1
|
Xu D, Gong Y, Xiang X, Liu Y, Mai K, Ai Q. Discovery, characterization, and adipocyte differentiation regulation in perirenal adipose tissue of large yellow croaker (Larimichthys crocea). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:627-639. [PMID: 37341909 DOI: 10.1007/s10695-023-01208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Adipose tissue is an essential tissue for lipid deposition in fish and is associated with excess lipid accumulation in aquaculture. However, the knowledge of the distribution and characterization of adipose tissue in fish still needs further investigation. This study for the first time discovered perirenal adipose tissue (PAT) in large yellow croaker by MRI and CT technologies. Then, the morphological and cytological characteristics of PAT were observed, showing a typical characteristic of white adipose tissue. Meanwhile, the mRNA expression of marker genes of white adipose tissue was highly expressed in PAT compared with the liver and muscle in large yellow croaker. Moreover, based on the discovery of PAT, preadipocytes from PAT were isolated, and the differentiation system of preadipocytes was established. The lipid droplet and TG content of cell were gradually increased during adipocyte differentiation. In addition, mRNA expressions of lipoprotein lipase, adipose triglyceride lipase, and transcription factors related to adipogenesis (cebpα, srebp1, pparα, and pparγ) were quantified to explain the regulation mechanism during the differentiation process. In summary, the present study first discovered perirenal adipose tissue in fish, then explored the characterization of PAT, and revealed the regulation of adipocyte differentiation. These results could advance the understanding of adipose tissue in fish and provide a novel idea for the study of the mechanism of lipid accumulation.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ye Gong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Riera-Heredia N, Lutfi E, Balbuena-Pecino S, Vélez EJ, Dias K, Beaumatin F, Gutiérrez J, Seiliez I, Capilla E, Navarro I. The autophagy response during adipogenesis of primary cultured rainbow trout (Oncorhynchus mykiss) adipocytes. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110700. [PMID: 34848371 DOI: 10.1016/j.cbpb.2021.110700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Adipogenesis is a tightly regulated process, and the involvement of autophagy has been recently proposed in mammalian models. In rainbow trout, two well-defined phases describe the development of primary cultured adipocyte cells: proliferation and differentiation. Nevertheless, information on the transcriptional profile at the onset of differentiation and the potential role of autophagy in this process is scarce. In the present study, the cells showed an early and transient induction of several adipogenic transcription factors genes' expression (i.e., cebpa and cebpb) along with the morphological changes (round shape filled with small lipid droplets) typical of the onset of adipogenesis. Then, the expression of various lipid metabolism-related genes involving the synthesis (fas), uptake (fatp1 and cd36), accumulation (plin2) and mobilization (hsl) of lipids, characteristic of the mature adipocyte, increased. In parallel, several autophagy markers (i.e., atg4b, gabarapl1 and lc3b) mirrored the expression of those adipogenic-related genes, suggesting a role of autophagy during in vitro fish adipogenesis. In this regard, the incubation of preadipocytes with lysosomal inhibitors (Bafilomycin A1 or Chloroquine), described to prevent autophagy flux, delayed the process of adipogenesis (i.e., cell remodelling), thus suggesting a possible relationship between autophagy and adipocyte differentiation in trout. Moreover, the disruption of the autophagic flux altered the expression of some key adipogenic genes such as cebpa and pparg. Overall, this study contributes to improve our knowledge on the regulation of rainbow trout adipocyte differentiation, and highlights for the first time in fish the involvement of autophagy on adipogenesis, suggesting a close-fitting connection between both processes.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain; Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Karine Dias
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Florian Beaumatin
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Iban Seiliez
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
3
|
Short-Term Responses to Fatty Acids on Lipid Metabolism and Adipogenesis in Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2020; 21:ijms21051623. [PMID: 32120851 PMCID: PMC7084833 DOI: 10.3390/ijms21051623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023] Open
Abstract
Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Due to the increasing use of vegetable oils (VO), their proportion in diets has lowered, affecting lipid metabolism and fillet composition. Rainbow trout cultured preadipocytes were treated with representative FA found in fish oils (EPA and DHA) or VO (linoleic, LA and alpha-linolenic, ALA acids), while EPA and LA were also orally administered, to evaluate their effects on adipogenesis and lipid metabolism. In vitro, all FA increased lipid internalization, with ALA producing the highest effect, together with upregulating the FA transporter fatp1. In vivo, EPA or LA increased peroxisome proliferator-activated receptors ppara and pparb transcripts abundance in adipose tissue, suggesting elevated β-oxidation, contrary to the results obtained in liver. Furthermore, the increased expression of FA synthase (fas) and the FA translocase/cluster of differentiation (cd36) in adipose tissue indicated an enhanced uptake of lipids and lipogenesis de novo, whereas stable or low hepatic expression of genes involved in lipid transport and turnover was found. Thus, fish showed a similar tissue metabolic response to the short-term availability of EPA or LA in vivo, while in vitro VO-derived FA demonstrated greater potential inducing fat accumulation.
Collapse
|
4
|
Riera-Heredia N, Lutfi E, Gutiérrez J, Navarro I, Capilla E. Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways. PLoS One 2019; 14:e0215926. [PMID: 31017945 PMCID: PMC6481918 DOI: 10.1371/journal.pone.0215926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/01/2023] Open
Abstract
Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, thus they have a great nutritional value for human health. In this study, the adipogenic potential of fatty acids commonly found in fish oil (EPA and DHA) and vegetable oils (linoleic (LA) and alpha-linolenic (ALA) acids), was evaluated in bone-derived mesenchymal stem cells (MSCs) from gilthead sea bream. At a morphological level, cells adopted a round shape upon all treatments, losing their fibroblastic form and increasing lipid accumulation, especially in the presence of the n-6 PUFA, LA. The mRNA levels of the key transcription factor of osteogenesis, runx2 significantly diminished and those of relevant osteogenic genes remained stable after incubation with all fatty acids, suggesting that the osteogenic process might be compromised. On the other hand, transcript levels of the main adipogenesis-inducer factor, pparg increased in response to EPA. Nevertheless, the specific PPARγ antagonist T0070907 appeared to suppress the effects being caused by EPA over adipogenesis. Moreover, LA, ALA and their combinations, significantly up-regulated the fatty acid transporter and binding protein, fatp1 and fabp11, supporting the elevated lipid content found in the cells treated with those fatty acids. Overall, this study has demonstrated that fatty acids favor lipid storage in gilthead sea bream bone-derived MSCs inducing their fate into the adipogenic versus the osteogenic lineage. This process seems to be promoted via different pathways depending on the fatty acid source, being vegetable oils-derived fatty acids more prone to induce unhealthier metabolic phenotypes.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
5
|
Pang Y, Hu J, Liu G, Lu S. Comparative medical characteristics of ZDF-T2DM rats during the course of development to late stage disease. Animal Model Exp Med 2018; 1:203-211. [PMID: 30891566 PMCID: PMC6388085 DOI: 10.1002/ame2.12030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND There are few reports on the comparative medical characteristics of type 2 diabetes models in late stage. An analysis of comparative medical characteristics of Zucker diabetic fatty type 2 diabetes mellitus (ZDF-T2DM) rats during the course of development to late stage disease was performed. METHODS In this study, ZDF rats were fed with high-sugar and high-fat diets to raise the fasting blood glucose, and develop of type 2 diabetes. At the late stage of T2DM, the preliminary comparative medical characteristics of the T2DM model were analyzed through the detection of clinical indicators, histopathology, related cytokine levels, and insulin-related signaling molecule expression levels. RESULTS In the T2DM group, the fasting blood glucose was higher than 6.8 mmol/L, the serum insulin, leptin, and adiponectin levels were significantly decreased, and glucose intolerance and insulin resistance were measured as clinical indicators. Regarding pathological indicators, a large number of pancreatic islet cells showed the reduction of insulin secretion, resulting in damaged glycogen synthesis and liver steatosis. At the molecular level, the insulin signal transduction pathway was inhibited by decreasing the insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), phosphatidylinositol 3 kinase (PI3K), and glycogen synthesis kinase 3β (GSK-3β) expression levels. CONCLUSION The results show that the ZDF/T2DM rats have typical clinical, histopathological, and molecular characteristics of human T2DM and thus can be used as an effective model for T2DM drug development and treatment of advanced T2DM.
Collapse
Affiliation(s)
- Yun‐Li Pang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Jing‐Wen Hu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Guang‐Long Liu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Shuai‐Yao Lu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious DiseasesKunmingChina
| |
Collapse
|
6
|
Abstract
ABSTRACT
White adipose tissue (AT) is the main lipid storage depot in vertebrates. Initially considered to be a simple lipid store, AT has recently been recognized as playing a role as an endocrine organ that is implicated in processes such as energy homeostasis and as a rich source of stem cells. Interest in adipogenesis has increased not only because of the prevalence of obesity, metabolic syndrome and type 2 diabetes in humans, but also in aquaculture because of the excessive fat deposition experienced in some cultured fish species, which may compromise both their welfare and their final product quality. Adipocyte development is well conserved among vertebrates, and this conservation has facilitated the rapid characterization of several adipogenesis models in fish. This Review presents the main findings of adipogenesis research based in primary cultures of the preadipocytes of farmed fish species. Zebrafish has emerged as an excellent model for studying the early stages of adipocyte fish development in vivo. Nevertheless, larger fish species are more suitable for the isolation of preadipocytes from visceral AT and for studies in which preadipocytes are differentiated in vitro to form mature adipocytes. Differentiated adipocytes contain lipid droplets and express adipocyte marker genes such as those encoding the peroxisome proliferator activated receptor γ (pparγ), CCAAT-enhancer-binding protein α (c/ebpα), lipoprotein lipase (lpl), fatty acid synthase (fas), fatty acid binding protein 11 (fabp11), fatty acid transporter protein1 (fatp1), adiponectin and leptin. Differentiated adipocytes also have elevated glycerol 3-phosphate (G3P) dehydrogenase (GPDH) activity. To better understand fish adipocyte development and regulation, different adipokines, fatty acids, growth factors and PPAR agonists have been studied, providing relevant insights into which factors affect these processes and counterbalance AT dysregulation.
Collapse
Affiliation(s)
- Cristina Salmerón
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Liu P, Tian JJ, Ji H, Sun J, Li C, Huang JQ, Li Y, Yu HB, Yu EM, Xie J. The Wnt/β-catenin pathway contributes to the regulation of adipocyte development induced by docosahexaenoic acid in grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:18-24. [DOI: 10.1016/j.cbpb.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
|
8
|
Bou M, Montfort J, Le Cam A, Rallière C, Lebret V, Gabillard JC, Weil C, Gutiérrez J, Rescan PY, Capilla E, Navarro I. Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics 2017; 18:347. [PMID: 28472935 PMCID: PMC5418865 DOI: 10.1186/s12864-017-3728-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Excessive accumulation of adipose tissue in cultured fish is an outstanding problem in aquaculture. To understand the development of adiposity, it is crucial to identify the genes which expression is associated with adipogenic differentiation. Therefore, the transcriptomic profile at different time points (days 3, 8, 15 and 21) along primary culture development of rainbow trout preadipocytes has been investigated using an Agilent trout oligo microarray. RESULTS Our analysis identified 4026 genes differentially expressed (fold-change >3) that were divided into two major clusters corresponding to the main phases observed during the preadipocyte culture: proliferation and differentiation. Proliferation cluster comprised 1028 genes up-regulated from days 3 to 8 of culture meanwhile the differentiation cluster was characterized by 2140 induced genes from days 15 to 21. Proliferation was characterized by enrichment in genes involved in basic cellular and metabolic processes (transcription, ribosome biogenesis, translation and protein folding), cellular remodelling and autophagy. In addition, the implication of the eicosanoid signalling pathway was highlighted during this phase. On the other hand, the terminal differentiation phase was enriched with genes involved in energy production, lipid and carbohydrate metabolism. Moreover, during this phase an enrichment in genes involved in the formation of the lipid droplets was evidenced as well as the activation of the thyroid-receptor/retinoic X receptor (TR/RXR) and the peroxisome proliferator activated receptors (PPARs) signalling pathways. The whole adipogenic process was driven by a coordinated activation of transcription factors and epigenetic modulators. CONCLUSIONS Overall, our study demonstrates the coordinated expression of functionally related genes during proliferation and differentiation of rainbow trout adipocyte cells. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of fish adipogenesis.
Collapse
Affiliation(s)
- Marta Bou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,Present address: Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research), P.O. Box 210, N-1432, Ås, Norway
| | - Jerôme Montfort
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Aurélie Le Cam
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Cécile Rallière
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Véronique Lebret
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Jean-Charles Gabillard
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Claudine Weil
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Pierre-Yves Rescan
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
9
|
Wafer R, Tandon P, Minchin JEN. The Role of Peroxisome Proliferator-Activated Receptor Gamma ( PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research. Front Endocrinol (Lausanne) 2017; 8:102. [PMID: 28588550 PMCID: PMC5438977 DOI: 10.3389/fendo.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
The tropical freshwater zebrafish has recently emerged as a valuable model organism for the study of adipose tissue biology and obesity-related disease. The strengths of the zebrafish model system are its wealth of genetic mutants, transgenic tools, and amenability to high-resolution imaging of cell dynamics within live animals. However, zebrafish adipose research is at a nascent stage and many gaps exist in our understanding of zebrafish adipose physiology and metabolism. By contrast, adipose research within other, closely related, teleost species has a rich and extensive history, owing to the economic importance of these fish as a food source. Here, we compare and contrast knowledge on peroxisome proliferator-activated receptor gamma (PPARG)-mediated adipogenesis derived from both biomedical and aquaculture literatures. We first concentrate on the biomedical literature to (i) briefly review PPARG-mediated adipogenesis in mammals, before (ii) reviewing Pparg-mediated adipogenesis in zebrafish. Finally, we (iii) mine the aquaculture literature to compare and contrast Pparg-mediated adipogenesis in aquaculturally relevant teleosts. Our goal is to highlight evolutionary similarities and differences in adipose biology that will inform our understanding of the role of adipose tissue in obesity and related disease.
Collapse
Affiliation(s)
- Rebecca Wafer
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Panna Tandon
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James E. N. Minchin
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- *Correspondence: James E. N. Minchin,
| |
Collapse
|
10
|
Minchin JEN, Rawls JF. In vivo imaging and quantification of regional adiposity in zebrafish. Methods Cell Biol 2016; 138:3-27. [PMID: 28129849 DOI: 10.1016/bs.mcb.2016.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adipose tissues (ATs) are lipid-rich structures that supply and sequester energy-dense lipid in response to the energy status of an organism. As such, ATs provide an organism energetic insurance during periods of adverse physiological burden. ATs are deposited in diverse anatomical locations, and excessive accumulation of particular regional ATs modulates disease risk. Therefore, a model system that facilitates the visualization and quantification of regional adiposity holds significant biomedical promise. The zebrafish (Danio rerio) has emerged as a new model system for AT research in which the entire complement of regional ATs can be imaged and quantified in live individuals. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for identifying and quantifying regional zebrafish ATs.
Collapse
Affiliation(s)
- J E N Minchin
- University of Edinburgh, Edinburgh, United Kingdom; Duke University, Durham, NC, United States
| | - J F Rawls
- Duke University, Durham, NC, United States
| |
Collapse
|
11
|
Salmerón C, Riera-Heredia N, Gutiérrez J, Navarro I, Capilla E. Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin. Front Endocrinol (Lausanne) 2016; 7:113. [PMID: 27597840 PMCID: PMC4992700 DOI: 10.3389/fendo.2016.00113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
During the last decades, adipogenesis has become an emerging field of study in aquaculture due to the relevance of the adipose tissue in many physiological processes and its connection with the endocrine system. In this sense, recent studies have translated into the establishment of preadipocyte culture models from several fish species, sometimes lacking information on the mRNA levels of adipogenic genes. Thus, the aim of this study was to determine the gene expression profile of gilthead sea bream (Sparus aurata) primary cultured mesenchymal stem cells (MSCs) from different origin (adipose tissue and vertebra bone) during adipogenesis. Both cell types differentiated into adipocyte-like cells, accumulating lipids inside their cytoplasm. Adipocyte differentiation of MSCs from adipose tissue resulted in downregulation of several adipocyte-related genes (such as lpl, hsl, pparα, pparγ and gapdh2) at day 4, gapdh1 at day 8, and fas and pparβ at day 12. In contrast, differences in lxrα mRNA expression were not observed, while g6pdh levels increased during adipocyte maturation. Gapdh and Pparγ protein levels were also detected in preadipocyte cultures; however, only the former increased its expression during adipogenesis. Moreover, differentiation of bone-derived cells into adipocytes also resulted in the downregulation of several adipocyte gene markers, such as fas and g6pdh at day 10 and hsl, pparβ, and lxrα at day 15. On the other hand, the osteogenic genes fib1a, mgp, and op remained stable, but an increase in runx2 expression at day 20 was observed. In summary, the present study demonstrates that gilthead sea bream MSCs, from both adipose tissue and bone, differentiate into adipocyte-like cells, although revealed some kind of species- and cell lineage-specific regulation with regards to gene expression. Present data also provide novel insights into some of the potential key genes controlling adipogenesis in gilthead sea bream that can help to better understand the regulation of lipid storage in fish.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Bou M, Todorčević M, Torgersen J, Škugor S, Navarro I, Ruyter B. De novo lipogenesis in Atlantic salmon adipocytes. Biochim Biophys Acta Gen Subj 2016; 1860:86-96. [DOI: 10.1016/j.bbagen.2015.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
|
13
|
Liu P, Ji H, Li C, Tian J, Wang Y, Yu P. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:867-878. [PMID: 25893904 DOI: 10.1007/s10695-015-0053-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p < 0.05), but C/EBP α declined at 20 dpf. Expression of lipoprotein lipase (LPL) increased from 2 to 16 dpf and then declined. In addition, immunoreaction of PPAR γ was positive on hepatocytes after fertilization for 15 days. These results implied that the early developmental stage of adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.
Collapse
Affiliation(s)
- Pin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Morphology, mitochondrial development and adipogenic-related genes expression during adipocytes differentiation in grass carp ( Ctenopharyngodon idellus ). Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0833-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Salmerón C, Johansson M, Asaad M, Angotzi AR, Rønnestad I, Stefansson SO, Jönsson E, Björnsson BT, Gutiérrez J, Navarro I, Capilla E. Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:40-8. [PMID: 26103556 DOI: 10.1016/j.cbpa.2015.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
Leptin and ghrelin are important regulators of energy homeostasis in mammals, whereas their physiological roles in fish have not been fully elucidated. In the present study, the effects of leptin and ghrelin on adipogenesis, lipolysis and on expression of lipid metabolism-related genes were examined in rainbow trout adipocytes in vitro. Leptin expression and release increased from preadipocytes to mature adipocytes in culture, but did not affect the process of adipogenesis. While ghrelin and its receptor were identified in cultured differentiated adipocytes, ghrelin did not influence either preadipocyte proliferation or differentiation, indicating that it may have other adipose-related roles. Leptin and ghrelin increased lipolysis in mature freshly isolated adipocytes, but mRNA expression of lipolysis markers was not significantly modified. Leptin significantly suppressed the fatty acid transporter-1 expression, suggesting a decrease in fatty acid uptake and storage, but did not affect expression of any of the lipogenesis or β-oxidation genes studied. Ghrelin significantly increased the mRNA levels of lipoprotein lipase, fatty acid synthase and peroxisome proliferator-activated receptor-β, and thus appears to stimulate synthesis of triglycerides as well as their mobilization. Overall, the study indicates that ghrelin, but not leptin seems to be an enhancer of lipid turn-over in adipose tissue of rainbow trout, and this regulation may at least partly be mediated through autocrine/paracrine mechanisms. The mode of action of both hormones needs to be further explored to better understand their roles in regulating adiposity in fish.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Marcus Johansson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40590, Sweden
| | - Maryam Asaad
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Anna R Angotzi
- Department of Biology, University of Bergen, Bergen 5020, Norway
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen 5020, Norway
| | | | - Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40590, Sweden
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40590, Sweden
| | - Joaquim Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Isabel Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
16
|
Cruz-Garcia L, Sánchez-Gurmaches J, Monroy M, Gutiérrez J, Navarro I. Regulation of lipid metabolism and peroxisome proliferator-activated receptors in rainbow trout adipose tissue by lipolytic and antilipolytic endocrine factors. Domest Anim Endocrinol 2015; 51:86-95. [PMID: 25594950 DOI: 10.1016/j.domaniend.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine the effects of growth hormone (GH) and insulin-like growth factor (IGF)-I on glycerol release and the regulation of IGF-I and IGF-II expression by GH in isolated rainbow trout adipocytes. Cells were also incubated with GH, tumor necrosis factor α (TNFα), or insulin to analyze the gene expression of peroxisome proliferator-activated receptors (PPARs) and lipid metabolism markers: hormone sensitive lipase, fatty acid synthase (FAS), and lipoprotein lipase. Complimentary in vivo experiments were performed by intraperitoneally administering insulin, TNFα, or lipopolysaccharide and subjecting the animals to fasting and refeeding periods. The results showed that IGF-I had an antilipolytic effect and GH had a lipolytic effect; the latter occurred independently of IGF modulation and in conjunction with a reduction in PPARα expression in adipocytes. The anabolic action of insulin was demonstrated through its upregulation of lipogenic genes such as lipoprotein lipase, FAS, and PPARγ, whereas GH, by contrast, inhibited FAS expression in adipose tissue. The gene transcription levels of PPARs changed differentially during fasting and refeeding, and the TNFα and/or lipopolysaccharide administration suggested that the regulation of PPARs helps maintain metabolic adipose tissue homeostasis in rainbow trout.
Collapse
Affiliation(s)
- L Cruz-Garcia
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - J Sánchez-Gurmaches
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - M Monroy
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - J Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - I Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
17
|
Liu P, Li C, Huang J, Ji H. Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1447-1460. [PMID: 24737494 DOI: 10.1007/s10695-014-9939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
N-3 highly unsaturated fatty acids (n-3 HUFA) have been shown to inhibit body fat accumulation in animals. To clarify the mechanism of this fat-lowering effect of n-3 HUFA in grass carp (Ctenopharyngodon idellus), two experiments were conducted. In experiment 1, isolated grass carp mature adipocytes were incubated with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at different concentrations for 6 h. The release of glycerol to the medium was detected, and the expression of the lipolysis-related genes was analyzed. In experiment 2, a 95-day feeding trial was conducted with two diets formulated with either lard oil (as control) or fish oil (supplying n-3 HUFA as treatment) as the main lipid source. The glycerol and free fatty acid (FFA) released from the isolated adipocytes of both groups were detected after the feeding period. The expression of select lipolysis-related genes in adipose tissue was also analyzed. The results from experiment 1 showed that the release of glycerol was significantly increased by DHA and EPA (P < 0.05). Moreover, the expression of lipolysis-related genes, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), tumor necrosis factor α (TNFα) and leptin, was also significantly elevated in the treatment group (P < 0.05). Experiment 2 demonstrated that glycerol and FFA release from the isolated adipocytes were significantly higher in the treatment group compared to the control group (P < 0.05). The expression level of ATGL, HSL, TNFα and leptin in the treatment group was significantly higher than in the control group (P < 0.05). The present results provide novel evidence that n-3 HUFAs could regulate grass carp adipocyte lipolysis in vitro or in vivo, and the effect might be in part associated with their influence on the expression of lipolysis-related genes and lipolysis-related adipokines genes.
Collapse
Affiliation(s)
- Pin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | | | | | | |
Collapse
|
18
|
Feng D, Huang QY, Liu K, Zhang SC, Liu ZH. Comparative studies of zebrafish Danio rerio lipoprotein lipase (lpl) and hepatic lipase (lipc) genes belonging to the lipase gene family: evolution and expression pattern. JOURNAL OF FISH BIOLOGY 2014; 85:329-342. [PMID: 24905963 DOI: 10.1111/jfb.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, bioinformatics analysis, tissue distribution and developmental expression pattern of lipoprotein lipase (lpl) and hepatic lipase (lipc) in zebrafish Danio rerio are reported. In adult D. rerio, lpl was highly expressed in liver. This is remarkably different from the tissue expression pattern of LPL in mammals, which is not detected in the adult liver. The expression of lipc was liver specific, which is consistent with that in mammals. During embryogenesis, lpl mRNA was increased gradually in concentration from 0.5 hpf (hour post fertilization) to 6 dpf (days post fertilization), but lipc was not expressed at the early stage of the embryo until 3 dpf. In situ hybridization further displayed the expression pattern of lpl mainly restricted to the head region including cells surrounding the mouth opening, branchial arches, pectoral fin and lateral line neuromast, whereas lipc was mainly restricted to the liver and part of head regions including lens. This lays a foundation for further investigation of lpl or lipc function and evolution in fishes.
Collapse
Affiliation(s)
- D Feng
- Institute of Evolution & Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
19
|
Salmerón C, Acerete L, Gutiérrez J, Navarro I, Capilla E. Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata). Domest Anim Endocrinol 2013; 45:1-10. [PMID: 23535263 DOI: 10.1016/j.domaniend.2013.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 12/25/2022]
Abstract
A preadipocyte primary cell culture was established to gain knowledge about adipose tissue development in gilthead sea bream (Sparus aurata), one of the most extensively produced marine aquaculture species in the Mediterranean. The preadipocytes obtained from the stromal-vascular cell fraction of adipose tissue proliferated in culture, reaching confluence around day 8. At that time, the addition of an adipogenic medium promoted differentiation of the cells into mature adipocytes, which showed an enlarged cytoplasm filled with lipid droplets. First, cell proliferation and differentiation were analyzed under control and adipogenic conditions during culture development. Next, the effects of insulin, GH, and IGF-I on cell proliferation were evaluated at day 8. All peptides significantly stimulated proliferation of the cells after 48 h of incubation (P < 0.002 for GH and IGF-I and P < 0.05 for insulin), despite no differences were observed between the different doses tested. Subsequently, the effects of insulin and IGF-I maintaining differentiation when added to growth medium were studied at day 11, after 3 d of induction with adipogenic medium. The results showed that IGF-I is more potent than insulin enhancing differentiation (P < 0.01 for IGF-I compared with the control). In summary, a primary culture of gilthead sea bream preadipocytes has been characterized and the effects of several regulators of growth and development have been evaluated. This cellular system can be a good model to study the process of adipogenesis in fish, which may help improve the quality of the product in aquaculture.
Collapse
Affiliation(s)
- C Salmerón
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
20
|
Kaneko G, Yamada T, Han Y, Hirano Y, Khieokhajonkhet A, Shirakami H, Nagasaka R, Kondo H, Hirono I, Ushio H, Watabe S. Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream. Gen Comp Endocrinol 2013; 184:51-60. [PMID: 23337031 DOI: 10.1016/j.ygcen.2013.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/12/2012] [Accepted: 01/03/2013] [Indexed: 01/28/2023]
Abstract
Lipid content is one of the major determinants of the meat quality in fish. However, the mechanisms underlying the species-specific distribution of lipid are still poorly understood. The present study was undertaken to investigate the mechanisms associated with lipid accumulation in two species of fish: torafugu (a puffer fish) and red seabream. The lipid content of liver and carcass were 67.0% and 0.8% for torafugu, respectively, and 8.8% and 7.3% for red seabream, respectively. Visceral adipose tissue was only apparent in the red seabream and accounted for 73.3% of its total lipid content. Oil red O staining confirmed this species-specific lipid distribution, and further demonstrated that the lipid in the skeletal muscle of the red seabream was mainly localized in the myosepta. We subsequently cloned cDNAs from torafugu encoding lipoprotein lipase 1 (LPL1) and LPL2, important enzymes for the uptake of lipids from blood circulation system into various tissues. The relative mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) and the LPLs of torafugu were determined by quantitative real-time PCR together with their counterparts in red seabream previously reported. The relative mRNA levels of PPARγ and LPL1 correlated closely to the lipid distribution of both fish, being significantly higher in liver than skeletal muscle in torafugu, whereas the highest in the adipose tissue, followed by liver and skeletal muscle in red seabream. However, the relative mRNA levels of LPL2 were tenfold lower than LPL1 in both species and only correlated to lipid distribution in torafugu, suggesting that LPL2 has only a minor role in lipid accumulation. In situ hybridization revealed that the transcripts of LPL1 co-localized with lipids in the adipocytes located along the myosepta of the skeletal muscle of red seabream. These results suggest that the transcriptional regulation of PPARγ and LPL1 is responsible for the species-specific lipid distribution of torafugu and red seabream.
Collapse
Affiliation(s)
- Gen Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang X, Huang M, Wang Y. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.). PLoS One 2012; 7:e48069. [PMID: 23110176 PMCID: PMC3482209 DOI: 10.1371/journal.pone.0048069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/20/2012] [Indexed: 01/19/2023] Open
Abstract
Fish final product can be affected by excessive lipid accumulation. Therefore, it is important to develop strategies to control obesity in cultivated fish to strengthen the sustainability of the aquaculture industry. As in mammals, the development of adiposity in fish depends on hormonal, cytokine and dietary factors. In this study, we investigated the proliferation and differentiation of preadipocytes isolated from the large yellow croaker and examined the effects of critical factors such as insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of adipocytes. Preadipocytes were isolated by collagenase digestion, after which their proliferation was evaluated. The differentiation process was optimized by assaying glycerol-3-phosphate dehydrogenase (GPDH) activity. Oil red O staining and electron microscopy were performed to visualize the accumulated triacylglycerol. Gene transcript levels were measured using SYBR green quantitative real-time PCR. Insulin promoted preadipocytes proliferation, stimulated cell differentiation and decreased lipolysis of mature adipocytes. TNFα and DHA inhibited cell proliferation and differentiation. While TNFα stimulated mature adipocyte lipolysis, DHA showed no lipolytic effect on adipocytes. The expressions of adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor α, γ (PPARα, PPARγ) were quantified during preadipocytes differentiation and adipocytes lipolysis to partly explain the regulation mechanisms. In summary, the results of this study indicated that although preadipocytes proliferation and the differentiation process in large yellow croaker are similar to these processes in mammals, the effects of critical factors such as insulin, TNFα and DHA on fish adipocytes development are not exactly the same. Our findings fill in the gaps in the basic data regarding the effects of critical factors on adiposity development in fish and will facilitate the further study of molecular mechanism by which these factors act in fish and the application of this knowledge to eventually control obesity in cultured species.
Collapse
Affiliation(s)
- Xinxia Wang
- Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ming Huang
- Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yizhen Wang
- Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Tingaud-Sequeira A, Knoll-Gellida A, André M, Babin PJ. Vitellogenin Expression in White Adipose Tissue in Female Teleost Fish1. Biol Reprod 2012; 86:38. [DOI: 10.1095/biolreprod.111.093757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Bouraoui L, Cruz-Garcia L, Gutiérrez J, Capilla E, Navarro I. Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout (Oncorhynchus mykiss) adipocyte cells in culture. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:83-8. [PMID: 21967882 DOI: 10.1016/j.cbpa.2011.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Adipose tissue plays a central role regulating the balance between deposition and mobilization of lipid reserves. Lipoprotein lipase (LPL) is a key enzyme controlling lipid accumulation in mammals and fish. In the present study, we have examined the expression of LPL in rainbow trout cultured adipocytes and we have investigated the effect of troglitazone, a member of thiazolidinediones (TZDs), and insulin on its expression. LPL gene expression increased from day 1 until day 12 of culture, and the level was maintained up to day 21. The addition of insulin at 10 nM and 1.7 μM increased significantly LPL gene expression in undifferentiated cells (days 7 to 12 maintained in growth medium). Nevertheless, treatment of day 7 cells incubated in growth medium with troglitazone (5 μM) or troglitazone plus insulin (1 μM each), tended to enhance LPL expression. In addition, LPL mRNA levels increased significantly in the presence of 1 μM and 5 μM of troglitazone (days 7 to 12) when the cells were induced to differentiate by addition of differentiation medium. Although troglitazone alone (1 μM) did not stimulate lipid accumulation in the cells neither in growth nor in differentiation medium, the simultaneous presence of troglitazone (1 μM) and insulin (1 μM) increased significantly the content of triglycerides in adipocyte cells maintained in growth medium (days 7 to 12). These results indicate that insulin and troglitazone regulate LPL gene expression during adipocyte differentiation and suggest that both factors may have combined effects in the modulation of adipogenesis.
Collapse
Affiliation(s)
- L Bouraoui
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Capilla E, Teles-García A, Acerete L, Navarro I, Gutiérrez J. Insulin and IGF-I effects on the proliferation of an osteoblast primary culture from sea bream (Sparus aurata). Gen Comp Endocrinol 2011; 172:107-14. [PMID: 21447336 DOI: 10.1016/j.ygcen.2011.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/03/2011] [Accepted: 03/19/2011] [Indexed: 11/19/2022]
Abstract
Bone deformities in several fish species, like gilthead sea bream (Sparus aurata), are currently a major problem in aquaculture. To gain knowledge of fish skeletal development, a primary cell culture has been established from sea bream vertebra. The initial fibroblastic phenotype of the cells changed to a polygonal shape during the culture, and the addition of an osteogenic medium promoted the deposition of minerals in the extracellular matrix. Cell proliferation was analyzed using the MTT assay in control and mineralizing conditions at different culture days, up to day 20. The capacity of the cells to differentiate into osteoblasts was evaluated using Alizarin red stain. The cells showed slightly increased proliferation and differentiation in the presence of osteogenic medium. Furthermore, pluripotentiality of these cells was demonstrated by inducing them to differentiate into adipocytes, and the accumulation of lipids into the cells was detected with Oil Red O staining. Subsequently, the effects of insulin (1, 10, 100 and 1000 nM) and IGF-I (0.1, 1 and 10nM) on cell proliferation were evaluated with the MTT assay at day 3. Both peptides significantly stimulated the proliferation of the cells in a dose-dependent manner after either 24 or 48 h of incubation, with IGF-I apparently being more potent than insulin. In summary, a primary culture of sea bream osteoblasts has been characterized. This cellular system can be a good model to study the process of osteoblastogenesis in fish and its endocrine regulation, which may help to improve the quality of the product in aquaculture.
Collapse
Affiliation(s)
- Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, Barcelona 08028, Spain.
| | | | | | | | | |
Collapse
|
25
|
Comparative studies of vertebrate lipoprotein lipase: a key enzyme of very low density lipoprotein metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:224-34. [PMID: 21561822 DOI: 10.1016/j.cbd.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
Abstract
Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58-99% identity as compared with 33-49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (×4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2-3 times) than for LIPC and LIPG genes and proteins.
Collapse
|
26
|
Abstract
White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT.
Collapse
Affiliation(s)
- James E N Minchin
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
27
|
Bouraoui L, Capilla E, Gutiérrez J, Navarro I. Insulin and insulin-like growth factor I signaling pathways in rainbow trout (Oncorhynchus mykiss) during adipogenesis and their implication in glucose uptake. Am J Physiol Regul Integr Comp Physiol 2010; 299:R33-41. [DOI: 10.1152/ajpregu.00457.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary cultures of rainbow trout ( Oncorhynchus mykiss ) adipocytes were used to examine the main signaling pathways of insulin and insulin-like growth factor I (IGF-I) during adipogenesis. We first determined the presence of IGF-I receptors (IGF-IR) and insulin receptors (IR) in trout preadipocytes ( day 5) and adipocytes ( day 14). IGF-IRs were more abundant and appeared to be in higher levels in differentiated cells than in preadipocytes, whereas IRs were detected in lower but constant levels throughout the culture. The cells were immunoreactive against ERK1/2 MAPK, and AKT/PI3K, components of the two main signal transduction pathways for insulin and IGF-I receptors. Stimulation of MAPK phosphorylation by IGF-I was higher in preadipocytes than in adipocytes, while no effects were observed in MAPK phosphorylation after incubation of cells with insulin. AKT phosphorylation increased in the presence of both insulin and IGF-I, with higher levels of stimulation in adipocytes than in preadipocytes. Activation of both pathways was blocked by the use of specific inhibitors of MAPK (PD98059) and AKT (wortmannin). We describe here, for the first time, the effects of IGF-I and insulin on 2-deoxyglucose uptake in primary culture of trout adipocytes. IGF-I was more potent in stimulating glucose uptake than insulin, and PD98059 and wortmannin inhibited the stimulation of glucose uptake by this growth factor, suggesting that IGF-I plays an important metabolic role in trout adipocytes. Our results suggest that differential activation of the MAPK and AKT pathways are involved in the IGF-I- and insulin-induced effects of trout adipocytes during the various stages of adipogenesis.
Collapse
Affiliation(s)
- L. Bouraoui
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E. Capilla
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J. Gutiérrez
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I. Navarro
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Flynn EJ, Trent CM, Rawls JF. Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 2009; 50:1641-52. [PMID: 19366995 DOI: 10.1194/jlr.m800590-jlr200] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The global obesity epidemic demands an improved understanding of the developmental and environmental factors regulating fat storage. Adipocytes serve as major sites of fat storage and as regulators of energy balance and inflammation. The optical transparency of developing zebrafish provides new opportunities to investigate mechanisms governing adipocyte biology, however zebrafish adipocytes remain uncharacterized. We have developed methods for visualizing zebrafish adipocytes in vivo by labeling neutral lipid droplets with Nile Red. Our results establish that neutral lipid droplets first accumulate in visceral adipocytes during larval stages and increase in number and distribution as zebrafish grow. We show that the cellular anatomy of zebrafish adipocytes is similar to mammalian white adipocytes and identify peroxisome-proliferator activated receptor gamma and fatty acid binding protein 11a as markers of the zebrafish adipocyte lineage. By monitoring adipocyte development prior to neutral lipid deposition, we find that the first visceral preadipocytes appear in association with the pancreas shortly after initiation of exogenous nutrition. Zebrafish reared in the absence of food fail to form visceral preadipocytes, indicating that exogenous nutrition is required for adipocyte development. These results reveal homologies between zebrafish and mammalian adipocytes and establish the zebrafish as a new model for adipocyte research.
Collapse
Affiliation(s)
- Edward J Flynn
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | | | | |
Collapse
|
29
|
The effects of 2-bromopalmitate on the fatty acid composition in differentiating adipocytes of red sea bream (Pagrus major). Comp Biochem Physiol B Biochem Mol Biol 2009; 152:370-5. [DOI: 10.1016/j.cbpb.2009.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 11/22/2022]
|
30
|
Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:268-77. [PMID: 18691667 DOI: 10.1016/j.cbpb.2008.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/13/2008] [Accepted: 07/14/2008] [Indexed: 11/21/2022]
Abstract
To investigate the molecular mechanism of fish adipocyte differentiation, the three subtypes of PPAR genes (alpha, beta and gamma) were characterized in a marine teleost red sea bream (Pagrus major). The primary structures of red sea bream PPARs exhibited high degrees of similarities to their mammalian counterparts, and their gene expression was detected in various tissues including adipose tissue, heart and hepatopancreas. During the differentiation of primary cultured red sea bream adipocytes, three PPARs showed distinct expression patterns: The alpha subtype showed a transient increase and the beta gene expression tended to increase during adipocyte differentiation whereas the gene expression level of PPARgamma did not change. These results suggest that they play distinct roles in adipocyte differentiation in red sea bream. In the differentiating red sea bream adipocytes, mammalian PPAR agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2), ciglitazone and fenofibrate did not show clear effects on the adipogenic gene expression. However, 2-bromopalmitate increased the PPARgamma and related adipogenic gene expression levels, suggesting the gamma subtype plays a central role in red sea bream adipocyte differentiation and in addition, fatty acid metabolites can be used as modulators of adipocyte function. Thus our study highlighted the roles of PPARs in fish adipocyte differentiation and provided information on the molecular mechanisms of fish adipocyte development.
Collapse
|
31
|
Levin M, Buznikov GA, Lauder JM. Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 2006; 28:171-85. [PMID: 16679764 DOI: 10.1159/000091915] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/22/2023] Open
Abstract
Serotonin is a clinically important neurotransmitter regulating diverse aspects of cognitive function, sleep, mood, and appetite. Increasingly, it is becoming appreciated that serotonin signaling among non-neuronal cells is a novel patterning mechanism existing throughout diverse phyla. Here, we review the evidence implicating serotonergic signaling in embryonic morphogenesis, including gastrulation, craniofacial and bone patterning, and the generation of left-right asymmetry. We propose two models suggesting movement of neurotransmitter molecules as a novel mechanism for how bioelectrical events may couple to downstream signaling cascades and gene activation networks. The discovery of serotonin-dependent patterning events occurring long before the development of the nervous system opens exciting new avenues for future research in evolutionary, developmental, and clinical biology.
Collapse
Affiliation(s)
- Michael Levin
- The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | |
Collapse
|