1
|
Yoo JY, Choi Y, Kim H, Park SB. Revisiting Pyrimidine-Embedded Molecular Frameworks to Probe the Unexplored Chemical Space for Protein-Protein Interactions. Acc Chem Res 2024. [PMID: 39480992 DOI: 10.1021/acs.accounts.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ConspectusProtein-protein interactions (PPIs) are essential in numerous biological processes and diseases, making them attractive yet challenging drug targets. While many advances have been made in traditional drug discovery, targeting PPIs has been difficult due to a lack of specialized chemical libraries designed to modulate these interactions. Current libraries mainly focus on conventional target proteins like enzymes or receptors as substrate analogs rather than small-molecule modulators targeting PPIs. These traditional drug targets behave differently from PPIs. Conventional druggable targets have relatively small surfaces and binding pockets that have allowed them to be targeted with current libraries, but PPIs behave differently than these traditional drug targets. As a result, there is an urgent need for an innovative approach to expand the druggable space.To address this, we developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy, aimed at creating maximal skeletal diversity to explore broader biochemical space. Pyrimidine serves as the privileged substructure in our approach, which employs several strategies: (i) silver-catalyzed or iodine-mediated tandem cyclizations to generate pyrimidine-embedded polyheterocycles; (ii) diverse pairing strategies to produce pyrimidodiazepine-containing polyheterocyclic skeletons with enhanced scaffold saturation; (iii) skeletal transformation to develop pyrimidine-fused medium-sized azacycles via chemoselective cleavages or migrations of N-N or C-N bond; (iv) design of small-molecule peptidomimetics that systematically mimic three pivotal protein secondary structures using pyrimidodiazepine-based scaffolds; and (v) identification of pyrimidodiazepine-based small-molecules that allosterically inhibits the interaction between human ACE2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to block viral entry into host cells.Through these approaches, we generated 39 distinct pyrimidine-embedded frameworks, demonstrating significant molecular diversity validated by chemoinformatic analyses such as Tanimoto similarity and principal moment of inertia (PMI) analysis. This molecular diversity extends pyrimidine structures beyond traditional linear or bicyclic forms, creating polyheterocycles with enhanced 3D structural diversity. These novel frameworks overcome the limitation of simpler privileged scaffolds, offering promising tools for modulating PPIs.Our pDOS approach highlights how privileged structure-embedded polyheterocycles, particularly those based on pyrimidine, can effectively target previously undruggable PPIs. This strategy provides a new direction for drug discovery, allowing for the development of small molecules that operate beyond traditional drug-like rules. In addition to expanding the chemical space for PPI modulation, our pDOS strategy enables the creation of scaffolds that are particularly suited for targeting complex and dynamic protein interfaces. This innovation could significantly impact therapeutic development, offering solutions for previously intractable drug targets. By expanding the scope of pyrimidine-based scaffolds, we have opened up new possibilities for targeting PPIs and advancing chemical biology.This perspective demonstrates the potential outlines of our pDOS strategy in creating structurally diverse frameworks, offering a platform for the discovery of PPI modulators and facilitating the exploration of untapped biochemical spaces in drug development, potentially transforming the way we approach these complex biological interactions.
Collapse
Affiliation(s)
- Jeong Yeon Yoo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| | - Yoona Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| | - Heejun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| |
Collapse
|
2
|
Shulga DA, Kudryavtsev KV. Ensemble Docking as a Tool for the Rational Design of Peptidomimetic Staphylococcus aureus Sortase A Inhibitors. Int J Mol Sci 2024; 25:11279. [PMID: 39457061 PMCID: PMC11508331 DOI: 10.3390/ijms252011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based drug design (SBDD), which hampers the regular development of small-molecule inhibitors using the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active in the micromolar range. Despite the good experimental design of those works, their molecular modeling parts are still not convincing enough to be used as a basis for a rational modification of peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA (Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target conformations. The developed protocol is shown to describe the known experimental data well and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide structures reported previously in order to prioritize structures from this work for further synthesis and activity testing. The proposed approach is compared to existing alternatives, and further directions for its development are outlined.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Konstantin V. Kudryavtsev
- Vreden National Medical Research Center of Traumatology and Orthopedics, 195427 St. Petersburg, Russia
| |
Collapse
|
3
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Bergman MT, Zhang W, Liu Y, Jang H, Nussinov R. Binding Modalities and Phase-Specific Regulation of Cyclin/Cyclin-Dependent Kinase Complexes in the Cell Cycle. J Phys Chem B 2024; 128:9315-9326. [PMID: 39314090 DOI: 10.1021/acs.jpcb.4c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cyclin-dependent kinases (CDKs) are activated upon cyclin-binding to enable progression through the cell cycle. Dominant CDKs and cyclins in mammalian cells include CDK1, CDK2, CDK4, and CDK6 and corresponding cyclins A, B, D, and E. While only certain, "typical" cyclin/CDK complexes are primarily responsible for cell cycle progression, "atypical" cyclin/CDK complexes can form and sometimes perform the same roles as typical complexes. We asked what structural features of cyclins and CDKs favor the formation of typical complexes, a vital yet not fully explored question. We use computational docking and biophysical analyses to exhaustively evaluate the structure and stability of all CDK and cyclin complexes listed above. We find that binding of the complexes is generally stronger for typical than for atypical complexes, especially when the CDK is in an active conformation. Typical complexes have denser clusters, indicating that they have more defined cyclin-binding sites than atypical complexes. Our results help explain three notable features of cyclin/CDK function in the cell cycle: (i) why CDK4 and cyclin-D have exceptionally high specificity for each other; (ii) why both cyclin-A and cyclin-B strongly activate CDK1, whereas CDK2 is only strongly activated by cyclin-A; and (iii) why cyclin-E normally activates CDK2 but not CDK1. Overall, this work reveals the binding modalities of cyclin/CDK complexes, how the modalities lead to the preference for typical complexes versus atypical complexes, and how binding modalities differ between typical complexes. Our observations suggest targeting CDK catalytic actions through destabilizing their native differential cyclin interfaces.
Collapse
Affiliation(s)
- Michael T Bergman
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Boulay A, Quevarec E, Malet I, Nicastro G, Chamontin C, Perrin S, Henriquet C, Pugnière M, Courgnaud V, Blaise M, Marcelin AG, Taylor IA, Chaloin L, Arhel NJ. A new class of capsid-targeting inhibitors that specifically block HIV-1 nuclear import. EMBO Mol Med 2024:10.1038/s44321-024-00143-w. [PMID: 39358603 DOI: 10.1038/s44321-024-00143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.
Collapse
Affiliation(s)
- Aude Boulay
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Emmanuel Quevarec
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Isabelle Malet
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Célia Chamontin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Suzon Perrin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Valérie Courgnaud
- RNA viruses and host factors, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Anne-Geneviève Marcelin
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France.
| |
Collapse
|
6
|
Timilsina HP, Arya SP, Tan X. Biotechnological Advances Utilizing Aptamers and Peptides Refining PD-L1 Targeting. Front Biosci (Elite Ed) 2024; 16:28. [PMID: 39344385 DOI: 10.31083/j.fbe1603028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
While monoclonal antibodies have shown success in cancer immunotherapy, their limitations prompt exploration of alternative approaches such as aptamers and peptides targeting programmed death ligand 1 (PD-L1). Despite the significance of these biotechnological tools, a comprehensive review encompassing both aptamers and peptides for PD-L1 targeting is lacking. Addressing this gap is crucial for consolidating recent advancements and insights in this field. Biotechnological advances leveraging aptamers and peptides represent a cutting-edge approach in refining the targeting proteins. Our review aims to provide valuable guidance for researchers and clinicians, highlighting the biotechnological advances utilizing aptamers and peptides refining PD-L1 targeting.
Collapse
Affiliation(s)
- Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
7
|
Li X, Liu H, Ding S, Tian Z, Song J, Zhong H, Fu L, Cai X, Huang F, Wang K, Dong L, Zhao W, Cai Y, Dai S. Chemoenzymatic Synthesis of DNP-Functionalized FGFR1-Binding Peptides as Novel Peptidomimetic Immunotherapeutics for Treating Lung Cancer. J Med Chem 2024; 67:15373-15386. [PMID: 39145988 DOI: 10.1021/acs.jmedchem.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Receptor-binding peptides are promising candidates for tumor target therapy. However, the inability to occupy "hot spots" on the PPI interface and rapid metabolic instability are significant limitations to their clinical application. We investigated a new strategy in which an FGFR1-binding peptide (Pep1) was site-specifically functionalized with the dinitrophenyl (DNP) hapten at the C-terminus. The resulting Pep1-DNP conjugates retained FGFR1 binding affinity and exhibited a similar potency in inhibiting FGF2-dependent cell proliferation, comparable to that of native Pep1 in vitro. In addition, three conjugates could recruit anti-DNP antibodies onto the surface of cancer cells, thereby mediating the CDC efficacy. In vivo pharmacokinetic studies and antitumor studies demonstrated that optimal conjugate 9 exhibited significantly prolonged half-lives and improved antitumor efficacy without prominent toxicity compared to those of native Pep1. This is a general and cost-effective approach for generating peptidomimetic immunotherapeutics with multiple antitumor mechanisms that may have broad applications in cancer therapy.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haiyan Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shengjie Ding
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyu Tian
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jia Song
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huayu Zhong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luwei Fu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun Cai
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fengyu Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Kun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilong Dong
- School of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Weixin Zhao
- School of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yuepiao Cai
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shijie Dai
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
8
|
Kim DG, Kim M, Goo JI, Kong J, Harmalkar DS, Lu Q, Sivaraman A, Nada H, Godesi S, Lee H, Song ME, Song E, Han KH, Kim W, Kim P, Choi WJ, Lee CH, Lee S, Choi Y, Kim S, Lee K. Chemical induction of the interaction between AIMP2-DX2 and Siah1 to enhance ubiquitination. Cell Chem Biol 2024:S2451-9456(24)00351-9. [PMID: 39260366 DOI: 10.1016/j.chembiol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/27/2023] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
AIMP2-DX2 (hereafter DX2) is an oncogenic variant of aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) that mediates tumorigenic interactions with various factors involved in cancer. Reducing the levels of DX2 can effectively inhibit tumorigenesis. We previously reported that DX2 can be degraded through Siah1-mediated ubiquitination. In this study, we identified a compound, SDL01, which enhanced the interaction between DX2 and Siah1, thereby facilitating the ubiquitin-dependent degradation of DX2. SDL01 was found to bind to the pocket surrounding the N-terminal flexible region and GST domain of DX2, causing a conformational change that stabilized its interaction with Siah1. Our findings demonstrate that protein-protein interactions (PPIs) can be modulated through chemically induced conformational changes.
Collapse
Affiliation(s)
- Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea; Department of Yuhan Biotechnology, School of Health & Wellness Services, Yuhan University, Bucheon 14780, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ja-Il Goo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Qili Lu
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | | | - Hwayoung Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Eunjoo Song
- IVIM Technology, Daejeon 34013, Republic of Korea
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Pilhan Kim
- IVIM Technology, Daejeon 34013, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Sunkyung Lee
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
9
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
10
|
Abdolmaleki S, Ganjalikhani hakemi M, Ganjalikhany MR. An in silico investigation on the binding site preference of PD-1 and PD-L1 for designing antibodies for targeted cancer therapy. PLoS One 2024; 19:e0304270. [PMID: 39052609 PMCID: PMC11271968 DOI: 10.1371/journal.pone.0304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer control and treatment remain a significant challenge in cancer therapy and recently immune checkpoints has considered as a novel treatment strategy to develop anti-cancer drugs. Many cancer types use the immune checkpoints and its ligand, PD-1/PD-L1 pathway, to evade detection and destruction by the immune system, which is associated with altered effector function of PD-1 and PD-L1 overexpression on cancer cells to deactivate T cells. In recent years, mAbs have been employed to block immune checkpoints, therefore normalization of the anti-tumor response has enabled the scientists to develop novel biopharmaceuticals. In vivo affinity maturation of antibodies in targeted therapy has sometimes failed, and current experimental methods cannot accommodate the accurate structural details of protein-protein interactions. Therefore, determining favorable binding sites on the protein surface for modulator design of these interactions is a major challenge. In this study, we used the in silico methods to identify favorable binding sites on the PD-1 and PD-L1 and to optimize mAb variants on a large scale. At first, all the binding areas on PD-1 and PD-L1 have been identified. Then, using the RosettaDesign protocol, thousands of antibodies have been generated for 11 different regions on PD-1 and PD-L1 and then the designs with higher stability, affinity, and shape complementarity were selected. Next, molecular dynamics simulations and MM-PBSA analysis were employed to understand the dynamic, structural features of the complexes and measure the binding affinity of the final designs. Our results suggest that binding sites 1, 3 and 6 on PD-1 and binding sites 9 and 11 on PD-L1 can be regarded as the most appropriate sites for the inhibition of PD-1-PD-L1 interaction by the designed antibodies. This study provides comprehensive information regarding the potential binding epitopes on PD-1 which could be considered as hotspots for designing potential biopharmaceuticals. We also showed that mutations in the CDRs regions will rearrange the interaction pattern between the designed antibodies and targets (PD-1 and PD-L1) with improved affinity to effectively inhibit protein-protein interaction and block the immune checkpoint.
Collapse
Affiliation(s)
- Sarah Abdolmaleki
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mazdak Ganjalikhani hakemi
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
11
|
Somsen BA, Cossar PJ, Arkin MR, Brunsveld L, Ottmann C. 14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization. Chembiochem 2024; 25:e202400214. [PMID: 38738787 DOI: 10.1002/cbic.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.
Collapse
Affiliation(s)
- Bente A Somsen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California, 94143, United States
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Krishna Sudhakar H, Yau JTK, Alcock LJ, Lau YH. Accessing diverse bicyclic peptide conformations using 1,2,3-TBMB as a linker. Org Biomol Chem 2024. [PMID: 39007293 DOI: 10.1039/d4ob00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bicyclic peptides are a powerful modality for engaging challenging drug targets such as protein-protein interactions. Here, we use 1,2,3-tris(bromomethyl)benzene (1,2,3-TBMB) to access bicyclic peptides with diverse conformations that differ from conventional bicyclisation products formed with 1,3,5-TBMB. Bicyclisation at cysteine residues under aqueous buffer conditions proceeds efficiently, with broad substrate scope, compatibility with high-throughput screening, and clean conversion (>90%) for 96 of the 115 peptides tested. We envisage that the 1,2,3-TBMB linker will be applicable to a variety of peptide screening techniques in drug discovery.
Collapse
Affiliation(s)
| | - Jackie Tsz Ki Yau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Lisa J Alcock
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
13
|
Agarwal R, Pattarawat P, Duff MR, Wang HCR, Baudry J, Smith JC. Structure-Based Identification of Novel Histone Deacetylase 4 (HDAC4) Inhibitors. Pharmaceuticals (Basel) 2024; 17:867. [PMID: 39065718 PMCID: PMC11279411 DOI: 10.3390/ph17070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Histone deacetylases (HDACs) are important cancer drug targets. Existing FDA-approved drugs target the catalytic pocket of HDACs, which is conserved across subfamilies (classes) of HDAC. However, engineering specificity is an important goal. Herein, we use molecular modeling approaches to identify and target potential novel pockets specific to Class IIA HDAC-HDAC4 at the interface between HDAC4 and the transcriptional corepressor component protein NCoR. These pockets were screened using an ensemble docking approach combined with consensus scoring to identify compounds with a different binding mechanism than the currently known HDAC modulators. Binding was compared in experimental assays between HDAC4 and HDAC3, which belong to a different family of HDACs. HDAC4 was significantly inhibited by compound 88402 but not HDAC3. Two other compounds (67436 and 134199) had IC50 values in the low micromolar range for both HDACs, which is comparable to the known inhibitor of HDAC4, SAHA (Vorinostat). However, both of these compounds were significantly weaker inhibitors of HDAC3 than SAHA and thus more selective, albeit to a limited extent. Five compounds exhibited activity on human breast carcinoma and/or urothelial carcinoma cell lines. The present result suggests potential mechanistic and chemical approaches for developing selective HDAC4 modulators.
Collapse
Affiliation(s)
- Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.); (H.-C.R.W.)
| | - Michael R. Duff
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.); (H.-C.R.W.)
| | - Jerome Baudry
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
14
|
Vickery HR, Virta JM, Konstantinidou M, Arkin MR. Development of a NanoBRET assay for evaluation of 14-3-3σ molecular glues. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100165. [PMID: 38797286 DOI: 10.1016/j.slasd.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
We report the development of a 384-well formatted NanoBRET assay to characterize molecular glues of 14-3-3/client interactions in living cells. The seven isoforms of 14-3-3 are dimeric hub proteins with diverse roles including transcription factor regulation and signal transduction. 14-3-3 interacts with hundreds of client proteins to regulate their function and is therefore an ideal therapeutic target when client selectivity can be achieved. We have developed the NanoBRET system for three 14-3-3σ client proteins CRAF, TAZ, and estrogen receptor α (ERα), which represent three specific binding modes. We have measured stabilization of 14-3-3σ/client complexes by molecular glues with EC50 values between 100 nM and 1 μM in cells, which align with the EC50 values calculated by fluorescence anisotropy in vitro. Developing this NanoBRET system for the hub protein 14-3-3σ allows for a streamlined approach, bypassing multiple optimization steps in the assay development process for other 14-3-3σ clients. The NanoBRET system allows for an assessment of PPI stabilization in a more physiologically relevant, cell-based environment using full-length proteins. The method is applicable to diverse protein-protein interactions (PPIs) and offers a robust platform to explore libraries of compounds for both PPI stabilizers and inhibitors.
Collapse
Affiliation(s)
- Holly R Vickery
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Johanna M Virta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA.
| |
Collapse
|
15
|
Mukherjee S, Rogers A, Creech G, Hang C, Ramirez A, Dummeldinger M, Brueggemeier S, Mapelli C, Zaretsky S, Huang M, Black R, Peddicord MB, Cuniere N, Kempson J, Pawluczyk J, Allen M, Parsons R, Sfouggatakis C. Process Development of a Macrocyclic Peptide Inhibitor of PD-L1. J Org Chem 2024; 89:6651-6663. [PMID: 38663026 DOI: 10.1021/acs.joc.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).
Collapse
Affiliation(s)
- Subha Mukherjee
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Amanda Rogers
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Gardner Creech
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chao Hang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael Dummeldinger
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Shawn Brueggemeier
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Claudio Mapelli
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Serge Zaretsky
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Masano Huang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Regina Black
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael B Peddicord
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Nicolas Cuniere
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Joseph Pawluczyk
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Martin Allen
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Rodney Parsons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
16
|
Garbagnoli M, Linciano P, Listro R, Rossino G, Vasile F, Collina S. Biophysical Assays for Investigating Modulators of Macromolecular Complexes: An Overview. ACS OMEGA 2024; 9:17691-17705. [PMID: 38680367 PMCID: PMC11044174 DOI: 10.1021/acsomega.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Drug discovery is a lengthy and intricate process, and in its early stage, crucial steps are the selection of the therapeutic target and the identification of novel ligands. Most targets are dysregulated in pathogenic cells; typically, their activation or deactivation leads to the desired effect, while in other cases, interfering with the target-natural binder complex achieves the therapeutic results. Biophysical assays are a suitable strategy for finding new ligands or interferent agents, being able to evaluate ligand-protein interactions and assessing the effect of small molecules (SMols) on macromolecular complexes. This mini-review provides a detailed analysis of widely used biophysical methods, including fluorescence-based approaches, circular dichroism, isothermal titration calorimetry, microscale thermophoresis, and NMR spectroscopy. After a brief description of the methodologies, examples of interaction and competition experiments are described, together with an analysis of the advantages and disadvantages of each technique. This mini-review provides an overview of the most relevant biophysical technologies that can help in identifying SMols able not only to bind proteins but also to interfere with macromolecular complexes.
Collapse
Affiliation(s)
- Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Giacomo Rossino
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
17
|
Zhang Z, Zhao L, Gao M, Chen Y, Wang J, Wang C. PPII-AEAT: Prediction of protein-protein interaction inhibitors based on autoencoders with adversarial training. Comput Biol Med 2024; 172:108287. [PMID: 38503089 DOI: 10.1016/j.compbiomed.2024.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Protein-protein interactions (PPIs) have shown increasing potential as novel drug targets. The design and development of small molecule inhibitors targeting specific PPIs are crucial for the prevention and treatment of related diseases. Accordingly, effective computational methods are highly desired to meet the emerging need for the large-scale accurate prediction of PPI inhibitors. However, existing machine learning models rely heavily on the manual screening of features and lack generalizability. Here, we propose a new PPI inhibitor prediction method based on autoencoders with adversarial training (named PPII-AEAT) that can adaptively learn molecule representation to cope with different PPI targets. First, Extended-connectivity fingerprints and Mordred descriptors are employed to extract the primary features of small molecular compounds. Then, an autoencoder architecture is trained in three phases to learn high-level representations and predict inhibitory scores. We evaluate PPII-AEAT on nine PPI targets and two different tasks, including the PPI inhibitor identification task and inhibitory potency prediction task. The experimental results show that our proposed PPII-AEAT outperforms state-of-the-art methods.
Collapse
Affiliation(s)
- Zitong Zhang
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, China
| | - Lingling Zhao
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, China
| | - Mengyao Gao
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuanlong Chen
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, China
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
18
|
Gai Y, Duan S, Wang S, Liu K, Yu X, Yang C, Li G, Zhou Y, Yu B, Wu J, Wang C, Yu X. Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction. Viruses 2024; 16:490. [PMID: 38675833 PMCID: PMC11053914 DOI: 10.3390/v16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFβ E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFβ interaction based on the sequences of Vif mutants with higher affinity for CBFβ screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 μM and 55.1 μM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFβ. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFβ over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFβ interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Xin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
19
|
Holdgate GA, Bardelle C, Berry SK, Lanne A, Cuomo ME. Screening for molecular glues - Challenges and opportunities. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100136. [PMID: 38104659 DOI: 10.1016/j.slasd.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Molecular glues are small molecules, typically smaller than PROTACs, and usually with improved physicochemical properties that aim to stabilise the interaction between two proteins. Most often this approach is used to improve or induce an interaction between the target and an E3 ligase, but other interactions which stabilise interactions to increase activity or to inhibit binding to a natural effector have also been demonstrated. This review will describe the effects of induced proximity, discuss current methods used to identify molecular glues and introduce approaches that could be adapted for molecular glue screening.
Collapse
Affiliation(s)
| | - Catherine Bardelle
- High-throughput Screening, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | - Sophia K Berry
- High-throughput Screening, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | - Alice Lanne
- High-throughput Screening, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | | |
Collapse
|
20
|
Wu XY, Dong B, Zhu XM, Cai YY, Li L, Lu JP, Yu B, Cheng JL, Xu F, Bao JD, Wang Y, Liu XH, Lin FC. SP-141 targets Trs85 to inhibit rice blast fungus infection and functions as a potential broad-spectrum antifungal agent. PLANT COMMUNICATIONS 2024; 5:100724. [PMID: 37771153 PMCID: PMC10873891 DOI: 10.1016/j.xplc.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023]
Abstract
Rice blast is a devastating disease worldwide, threatening rice production and food security. The blast fungus Magnaporthe oryzae invades the host via the appressorium, a specialized pressure-generating structure that generates enormous turgor pressure to penetrate the host cuticle. However, owing to ongoing evolution of fungicide resistance, it is vitally important to identify new targets and fungicides. Here, we show that Trs85, a subunit of the transport protein particle III complex, is essential for appressorium-mediated infection in M. oryzae. We explain how Trs85 regulates autophagy through Ypt1 (a small guanosine triphosphatase protein) in M. oryzae. We then identify a key conserved amphipathic α helix within Trs85 that is associated with pathogenicity of M. oryzae. Through computer-aided screening, we identify a lead compound, SP-141, that affects autophagy and the Trs85-Ypt1 interaction. SP-141 demonstrates a substantial capacity to effectively inhibit infection caused by the rice blast fungus while also exhibiting wide-ranging potential as an antifungal agent with broad-spectrum activity. Taken together, our data show that Trs85 is a potential new target and that SP-141 has potential for the control of rice blast. Our findings thus provide a novel strategy that may help in the fight against rice blast.
Collapse
Affiliation(s)
- Xi-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bo Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China; Department of Pharmacology and Nutritional Science, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA; Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bin Yu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing-Li Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
21
|
Ma P, Zhang S, Huang Q, Gu Y, Zhou Z, Hou W, Yi W, Xu H. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B 2024; 14:492-516. [PMID: 38322331 PMCID: PMC10840438 DOI: 10.1016/j.apsb.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 02/08/2024] Open
Abstract
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
22
|
Choi SH, Hwang HS, Han S, Eom H, Choi JS, Han S, Lee D, Lee SY, Koo H, Kwon HJ, Lim YB. Inhibition of protein-protein interactions using biodegradable depsipeptide nanoassemblies. J Control Release 2024; 366:104-113. [PMID: 38128883 DOI: 10.1016/j.jconrel.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Although peptides notoriously have poor intrinsic pharmacokinetic properties, it is well-known that nanostructures with excellent pharmacokinetic properties can be designed. Noticing that peptide inhibitors are generally nonpolar, here, we consolidate the peptide inhibitor targeting intracellular protein-protein interactions (PPIs) as an integral part of biodegradable self-assembled depsipeptide nanostructures (SdPNs). Because the peptide inhibitor has the dual role of PPI inhibition and self-assembly in this design, problems associated with the poor pharmacokinetics of peptides and encapsulation/entrapment processes can be overcome. Optimized SdPNs displayed better tumor targeting and PPI inhibition properties than the comparable small molecule inhibitor in vivo. Kinetics of PPI inhibition for SdPNs were gradual and controllable in contrast to the rapid inhibition kinetics of the small molecule. Because SdPN is modular, any appropriate peptide inhibitor can be incorporated into the platform without concern for the poor pharmacokinetic properties of the peptide.
Collapse
Affiliation(s)
- Se-Hwan Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hyun-Seok Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seongryeong Han
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hohyeon Eom
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jun Shik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea; Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sanghun Han
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Yeon Lee
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Czerczak-Kwiatkowska K, Kaminska M, Fraczyk J, Majsterek I, Kolesinska B. Searching for EGF Fragments Recreating the Outer Sphere of the Growth Factor Involved in Receptor Interactions. Int J Mol Sci 2024; 25:1470. [PMID: 38338748 PMCID: PMC10855902 DOI: 10.3390/ijms25031470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The aims of this study were to determine whether it is possible to use peptide microarrays obtained using the SPOT technique (immobilized on cellulose) and specific polyclonal antibodies to select fragments that reconstruct the outer sphere of proteins and to ascertain whether the selected peptide fragments can be useful in the study of their protein-protein and/or peptide-protein interactions. Using this approach, epidermal growth factor (EGF) fragments responsible for the interaction with the EGF receptor were searched. A library of EGF fragments immobilized on cellulose was obtained using triazine condensing reagents. Experiments on the interactions with EGFR confirmed the high affinity of the selected peptide fragments. Biological tests on cells showed the lack of cytotoxicity of the EGF fragments. Selected EGF fragments can be used in various areas of medicine.
Collapse
Affiliation(s)
- Katarzyna Czerczak-Kwiatkowska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland;
| | - Justyna Fraczyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland;
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| |
Collapse
|
24
|
Philippe GJB, Huang YH, Mittermeier A, Brown CJ, Kaas Q, Ramlan SR, Wang CK, Lane D, Loewer A, Troeira Henriques S, Craik DJ. Delivery to, and Reactivation of, the p53 Pathway in Cancer Cells Using a Grafted Cyclotide Conjugated with a Cell-Penetrating Peptide. J Med Chem 2024; 67:1197-1208. [PMID: 38174919 DOI: 10.1021/acs.jmedchem.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.
Collapse
Affiliation(s)
- Grégoire Jean-Baptiste Philippe
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Mittermeier
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Christopher J Brown
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siti Radhiah Ramlan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lane
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Alexander Loewer
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Chen J, Dean TJ, Shukla D. Contribution of Signaling Partner Association to Strigolactone Receptor Selectivity. J Phys Chem B 2024; 128:698-705. [PMID: 38194306 DOI: 10.1021/acs.jpcb.3c06940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The parasitic plant witchweed, Striga hermonthica, results in agricultural losses of billions of dollars per year. It perceives its host via plant hormones called strigolactones, which act as germination stimulants for witchweed. Strigolactone signaling involves substrate binding to the strigolactone receptor, followed by substrate hydrolysis and a conformational change from an inactive, or open state, to an active, or closed state. In the active state, the receptor associates with a signaling partner, MAX2. Recently, it was shown that this MAX2 association process acts as a strong contributor to the uniquely high signaling activity observed in ShHTL7; however, it is unknown why ShHTL7 has enhanced MAX2 association affinity. Using an umbrella sampling molecular dynamics approach, we characterized the association processes of AtD14, ShHTL7, a mutant of ShHTL7, and ShHTL6 with MAX2 homologue OsD3. From these results, we show that ShHTL7 has an enhanced standard binding free energy of OsD3 compared to those of the other receptors. Additionally, our results suggest that the overall topology of the T2/T3 helix region is likely an important modulator of MAX2 binding. Thus, differences in MAX2 association, modulated by differences in the T2/T3 helix region, are a contributor to differences in signaling activity between different strigolactone receptors.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tanner J Dean
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Sun H, Wang J, Wu H, Lin S, Chen J, Wei J, Lv S, Xiong Y, Wei DQ. A Multimodal Deep Learning Framework for Predicting PPI-Modulator Interactions. J Chem Inf Model 2023; 63:7363-7372. [PMID: 38037990 DOI: 10.1021/acs.jcim.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Protein-protein interactions (PPIs) are essential for various biological processes and diseases. However, most existing computational methods for identifying PPI modulators require either target structure or reference modulators, which restricts their applicability to novel PPI targets. To address this challenge, we propose MultiPPIMI, a sequence-based deep learning framework that predicts the interaction between any given PPI target and modulator. MultiPPIMI integrates multimodal representations of PPI targets and modulators and uses a bilinear attention network to capture intermolecular interactions. Experimental results on our curated benchmark data set show that MultiPPIMI achieves an average AUROC of 0.837 in three cold-start scenarios and an AUROC of 0.994 in the random-split scenario. Furthermore, the case study shows that MultiPPIMI can assist molecular docking simulations in screening inhibitors of Keap1/Nrf2 PPI interactions. We believe that the proposed method provides a promising way to screen PPI-targeted modulators.
Collapse
Affiliation(s)
- Heqi Sun
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Hongyan Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junwei Chen
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghua Wei
- Department of Chemistry, University of Toronto, Toronto M5R 0A3, Canada
| | - Shuai Lv
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Peng Cheng National Laboratory, Shenzhen 518055, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, China
| |
Collapse
|
27
|
Breen ME, Joy ST, Baruti OJ, Beyersdorf MS, Henley MJ, De Salle SN, Ycas PD, Croskey A, Cierpicki T, Pomerantz WCK, Mapp AK. Garcinolic Acid Distinguishes Between GACKIX Domains and Modulates Interaction Networks. Chembiochem 2023; 24:e202300439. [PMID: 37525583 PMCID: PMC10870240 DOI: 10.1002/cbic.202300439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Natural products are often uniquely suited to modulate protein-protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (KD 1 μM) with a non-canonical binding site containing a structurally dynamic loop in CBP/p300 KIX. Garcinolic acid engages full-length CBP in the context of the proteome and in doing so effectively inhibits KIX-dependent transcription in a leukemia model. As the most potent small-molecule KIX inhibitor yet reported, garcinolic acid represents an important step forward in the therapeutic targeting of CBP/p300.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Omari J Baruti
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Matthew S Beyersdorf
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Madeleine J Henley
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Samantha N De Salle
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN-55455, USA
| | - Ayza Croskey
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN-55455, USA
| | - Anna K Mapp
- Department of Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| |
Collapse
|
28
|
Shivaee A, Bahonar S, Goudarzi M, Hematian A, Hajikhani B, Sadeghi Kalani B. Investigating the effect of the inhibitory peptide on L.monocytogenes cell invasion: an in silico and in vitro study. Gut Pathog 2023; 15:51. [PMID: 37880736 PMCID: PMC10601259 DOI: 10.1186/s13099-023-00576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS L.monocytogenes monocytogenes is an omnipresent bacterium that causes a fatal food-borne illness, listeriosis. The connection of this bacterium to E-cadherin through internalin A plays a significant role in the internalization of the bacteria. In this study, this interaction has been investigated for the design of an inhibitory peptide. METHODS The interaction of the proteins involved in the entry of bacteria was evaluated by molecular docking. According to their interactions, an inhibitory peptide was designed to bind to internalin A by server peptiderive. Its effects on L.monocytogenes invasion on the Caco-2 cell line and biofilm formation were also assessed. FINDINGS Docking results showed that the peptide has a high affinity for binding to Internalin A. The synthesized peptide at a concentration of 64 µg/ml inhibited 80% of the invasion of L.monocytogenes into the Caco-2 cell line. Furthermore, the studied peptide at the highest concentration had a slight inhibitory effect on biofilm formation. CONCLUSION These results reveal that short polypeptides can impede the invasion of target cells by L. monocytogenes in vitro and could be advantageous as restoring agents in vivo.
Collapse
Affiliation(s)
- Ali Shivaee
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bahonar
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hematian
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Bahareh Hajikhani
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
29
|
Khattak AA, Qian J, Xu L, Tomah AA, Ibrahim E, Khan MZI, Ahmed T, Hatamleh AA, Al-Dosary MA, Ali HM, Li B. Precision drug design against Acidovorax oryzae: leveraging bioinformatics to combat rice brown stripe disease. Front Cell Infect Microbiol 2023; 13:1225285. [PMID: 37886665 PMCID: PMC10598866 DOI: 10.3389/fcimb.2023.1225285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial brown stripe disease caused by Acidovorax oryzae is a major threat to crop yields, and the current reliance on pesticides for control is unsustainable due to environmental pollution and resistance. To address this, bacterial-based ligands have been explored as a potential treatment solution. In this study, we developed a protein-protein interaction (PPI) network for A. oryzae by utilizing shared differentially expressed genes (DEGs) and the STRING database. Using a maximal clique centrality (MCC) approach through CytoHubba and Network Analyzer, we identified hub genes within the PPI network. We then analyzed the genomic data of the top 10 proteins, and further narrowed them down to 2 proteins by utilizing betweenness, closeness, degree, and eigenvector studies. Finally, we used molecular docking to screen 100 compounds against the final two proteins (guaA and metG), and Enfumafungin was selected as a potential treatment for bacterial resistance caused by A. oryzae based on their binding affinity and interaction energy. Our approach demonstrates the potential of utilizing bioinformatics and molecular docking to identify novel drug candidates for precision treatment of bacterial brown stripe disease caused by A. oryzae, paving the way for more targeted and sustainable control strategies. The efficacy of Enfumafungin in inhibiting the growth of A. oryzae strain RS-1 was investigated through both computational and wet lab methods. The models of the protein were built using the Swiss model, and their accuracy was confirmed via a Ramachandran plot. Additionally, Enfumafungin demonstrated potent inhibitory action against the bacterial strain, with an MIC of 100 µg/mL, reducing OD600 values by up to 91%. The effectiveness of Enfumafungin was further evidenced through agar well diffusion assays, which exhibited the highest zone of inhibition at 1.42 cm when the concentration of Enfumafungin was at 100 µg/mL. Moreover, Enfumafungin was also able to effectively reduce the biofilm of A. oryzae RS-1 in a concentration-dependent manner. The swarming motility of A. oryzae RS-1 was also found to be significantly inhibited by Enfumafungin. Further validation through TEM observation revealed that bacterial cells exposed to Enfumafungin displayed mostly red fluorescence, indicating destruction of the bacterial cell membrane.
Collapse
Affiliation(s)
- Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ali Athafah Tomah
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Plant Protection, College of Agriculture, University of Misan, AL-Amarah, Iraq
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | | | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
L'Exact M, Comeau C, Bourhis A, Boisvert O, Fröhlich U, Létourneau D, Marsault É, Lavigne P, Grandbois M, Boudreault PL. Beyond Rule-of-five: Permeability Assessment of Semipeptidic Macrocycles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184196. [PMID: 37400050 DOI: 10.1016/j.bbamem.2023.184196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules. Although constrained by macrocyclization, they generally retain some conformational flexibility associated with an enhanced ability to cross biological membranes. In this study, we investigated the relationship between the structure of semi-peptidic macrocycles and their membrane permeability through structural modifications. Based on a scaffold of four amino acids and a linker, we synthesized 56 macrocycles incorporating modifications in either stereochemistry, N-methylation, or lipophilicity and assessed their passive permeability using the parallel artificial membrane permeability assay (PAMPA). Our results show that some semi-peptidic macrocycles have adequate passive permeability even with properties outside the Lipinski rule of five. We found that N-methylation in position 2 and the addition of lipophilic groups to the side chain of tyrosine led to an improvement in permeability with a decrease in tPSA and 3D-PSA. This enhancement could be attributed to the shielding effect of the lipophilic group on some regions of the macrocycle, which in turn, facilitates a favorable macrocycle conformation for permeability, suggesting some degree of chameleonic behavior.
Collapse
Affiliation(s)
- Marion L'Exact
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Comeau
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alix Bourhis
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Boisvert
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ulrike Fröhlich
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Danny Létourneau
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
31
|
Shi C, Kaffy J, Ha-Duong T, Gallard JF, Pruvost A, Mabondzo A, Ciccone L, Ongeri S, Tonali N. Proteolytically Stable Diaza-Peptide Foldamers Mimic Helical Hot Spots of Protein-Protein Interactions and Act as Natural Chaperones. J Med Chem 2023; 66:12005-12017. [PMID: 37632446 DOI: 10.1021/acs.jmedchem.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
A novel class of peptidomimetic foldamers based on diaza-peptide units are reported. Circular dichroism, attenuated total reflection -Fourier transform infrared, NMR, and molecular dynamics studies demonstrate that unlike the natural parent nonapeptide, the specific incorporation of one diaza-peptide unit at the N-terminus allows helical folding in water, which is further reinforced by the introduction of a second unit at the C-terminus. The ability of these foldamers to resist proteolysis, to mimic the small helical hot spot of transthyretin-amyloid β (Aβ) cross-interaction, and to decrease pathological Aβ aggregation demonstrates that the introduction of diaza-peptide units is a valid approach for designing mimics or inhibitors of protein-protein interaction and other therapeutic peptidomimetics. This study also reveals that small peptide foldamers can play the same role as physiological chaperone proteins and opens a new way to design inhibitors of amyloid protein aggregation, a hallmark of more than 20 serious human diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Chenghui Shi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Jean-François Gallard
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190 Gif sur Yvette, France
| | - Alain Pruvost
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Aloise Mabondzo
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| |
Collapse
|
32
|
Senoo A, Nagatoishi S, Kuroda D, Ito S, Ueno G, Caaveiro JMM, Tsumoto K. Modulation of a conformational ensemble by a small molecule that inhibits key protein-protein interactions involved in cell adhesion. Protein Sci 2023; 32:e4744. [PMID: 37531208 PMCID: PMC10443342 DOI: 10.1002/pro.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Small molecules that regulate protein-protein interactions can be valuable drugs; however, the development of such small molecules is challenging as the molecule must interfere with an interaction that often involves a large surface area. Herein, we propose that modulating the conformational ensemble of the proteins participating in a given interaction, rather than blocking the interaction by directly binding to the interface, is a relevant strategy for interfering with a protein-protein interaction. In this study, we applied this concept to P-cadherin, a cell surface protein forming homodimers that are essential for cell-cell adhesion in various biological contexts. We first determined the crystal structure of P-cadherin with a small molecule inhibitor whose inhibitory mechanism was unknown. Molecular dynamics simulations suggest that the inhibition of cell adhesion by this small molecule results from modulation of the conformational ensemble of P-cadherin. Our study demonstrates the potential of small molecules altering the conformation ensemble of a protein as inhibitors of biological relevant protein-protein interactions.
Collapse
Affiliation(s)
- Akinobu Senoo
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Department of Global Healthcare, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of EngineeringThe University of TokyoTokyoJapan
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Sho Ito
- DIC Central Research LaboratoriesChibaJapan
| | - Go Ueno
- RIKEN SPring‐8 CenterSayo‐gunHyogoJapan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Medical Device Development and Regulation Research Center, School of EngineeringThe University of TokyoTokyoJapan
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
33
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
34
|
Zhuang Y, Yang F, Menon A, Song JM, Espinoza RV, Schultz PJ, Garner AL, Tripathi A. An ECD and NMR/DP4+ Computational Pipeline for Structure Revision and Elucidation of Diphenazine-Based Natural Products. JOURNAL OF NATURAL PRODUCTS 2023; 86:1801-1814. [PMID: 37463274 PMCID: PMC11472273 DOI: 10.1021/acs.jnatprod.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Discovery and structure elucidation of natural products available in infinitesimally small quantities are recognized challenge. This challenge is epitomized by the diphenazine class of molecules that contain three bridged stereocenters, several conformations, ring fusions, and multiple spatially isolated phenols. Because empirical NMR and spatial analyses using ROESY/NOESY were unsuccessful in tackling these challenges, we developed a computational pipeline to determine the relative and absolute configurations and phenol positions of diphenazines as inhibitors of eukaryotic translation initiation factor 4E (eIF4E) protein-protein interactions. In this pipeline, we incorporated ECD and GIAO NMR calculations coupled with a DP4+ probability measure, enabling the structure revision of phenazinolin D (4), izumiphenazine A (5), and baraphenazine G (7) and the structure characterization of two new diphenazines, baraphenazine H (3) and izumiphenazine E (6). Importantly, through these efforts, we demonstrate the feasibility of NMR/DP4+ analysis for the determination of phenol positions in phenazine-based molecules, further expanding the limits of computational methods for the structure elucidation of complex natural products.
Collapse
Affiliation(s)
- Yihao Zhuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Fei Yang
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
| | - James M. Song
- Program of Chemical Biology, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Rosa V. Espinoza
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Program of Chemical Biology, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Pamela J. Schultz
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
| | - Ashootosh Tripathi
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
36
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
37
|
Watt KJC, Meade RM, James TD, Mason JM. Development of a hydroxyflavone-labelled 4554W peptide probe for monitoring αS aggregation. Sci Rep 2023; 13:10968. [PMID: 37414785 PMCID: PMC10326036 DOI: 10.1038/s41598-023-37655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
Parkinson's is the second most common neurodegenerative disease, with the number of individuals susceptible due to increase as a result of increasing life expectancy and a growing worldwide population. However, despite the number of individuals affected, all current treatments for PD are symptomatic-they alleviate symptoms, but do not slow disease progression. A major reason for the lack of disease-modifying treatments is that there are currently no methods to diagnose individuals during the earliest stages of the disease, nor are there any methods to monitor disease progression at a biochemical level. Herein, we have designed and evaluated a peptide-based probe to monitor αS aggregation, with a particular focus on the earliest stages of the aggregation process and the formation of oligomers. We have identified the peptide-probe K1 as being suitable for further development to be applied to number of applications including: inhibition of αS aggregation; as a probe to monitor αS aggregation, particularly at the earliest stages before Thioflavin-T is active; and a method to detect early-oligomers. With further development and in vivo validation, we anticipate this probe could be used for the early diagnosis of PD, a method to evaluate the effectiveness of potential therapeutics, and as a tool to help in the understanding of the onset and development of PD.
Collapse
Affiliation(s)
- Kathryn J C Watt
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Richard M Meade
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
38
|
Dahlstroem C, Paraschiakos T, Sun H, Windhorst S. Cryo-EM structures of actin binding proteins as tool for drug discovery. Biochem Pharmacol 2023:115680. [PMID: 37399949 DOI: 10.1016/j.bcp.2023.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Cellular actin dynamic is controlled by a plethora of actin binding proteins (ABPs), including actin nucleating, bundling, cross-linking, capping, and severing proteins. In this review, regulation of actin dynamics by ABPs will be introduced, and the role of the F-actin severing protein cofilin-1 and the F-actin bundling protein L-plastin in actin dynamics discussed in more detail. Since up-regulation of these proteins in different kinds of cancers is associated with malignant progression of cancer cells, we suggest the cryogenic electron microscopy (Cryo-EM) structure of F- actin with the respective ABP as template for in silico drug design to specifically disrupt the interaction of these ABPs with F-actin.
Collapse
Affiliation(s)
- Christian Dahlstroem
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg
| | - Han Sun
- Structural Chemistry and Computational Biophysics Group, Leipniz-Forschungsinstitut für Moekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125, Berlin; Institute of Chemistry, Technical University of Berlin, D-10623, Berlin
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg.
| |
Collapse
|
39
|
Marciniak M, Mróz P, Napolitano V, Kalel VC, Fino R, Pykacz E, Schliebs W, Plettenburg O, Erdmann R, Sattler M, Popowicz GM, Dawidowski M. Development of novel PEX5-PEX14 protein-protein interaction (PPI) inhibitors based on an oxopiperazine template. Eur J Med Chem 2023; 258:115587. [PMID: 37406382 DOI: 10.1016/j.ejmech.2023.115587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Protein-protein interactions (PPIs) constitute an important but challenging class of molecular targets for small molecules. The PEX5-PEX14 PPI has been shown to play a critical role in glycosome biogenesis and its disruption impairs the metabolism in Trpanosoma parasites, eventually leading to their death. Therefore, this PPI is a potential molecular target for new drugs against diseases caused by Trypanosoma infections. Here, we report a new class of peptidomimetic scaffolds to target the PEX5-PEX14 PPI. The molecular design was based on an oxopiperazine template for the α-helical mimetics. A structural simplification along with modifications of the central oxopiperazine scaffold and addressing the lipophilic interactions led to the development of peptidomimetics that inhibit PEX5-TbPEX14 PPI and display cellular activity against T. b. brucei. This approach provides an alternative approach towards the development of trypanocidal agents and may be generally useful for the design of helical mimetics as PPI inhibitors.
Collapse
Affiliation(s)
- Monika Marciniak
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Piotr Mróz
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Valeria Napolitano
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Roberto Fino
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Emilia Pykacz
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany; Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1b, Hannover, 30167, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland.
| |
Collapse
|
40
|
Fischer S, Trinh VT, Simon C, Weber LM, Forné I, Nist A, Bange G, Abendroth F, Stiewe T, Steinchen W, Liefke R, Vázquez O. Peptide-mediated inhibition of the transcriptional regulator Elongin BC induces apoptosis in cancer cells. Cell Chem Biol 2023:S2451-9456(23)00155-1. [PMID: 37354906 DOI: 10.1016/j.chembiol.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Inhibition of protein-protein interactions (PPIs) via designed peptides is an effective strategy to perturb their biological functions. The Elongin BC heterodimer (ELOB/C) binds to a BC-box motif and is essential for cancer cell growth. Here, we report a peptide that mimics the high-affinity BC-box of the PRC2-associated protein EPOP. This peptide tightly binds to the ELOB/C dimer (kD = 0.46 ± 0.02 nM) and blocks the association of ELOB/C with its interaction partners, both in vitro and in the cellular environment. Cancer cells treated with our peptide inhibitor showed decreased cell viability, increased apoptosis, and perturbed gene expression. Therefore, our work proposes that blocking the BC-box-binding pocket of ELOB/C is a feasible strategy to impair its function and inhibit cancer cell growth. Our peptide inhibitor promises novel mechanistic insights into the biological function of the ELOB/C dimer and offers a starting point for therapeutics linked to ELOB/C dysfunction.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), University of Marburg, 35043 Marburg, Germany
| | - Van Tuan Trinh
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), University of Marburg, 35043 Marburg, Germany
| | - Lisa M Weber
- Institute of Molecular Biology and Tumor Research (IMT), University of Marburg, 35043 Marburg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, 82152 Martinsried, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), University of Marburg, 35043 Marburg, Germany
| | - Gert Bange
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35043 Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), University of Marburg, 35043 Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35043 Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), University of Marburg, 35043 Marburg, Germany; Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany.
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
41
|
Marchand A, Bonati L, Shui S, Scheller L, Gainza P, Rosset S, Georgeon S, Tang L, Correia BE. Rational Design of Chemically Controlled Antibodies and Protein Therapeutics. ACS Chem Biol 2023; 18:1259-1265. [PMID: 37252896 PMCID: PMC10278067 DOI: 10.1021/acschembio.3c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Protein-based therapeutics, such as monoclonal antibodies and cytokines, are important therapies for various pathophysiological conditions such as oncology, autoimmune disorders, and viral infections. However, the wide application of such protein therapeutics is often hindered by dose-limiting toxicities and adverse effects, namely, cytokine storm syndrome, organ failure, and others. Therefore, spatiotemporal control of the activities of these proteins is crucial to further expand their application. Here, we report the design and application of small-molecule-controlled switchable protein therapeutics by taking advantage of a previously engineered OFF-switch system. We used the Rosetta modeling suite to computationally optimize the affinity between B-cell lymphoma 2 (Bcl-2) protein and a previously developed computationally designed protein partner (LD3) to obtain a fast and efficient heterodimer disruption upon the addition of a competing drug (Venetoclax). The incorporation of the engineered OFF-switch system into anti-CTLA4, anti-HER2 antibodies, or an Fc-fused IL-15 cytokine demonstrated an efficient disruption in vitro, as well as fast clearance in vivo upon the addition of the competing drug Venetoclax. These results provide a proof-of-concept for the rational design of controllable biologics by introducing a drug-induced OFF-switch into existing protein-based therapeutics.
Collapse
Affiliation(s)
- Anthony Marchand
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Lucia Bonati
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
- Laboratory
of Biomaterials for Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Sailan Shui
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Leo Scheller
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Pablo Gainza
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Li Tang
- Laboratory
of Biomaterials for Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Bruno E. Correia
- Laboratory
of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer's disease and potential therapeutic targets. Front Aging Neurosci 2023; 15:1199434. [PMID: 37333457 PMCID: PMC10272394 DOI: 10.3389/fnagi.2023.1199434] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The most prevalent genetic risk factor for Alzheimer's disease (AD) is Apolipoprotein E (ApoE), a gene located on chromosome 19 that encodes three alleles (e2, e3, and e4) that give rise to the ApoE subtypes E2, E3, and E4, respectively. E2 and E4 have been linked to increased plasma triglyceride concentrations and are known to play a critical role in lipoprotein metabolism. The prominent pathological features of AD mainly include senile plaques formed by amyloid β (Aβ42) aggregation and neuronal fibrous tangles (NFTs), and the deposited plaques are mainly composed of Aβ hyperphosphorylation and truncated head. In the central nervous system, the ApoE protein is primarily derived from astrocytes, but ApoE is also produced when neurons are stressed or affected by certain stress, injury, and aging conditions. ApoE4 in neurons induces Aβ and tau protein pathologies, leading to neuroinflammation and neuronal damage, impairing learning and memory functions. However, how neuronal ApoE4 mediates AD pathology remains unclear. Recent studies have shown that neuronal ApoE4 may lead to greater neurotoxicity, which increases the risk of AD development. This review focuses on the pathophysiology of neuronal ApoE4 and explains how neuronal ApoE4 mediates Aβ deposition, pathological mechanisms of tau protein hyperphosphorylation, and potential therapeutic targets.
Collapse
|
43
|
Franco HEO, Le AV, Chang NY, Hartman MCT. p-Chloropropynyl Phenylalanine, a Versatile Non-Canonical Amino Acid for Co-Translational Peptide Macrocyclization and Side Chain Diversification. Chembiochem 2023; 24:e202300020. [PMID: 37156744 PMCID: PMC11165969 DOI: 10.1002/cbic.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Macrocyclization has proven to be a beneficial strategy to improve upon some of the disadvantages of peptides as therapeutics. Nevertheless, many peptide cyclization strategies are not compatible with in vitro display technologies like mRNA display. Here we describe the novel amino acid p-chloropropynyl phenylalanine (pCPF). pCPF is a substrate for a mutant phenylalanyl-tRNA synthetase and its introduction into peptides via in vitro translation leads to spontaneous peptide macrocyclization in the presence of peptides containing cysteine. Macrocyclization occurs efficiently with a wide variety of ring sizes. Moreover, pCPF can be reacted with thiols after charging onto tRNA, enabling the testing of diverse ncAAs in translation. The versatility of pCPF should facilitate downstream studies of translation and enable the creation of novel macrocyclic peptide libraries.
Collapse
Affiliation(s)
- H. Estheban Osorio Franco
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| | - Anthony V. Le
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| | - Nathan Y. Chang
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| | - Matthew C. T. Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| |
Collapse
|
44
|
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp Mol Med 2023; 55:1099-1109. [PMID: 37258584 PMCID: PMC10318096 DOI: 10.1038/s12276-023-01016-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023] Open
Abstract
Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seok-Min Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jae-Won Yoon
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Ki Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
45
|
Huang H, Jones LH. Covalent drug discovery using sulfur(VI) fluoride exchange warheads. Expert Opin Drug Discov 2023:1-11. [PMID: 37243622 DOI: 10.1080/17460441.2023.2218642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Covalent drug discovery has traditionally focused on targeting cysteine, but the amino acid is often absent in protein binding sites. This review makes the case to move beyond cysteine labeling using sulfur (VI) fluoride exchange (SuFEx) chemistry to expand the druggable proteome. AREAS COVERED Recent advances in SuFEx medicinal chemistry and chemical biology are described, which have enabled the development of covalent chemical probes that site-selectively engage amino acid residues (including tyrosine, lysine, histidine, serine, and threonine) in binding pockets. Areas covered include chemoproteomic mapping of the targetable proteome, structure-based design of covalent inhibitors and molecular glues, metabolic stability profiling, and synthetic methodologies that have expedited the delivery of SuFEx modulators. EXPERT OPINION Despite recent innovations in SuFEx medicinal chemistry, focused preclinical research is required to ensure the field moves from early chemical probe discovery to the delivery of transformational covalent drug candidates. The authors believe that covalent drug candidates designed to engage residues beyond cysteine using sulfonyl exchange warheads will likely enter clinical trials in the coming years.
Collapse
Affiliation(s)
- Huang Huang
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Sato N, Suetaka S, Hayashi Y, Arai M. Rational peptide design for inhibition of the KIX-MLL interaction. Sci Rep 2023; 13:6330. [PMID: 37072438 PMCID: PMC10113271 DOI: 10.1038/s41598-023-32848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
The kinase-inducible domain interacting (KIX) domain is an integral part of the general transcriptional coactivator CREB-binding protein, and has been associated with leukemia, cancer, and various viral diseases. Hence, the KIX domain has attracted considerable attention in drug discovery and development. Here, we rationally designed a KIX inhibitor using a peptide fragment corresponding to the transactivation domain (TAD) of the transcriptional activator, mixed-lineage leukemia protein (MLL). We performed theoretical saturation mutagenesis using the Rosetta software to search for mutants expected to bind KIX more tightly than the wild-type MLL TAD. Mutant peptides with higher helical propensities were selected for experimental characterization. We found that the T2857W mutant of the MLL TAD peptide had the highest binding affinity for KIX compared to the other 12 peptides designed in this study. Moreover, the peptide had a high inhibitory effect on the KIX-MLL interaction with a half-maximal inhibitory concentration close to the dissociation constant for this interaction. To our knowledge, this peptide has the highest affinity for KIX among all previously reported inhibitors that target the MLL site of KIX. Thus, our approach may be useful for rationally developing helical peptides that inhibit protein-protein interactions implicated in the progression of various diseases.
Collapse
Affiliation(s)
- Nao Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
47
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
48
|
Agnihotri P, Deka H, Chakraborty D, Monu, Saquib M, Kumar U, Biswas S. Anti-inflammatory potential of selective small compounds by targeting TNF-α & NF-kB signaling: a comprehensive molecular docking and simulation study. J Biomol Struct Dyn 2023; 41:13815-13828. [PMID: 37013999 DOI: 10.1080/07391102.2023.2196692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) is the major cause of inflammation in autoimmune diseases like rheumatoid arthritis (RA). It's mechanisms of signal transduction through nuclear factor kappa B (NF-kB) pathway via small molecules such as metabolite crosstalk are still elusive. In this study, we have targeted TNF-α and NF-kB through metabolites of RA, to inhibit TNF-α activity and deter NF-kB signaling pathways, thereby mitigating the disease severity of RA. TNF-α and NF-kB structure was obtained from PDB database and metabolites of RA were selected from literature survey. In-silico studies were carried out by molecular docking using AutoDock Vina software and further, known TNF-α and NF-kB inhibitors were compared and revealed metabolite's capacity to targets the respective proteins. Most suitable metabolite was then validated by MD simulation to verify its efficiency against TNF-α. Total 56 known differential metabolites of RA were docked with TNF-α and NF-kB compared to their corresponding inhibitor compounds. Four metabolites such as Chenodeoxycholic acid, 2-Hydroxyestrone, 2-Hydroxyestradiol (2-OHE2), and 16-Hydroxyestradiol were identified as a common TNF-α inhibitor's having binding energies ranging from -8.3 to -8.6 kcal/mol, followed by docking with NF-kB. Further, 2-OHE2 was selected because of having binding energy -8.5 kcal/mol, found to inhibit inflammation and the effectiveness was validated by root mean square fluctuation, radius of gyration and molecular mechanics with generalized born and surface area solvation against TNF-α. Thus 2-OHE2, an estrogen metabolite was identified as the potential inhibitor, attenuated inflammatory activation and can be utilized as a therapeutic target to disseminate severity of RA.
Collapse
Affiliation(s)
- Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemchandra Deka
- Gauhati University Institute of Science and Technology, Guwahati University, Guwahati, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Monu
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
49
|
Moxam J, Naylon S, Richaud AD, Zhao G, Padilla A, Roche SP. Passive Membrane Permeability of Sizable Acyclic β-Hairpin Peptides. ACS Med Chem Lett 2023; 14:278-284. [PMID: 36923919 PMCID: PMC10009788 DOI: 10.1021/acsmedchemlett.2c00486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The recent shift toward increasingly larger drug modalities has created a significant demand for novel classes of compounds with high membrane permeability that can inhibit intracellular protein-protein interactions (PPIs). While major advances have been made in the design of cell-permeable helices, stapled β-sheets, and cyclic peptides, the development of large acyclic β-hairpins lags far behind. Therefore, we investigated a series of 26 β-hairpins (MW > 1.6 kDa) belonging to a chemical space far beyond the Lipinski "rule of five" (fbRo5) and showed that, in addition to their innate plasticity, the lipophilicity of these peptides (log D 7.4 ≈ 0 ± 0.7) can be tuned to drastically improve the balance between aqueous solubility and passive membrane permeability.
Collapse
Affiliation(s)
- Jillene Moxam
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Sarah Naylon
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Alexis D. Richaud
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Alberto Padilla
- Department
of Natural Science, Keiser University, Fort Lauderdale, Florida 33309, United States
| | - Stéphane P. Roche
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
- Center
for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
50
|
Evteev SA, Ereshchenko AV, Ivanenkov YA. SiteRadar: Utilizing Graph Machine Learning for Precise Mapping of Protein-Ligand-Binding Sites. J Chem Inf Model 2023; 63:1124-1132. [PMID: 36744300 DOI: 10.1021/acs.jcim.2c01413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identifying ligand-binding sites on the protein surface is a crucial step in the structure-based drug design. Although multiple techniques have been proposed, including those using machine learning algorithms, the existing solutions do not provide significant advantages over nonmachine learning approaches and there is still a big room for improvement. The low ability to identify protein-ligand-binding sites makes available approaches inapplicable to automated drug design. Here, we present SiteRadar, a new algorithm for mapping cavities that are likely to bind a small-molecule ligand. SiteRadar shows higher accuracy in binding site identification compared with FPocket and PUResNet. SiteRadar demonstrates an ability to detect up to 74% of true ligand-binding sites according to the top N + 2 metric and usually covers approximately 80% of ligand atoms. Therefore, SiteRadar can be regarded as a promising solution for implementation into algorithms for automated drug design.
Collapse
Affiliation(s)
- Sergei A Evteev
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia
| | - Alexey V Ereshchenko
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia
| | - Yan A Ivanenkov
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia
| |
Collapse
|