; 248:1155-1174. [PMID: 31310039 DOI: 10.1002/dvdy.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aquatic species in several clades possess cement glands producing adhesive secretions of various strengths. In vertebrates, transient adhesive organs have been extensively studied in Xenopus laevis, other anurans, and in several fish species. However, the development of these structures is not fully understood. RESULTS Here, we report on the development and functional morphology of the adhesive gland of a giant danio species, Devario malabaricus. We found that the gland is localized on the larval head, is composed of goblet-like secretory cells framed by basal, bordering, and intercalated apical epithelial cells, and is innervated by the trigeminal ganglion. The gland allows nonswimming larvae to adhere to various substrates. Its secretory cells differentiate by 12 hours postfertilization and begin to disappear in the second week of life. Exogenous retinoic acid disrupts the gland's patterning. More importantly, the single mature gland emerges from fusion of two differentiated secretory cells fields; this fusion is dependent on nonmuscle myosin II function. CONCLUSIONS Taken together, our studies provide the first documentation of the embryonic development, structure, and function of the adhesive apparatus of a danioninae. To our knowledge, this is also the first report of a cement gland arising from convergence of two bilateral fields.
Collapse
Affiliation(s)
- Hannah M Nelson
- Department of Biology, DePauw University, Greencastle, Indiana
| | | | - Sarah Chilson
- Department of Biology, DePauw University, Greencastle, Indiana
| | - Kamil Hester
- Department of Biology, DePauw University, Greencastle, Indiana
| | | | | | | | - Samuel Hanlon
- University of Houston College of Optometry, Houston, Texas
| | - Alan R Burns
- University of Houston College of Optometry, Houston, Texas
| | | |
Collapse
|
9
|
Vélez EJ, Perelló-Amorós M, Lutfi E, Azizi S, Capilla E, Navarro I, Pérez-Sánchez J, Calduch-Giner JA, Blasco J, Fernández-Borràs J, Gutiérrez J. A long-term growth hormone treatment stimulates growth and lipolysis in gilthead sea bream juveniles. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:67-78. [PMID: 30885833 DOI: 10.1016/j.cbpa.2019.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The enhancement of the endocrine growth hormone (GH)/insulin-like growth factor I (IGF-I) system by the treatment with a sustained release formulation of a recombinant bovine GH (rBGH), is a good strategy to investigate growth optimization in aquaculture fish species. To further deepen into the knowledge of rBGH effects in fish and to estimate the growth potential of juveniles of gilthead sea bream, the present work evaluated rBGH injection on growth, GH/IGF-I axis and lipid metabolism modulation, and explored the conservation of GH effects provoked by the in vivo treatment using in vitro models of different tissues. The rBGH treatment increased body weight and specific growth rate (SGR) in juveniles and potentiated hyperplastic muscle growth while reducing circulating triglyceride levels. Moreover, the results demonstrated that the in vivo treatment enhanced also lipolysis in both isolated hepatocytes and adipocytes, as well as in day 4 cultured myocytes. Furthermore, these cultured myocytes extracted from rBGH-injected fish presented higher gene expression of GH/IGF-I axis-related molecules and myogenic regulatory factors, as well as stimulated myogenesis (i.e. increased protein expression of a proliferation and a differentiation marker) compared to Control fish-derived cells. These data, suggested that cells in vitro can retain some of the pathways activated by in vivo treatments in fish, what can be considered an interesting line of applied research. Overall, the results showed that rBGH stimulates somatic growth, including specifically muscle hyperplasia, as well as lipolytic activity in gilthead sea bream juveniles.
Collapse
Affiliation(s)
- Emilio J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Sheida Azizi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Characterization and expression profiles of muscle transcriptome in Schizothoracine fish, Schizothorax prenanti. Gene 2019; 685:156-163. [DOI: 10.1016/j.gene.2018.10.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023]
|
11
|
Shifatu O, Glasshagel-Chilson S, Nelson HM, Patel P, Tomamichel W, Higginbotham C, Evans PK, Lafontant GS, Burns AR, Lafontant PJ. Heart Development, Coronary Vascularization and Ventricular Maturation in a Giant Danio ( Devario malabaricus). J Dev Biol 2018; 6:jdb6030019. [PMID: 30037066 PMCID: PMC6162710 DOI: 10.3390/jdb6030019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Giant danios (genus Devario), like zebrafish, are teleosts belonging to the danioninae subfamily of cyprinids. Adult giant danios are used in a variety of investigations aimed at understanding cellular and physiological processes, including heart regeneration. Despite their importance, little is known about development and growth in giant danios, or their cardiac and coronary vessels development. To address this scarcity of knowledge, we performed a systematic study of a giant danio (Devario malabaricus), focusing on its cardiac development, from the segmentation period to ten months post-fertilization. Using light and scanning electron microscopy, we documented that its cardiovascular development and maturation proceed along well defined dynamic and conserved morphogenic patterns. The overall size and cardiovascular expansion of this species was significantly impacted by environmental parameters such as rearing densities. The coronary vasculature began to emerge in the late larval stage. More importantly, we documented two possible loci of initiation of the coronary vasculature in this species, and compared the emergence of the coronaries to that of zebrafish and gourami. This is the first comprehensive study of the cardiac growth in a Devario species, and our findings serve as an important reference for further investigations of cardiac biology using this species.
Collapse
Affiliation(s)
- Olubusola Shifatu
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | | - Hannah M Nelson
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Purva Patel
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Wendy Tomamichel
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Clay Higginbotham
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Paula K Evans
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA.
| | | |
Collapse
|
12
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Zhang R, Li R, Lin Y. Identification and characterization of microRNAs in the muscle of Schizothorax prenanti. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1055-1064. [PMID: 28293861 DOI: 10.1007/s10695-017-0352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression by fully or partially binding to complementary sequences and play important roles in skeletal muscle development. However, the roles of miRNAs in the skeletal muscle of Schizothorax prenanti remain unknown. In this study, we analyzed the miRNA profiling in the skeletal muscle of S. prenanti at 30 days post-hatching (dph), 1 year, and 3 years by high-throughput sequencing. Two hundred twenty-nine unique miRNA types aligned to 201 independent pre-miRNA loci according to sequence similarity and 28 novel miRNAs were obtained. The nucleotide bias analysis of identified miRNAs showed that the miRNAs in S. prenanti were highly conserved. Eight identified miRNAs validated using stem-loop qRT-PCR were differentially expressed in the process of skeletal muscle development of S. prenanti. This study provide not only an overall insight into the miRNA landscape in the skeletal muscle of S. prenanti but also a basis for further investigation of miRNA roles in skeletal muscle development of S. prenanti.
Collapse
Affiliation(s)
- Runfeng Zhang
- College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Ruiwen Li
- Reproductive and Endocrine Laboratory, Chengdu Woman-Child Central Hospital, Chengdu, 610051, China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China.
| |
Collapse
|
14
|
Influence of water salinity on genes implicated in somatic growth, lipid metabolism and food intake in Pejerrey ( Odontesthes bonariensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 210:29-38. [DOI: 10.1016/j.cbpb.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/06/2017] [Accepted: 05/21/2017] [Indexed: 01/06/2023]
|
15
|
Botta PE, Simó I, Sciara AA, Arranz SE. Growth hormone receptors in the atherinid Odontesthes bonariensis: characterization and expression profile after fasting-refeeding and growth hormone administration. JOURNAL OF FISH BIOLOGY 2016; 88:1870-1885. [PMID: 27097742 DOI: 10.1111/jfb.12954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
In order to improve the understanding of pejerrey Odontesthes bonariensis, growth hormone (Gh)-insulin-like growth factor-1(Igf1) axis, O. bonariensis growth hormone receptor type 1 (ghr1) and type 2 (ghr2) mRNA sequences were obtained. Both transcripts were ubiquitously expressed except in kidney, encephalon and anterior intestine. Alternative transcripts of both receptors were found in muscle. Interestingly, two different ghr2 transcripts with alternative polyadenylation (APA) sites located in the long 3' untranslated region (UTR-APA) were also found in liver. Hepatic ghr1, ghr2 and insulin-like growth factor type 1 (igf1) transcript levels were examined under two different metabolic conditions. In the first experimental condition, fish were fasted for 2 weeks and then re-fed for another 2 weeks. Despite igf1 mRNA relative expression did not show significant differences under the experimental period of time examined, both ghr transcripts decreased their expression levels after the fasting period and returned to their control levels after re-feeding. In the second treatment, recombinant O. bonariensis growth hormone (r-pjGh) was orally administered once a week. After 4 weeks of treatment, liver igf1, ghr1 and ghr2 mRNA relative expression increased (13, 4·5 and 2·1 fold, P < 0·05) compared to control values. These results add novel information to the growth hormone-insulin-like growth factor system in teleosts.
Collapse
Affiliation(s)
- P E Botta
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - I Simó
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - A A Sciara
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - S E Arranz
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
16
|
Abernathy J, Panserat S, Welker T, Plagne-Juan E, Sakhrani D, Higgs DA, Audouin F, Devlin RH, Overturf K. Food Shortage Causes Differential Effects on Body Composition and Tissue-Specific Gene Expression in Salmon Modified for Increased Growth Hormone Production. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:753-767. [PMID: 26265485 DOI: 10.1007/s10126-015-9654-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Growth hormone (GH) transgenic salmon possesses markedly increased metabolic rate, appetite, and feed conversion efficiency, as well as an increased ability to compete for food resources. Thus, the ability of GH-transgenic fish to withstand periods of food deprivation as occurs in nature is potentially different than that of nontransgenic fish. However, the physiological and genetic effects of transgenic GH production over long periods of food deprivation remain largely unknown. Here, GH-transgenic coho salmon (Oncorhynchus kisutch) and nontransgenic, wild-type coho salmon were subjected to a 3-month food deprivation trial, during which time performance characteristics related to growth were measured along with proximate compositions. To examine potential genetic effects of GH-transgenesis on long-term food deprivation, a group of genes related to muscle development and liver metabolism was selected for quantitative PCR analysis. Results showed that GH-transgenic fish lose weight at an increased rate compared to wild-type even though proximate compositions remained relatively similar between the groups. A total of nine genes related to muscle physiology (cathepsin, cee, insulin-like growth factor, myostatin, murf-1, myosin, myogenin, proteasome delta, tumor necrosis factor) and five genes related to liver metabolism (carnitine palmitoyltransferase, fatty acid synthase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, glucokinase) were shown to be differentially regulated between GH-transgenic and wild-type coho salmon over time. These genetic and physiological responses assist in identifying differences between GH-transgenic and wild-type salmon in relation to fitness effects arising from elevated growth hormone during periods of long-term food shortage.
Collapse
Affiliation(s)
- Jason Abernathy
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Road, Hagerman, ID, 83332, USA
| | - Stéphane Panserat
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310, Saint-Pée-sur-Nivelle, France
| | - Thomas Welker
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Road, Hagerman, ID, 83332, USA
| | - Elisabeth Plagne-Juan
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310, Saint-Pée-sur-Nivelle, France
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - David A Higgs
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - Florence Audouin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - Ken Overturf
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Road, Hagerman, ID, 83332, USA.
| |
Collapse
|
17
|
Bergan HE, Kittilson JD, Sheridan MA. Nutritional state modulates growth hormone-stimulated lipolysis. Gen Comp Endocrinol 2015; 217-218:1-9. [PMID: 25957918 DOI: 10.1016/j.ygcen.2015.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023]
Abstract
Growth hormone (GH) regulates several processes in vertebrates, including two metabolically disparate processes: promotion of growth, an anabolic action, and mobilization of stored lipid, a catabolic action. In this study, we used hepatocytes isolated from continuously fed and long-term (4weeks) fasted rainbow trout (Oncorhynchus mykiss) as a model to investigate the mechanistic basis of the anabolic and catabolic actions of GH. Our hypothesis was that nutritional state modulates the lipolytic responsiveness of cells by adjusting the signal transduction pathways to which GH links. GH stimulated lipolysis as measured by increased glycerol release in both a time- and concentration-related manner from cells of fasted fish but not from cells of fed fish. Expression of mRNAs that encode the lipolytic enzyme hormone-sensitive lipase (HSL), HSL1 and HSL2, also was stimulated by GH in cells from fasted fish and not in cells from fed fish. Activation of the signaling pathways that mediate GH action also was studied. In cells from fed fish, GH activated the JAK-STAT, PI3K-Akt, and ERK pathways, whereas in cells from fasted fish, GH activated the PLC/PKC and ERK pathways. In hepatocytes from fasted fish, blockade of PLC/PKC and of the ERK pathway inhibited GH-stimulated lipolysis and GH-stimulated HSL mRNA expression, whereas blockade of JAK-STAT or of the PI3K-Akt pathway had no effect on lipolysis or HSL expression stimulated by GH. These results indicate that during fasting GH activates the PLC/PKC and ERK pathways resulting in lipolysis but during periods of feeding GH activates a different complement of signal elements that do not promote lipolysis. These findings suggest that the responsiveness of cells to GH depends on the signal pathways to which GH links and helps resolve the growth-promoting and lipid catabolic actions of GH.
Collapse
Affiliation(s)
- Heather E Bergan
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
18
|
Neuroendocrine regulation of somatic growth in fishes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:137-47. [DOI: 10.1007/s11427-015-4805-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
19
|
Zeng C, Liu XL, Wang WM, Tong JG, Luo W, Zhang J, Gao ZX. Characterization of GHRs, IGFs and MSTNs, and analysis of their expression relationships in blunt snout bream, Megalobrama amblycephala. Gene 2014; 535:239-49. [DOI: 10.1016/j.gene.2013.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 12/18/2022]
|
20
|
Gabillard JC, Biga PR, Rescan PY, Seiliez I. Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013; 194:45-54. [PMID: 24018114 DOI: 10.1016/j.ygcen.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 11/21/2022]
Abstract
In the last decade, myostatin (MSTN), a member of the TGFβ superfamily, has emerged as a strong inhibitor of muscle growth in mammals. In fish many studies reveal a strong conservation of mstn gene organization, sequence, and protein structures. Because of ancient genome duplication, teleostei may have retained two copies of mstn genes and even up to four copies in salmonids due to additional genome duplication event. In sharp contrast to mammals, the different fish mstn orthologs are widely expressed with a tissue-specific expression pattern. Quantification of mstn mRNA in fish under different physiological conditions, demonstrates that endogenous expression of mstn paralogs is rarely related to fish muscle growth rate. In addition, attempts to inhibit MSTN activity did not consistently enhance muscle growth as in mammals. In vitro, MSTN stimulates myotube atrophy and inhibits proliferation but not differentiation of myogenic cells as in mammals. In conclusion, given the strong mstn expression non-muscle tissues of fish, we propose a new hypothesis stating that fish MSTN functions as a general inhibitors of cell proliferation and cell growth to control tissue mass but is not specialized into a strong muscle regulator.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, Equipe Croissance et Qualité de la Chair des Poissons, Campus de Beaulieu, 35000 Rennes, France.
| | | | | | | |
Collapse
|
21
|
Froehlich JM, Fowler ZG, Galt NJ, Smith DL, Biga PR. Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 2013; 4:159. [PMID: 23967015 PMCID: PMC3743216 DOI: 10.3389/fgene.2013.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia and dynapenia pose significant problems for the aged, especially as life expectancy rises in developed countries. Current therapies are marginally efficacious at best, and barriers to breakthroughs in treatment may result from currently employed model organisms. Here, we argue that the use of indeterminate-growing teleost fish in skeletal muscle aging research may lead to therapeutic advancements not possible with current mammalian models. Evidence from a comparative approach utilizing the subfamily Danioninae suggests that the indeterminate growth paradigm of many teleosts arises from adult muscle stem cells with greater proliferative capacity, even in spite of smaller progenitor populations. We hypothesize that paired-box transcription factors, Pax3/7, are involved with this enhanced self-renewal and that prolonged expression of these factors may allow some fish species to escape, or at least forestall, sarcopenia/dynapenia. Future research efforts should focus on the experimental validation of these genes as key factors in indeterminate growth, both in the context of muscle stem cell proliferation and in prevention of skeletal muscle senescence.
Collapse
Affiliation(s)
- Jacob M Froehlich
- Department of Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
22
|
Phelps MP, Jaffe IM, Bradley TM. Muscle growth in teleost fish is regulated by factors utilizing the activin II B receptor. J Exp Biol 2013; 216:3742-50. [DOI: 10.1242/jeb.086660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The activin type IIB receptor (Acvr2b) is the cell surface receptor for multiple transforming growth factor β (TGF-β) superfamily ligands, several of which regulate muscle growth in mammals. To investigate the role of the Acvr2b signaling pathway in the growth and development of skeletal muscle in teleost fish, transgenic rainbow trout (RBT; Oncorhynchus mykiss, Walbaum) expressing a truncated form of the acvr2b-2a (acvr2bΔ) in muscle tissue were produced. High levels of acvr2bΔ expression were detected in the majority of P1 transgenic fish. Transgenic P1 trout developed enhanced, localized musculature in both the epaxial and hypaxial regions (dubbed "six pack"). The F1 transgenic offspring did not exhibit localized muscle growth, but rather developed a uniform body morphology with greater girth, condition factor, and increased muscle fiber hypertrophy. There was a high degree of variation in the weight of both P1 and F1 transgenic fish with several fish of each generation exhibiting enhanced growth compared to other transgenic and control siblings. The "six pack" phenotype observed in P1 transgenic RBT overexpressing a acvr2bΔ and the presence of F1 individuals with altered muscle morphology provides compelling evidence for the importance of TGF-β signaling molecules in regulating muscle growth in teleost fish.
Collapse
|
23
|
Huang CW, Li YH, Hu SY, Chi JR, Lin GH, Lin CC, Gong HY, Chen JY, Chen RH, Chang SJ, Liu FG, Wu JL. Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus)1. J Anim Sci 2012; 90:4266-79. [DOI: 10.2527/jas.2012-5142] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Meyer BM, Froehlich JM, Galt NJ, Biga PR. Inbred strains of zebrafish exhibit variation in growth performance and myostatin expression following fasting. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:1-9. [PMID: 23047051 DOI: 10.1016/j.cbpa.2012.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 12/22/2022]
Abstract
Although the zebrafish (Danio rerio) has been widely utilized as a model organism for several decades, there is little information available on physiological variation underlying genetic variation among the most commonly used inbred strains. This study evaluated growth performance using physiological and molecular markers of growth in response to fasting in six commonly used zebrafish strains [AB, TU, TL, SJA, WIK, and petstore (PET) zebrafish]. Fasting resulted in a standard decrease in whole blood glucose levels, a typical vertebrate glucose metabolism pattern, in AB, PET, TL, and TU zebrafish strains. Alternatively, fasting did not affect glucose levels in SJA and WIK zebrafish strains. Similarly, fasting had no effect on myostatin mRNA levels in AB, PET, TU, and WIK zebrafish strains, but decreased myostatin-1 and -2 mRNA levels in SJA zebrafish. Consistent with previous work, fasting increased myostatin-2 mRNA levels in TL zebrafish. These data demonstrate that variation is present in growth performance between commonly used inbred strains of zebrafish. These data can help future research endeavors by highlighting the attributes of each strain with regard to growth performance so that the most fitting strain may be utilized.
Collapse
Affiliation(s)
- Ben M Meyer
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | |
Collapse
|
25
|
Seiliez I, Sabin N, Gabillard JC. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Mol Cell Endocrinol 2012; 351:220-6. [PMID: 22209759 DOI: 10.1016/j.mce.2011.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022]
Abstract
The muscle growth in mammals is regulated by several growth factors including myostatin (MSTN), a member of the transforming growth factor-beta (TGF-beta) superfamily. To date, it is unknown in fish whether MSTN could have any effect on proliferation or differentiation of myogenic cells. Using culture of trout satellite cells, we showed that mstn1a and mstn1b mRNA are expressed in myoblasts and that their expression decreased in differentiating myoblasts. We also demonstrated that a treatment with huMSTN decreased the proliferation of IGF1-stimulated myoblasts in a dose-dependent manner. By contrast, treatment of myoblasts with 100 nM of huMSTN for three days, did not affect the percentage of positive cells for myogenin neither the percentage of nuclei in myosin positive cells. Moreover, our results clearly indicated that huMSTN treatment had no effect on MyoD and myogenin protein levels, which suggests that huMSTN did not strongly affect MyoD activity. In conclusion, we showed that huMSTN inhibited proliferation but not differentiation of trout myoblasts, probably resulting from a lack of huMSTN effect on MyoD activity. Altogether, these results show high interspecies differences in the function of MSTN.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UMR1067 Nutrition Métabolisme et Aquaculture, Pôle d'hydrobiologie, CD918, F-64310 St-Pée-sur-Nivelle, France
| | | | | |
Collapse
|
26
|
Lafontant PJ, Burns AR, Grivas JA, Lesch MA, Lala TD, Reuter SP, Field LJ, Frounfelter TD. The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration. Anat Rec (Hoboken) 2011; 295:234-48. [PMID: 22095914 DOI: 10.1002/ar.21492] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/24/2011] [Indexed: 12/22/2022]
Abstract
The paucity of mammalian adult cardiac myocytes (CM) proliferation following myocardial infarction (MI) and the remodeling of the necrotic tissue that ensues, result in non-regenerative repair. In contrast, zebrafish (ZF) can regenerate after an apical resection or cryoinjury of the heart. There is considerable interest in models where regeneration proceeds in the presence of necrotic tissue. We have developed and characterized a cautery injury model in the giant danio (GD), a species closely related to ZF, where necrotic tissue remains part of the ventricle, yet regeneration occurs. By light and transmission electron microscopy (TEM), we have documented four temporally overlapping processes: (1) a robust inflammatory response analogous to that observed in MI, (2) concomitant proliferation of epicardial cells leading to wound closure, (3) resorption of necrotic tissue and its replacement by granulation tissue, and (4) regeneration of the myocardial tissue driven by 5-EDU and [(3) H]thymidine incorporating CMs. In conclusion, our data suggest that the GD possesses robust repair mechanisms in the ventricle and can serve as an important model of cardiac inflammation, remodeling and regeneration.
Collapse
|
27
|
Schuck JB, Sun H, Penberthy WT, Cooper NGF, Li X, Smith ME. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma. BMC Neurosci 2011; 12:88. [PMID: 21888654 PMCID: PMC3175199 DOI: 10.1186/1471-2202-12-88] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/02/2011] [Indexed: 01/13/2023] Open
Abstract
Background Unlike mammals, teleost fishes are capable of regenerating sensory inner ear hair cells that have been lost following acoustic or ototoxic trauma. Previous work indicated that immediately following sound exposure, zebrafish saccules exhibit significant hair cell loss that recovers to pre-treatment levels within 14 days. Following acoustic trauma in the zebrafish inner ear, we used microarray analysis to identify genes involved in inner ear repair following acoustic exposure. Additionally, we investigated the effect of growth hormone (GH) on cell proliferation in control zebrafish utricles and saccules, since GH was significantly up-regulated following acoustic trauma. Results Microarray analysis, validated with the aid of quantitative real-time PCR, revealed several genes that were highly regulated during the process of regeneration in the zebrafish inner ear. Genes that had fold changes of ≥ 1.4 and P -values ≤ 0.05 were considered significantly regulated and were used for subsequent analysis. Categories of biological function that were significantly regulated included cancer, cellular growth and proliferation, and inflammation. Of particular significance, a greater than 64-fold increase in growth hormone (gh1) transcripts occurred, peaking at 2 days post-sound exposure (dpse) and decreasing to approximately 5.5-fold by 4 dpse. Pathway Analysis software was used to reveal networks of regulated genes and showed how GH affected these networks. Subsequent experiments showed that intraperitoneal injection of salmon growth hormone significantly increased cell proliferation in the zebrafish inner ear. Many other gene transcripts were also differentially regulated, including heavy and light chain myosin transcripts, both of which were down-regulated following sound exposure, and major histocompatability class I and II genes, several of which were significantly regulated on 2 dpse. Conclusions Transcripts for GH, MHC Class I and II genes, and heavy- and light-chain myosins, as well as many others genes, were differentially regulated in the zebrafish inner ear following overexposure to sound. GH injection increased cell proliferation in the inner ear of non-sound-exposed zebrafish, suggesting that GH could play an important role in sensory hair cell regeneration in the teleost ear.
Collapse
Affiliation(s)
- Julie B Schuck
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ma Q, Liu SF, Zhuang ZM, Sun ZZ, Liu CL, Su YQ, Tang QS. Molecular cloning, expression analysis of insulin-like growth factor I (IGF-I) gene and IGF-I serum concentration in female and male Tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2011; 160:208-14. [PMID: 21893211 DOI: 10.1016/j.cbpb.2011.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a polypeptide hormone that regulates growth during all stages of development in vertebrates. To examine the mechanisms of the sexual growth dimorphism in the Tongue sole (Cynoglossus semilaevis), molecular cloning, expression analysis of IGF-I gene and IGF-I serum concentration analysis were performed. As a result, the IGF-I cDNA sequence is 911 bp, which contains an open reading frame (ORF) of 564 bp encoding a protein of 187 amino acids. The sex-specific tissue expression was analyzed by using 14 tissues from females, normal males and extra-large male adults. The IGF-I mRNA was predominantly expressed in liver, and the IGF-I expression levels in females and extra-large males were 1.9 and 10.2 times as much as those in normal males, respectively. Sex differences in IGF-I mRNA expressions at early life stages were also examined by using a full-sib family of C. semilaevis, and the IGF-I mRNA was detected at all of the 27 sampling points from 10 to 410 days old. An increase in IGF-I mRNA was detected after 190 day old fish. The significantly higher levels of IGF-I mRNA in females were observed after 190 days old in comparison with males (P<0.01). The IGF-I concentrations in serum of mature individuals were detected by ELISA. The IGF-I level in the serum of females was approximately two times as much as that of males. Consequently, IGF-I may play an important role in the endocrine regulation of the sexually dimorphic growth of C. semilaevis.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory for Fishery Resources and Eco-environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
30
|
Volkoff H, Hoskins LJ, Tuziak SM. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. Gen Comp Endocrinol 2010; 167:352-9. [PMID: 19735660 DOI: 10.1016/j.ygcen.2009.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 01/05/2023]
Abstract
Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | |
Collapse
|