1
|
Kaur N, Pandey S, Bhushan K. Recent Developments in Extraction, Molecular Characterization, Bioactivity, and Application of Brewers Spent Grain Arabinoxylans. J Food Sci 2025; 90:e70239. [PMID: 40331735 DOI: 10.1111/1750-3841.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025]
Abstract
Arabinoxylans (AXs) and their derived arabinoxylooligosaccharides (AXOS) are valuable functional biomolecules with promising applications in the food, brewing, and packaging industries. However, inconsistencies in extraction techniques, structural characterization, and industrial applicability remain key challenges. This review comprehensively examines various AX extraction methods from brewer's spent grain (BSG), including chemical, enzymatic, steam explosion, ultrasound-assisted, and microwave-assisted techniques, emphasizing their impact on molecular characteristics such as molecular weight, monosaccharide composition, and structural features. Furthermore, the biological activities of AX, including prebiotic, immunomodulatory, hypoglycemic, and antioxidant properties, are analyzed in relation to their structural variations. Despite their potential, knowledge gaps persist regarding how different extraction techniques influence AX bioactivity and functionality. Additionally AX is increasingly explored in synbiotic formulations, food products, beer, and biodegradable films. This review addresses these gaps by consolidating current knowledge on AX extraction, characterization, and functionality, highlighting the need for standardized methodologies and further research to optimize its industrial applications.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Swati Pandey
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Keshani Bhushan
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Choolaei Z, Khusnutdinova AN, Skarina T, Stogios P, Diep P, Lemak S, Edwards EA, Savchenko A, Yakunin AF. Structural and Biochemical Insights into Lignin-Oxidizing Activity of Bacterial Peroxidases against Soluble Substrates and Kraft Lignin. ACS Chem Biol 2025; 20:830-844. [PMID: 40145573 DOI: 10.1021/acschembio.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Great interest has recently been drawn to the production of value-added products from lignin; however, its recalcitrance and high chemical complexity have made this challenging. Dye-decolorizing peroxidases and catalase-peroxidases are among the enzymes that are recognized to play important roles in environmental lignin oxidation. However, bacterial lignin-oxidizing enzymes remain less characterized compared to related proteins from fungi. In this study, screening of 18 purified bacterial peroxidases against the general chromogenic substrate 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) revealed the presence of peroxidase activity in all proteins. Agarose plate-based screens with kraft lignin identified detectable and high lignin oxidation activity in 15 purified proteins. Crystal structures were determined for the DyP-type peroxidases FC2591 from Frankia casuarinae, PF3257 from Pseudomonas fluorescens, and PR9465 from Pseudomonas rhizosphaerae. The structures revealed the presence of hemes with bound oxygens coordinated by conserved His, Arg, and Asp residues as well as three molecular tunnels connecting the heme with the protein surface. Structure-based site-directed mutagenesis of FC2591 identified at least five active site residues as essential for oxidase activity against both ABTS and lignin, whereas the S370A mutant protein showed a three- to 4-fold activity increase with both substrates. HPLC analysis of reaction products of the wild-type FC2591 and S370A mutant proteins with the model lignin dimer guaiacylglycerol-β-guaiacyl ether and kraft lignin revealed the formation of products consistent with the radical coupling of the reaction intermediates. Thus, this study identified novel bacterial heme peroxidases with lignin oxidation activity and provided further insights into our understanding of these enzymes.
Collapse
Affiliation(s)
- Zahra Choolaei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, U.K
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, Calgary T2N 4N1, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, U.K
| |
Collapse
|
3
|
Franco Vieira B, Ramos-Muñoz VM, Zahedi S, Abreu B Silva Rabelo C, Zaiat M, G Fermoso F, González-Arias J. Unlocking the anaerobic conversion of crop residues: Biological pretreatments and the role of sulfide pathway in lignin degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178739. [PMID: 39946880 DOI: 10.1016/j.scitotenv.2025.178739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Research on the reutilization of crop residues has gained significant attention as a strategy for generating energy and high-value chemicals from renewable sources, while simultaneously reducing feedstock costs and mitigating environmental pollution. Crop residues have been effectively applied in lignocellulosic sulfate-reducing bioreactors (LSRBs) for the treatment of mining-influenced water. A comprehensive evaluation of the state-of-the-art in LSRBs reveals their potential for leveraging syntrophic aerobic-anaerobic interactions between sulfate-reducing bacteria and facultative species, alongside cellulolytic-fermentative microorganisms, to facilitate the pretreatment of lignocellulosic biomass for biorefinery applications. Key variables influencing the availability of enzymatic substrates and the activity of lignin-degrading enzymes are identified, along with strategies to enhance catalytic efficiency. Additionally, approaches to ensure the availability of trace elements and to control the production of toxic intermediates that may hinder treatment processes are elucidated. Prominent strategies include the application of microaeration and the use of co-substrates. An innovative aspect is the exploitation of metal sulfide precipitation to mitigate toxicity while preventing the sequestration of hydrogen peroxide - an essential substrate for enzymatic activity - by sulfides generated during the process. This review emphasizes the need for scientific advancements focused on optimizing the valorization of lignocellulosic residues. A particular focus is placed on advancing the understanding of lignin's anaerobic degradation mechanisms, especially in systems co-treating lignocellulosic waste and mining-influenced waters. Such advancements hold promise for enhancing the efficiency and sustainability of biorefinery operations.
Collapse
Affiliation(s)
- Bárbara Franco Vieira
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain; Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Víctor M Ramos-Muñoz
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Soraya Zahedi
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Camila Abreu B Silva Rabelo
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Fernando G Fermoso
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Judith González-Arias
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain; Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain.
| |
Collapse
|
4
|
Foucault P, Halary S, Duval C, Goto M, Marie B, Hamlaoui S, Jardillier L, Lamy D, Lance E, Raimbault E, Allouti F, Troussellier M, Bernard C, Leloup J, Duperron S. A summer in the greater Paris: trophic status of peri-urban lakes shapes prokaryotic community structure and functional potential. ENVIRONMENTAL MICROBIOME 2025; 20:24. [PMID: 39962619 PMCID: PMC11834611 DOI: 10.1186/s40793-025-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
With more than 12 million inhabitants, the Greater Paris offers a "natural laboratory" to explore the effects of eutrophication on freshwater lake's microbiomes within a relative restricted area (~ 70 km radius). Here, a 4-months survey was carried out during summertime to monitor planktonic microbial communities of nine lakes located around Paris (Île-de-France, France) of comparable morphologies, yet distinct trophic statuses from mesotrophic to hypereutrophic. By thus minimizing the confounding factors, we investigated how trophic status could influence prokaryotic community structures (16S rRNA gene sequencing) and functions (shotgun metagenomics). These freshwater lakes harbored highly distinct and diverse prokaryotic communities, and their trophic status appears as the main driver explaining both differences in community structure and functional potential. Although their gene pool was quite stable and shared among lakes, taxonomical and functional changes were correlated. According to trophic status, differences in phosphorus metabolism-related genes were highlighted among the relevant functions involved in the biogeochemical cycles. Overall, hypereutrophic lakes microbiomes displayed the highest contrast and heterogeneity over time, suggesting a specific microbial regime shift compared to eutrophic and mesotrophic lakes.
Collapse
Affiliation(s)
- Pierre Foucault
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Sébastien Halary
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Charlotte Duval
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Midoli Goto
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Sahima Hamlaoui
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Ludwig Jardillier
- Université Paris-Saclay, UMR 8079 Univ. Paris-Saclay-CNRS-AgroParisTech, Unité d'Écologie Systématique et Évolution (ESE), Gif-sur-Yvette, France
| | - Dominique Lamy
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Emilie Lance
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Université de Reims, UMR-I 02, Stress environnementaux et biosurveillance des milieux aquatiques (SEBIO), Reims, France
| | - Emmanuelle Raimbault
- Institut de Physique du Globe de Paris, UMR 7154, Univ. Paris Cité-CNRS, Paris, France
| | - Fayçal Allouti
- Muséum National d'Histoire Naturelle, UAR 7200 MNHN, Acquisition et Analyses de Données pour l'Histoire naturelle (2AD), Paris, France
| | - Marc Troussellier
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Cécile Bernard
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Julie Leloup
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France.
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France.
| |
Collapse
|
5
|
Miao Y, Wang W, Xu H, Xia Y, Gong Q, Xu Z, Zhang N, Xun W, Shen Q, Zhang R. A novel decomposer-exploiter interaction framework of plant residue microbial decomposition. Genome Biol 2025; 26:20. [PMID: 39901283 PMCID: PMC11792400 DOI: 10.1186/s13059-025-03486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Plant residue microbial decomposition, subject to significant environmental regulation, represents a crucial ecological process shaping and cycling the largest terrestrial soil organic carbon pool. However, the fundamental understanding of the functional dynamics and interactions between the principal participants, fungi and bacteria, in natural habitats remains limited. RESULTS In this study, the evolution of fungal and bacterial communities and their functional interactions were elucidated during the degradation of complexity-gradient plant residues. The results reveal that with increasing residue complexity, fungi exhibit heightened adaptability, while bacterial richness declines sharply. The differential functional evolution of fungi and bacteria is driven by residue complexity but follows distinct trajectories. Fundamentally, fungi evolve towards promoting plant residue degradation and so consistently act as the dominant decomposers. Conversely, bacteria predominantly increase expression of genes of glycosidases to exploit fungal degradation products, thereby consistently acting as exploiters. The presence of fungi enables and endures bacterial exploitation. CONCLUSIONS This study introduces a novel framework of fungal decomposers and bacterial exploiters during plant residue microbial decomposition, advancing our comprehensive understanding of microbial processes governing the organic carbon cycling.
Collapse
Affiliation(s)
- Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yanwei Xia
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Gong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Feng X, Wang X, Wei Z, Wu M, Ma X, Yan X, Shan J. Depth weakens effects of long-term fertilization on dissolved organic matter chemodiversity in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178237. [PMID: 39721550 DOI: 10.1016/j.scitotenv.2024.178237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Dissolved organic matter (DOM) is pivotal for soil biogeochemical processes, soil fertility, and ecosystem stability. While numerous studies have investigated the impact of fertilization practices on DOM content along soil profiles, variations in DOM chemodiversity and the underlying factors across soil profiles under long-term fertilization regimes remain unclear. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-throughput sequencing, this study investigated DOM composition characteristics and microbial community compositions across different soil layers (0-20, 20-40, 40-60, and 60-100 cm) in paddy soil under different long-term fertilization treatments, including Control (no fertilizer), NPK (mineral NPK fertilizer), NPKHS (NPK fertilizer with half straw return), and NPKS (NPK fertilizer with full straw return). The results revealed that fertilization regimes significantly increased soil TC, TN, and NO3- contents, as well as DOM chemodiversity in the top soil layer, particularly under NPKHS and NPKS treatments. Both the DOM chemodiversity and bacterial diversity decreased with soil depth. However, below 0-20 cm, DOM chemodiversity was not significantly affected by fertilization treatments. Co-occurrence network analysis further showed that microbial decomposition primarily drove the changes in DOM composition across soil profile. Overall, our study suggests that long-term NPK fertilization and straw return significantly increased DOM chemodiversity only in the top layer of paddy soil by regulating soil TC, TN, and NO3- contents. Our study provides useful information regarding the vertical molecular composition of DOM and enhances the understanding of DOM chemodiversity along soil profile in rice paddy ecosystems.
Collapse
Affiliation(s)
- Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China.
| |
Collapse
|
7
|
Lenka J, González-Tortuero E, Kuba S, Ferry N. Bacterial community profiling and identification of bacteria with lignin-degrading potential in different gut segments of African palm weevil larvae ( Rhynchophorus phoenicis). Front Microbiol 2025; 15:1401965. [PMID: 39831119 PMCID: PMC11739302 DOI: 10.3389/fmicb.2024.1401965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025] Open
Abstract
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials. Bacterial metagenomic DNA was extracted from the foregut, midgut, and hindgut of larvae of the APW, and the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. The generated data were analysed and taxonomically classified to identify the different bacterial phylotypes within the gut community cumulatively and per gut segment. We then determined the presence, diversity, and abundance of bacteria associated with lignin degradation within each larval gut compartment as a basis for suggesting the gut segment(s) where lignin degradation occurs the most. All sequences were classified and belonged to the bacterial kingdom. Firmicutes (54.3%) and Proteobacteria (42.5%) were the most dominant phyla within the gut, followed distantly by Bacteroidota (1.7%) and Actinobacteriota (1.4%). Enterococcus, Levilactobacillus, Lactococcus, Shimwellia, Megasphaera, Klebsiella, Pectinatus, Salmonella, Lelliotia, and Enterobacter constituted the most abundant genera found across all gut segments. The foregut and midgut had many similar genera, whilst the hindgut appeared unique. Overall, 29.5% of total gut bacteria comprising 21 genera were lignin degraders found predominantly in the Firmicutes and Proteobacteria phyla (56.8 and 39.5%, respectively), then moderately in Actinobacteriota (2.5%) and Bacteroidota (1.1%). The most abundant ligninolytic genera were Levilactobacillus (46.4%), Klebsiella (22.9%), Enterobacter (10.7%), Lactiplantibacillus (5.9%), Citrobacter (2.2%), Corynebacterium (1.8%), Paucilactobacillus (1.8%), Serratia (1.5%), Bacteroides (1.1%), and Leucobacter (1.0%) found in different amounts in different gut compartments. The foregut had the most diverse and highest abundance of lignin-degrading phylotypes, and we present reasons that point to the foregut as the main location for the depolymerization of lignin in the APW larval gut.
Collapse
Affiliation(s)
- Jessica Lenka
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Enrique González-Tortuero
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Shweta Kuba
- School of Health and Life Sciences, Teesside University, Middlesborough, United Kingdom
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
8
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
9
|
Eaton WD, Hamilton DA. Increasing Ages of Inga punctata Tree Soils Facilitate Greater Fungal Community Abundance and Successional Development, and Efficiency of Microbial Organic Carbon Utilization. Microorganisms 2024; 12:1996. [PMID: 39458304 PMCID: PMC11509470 DOI: 10.3390/microorganisms12101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Leguminous Inga trees are thought to enhance soil carbon (C) accumulation following reforestation, through mostly unknown mechanisms. This study amplified soil DNA using the ITS1F and ITS4 primers for PCR and Illumina MiSeq methods to identify fungal taxa, and traditional C analysis methods to evaluate how planted 4-, 8-, and 11-year-old Inga punctata trees affected soil fungal community compositions and C utilization patterns compared to old-growth I. punctata trees and an adjacent unplanted pasture within the same reforestation zone in Monteverde, Costa Rica. Along the tree age gradient, the planted I. punctata trees enhanced the tree soil C capture capacity, as indicated by increased levels of soil biomass C, Respiration, and efficiency of organic C use (with lower qCO2 values), and development of increasingly more abundant, stable, and successionally developed fungal communities, including those associated with the decomposition of complex organic C compounds. The level and strength of differences coincided with differences in the time of separation between the pasture and tree age or between the different tree ages. Fungal taxa were also identified as potential indicators of the early and late stages of soil recovery. Thus, planting I. punctata should be part of future reforestation strategies used in this region of the Monteverde Cloud Forest in Costa Rica.
Collapse
Affiliation(s)
- William D. Eaton
- Biology Department, Dyson College, Pace University, New York, NY 10038, USA
- Department of Environment and Development, University for Peace, El Rodeo de Mora, San José 10701, Costa Rica
| | - Debra A. Hamilton
- Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA;
- Monteverde Institute, Monteverde, Puntarenas 60109, Costa Rica
| |
Collapse
|
10
|
Jones I, Vermillion D, Tracy C, Denton R, Davis R, Geszvain K. Isolation, characterization, and genetic manipulation of cold-tolerant, manganese-oxidizing Pseudomonas sp. strains. Appl Environ Microbiol 2024; 90:e0051024. [PMID: 39212379 PMCID: PMC11409713 DOI: 10.1128/aem.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Manganese-oxidizing bacteria (MnOB) produce Mn oxide minerals that can be used by humans for bioremediation, but the purpose for the bacterium is less clear. This study describes the isolation and characterization of cold-tolerant MnOB strains isolated from a compost pile in Morris, Minnesota, USA: Pseudomonas sp. MS-1 and DSV-1. The strains were preliminarily identified as members of species Pseudomonas psychrophila by 16S rRNA analysis and a multi-locus phylogenetic study using a database of 88 genomes from the Pseudomonas genus. However, the average nucleotide identity between these strains and the P. psychrophila sp. CF149 type strain was less than 93%. Thus, the two strains are members of a novel species that diverged from P. psychrophila. DSV-1 and MS-1 are cold tolerant; both grow at 4°C but faster at 24°C. Unlike the mesophilic MnOB P. putida GB-1, both strains are capable of robustly oxidizing Mn at low temperatures. Both DSV-1 and MS-1 genomes contain homologs of several Mn oxidation genes found in P. putida GB-1 (mnxG, mcoA, mnxS1, mnxS2, and mnxR). Random mutagenesis by transposon insertion was successfully performed in both strains and identified genes involved in Mn oxidation that were similar to those found in P. putida GB-1. Our results show that MnOB can be isolated from compost, supporting a role for Mn oxidation in plant waste degradation. The novel isolates Pseudomonas spp. DSV-1 and MS-1 both can oxidize Mn at low temperature and likely employ similar mechanisms and regulation as P. putida GB-1.IMPORTANCEBiogenic Mn oxides have high sorptive capacity and are strong oxidants. These two characteristics make these oxides and the microbes that make them attractive tools for the bioremediation of wastewater and contaminated environments. Identifying MnOB that can be used for bioremediation is an active area of research. As cold-tolerant MnOB, Pseudomonas sp. DSV-1 and MS-1 have the potential to expand the environmental conditions in which biogenic Mn oxide bioremediation can be performed. The similarity of these organisms to the well-characterized MnOB P. putida GB-1 and the ability to manipulate their genomes raise the possibility of modifying them to improve their bioremediation ability.
Collapse
Affiliation(s)
- Ian Jones
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Duncan Vermillion
- Division of Science and Math, University of Minnesota, Morris, Minnesota, USA
| | - Chase Tracy
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Robert Denton
- Department of Biology, Marian University, Indianapolis, Indiana, USA
| | - Rick Davis
- Texas State University, NASA Johnson Space Center, Houston, Texas, USA
| | - Kati Geszvain
- Department of Biological Sciences, California State University, Chico, California, USA
| |
Collapse
|
11
|
Detain J, Besaury L. Degradation of lignocellulose by different bacterial and fungal co-cultures. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100271. [PMID: 39291138 PMCID: PMC11406349 DOI: 10.1016/j.crmicr.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Long seen as non-valorisable waste, agricultural co-products are increasingly used in biorefinery processes. Co-culture appears as new trend for to improve the degradation of lignocellulose and improve the production of bioproducts. The goal of the study was to setup inter-domain co-cultures with high capabilities of lignocellulose degradation using a pluridisciplinary approach combining bioinformatics, enzymology, transcriptomics. Different individual lignocellulolytic strains: Trichoderma reesei QM6a and three bacteria (Streptomyces coelicolor A3(2), Rhizobium sp.XylPr11 and Sphingobacterium prati AraPr2 affiliated from different phyla) were used in that study . Synergic activities have been observed and quantified in co-culture conditions, particularly for xylanases and peroxidases activities. The enzymatic activities for the co-cultures in the most interesting co-culture (T. reesei QM6a/S. coelicolor A3(2)) reached more up to 2 IU/mL and 430 IU/mL respectively for the xylanase and peroxidase. Furthermore, ATR-FTIR analysis showed a real impact of co-culture condition on the substrate compared to the monoculture specially for hemicellulose degradation. Transcriptomics of S. coelicolor A3(2) either in mono or co-culture showed a relative similar pattern profile whatever the condition analysed with a specific overexpression of certain CAZyme genes involved in glycolysis due to the hydrolytic role played by the fungal partner. This work provided the proof of concept for technological feasibility, pertinence and usefulness of interdomain co-culture.
Collapse
Affiliation(s)
- Julian Detain
- Université de Reims Champagne Ardennes, INRAE, FARE, UMR A 614, Chaire AFERE, 51097 Reims, France
| | - Ludovic Besaury
- Université de Reims Champagne Ardennes, INRAE, FARE, UMR A 614, Chaire AFERE, 51097 Reims, France
| |
Collapse
|
12
|
Chen P, Li Z, Cao N, Wu RX, Kuang ZR, Yu F. Comparison of Bacterial Communities in Five Ectomycorrhizal Fungi Mycosphere Soil. Microorganisms 2024; 12:1329. [PMID: 39065098 PMCID: PMC11279354 DOI: 10.3390/microorganisms12071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Ectomycorrhizal fungi have huge potential value, both nutritionally and economically, but most of them cannot be cultivated artificially. To better understand the influence of abiotic and biotic factors upon the growth of ectomycorrhizal fungi, mycosphere soil and bulk soil of five ectomycorrhizal fungi (Calvatia candida, Russula brevipes, Leucopaxillus laterarius, Leucopaxillus giganteus, and Lepista panaeola) were used as research objects for this study. Illumina MiSeq sequencing technology was used to analyze the community structure of the mycosphere and bulk soil bacteria of the five ectomycorrhizal fungi, and a comprehensive analysis was conducted based on soil physicochemical properties. Our results show that the mycosphere soil bacteria of the five ectomycorrhizal fungi are slightly different. Escherichia, Usitatibacter, and Bradyrhizobium are potential mycorrhizal-helper bacteria of distinct ectomycorrhizal fungi. Soil water content, soil pH, and available potassium are the main factors shaping the soil bacterial community of the studied ectomycorrhizal fungi. Moreover, from the KEGG functional prediction and LEfSe analysis, there are significant functional differences not only between the mycosphere soil and bulk soil. 'Biosynthesis of terpenoidsand steroids', 'alpha-Linolenic acid metabolism', 'Longevity regulating pathway-multiple species', 'D-Arginine and D-ornithine metabolism', 'Nitrotoluene degradation' and other functions were significantly different in mycosphere soil. These findings have pivotal implications for the sustainable utilization of ectomycorrhizal fungi, the expansion of edible fungus cultivation in forest environments, and the enhancement of derived economic benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Yu
- College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China; (P.C.); (Z.L.); (N.C.); (R.-X.W.); (Z.-R.K.)
| |
Collapse
|
13
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
14
|
Ali HS, de Visser SP. QM/MM Study Into the Mechanism of Oxidative C=C Double Bond Cleavage by Lignostilbene-α,β-Dioxygenase. Chemistry 2024; 30:e202304172. [PMID: 38373118 DOI: 10.1002/chem.202304172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The enzymatic biosynthesis of fragrance molecules from lignin fragments is an important reaction in biotechnology for the sustainable production of fine chemicals. In this work we investigated the biosynthesis of vanillin from lignostilbene by a nonheme iron dioxygenase using QM/MM and tested several suggested proposals via either an epoxide or dioxetane intermediate. Binding of dioxygen to the active site of the protein results in the formation of an iron(II)-superoxo species with lignostilbene cation radical. The dioxygenase mechanism starts with electrophilic attack of the terminal oxygen atom of the superoxo group on the central C=C bond of lignostilbene, and the second-coordination sphere effects in the substrate binding pocket guide the reaction towards dioxetane formation. The computed mechanism is rationalized with thermochemical cycles and valence bond schemes that explain the electron transfer processes during the reaction mechanism. Particularly, the polarity of the protein and the local electric field and dipole moments enable a facile electron transfer and an exergonic dioxetane formation pathway.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
15
|
Zhao S, Deng D, Wan T, Feng J, Deng L, Tian Q, Wang J, Aiman UE, Mukhaddi B, Hu X, Chen S, Qiu L, Huang L, Wei Y. Lignin bioconversion based on genome mining for ligninolytic genes in Erwinia billingiae QL-Z3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:25. [PMID: 38360683 PMCID: PMC10870720 DOI: 10.1186/s13068-024-02470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Bioconversion of plant biomass into biofuels and bio-products produces large amounts of lignin. The aromatic biopolymers need to be degraded before being converted into value-added bio-products. Microbes can be environment-friendly and efficiently degrade lignin. Compared to fungi, bacteria have some advantages in lignin degradation, including broad tolerance to pH, temperature, and oxygen and the toolkit for genetic manipulation. RESULTS Our previous study isolated a novel ligninolytic bacterial strain Erwinia billingiae QL-Z3. Under optimized conditions, its rate of lignin degradation was 25.24% at 1.5 g/L lignin as the sole carbon source. Whole genome sequencing revealed 4556 genes in the genome of QL-Z3. Among 4428 protein-coding genes are 139 CAZyme genes, including 54 glycoside hydrolase (GH) and 16 auxiliary activity (AA) genes. In addition, 74 genes encoding extracellular enzymes are potentially involved in lignin degradation. Real-time PCR quantification demonstrated that the expression of potential ligninolytic genes were significantly induced by lignin. 8 knock-out mutants and complementary strains were constructed. Disruption of the gene for ELAC_205 (laccase) as well as EDYP_48 (Dyp-type peroxidase), ESOD_1236 (superoxide dismutase), EDIO_858 (dioxygenase), EMON_3330 (monooxygenase), or EMCAT_3587 (manganese catalase) significantly reduced the lignin-degrading activity of QL-Z3 by 47-69%. Heterologously expressed and purified enzymes further confirmed their role in lignin degradation. Fourier transform infrared spectroscopy (FTIR) results indicated that the lignin structure was damaged, the benzene ring structure and groups of macromolecules were opened, and the chemical bond was broken under the action of six enzymes encoded by genes. The abundant enzymatic metabolic products by EDYP_48, ELAC_205 and ESOD_1236 were systematically analyzed via liquid chromatography-mass spectrometry (LC-MS) analysis, and then provide a speculative pathway for lignin biodegradation. Finally, The activities of ligninolytic enzymes from fermentation supernatant, namely, LiP, MnP and Lac were 367.50 U/L, 839.50 U/L, and 219.00 U/L by orthogonal optimization. CONCLUSIONS Our findings provide that QL-Z3 and its enzymes have the potential for industrial application and hold great promise for the bioconversion of lignin into bioproducts in lignin valorization.
Collapse
Affiliation(s)
- Shuting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dongtao Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Tianzheng Wan
- Vrije University Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands
| | - Jie Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qianyi Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiayu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Umm E Aiman
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Balym Mukhaddi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaofeng Hu
- Shanghai Personal Biotechnology Co., Ltd, Shanghai, 20030, People's Republic of China
| | - Shaolin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering, The West Scientific Observing and Experimental Station of Rural Renewable Energy Exploitation and Utilization of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yahong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
16
|
Tao S, Veen GFC, Zhang N, Yu T, Qu L. Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. MICROBIOME 2023; 11:261. [PMID: 37996939 PMCID: PMC10666335 DOI: 10.1186/s40168-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.
Collapse
Affiliation(s)
- Siqi Tao
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalstesteeg 10, Wageningen, 6708 PB, the Netherlands
| | - Naili Zhang
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China.
| | - Tianhe Yu
- Department of Biology, Mudanjiang Normal University, Mudanjiang, 157011, People's Republic of China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
17
|
Grace Barrios-Gutiérrez S, Inés Vélez-Mercado M, Rodrigues Ortega J, da Silva Lima A, Luiza da Rocha Fortes Saraiva A, Leila Berto G, Segato F. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach. BIORESOURCE TECHNOLOGY 2023; 386:129481. [PMID: 37437815 DOI: 10.1016/j.biortech.2023.129481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Basidiomycetes are renowned as highly effective decomposers of plant materials, due to their extensive array of oxidative enzymes, which enable them to efficiently break down complex lignocellulosic biomass structures. Among the oxidative machinery of industrially relevant basidiomycetes, the role of lytic polysaccharide monooxygenases (LPMO) in lignocellulosic biomass deconstruction is highlighted. So far, only a limited number of basidiomycetes LPMOs have been identified and heterologously expressed. These LPMOs have presented activity on cellulose and hemicellulose, as well as participation in the deconstruction of lignin. Expanding on this, the current review proposes both enzymatic and non-enzymatic mechanisms of LPMOs for biomass conversion, considering the significance of the Carbohydrate-Binding Modules and other C-terminal regions domains associated with their structure, which is involved in the deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Solange Grace Barrios-Gutiérrez
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Martha Inés Vélez-Mercado
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Júlia Rodrigues Ortega
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Awana da Silva Lima
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Ana Luiza da Rocha Fortes Saraiva
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gabriela Leila Berto
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil.
| |
Collapse
|
18
|
Yi B, Lu C, Huang W, Yu W, Yang J, Howe A, Weintraub-Leff SR, Hall SJ. Resolving the influence of lignin on soil organic matter decomposition with mechanistic models and continental-scale data. GLOBAL CHANGE BIOLOGY 2023; 29:5968-5980. [PMID: 37448171 DOI: 10.1111/gcb.16875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Confidence in model estimates of soil CO2 flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data-model fusion with modified versions of the CN-SIM model and a 571-day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These "lagged-peak" samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest-performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co-metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth-system models.
Collapse
Affiliation(s)
- Bo Yi
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Chaoqun Lu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Wenjuan Huang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Wenjuan Yu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Embacher J, Zeilinger S, Kirchmair M, Rodriguez-R LM, Neuhauser S. Wood decay fungi and their bacterial interaction partners in the built environment – A systematic review on fungal bacteria interactions in dead wood and timber. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
McGuire PM, Butkevich N, Saksena AV, Walter MT, Shapleigh JP, Reid MC. Oxic-anoxic cycling promotes coupling between complex carbon metabolism and denitrification in woodchip bioreactors. Environ Microbiol 2023; 25:1696-1712. [PMID: 37105180 DOI: 10.1111/1462-2920.16387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non-point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C-limited. Prior studies have observed that oxic-anoxic cycling increased the mobilization of organic C, increased nitrate (NO3 - ) removal rates, and attenuated production of nitrous oxide (N2 O). Here, we use multi-omics approaches and amplicon sequencing of fungal 5.8S-ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3 - removal and attenuated N2 O production under redox-dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip-derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade I nosZ transcripts during the oxic-anoxic transition was strongly correlated with the N2 O yield. Analysis of metagenome-assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.
Collapse
Affiliation(s)
- Philip M McGuire
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Natalie Butkevich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Aryaman V Saksena
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Lee S, Cho M, Sadowsky MJ, Jang J. Denitrifying Woodchip Bioreactors: A Microbial Solution for Nitrate in Agricultural Wastewater-A Review. J Microbiol 2023; 61:791-805. [PMID: 37594681 DOI: 10.1007/s12275-023-00067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Nitrate (NO3-) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO3- have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas (N2) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO3--removing strategy among several edge-of-field practices, and has been shown to successfully remove NO3- in several field studies. NO3- removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO3- to N2. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO3- pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO3- from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO3- in WBR, and perspectives to enhance WBR performance in the future.
Collapse
Affiliation(s)
- Sua Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water and Climate, and Department of Microbial and Plant Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeonghwan Jang
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
22
|
Peng Q, Lin L, Tu Q, Wang X, Zhou Y, Chen J, Jiao N, Zhou J. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. mSystems 2023; 8:e0128322. [PMID: 37417747 PMCID: PMC10469889 DOI: 10.1128/msystems.01283-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Lignocellulose, as the most abundant natural organic carbon on earth, plays a key role in regulating the global carbon cycle, but there have been only few studies in marine ecosystems. Little information is available about the extant lignin-degrading bacteria in coastal wetlands, limiting our understanding of their ecological roles and traits in lignocellulose degradation. We utilized in situ lignocellulose enrichment experiments coupled with 16S rRNA amplicon and shotgun metagenomics sequencing to identify and characterize bacterial consortia attributed to different lignin/lignocellulosic substrates in the southern-east intertidal zone of East China Sea. We found the consortia enriched on woody lignocellulose showed higher diversity than those on herbaceous substrate. This also revealed substrate-dependent taxonomic groups. A time-dissimilarity pattern with increased alpha diversity over time was observed. Additionally, this study identified a comprehensive set of genes associated with lignin degradation potential, containing 23 gene families involved in lignin depolymerization, and 371 gene families involved in aerobic/anaerobic lignin-derived aromatic compound pathways, challenging the traditional view of lignin recalcitrance within marine ecosystems. In contrast to similar cellulase genes among the lignocellulose substrates, significantly different ligninolytic gene groups were observed between consortia under woody and herbaceous substrates. Importantly, we not only observed synergistic degradation of lignin and hemi-/cellulose, but also pinpointed the potential biological actors at the levels of taxa and functional genes, which indicated that the alternation of aerobic and anaerobic catabolism could facilitate lignocellulose degradation. Our study advances the understanding of coastal bacterial community assembly and metabolic potential for lignocellulose substrates. IMPORTANCE It is essential for the global carbon cycle that microorganisms drive lignocellulose transformation, due to its high abundance. Previous studies were primarily constrained to terrestrial ecosystems, with limited information about the role of microbes in marine ecosystems. Through in situ lignocellulose enrichment experiment coupled with high-throughput sequencing, this study demonstrated different impacts that substrates and exposure times had on long-term bacterial community assembly and pinpointed comprehensive, yet versatile, potential decomposers at the levels of taxa and functional genes in response to different lignocellulose substrates. Moreover, the links between ligninolytic functional traits and taxonomic groups of substrate-specific populations were revealed. It showed that the synergistic effect of lignin and hemi-/cellulose degradation could enhance lignocellulose degradation under alternation of aerobic and anaerobic conditions. This study provides valuable taxonomic and genomic insights into coastal bacterial consortia for lignocellulose degradation.
Collapse
Affiliation(s)
- Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaopeng Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Yueyue Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Jiyu Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Joint Lab for Ocean Research and Education at Shandong University, Xiamen University and Dalhousie University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
23
|
Li G, Yuan Y, Jin B, Zhang Z, Murtaza B, Zhao H, Li X, Wang L, Xu Y. Feasibility insights into the application of Paenibacillus pabuli E1 in animal feed to eliminate non-starch polysaccharides. Front Microbiol 2023; 14:1205767. [PMID: 37608941 PMCID: PMC10440823 DOI: 10.3389/fmicb.2023.1205767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
The goal of the research was to find alternative protein sources for animal farming that are efficient and cost-effective. The researchers focused on distillers dried grains with solubles (DDGS), a co-product of bioethanol production that is rich in protein but limited in its use as a feed ingredient due to its high non-starch polysaccharides (NSPs) content, particularly for monogastric animals. The analysis of the Paenibacillus pabuli E1 genome revealed the presence of 372 genes related to Carbohydrate-Active enzymes (CAZymes), with 98 of them associated with NSPs degrading enzymes that target cellulose, hemicellulose, and pectin. Additionally, although lignin is not an NSP, two lignin-degrading enzymes were also examined because the presence of lignin alongside NSPs can hinder the catalytic effect of enzymes on NSPs. To confirm the catalytic ability of the degrading enzymes, an in vitro enzyme activity assay was conducted. The results demonstrated that the endoglucanase activity reached 5.37 U/mL, while beta-glucosidase activity was 4.60 U/mL. The filter paper experiments did not detect any reducing sugars. The xylanase and beta-xylosidase activities were measured at 11.05 and 4.16 U/mL, respectively. Furthermore, the pectate lyase and pectin lyase activities were found to be 8.19 and 2.43 U/mL, respectively. The activities of laccase and MnP were determined as 1.87 and 4.30 U/mL, respectively. The researchers also investigated the effect of P. pabuli E1 on the degradation of NSPs through the solid-state fermentation of DDGS. After 240 h of fermentation, the results showed degradation rates of 11.86% for hemicellulose, 11.53% for cellulose, and 8.78% for lignin. Moreover, the crude protein (CP) content of DDGS increased from 26.59% to 30.59%. In conclusion, this study demonstrated that P. pabuli E1 possesses various potential NSPs degrading enzymes that can effectively eliminate NSPs in feed. This process improves the quality and availability of the feed, which is important for animal farming as it seeks alternative protein sources to replace traditional nutrients.
Collapse
Affiliation(s)
- Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yue Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhiqiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
24
|
Sgro M, Chow N, Olyaei F, Arentshorst M, Geoffrion N, Ram AFJ, Powlowski J, Tsang A. Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger. J Biol Chem 2023; 299:105003. [PMID: 37399977 PMCID: PMC10406623 DOI: 10.1016/j.jbc.2023.105003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on β-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. These β-ketoadipate pathways have been well characterized in bacteria. The corresponding knowledge of these pathways in fungi is incomplete. Characterization of these pathways in fungi would expand our knowledge and improve the valorization of lignin-derived compounds. Here, we used homology to characterize bacterial or fungal genes to predict the genes involved in the β-ketoadipate pathway for protocatechuate utilization in the filamentous fungus Aspergillus niger. We further used the following approaches to refine the assignment of the pathway genes: whole transcriptome sequencing to reveal genes upregulated in the presence of protocatechuic acid; deletion of candidate genes to observe their ability to grow on protocatechuic acid; determination by mass spectrometry of metabolites accumulated by deletion mutants; and enzyme assays of the recombinant proteins encoded by candidate genes. Based on the aggregate experimental evidence, we assigned the genes for the five pathway enzymes as follows: NRRL3_01405 (prcA) encodes protocatechuate 3,4-dioxygenase; NRRL3_02586 (cmcA) encodes 3-carboxy-cis,cis-muconate cyclase; NRRL3_01409 (chdA) encodes 3-carboxymuconolactone hydrolase/decarboxylase; NRRL3_01886 (kstA) encodes β-ketoadipate:succinyl-CoA transferase; and NRRL3_01526 (kctA) encodes β-ketoadipyl-CoA thiolase. Strain carrying ΔNRRL3_00837 could not grow on protocatechuic acid, suggesting that it is essential for protocatechuate catabolism. Its function is unknown as recombinant NRRL3_00837 did not affect the in vitro conversion of protocatechuic acid to β-ketoadipate.
Collapse
Affiliation(s)
- Michael Sgro
- Department of Biology, Concordia University, Montreal, Quebec, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas Chow
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Farnaz Olyaei
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, The Netherlands
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Arthur F J Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, The Netherlands
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada; Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Department of Biology, Concordia University, Montreal, Quebec, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Harish, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2023; 86:49-74. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
26
|
Click Synthesis of Triazole Polymers Based on Lignin-Derived Metabolic Intermediate and Their Strong Adhesive Properties to Cu Plate. Polymers (Basel) 2023; 15:polym15061349. [PMID: 36987131 PMCID: PMC10051500 DOI: 10.3390/polym15061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC) is a chemically stable metabolic intermediate of lignin that can be produced on a large scale by transforming bacteria. Novel biomass-based polymers based on PDC were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and fully characterized by nuclear magnetic resonance, infrared spectroscopies, thermal analysis, and tensile lap shear strength measurements. The onset decomposition temperatures of these PDC-based polymers were all above 200 °C. In addition, the PDC-based polymers exhibited strong adhesive properties to various metal plates, with the highest adhesion to a copper plate of 5.73 MPa. Interestingly, this result was in contrast to our previous findings that PDC-based polymers weakly adhere to copper. Furthermore, when bifunctional alkyne and azide monomers were polymerized in situ under hot-press conditions for 1 h, the resulting PDC-based polymer displayed a similar adhesion to a copper plate of 4.18 MPa. The high affinity of the triazole ring to copper ions improved the adhesive ability and selectivity of the PDC-based polymers to copper while still maintaining the strong adhesive ability to other metals, which is conducive to enhancing the versatility of PDC-based polymers as adhesives.
Collapse
|
27
|
An improved method for corn stalk in-situ degrading synthetic bacterial consortium construction in a cold region of China. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
28
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
29
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|
30
|
Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives. Catalysts 2023. [DOI: 10.3390/catal13010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lignocellulose is considered one of the significant recalcitrant materials and also is difficult to break down because of its complex structure. Different microbes such as bacteria and fungi are responsible for breaking down these complex lignin structures. This article discussed briefly the lignin-degrading bacteria and their critical steps involved in lignin depolymerization. In addition, fungi are regarded as the ideal microorganism for the degradation of lignin because of their highly effective hydrolytic and oxidative enzyme systems for the breakdown of lignocellulosic materials. The white rot fungi, mainly belonging to basidiomycetes, is the main degrader of lignin among various microorganisms. This could be achieved because of the presence of lignolytic enzymes such as laccases, lignin peroxidases, and manganese peroxidases. The significance of the fungi and lignolytic enzyme’s role in lignin depolymerization, along with its mechanism and chemical pathways, are emphasized in this article.
Collapse
|
31
|
Dong Y, Dong L, Gu X, Wang Y, Liao Y, Luque R, Chen Z. Sustainable production of active pharmaceutical ingredients from lignin-based benzoic acid derivatives via “demand orientation”. GREEN CHEMISTRY 2023; 25:3791-3815. [DOI: 10.1039/d3gc00241a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Catalytic production of several representative active pharmaceutical ingredients (APIs) from lignin.
Collapse
Affiliation(s)
- Yuguo Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Liao
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Li J, Dong C, Sen B, Lai Q, Gong L, Wang G, Shao Z. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158714. [PMID: 36113801 DOI: 10.1016/j.scitotenv.2022.158714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A large amount of terrigenous organic matter (TOM) is constantly transported to the deep sea. However, relatively little is known about the microbial mineralization of TOM therein. Our recent in situ enrichment experiments revealed that Vibrio is especially enriched as one of the predominant taxa in the cultures amended with natural plant materials in the deep sea. Yet their role in the mineralization of plant-derived TOM in the deep sea remains largely unknown. Here we isolated Vibrio strains representing dominant members of the enrichments and verified their potential to degrade lignin and xylan. The isolated strains were closely related to Vibrio harveyi, V. alginolyticus, V. diabolicus, and V. parahaemolyticus. Extracellular enzyme assays, and genome and transcriptome analyses revealed diverse peroxidases, including lignin peroxidase (LiP), catalase-peroxidase (KatG), and decolorizing peroxidase (DyP), which played an important role in the depolymerization and oxidation of lignin. Superoxide dismutase was found to likely promote lignin oxidation by supplying H2O2 to LiP, DyP, and KatG. Interestingly, these deep-sea Vibrio strains could oxidize lignin and hydrolyze xylan not only through aerobic pathway, but also through anaerobic pathway. Genome analysis revealed multiple anaerobic respiratory mechanisms, including the reductions of nitrate, arsenate, tetrathionate, and dimethyl sulfoxide. The strains showed the potential to anaerobically reduce sulfite and metal oxides of iron and manganese, in contrast the non-deep-sea Vibrio strains were not retrieved of genes involved in reduction of metal oxides. This is the first report about the lignin oxidation mechanisms in Vibrio and their role in TOM mineralization in anoxic and oxic environments of the marginal sea.
Collapse
Affiliation(s)
- Jianyang Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
33
|
Rehman JU, Joe EN, Yoon HY, Kwon S, Oh MS, Son EJ, Jang KS, Jeon JR. Lignin Metabolism by Selected Fungi and Microbial Consortia for Plant Stimulation: Implications for Biologically Active Humus Genesis. Microbiol Spectr 2022; 10:e0263722. [PMID: 36314978 PMCID: PMC9769858 DOI: 10.1128/spectrum.02637-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Plant lignin is regarded as an important source for soil humic substances (HSs). Nonetheless, it remains unclear whether microbial metabolism on lignin is related to the genesis of unique HS biological activities (e.g., direct plant stimulation). Here, selected white-rot fungi (i.e., Ganoderma lucidum and Irpex lacteus) and plant litter- or mountain soil-derived microbial consortia were exploited to structurally modify lignin, followed by assessing the plant-stimulatory activity of the lignin-derived products. Parts solubilized by microbial metabolism on lignin were proven to exhibit organic moieties of phenol, carboxylic acid, and aliphatic groups and the enhancement of chromogenic features (i.e., absorbance at 450 nm), total phenolic contents, and radical-scavenging capacities with the cultivation times. In addition, high-resolution mass spectrometry revealed the shift of lignin-like molecules toward those showing either more molar oxygen-to-carbon or more hydrogen-to-carbon ratios. These results support the findings that the microbes involved, solubilize lignin by fragmentation, oxygenation, and/or benzene ring opening. This notion was also substantiated by the detection of related exoenzymes (i.e., peroxidases, copper radical oxidases, and hydrolases) in the selected fungal cultures, while the consortia treated with antibacterial agents showed that the fungal community is a sufficient condition to induce the lignin biotransformation. Major families of fungi (e.g., Nectriaceae, Hypocreaceae, and Saccharomycodaceae) and bacteria (e.g., Burkholderiaceae) were identified in the lignin-enriched cultures. All the microbially solubilized lignin products were likely to stimulate plant root elongation in the order selected white-rot fungi > microbial consortia > antibacterial agent-treated microbial consortia. Overall, this study supports the idea that microbial transformation of lignin can contribute to the formation of biologically active organic matter. IMPORTANCE Structurally stable humic substances (HSs) in soils are tightly associated with soil fertility, and it is thus important to understand how soil HSs are naturally formed. It is believed that microbial metabolism on plant matter contributes to natural humification, but detailed microbial species and their metabolisms inducing humic functionality (e.g., direct plant stimulation) need to be further investigated. Our findings clearly support that microbial metabolites of lignin could contribute to the formation of biologically active humus. This research direction appears to be meaningful not only for figuring out the natural processes, but also for confirming natural microbial resources useful for artificial humification that can be linked to the development of high-quality soil amendments.
Collapse
Affiliation(s)
- Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Nam Joe
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Sumin Kwon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Min Seung Oh
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ju Son
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Jong-Rok Jeon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju, Republic of Korea
- IALS, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
34
|
Tan F, Cheng J, Zhang Y, Jiang X, Liu Y. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:78. [PMID: 35831866 PMCID: PMC9277890 DOI: 10.1186/s13068-022-02175-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
Background Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. Results A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL−1 and 1265.58 UL−1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL−1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography–mass spectrometry (GC–MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. Conclusions Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the β-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate–CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02175-1.
Collapse
|
35
|
Li F, Zhao Y, Xue L, Ma F, Dai SY, Xie S. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 2022; 40:1469-1487. [PMID: 36307230 DOI: 10.1016/j.tibtech.2022.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiquan Zhao
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Xue
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College station, TX 77843, USA.
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
36
|
Li G, Wang Y, Zhu P, Zhao G, Liu C, Zhao H. Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw. Int J Mol Sci 2022; 23:13545. [PMID: 36362331 PMCID: PMC9658089 DOI: 10.3390/ijms232113545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fungal laccases play important roles in the degradation of lignocellulose. In this study, the laccase producing cotton straw medium for Pleurotus ostreatus was optimized by single-factor and orthogonal experiments, and to investigate the role of Lacc1 gene, one of the laccase-encoding genes, in the degradation of cotton straw lignin, an overexpression strain of Lacc1 gene was constructed, which was analyzed for the characteristics of lignin degradation. The results demonstrated that the culture conditions with the highest lignin degradation efficiency of the P. ostreatus were the cotton straw particle size of 0.75 mm, a solid-liquid ratio of 1:3 and containing 0.25 g/L of Tween in the medium, as well as an incubation temperature of 26 °C. Two overexpression strains (OE L1-1 and OE L1-4) of Lacc1 gene were obtained, and the gene expression increased 12.08- and 33.04-fold, respectively. The results of 1H-NMR and FTIR analyses of significant changes in lignin structure revealed that Lacc1 gene accelerated the degradation of lignin G-units and involved in the cleavage of β-O-4 linkages and the demethylation of lignin units. These findings will help to improve the efficiency of biodelignification and expand our understanding of its mechanism.
Collapse
Affiliation(s)
- Guoqing Li
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
- Provincial Resource Database of Wood Rot Edible Mushrooms in Anhui Province, Hefei 230031, China
| | - Yahui Wang
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peilei Zhu
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guiyun Zhao
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Caiyu Liu
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hongyuan Zhao
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
37
|
Xu Z, Peng B, Kitata RB, Nicora CD, Weitz KK, Pu Y, Shi T, Cort JR, Ragauskas AJ, Yang B. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:117. [PMID: 36316752 PMCID: PMC9620641 DOI: 10.1186/s13068-022-02214-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process. RESULTS This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn2+-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn2+-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional 1H-13C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (β-β, β-5, and β-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (β-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process. CONCLUSIONS Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.
Collapse
Affiliation(s)
- Zhangyang Xu
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA
| | - Bo Peng
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA
| | - Reta Birhanu Kitata
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Carrie D. Nicora
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Karl K. Weitz
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Yunqiao Pu
- grid.135519.a0000 0004 0446 2659Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tujin Shi
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - John R. Cort
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Arthur J. Ragauskas
- grid.135519.a0000 0004 0446 2659Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ,grid.411461.70000 0001 2315 1184Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA ,grid.411461.70000 0001 2315 1184Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Bin Yang
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA ,grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| |
Collapse
|
38
|
Tom LM, Aulitto M, Wu YW, Deng K, Gao Y, Xiao N, Rodriguez BG, Louime C, Northen TR, Eudes A, Mortimer JC, Adams PD, Scheller HV, Simmons BA, Ceja-Navarro JA, Singer SW. Low-abundance populations distinguish microbiome performance in plant cell wall deconstruction. MICROBIOME 2022; 10:183. [PMID: 36280858 PMCID: PMC9594917 DOI: 10.1186/s40168-022-01377-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/19/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant cell walls are interwoven structures recalcitrant to degradation. Native and adapted microbiomes can be particularly effective at plant cell wall deconstruction. Although most understanding of biological cell wall deconstruction has been obtained from isolates, cultivated microbiomes that break down cell walls have emerged as new sources for biotechnologically relevant microbes and enzymes. These microbiomes provide a unique resource to identify key interacting functional microbial groups and to guide the design of specialized synthetic microbial communities. RESULTS To establish a system assessing comparative microbiome performance, parallel microbiomes were cultivated on sorghum (Sorghum bicolor L. Moench) from compost inocula. Biomass loss and biochemical assays indicated that these microbiomes diverged in their ability to deconstruct biomass. Network reconstructions from gene expression dynamics identified key groups and potential interactions within the adapted sorghum-degrading communities, including Actinotalea, Filomicrobium, and Gemmatimonadetes populations. Functional analysis demonstrated that the microbiomes proceeded through successive stages that are linked to enzymes that deconstruct plant cell wall polymers. The combination of network and functional analysis highlighted the importance of cellulose-degrading Actinobacteria in differentiating the performance of these microbiomes. CONCLUSIONS The two-tier cultivation of compost-derived microbiomes on sorghum led to the establishment of microbiomes for which community structure and performance could be assessed. The work reinforces the observation that subtle differences in community composition and the genomic content of strains may lead to significant differences in community performance. Video Abstract.
Collapse
Affiliation(s)
- Lauren M Tom
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martina Aulitto
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Naijia Xiao
- Institute of Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | - Clifford Louime
- College of Natural Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Javier A Ceja-Navarro
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
39
|
Activity of cellulase and ligninase enzymes in a local bioactivator from cattle and buffalo rumen contents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ma L, Wang X, Zhou J, Lü X. Degradation of switchgrass by Bacillus subtilis 1AJ3 and expression of a beta-glycoside hydrolase. Front Microbiol 2022; 13:922371. [PMID: 35966659 PMCID: PMC9374367 DOI: 10.3389/fmicb.2022.922371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing demand for carbon neutrality has led to the development of new techniques and modes of low carbon production. The utilization of microbiology to convert low-cost renewable resources into more valuable chemicals is particularly important. Here, we investigated the ability of a cellulolytic bacterium, Bacillus subtilis 1AJ3, in switchgrass lignocellulose degradation. After 5 days of culture with the strain under 37°C, cellulose, xylan, and acid-insoluble lignin degradation rates were 16.13, 14.24, and 13.91%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis and field emission scanning electron microscopy (FE-SEM) indicated that the lignin and surface of switchgrass were degraded after incubation with the bacterial strain. Strain 1AJ3 can grow well below 60°C, which satisfies the optimum temperature (50°C) condition of most cellulases; subsequent results emphasize that acid-heat incubation conditions increase the reducing sugar content in a wide range of cellulosic biomass degraded by B. subtilis 1AJ3. To obtain more reducing sugars, we focused on β-glycoside hydrolase, which plays an important role in last steps of cellulose degradation to oligosaccharides. A β-glycoside hydrolase (Bgl-16A) was characterized by cloning and expression in Escherichia coli BL21 and further determined to belong to glycoside hydrolase (GH) 16 family. The Bgl-16A had an enzymatic activity of 365.29 ± 10.43 U/mg, and the enzyme's mode of action was explained by molecular docking. Moreover, the critical influence on temperature (50°C) of Bgl-16A also explained the high-efficiency degradation of biomass by strain under acid-heat conditions. In terms of potential applications, both the strain and the recombinant enzyme showed that coffee grounds would be a suitable and valuable substrate. This study provides a new understanding of cellulose degradation by B. subtilis 1AJ3 that both the enzyme action mode and optimum temperature limitation by cellulases could impact the degradation. It also gave new sight to unique advantage utilization in the industrial production of green manufacturing.
Collapse
Affiliation(s)
- Lingling Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
41
|
Abstract
Soil microbes play a central role in ecosystem element cycling. Yet a central question in microbial ecology remains unanswered: to what extent does the taxonomic composition of soil microbial communities mediate biogeochemical process rates? In this quantitative review, we explore the mechanisms that lead to variation in the strength of microbial community structure-function relationships over space and time. To evaluate these mechanisms, we conduct a meta-analysis of studies that have monitored the decomposition of sterilized plant litter inoculated with different microbial assemblages. We find that the influence of microbial community composition on litter decay is pervasive and strong, rivalling in magnitude the influence of litter chemistry on decomposition. However, no single environmental or experimental attribute was correlated with variation in the inoculum effect. These results emphasize the need to better understand ecological dynamics within microbial communities, particularly emergent features such as cross-feeding networks, to improve predictions of soil biogeochemical function.
Collapse
|
42
|
Jiang C, Yan H, Shen X, Zhang Y, Wang Y, Sun S, Jiang H, Zang H, Zhao X, Hou N, Li Z, Wang L, Wang H, Li C. Genome Functional Analysis of the Psychrotrophic Lignin-Degrading Bacterium Arthrobacter sp. C2 and the Role of DyP in Catalyzing Lignin Degradation. Front Microbiol 2022; 13:921549. [PMID: 35910642 PMCID: PMC9327799 DOI: 10.3389/fmicb.2022.921549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In the cold regions of China, lignin-rich corn straw accumulates at high levels due to low temperatures. The application of psychrotrophic lignin-degrading bacteria should be an effective means of overcoming the low-temperature limit for lignin degradation and promoting the utilization of corn straw. However, this application is limited by the lack of suitable strains for decomposition of lignin; furthermore, the metabolic mechanism of psychrotrophic lignin-degrading bacteria is unclear. Here, the whole genome of the psychrotrophic lignin-degrading bacterium Arthrobacter sp. C2, isolated in our previous work, was sequenced. Comparative genomics revealed that C2 contained unique genes related to lignin degradation and low-temperature adaptability. DyP may participate in lignin degradation and may be a cold-adapted enzyme. Moreover, DyP was proven to catalyze lignin Cα-Cβ bond cleavage. Deletion and complementation of the DyP gene verified its ability to catalyze the first-step reaction of lignin degradation. Comparative transcriptomic analysis revealed that the transcriptional expression of the DyP gene was upregulated, and the genetic compensation mechanism allowed C2ΔDyP to degrade lignin, which provided novel insights into the survival strategy of the psychrotrophic mutant strain C2ΔdyP. This study improved our understanding of the metabolic mechanism of psychrotrophic lignin-degrading bacteria and provided potential application options for energy-saving production using cold-adapted lignin-degrading enzymes.
Collapse
Affiliation(s)
- Cheng Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Haohao Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xiaohui Shen
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Yuting Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hanyi Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ziwei Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Liwen Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hanjun Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
43
|
Garrison CE, Roozbehi S, Mitra S, Corbett DR, Field EK. Coastal Microbial Communities Disrupted During the 2018 Hurricane Season in Outer Banks, North Carolina. Front Microbiol 2022; 13:816573. [PMID: 35756005 PMCID: PMC9218724 DOI: 10.3389/fmicb.2022.816573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hurricane frequencies and intensities are expected to increase under warming climate scenarios, increasing potential to disrupt microbial communities from steady-state conditions and alter ecosystem function. This study shows the impact of hurricane season on microbial community dynamics within the barrier island system of Outer Banks, North Carolina. We found that the passage of two sequential energetic hurricanes in 2018 (Florence and Michael) were correlated with shifts in total and active (DNA and RNA) portions of bacterial communities but not in archaeal communities, and within surface waters but not within the sediment. These microbial community shifts were distinct from non-hurricane season conditions, suggesting significant implications for nutrient cycling in nearshore and offshore environments. Hurricane-influenced marine sites in the coastal North Atlantic region had lower microbial community evenness and Shannon diversity, in addition to increased relative abundance of copiotrophic microbes compared to non-hurricane conditions. The abundance of functional genes associated with carbon and nitrogen cycling pathways were also correlated with the storm season, potentially shifting microbial communities at offshore sites from autotroph-dominated to heterotroph-dominated and leading to impacts on local carbon budgets. Understanding the geographic- and system-dependent responses of coastal microbial communities to extreme storm disturbances is critical for predicting impacts to nutrient cycling and ecosystem stability in current and future climate scenarios.
Collapse
Affiliation(s)
- Cody E Garrison
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sara Roozbehi
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Siddhartha Mitra
- Department of Geological Sciences, East Carolina University, Greenville, NC, United States.,Integrated Coastal Programs, East Carolina University, Greenville, NC, United States
| | - D Reide Corbett
- Integrated Coastal Programs, East Carolina University, Greenville, NC, United States
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
44
|
Stevens JC, Shi J. Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Front Bioeng Biotechnol 2022; 10:880795. [PMID: 35757805 PMCID: PMC9213733 DOI: 10.3389/fbioe.2022.880795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The multicopper oxidase enzyme laccase holds great potential to be used for biological lignin valorization alongside a biocompatible ionic liquid (IL). However, the IL concentrations required for biomass pretreatment severely inhibit laccase activity. Due to their ability to function in extreme conditions, many thermophilic enzymes have found use in industrial applications. The thermophilic fungal laccase from Myceliophthora thermophila was found to retain high levels of activity in the IL [C2C1Im][EtSO4], making it a desirable biocatalyst to be used for lignin valorization. In contrast to [C2C1Im][EtSO4], the biocompatibility of [C2C1Im][OAC] with the laccase was markedly lower. Severe inhibition of laccase activity was observed in 15% [C2C1Im][OAc]. In this study, the enzyme surface charges were modified via acetylation, succinylation, cationization, or neutralization. However, these modifications did not show significant improvement in laccase activity or stability in [C2C1Im][OAc]. Docking simulations show that the IL docks close to the T1 catalytic copper, likely interfering with substrate binding. Although additional docking locations for [OAc]- are observed after making enzyme modifications, it does not appear that these locations play a role in the inhibition of enzyme activity. The results of this study could guide future enzyme engineering efforts by showing that the inhibition mechanism of [C2C1Im][OAc] toward M. thermophila laccase is likely not dependent upon the IL interacting with the enzyme surface.
Collapse
Affiliation(s)
- Joseph C Stevens
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Jian Shi
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
45
|
Rammala B, Zhou N. Looking into the world's largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:64. [PMID: 35689287 PMCID: PMC9188235 DOI: 10.1186/s13068-022-02159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds' largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.
Collapse
Affiliation(s)
- Bame Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
46
|
Jiang W, Gao H, Sun J, Yang X, Jiang Y, Zhang W, Jiang M, Xin F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol Adv 2022; 60:108004. [PMID: 35690272 DOI: 10.1016/j.biotechadv.2022.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
47
|
Mundra S, Kauserud H, Økland T, Nordbakken J, Ransedokken Y, Kjønaas OJ. Shift in tree species changes the belowground biota of boreal forests. THE NEW PHYTOLOGIST 2022; 234:2073-2087. [PMID: 35307841 PMCID: PMC9325058 DOI: 10.1111/nph.18109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The replacement of native birch with Norway spruce has been initiated in Norway to increase long-term carbon storage in forests. However, there is limited knowledge on the impacts that aboveground changes will have on the belowground microbiota. We examined which effects a tree species shift from birch to spruce stands has on belowground microbial communities, soil fungal biomass and relationships with vegetation biomass and soil organic carbon (SOC). Replacement of birch with spruce negatively influenced soil bacterial and fungal richness and strongly altered microbial community composition in the forest floor layer, most strikingly for fungi. Tree species-mediated variation in soil properties was a major factor explaining variation in bacterial communities. For fungi, both soil chemistry and understorey vegetation were important community structuring factors, particularly for ectomycorrhizal fungi. The relative abundance of ectomycorrhizal fungi and the ectomycorrhizal : saprotrophic fungal ratio were higher in spruce compared to birch stands, particularly in the deeper mineral soil layers, and vice versa for saprotrophs. The positive relationship between ergosterol (fungal biomass) and SOC stock in the forest floor layer suggests higher carbon sequestration potential in spruce forest soil, alternatively, that the larger carbon stock leads to an increase in soil fungal biomass.
Collapse
Affiliation(s)
- Sunil Mundra
- Section for Genetics and Evolutionary Biology (EvoGene)Department of BiosciencesUniversity of OsloPO Box 1066 BlindernOsloNO‐0316Norway
- Department of BiologyCollege of ScienceUnited Arab Emirates UniversityPO Box 15551Al‐Ain, Abu‐DhabiUnited Arab Emirates
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EvoGene)Department of BiosciencesUniversity of OsloPO Box 1066 BlindernOsloNO‐0316Norway
| | - Tonje Økland
- Norwegian Institute of Bioeconomy ResearchPO Box 115ÅsNO‐1431Norway
| | | | - Yngvild Ransedokken
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesPO Box 5003ÅsNO‐1432Norway
| | - O. Janne Kjønaas
- Norwegian Institute of Bioeconomy ResearchPO Box 115ÅsNO‐1431Norway
| |
Collapse
|
48
|
Zhong H, Zhou J, Wang F, Wu W, Abdelrahman M, Li X. Whole-Genome Sequencing Reveals Lignin-Degrading Capacity of a Ligninolytic Bacterium (Bacillus cereus) from Buffalo (Bubalus bubalis) Rumen. Genes (Basel) 2022; 13:genes13050842. [PMID: 35627226 PMCID: PMC9140826 DOI: 10.3390/genes13050842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The buffalo is an amazing ruminant. Its ability to degrade lignin, which has been recently reported, is most likely due to unique rumen microorganisms with lignin-degradation potential. Our goal was to explore the lignin-degradation potential of ruminal microorganisms, in which ligninolytic enzyme encoding genes were involved to provide ideas for revealing the mechanism of lignin degradation by buffalo. In this study, a bacterium strain identified as Bacillus cereus AH7-7 was isolated from the buffalo (Bubalus bubalis) rumen. After whole-genome sequencing, the results demonstrated that B. cereus AH7-7 had laccase, cytochrome P450 and vanillin alcohol oxidase-encoding genes. Sixty-four genes of B. cereus AH7-7 were involved in multiple aromatic metabolic pathways, such as phenylalanine metabolism and aminobenzoate degradation. A positive reaction resulting in guaiacol medium indicated that laccase secretion from B. cereus AH7-7 increased with time. A biodegradation experiment revealed that a significant reduction in kraft lignin content (25.9%) by B. cereus AH7-7 occurred at the end of 6 days of incubation, which confirmed its lignin-degradation capacity. Overall, this is the first report showing that B. cereus AH7-7 from the buffalo rumen can degrade lignin, and revealing the encoding genes of lignin-degrading enzymes from genome level.
Collapse
Affiliation(s)
- Huimin Zhong
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Jiayan Zhou
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Fan Wang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Wenqing Wu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
| | - Mohamed Abdelrahman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Xiang Li
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (J.Z.); (F.W.); (W.W.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-18995622055
| |
Collapse
|
49
|
Duan N, Li L, Liang X, Fine A, Zhuang J, Radosevich M, Schaeffer SM. Variation in Bacterial Community Structure Under Long-Term Fertilization, Tillage, and Cover Cropping in Continuous Cotton Production. Front Microbiol 2022; 13:847005. [PMID: 35444635 PMCID: PMC9015707 DOI: 10.3389/fmicb.2022.847005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural practices alter the structure and functions of soil microbial community. However, few studies have documented the alterations of bacterial communities in soils under long-term conservation management practices for continuous crop production. In this study, we evaluated soil bacterial diversity using 16S rRNA gene sequencing and soil physical and chemical properties within 12 combinations of inorganic N fertilization, cover cropping, and tillage throughout a cotton production cycle. Soil was collected from field plots of the West Tennessee Agriculture Research and Education Center in Jackson, TN, United States. The site has been under continuous cotton production for 38 years. A total of 38,038 OTUs were detected across 171 soil samples. The dominant bacterial phyla were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi, accounting for ∼70% of the total bacterial community membership. Conventional tillage increased alpha diversity in soil samples collected in different stages of cotton production. The effects of inorganic N fertilization and conventional tillage on the structure of bacterial communities were significant at all four sampling dates (p < 0.01). However, cover cropping (p < 0.05) and soil moisture content (p < 0.05) only showed significant influence on the bacterial community structure after burn-down of the cover crops and before planting of cotton (May). Nitrate-N appeared to have a significant effect on the structure of bacterial communities after inorganic fertilization and at the peak of cotton growth (p < 0.01). Structural equation modeling revealed that the relative abundances of denitrifying and nitrifying bacteria were higher when conventional tillage and vetch cover crop practices were applied, respectively. Our results indicate that long-term tillage and fertilization are key factors increasing the diversity and restructuring the composition of bacterial communities, whereas cover cropping may have shorter-term effects on soil bacteria community structure. In this study, management practices might positively influence relative abundances of bacterial functional groups associated with N cycling. The bacteria functional groups may build a network for providing N and meet microbial N needs in the long term.
Collapse
Affiliation(s)
- Ning Duan
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lidong Li
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Xiaolong Liang
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Aubrey Fine
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sean M. Schaeffer
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
50
|
Bernard L, Basile‐Doelsch I, Derrien D, Fanin N, Fontaine S, Guenet B, Karimi B, Marsden C, Maron P. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Bernard
- IRD UMR Eco&Sols INRAE, CIRAD Institut Agro Univ Montpellier 2 place Viala Bt12 34060 Montpellier France
| | | | | | - Nicolas Fanin
- INRAE UMR 1391 ISPA, Bordeaux Sciences Agro 71 Avenue Edouard Bourlaux, CS 20032 Villenave‐d’Ornon Cedex F33882 France
| | - Sébastien Fontaine
- INRAE Université Clermont Auvergne VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
| | - Bertrand Guenet
- Laboratoire de Géologie Ecole Normale Supérieure/CNRS UMR8538 IPSL PSL Research University Paris France
| | | | - Claire Marsden
- Institut Agro UMR Eco&Sols, IRD, INRAE, CIRAD Univ Montpellier 2 place Viala Bt12 34060
| | - Pierre‐Alain Maron
- INRAE UMR AgroEcologie AgroSup Dijon, BP 87999, CEDEX 21079 Dijon France
| |
Collapse
|